JP2003138348A - Ferritic stainless steel sheet, and production method therefor - Google Patents

Ferritic stainless steel sheet, and production method therefor

Info

Publication number
JP2003138348A
JP2003138348A JP2001334174A JP2001334174A JP2003138348A JP 2003138348 A JP2003138348 A JP 2003138348A JP 2001334174 A JP2001334174 A JP 2001334174A JP 2001334174 A JP2001334174 A JP 2001334174A JP 2003138348 A JP2003138348 A JP 2003138348A
Authority
JP
Japan
Prior art keywords
less
mass
hot
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001334174A
Other languages
Japanese (ja)
Other versions
JP3709833B2 (en
Inventor
Yoshihiro Yazawa
好弘 矢沢
Yasushi Kato
康 加藤
Yoshihiro Ozaki
芳宏 尾崎
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001334174A priority Critical patent/JP3709833B2/en
Publication of JP2003138348A publication Critical patent/JP2003138348A/en
Application granted granted Critical
Publication of JP3709833B2 publication Critical patent/JP3709833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolled and annealed steel sheet which is suitable as the stock for a ferritic stainless steel cold rolled steel sheet having excellent ridging behavior and deep drawability, and to provide a production method therefor. SOLUTION: A steel slab having a composition containing, by mass, <=0.01% C, <=1.0% Si, <=1.5% Mn, 11 to 30% Cr, <=3.0% Mo, <=0.06% P, <=0.03% S, <=1.0% Al, <=0.04% N, <=0.8% Nb and/or <=1.0% Ti, and 18<=Nb/(C+N)+2(Ti/(C+N))<=60, and the balance Fe with inevitable impurities is hot-rolled. Next, the steel sheet is subjected to hot rolled sheet annealing for one or two times where its recrystallization ratio is controlled in >=95%, and the aspect ratio (the length in the sheet thickness direction/the length in the rolling direction) of the crystal grain size in the cross-section in the rolling direction is controlled in <=0.8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フェライト系ステ
ンレス冷延鋼板用の素材として好適な熱延鋼板とその製
造方法、およびリジング性−深絞り性に優れた冷延フェ
ライト系ステンレス鋼板の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a hot-rolled steel sheet suitable as a material for a ferritic stainless cold-rolled steel sheet, a method for producing the same, and a method for producing a cold-rolled ferritic stainless steel sheet excellent in ridging property and deep drawability. It is about.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼板は、同程度
の強度を有する普通鋼の高張力深絞り鋼板に比べて延性
−r値のバランスが悪いことが知られている。このた
め、従来、フェライト系ステンレス鋼板を、自動車用強
度部材をはじめ、家電、厨房、建材等の複雑な絞り加工
用途に用いる場合には、深絞り性の改善(r値向上)が必
要であった。また、フェライト系ステンレス鋼板を加工
した場合、製品表面に生じる凹凸(リジング、ローピン
グ)が問題となることがあり、この問題の解決も重要な
課題となっていた。
2. Description of the Related Art It is known that a ferritic stainless steel sheet has a poor balance of ductility and r-value as compared with a high tensile strength deep drawn steel sheet of ordinary steel having a similar strength. Therefore, conventionally, when a ferritic stainless steel plate is used for complicated drawing applications such as strength members for automobiles, home appliances, kitchens, building materials, etc., it is necessary to improve deep drawability (r value improvement). It was Further, when a ferritic stainless steel plate is processed, irregularities (ridging, roping) generated on the product surface may become a problem, and solving this problem has also been an important issue.

【0003】深絞り性を改善する方法については、例え
ば、特開平3-264652号公報には、熱延条件や熱延板焼鈍
温度の適正化に加えて、ロール径を100mmφ以上とする
ことにより、r値を改善する技術が開示されている。ま
た、特開平7-268461号公報には、熱延工程における温
度、圧下率および摩擦係数を制限することより、高r値
鋼板を得る技術が開示されている。これらは、いずれも
熱延条件を適正化して熱延板の特性を改善する技術であ
る。
Regarding a method of improving the deep drawability, for example, in Japanese Patent Laid-Open No. 3-264652, in addition to optimizing the hot rolling conditions and the hot rolled sheet annealing temperature, the roll diameter is set to 100 mmφ or more. , R-value improvement techniques are disclosed. Further, Japanese Patent Laid-Open No. 7-268461 discloses a technique for obtaining a high r-value steel sheet by limiting the temperature, the rolling reduction and the friction coefficient in the hot rolling process. All of these are techniques for optimizing the hot rolling conditions to improve the properties of the hot rolled sheet.

【0004】[0004]

【発明が解決しようとする課題】ところで、リジング性
や成形性に大きな影響を及ぼすもう一つの重要な要因と
して、熱延板焼鈍の問題がある。しかし、上記従来技術
では、この熱延板焼鈍については詳しく検討はなされて
おらず、単に温度の適正範囲を決定するに止まり、とく
に熱延板焼鈍後の鋼板の特性が、最終冷延板の鋼板特性
にどのような影響を及ぼすかということまでは考慮して
いないのが実情である。
By the way, there is a problem of hot-rolled sheet annealing as another important factor that greatly affects the ridging property and the formability. However, in the above prior art, this hot-rolled sheet annealing has not been studied in detail, it is merely to determine an appropriate range of temperature, particularly the characteristics of the steel sheet after hot-rolled sheet annealing, the final cold-rolled sheet The fact is that we have not taken into consideration how it affects the properties of the steel sheet.

【0005】本発明の目的は、自動車用強度部材等のリ
ジング性および深絞り性の改善が強く求められているフ
ェライト系ステンレス冷延鋼板の素材として好適な熱延
焼鈍板とその製造方法、およびこの熱延焼鈍板を素材と
したリジング性−深絞り性バランスの優れたフェライト
系ステンレス鋼冷延鋼板の製造方法を提供することにあ
る。
An object of the present invention is to provide a hot rolled annealed sheet suitable as a material for a ferritic stainless cold-rolled steel sheet which is strongly required to have improved ridging properties and deep drawability of strength members for automobiles, etc., and a method for producing the same. It is an object of the present invention to provide a method for producing a cold rolled steel sheet of ferritic stainless steel having an excellent balance of ridging property and deep drawing property using the hot rolled annealed plate as a raw material.

【0006】[0006]

【課題を解決するための手段】発明者らは、年々厳しく
なるフェライト系ステンレス鋼板のリジング性、深絞り
性等の加工性向上への要求に応えるため、特に熱延板焼
鈍技術に着目して研究を行った。その結果、最終冷延板
のリジング性および深絞り性(r値)には、熱延焼鈍板の
特性、特に熱延焼鈍板の再結晶率と結晶粒径のアスペク
ト比が大きく影響しており、そして、これらの特性に優
れた最終冷延板を得るためにはまた、熱延焼鈍板の特性
を制御することが重要になるという知見を得た。
[Means for Solving the Problems] In order to meet the demands for improving workability such as ridging property and deep drawing property of ferritic stainless steel sheets, which are becoming severer year by year, the inventors have paid particular attention to the hot rolled sheet annealing technology. I did a research. As a result, the ridging property and deep drawability (r value) of the final cold-rolled sheet are greatly affected by the characteristics of the hot-rolled annealed sheet, particularly the recrystallization rate and the aspect ratio of the grain size of the hot-rolled annealed sheet. And, in order to obtain the final cold-rolled sheet excellent in these characteristics, it was also found that it is important to control the characteristics of the hot-rolled annealed sheet.

【0007】すなわち、本発明は、C:0.01mass%以
下、Si:1.0mass%以下、Mn:1.5mass%以下、Cr:11〜
30mass%、Mo:3.0mass%以下、P:0.06mass%以下、
S:0.03mass%以下、Al:1.0mass%以下、N:0.04mas
s%以下、Nb:0.8mass%以下および/またはTi:1.0%
以下、 18≦Nb/(C+N)+2(Ti/(C+N))≦60 を含み、残部がFe及び不可避的不純物からなり、熱延板
焼鈍後における鋼板の再結晶率が95%以上でかつ圧延方
向断面の結晶粒のアスペクト比(板厚方向長/圧延方向
長)が0.8以下であるフェライト系ステンレス鋼板であ
る。
That is, according to the present invention, C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to
30 mass%, Mo: 3.0 mass% or less, P: 0.06 mass% or less,
S: 0.03 mass% or less, Al: 1.0 mass% or less, N: 0.04 mass
s% or less, Nb: 0.8 mass% or less and / or Ti: 1.0%
Below, 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60, the balance consisting of Fe and unavoidable impurities, the recrystallization rate of the steel sheet after hot-rolled sheet annealing is 95% or more and rolling It is a ferritic stainless steel sheet in which the aspect ratio (length in the plate thickness direction / length in the rolling direction) of the crystal grains in the direction cross section is 0.8 or less.

【0008】また、本発明は、C:0.01mass%以下、S
i:1.0mass%以下、Mn:1.5mass%以下、Cr:11〜30mas
s%、Mo:3.0mass%以下、P:0.06mass%以下、S:0.
03mass%以下、Al:1.0mass%以下、N:0.04mass%以
下、Nb:0.8mass%以下および/またはTi:1.0%以下、 18≦Nb/(C+N)+2(Ti/(C+N))≦60 を含み、残部がFe及び不可避的不純物からなる鋼スラブ
を熱間圧延し、次いで、鋼板の再結晶率を95%以上かつ
圧延方向断面の結晶粒径のアスペクト比(板厚方向長/
圧延方向長)を0.8以下とする熱延板焼鈍を行うことを特
徴とするフェライト系ステンレス鋼熱延鋼板の製造方法
である。
Further, according to the present invention, C: 0.01 mass% or less, S
i: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to 30 mass
s%, Mo: 3.0 mass% or less, P: 0.06 mass% or less, S: 0.
03 mass% or less, Al: 1.0 mass% or less, N: 0.04 mass% or less, Nb: 0.8 mass% or less and / or Ti: 1.0% or less, 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60 A steel slab containing Fe and unavoidable impurities with the remainder being hot-rolled, and then having a recrystallization rate of the steel sheet of 95% or more and an aspect ratio of the grain size in the rolling direction cross section (length in the thickness direction /
A method for producing a ferritic stainless steel hot-rolled steel sheet, which comprises performing hot-rolled sheet annealing with a length in the rolling direction of 0.8 or less.

【0009】また、本発明においては、上記熱延板焼鈍
を2回以上行い、2回目以降の熱延板焼鈍は1回目の焼
鈍の焼鈍温度よりも30℃〜200℃低い温度で行うことが
好ましい。
In the present invention, the hot-rolled sheet annealing may be performed twice or more, and the second and subsequent hot-rolled sheet annealing may be performed at a temperature lower than the annealing temperature of the first annealing by 30 to 200 ° C. preferable.

【0010】さらに、本発明においては、上記の熱延焼
鈍板に対し、さらに、1回好ましくは中間焼鈍を挟む2
回以上の冷間圧延の後、仕上焼鈍を行い最終冷延板とす
ることが好ましい。
Further, in the present invention, the above hot-rolled annealed sheet is further subjected to once-preferably intermediate annealing.
After cold rolling at least twice, it is preferable to perform finish annealing to obtain a final cold rolled sheet.

【0011】[0011]

【発明の実施の形態】まず、本発明において、成分組成
を上記範囲に限定した理由について説明する。 C:0.01mass%以下 Cは、侵入型元素であり、多量に含有すると鋼を硬質化
し、延性を低下させる。また、Cは、炭化物となって粒
界に析出すると、耐二次加工脆性、粒界腐食性を低下さ
せる。とくにC量が0.01mass%を超えると、機械的性質
や耐食性の低下が顕著となるので、0.01mass%以下に限
定する。なお、C量は、低いほど耐食性や機械的性質の
改善には有効であるが、製鋼における精錬コストを考慮
すると、下限は0.0002mass%超え、上限は0.008mass%
とすることが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION First, the reason why the component composition is limited to the above range in the present invention will be explained. C: 0.01 mass% or less C is an interstitial element, and if contained in a large amount, it hardens the steel and reduces the ductility. Further, when C becomes a carbide and precipitates at the grain boundary, it reduces the secondary work embrittlement resistance and the grain boundary corrosion resistance. Particularly, when the amount of C exceeds 0.01 mass%, the mechanical properties and the corrosion resistance are significantly deteriorated, so the content is limited to 0.01 mass% or less. The lower the C content, the more effective it is in improving corrosion resistance and mechanical properties. However, considering the refining cost in steelmaking, the lower limit exceeds 0.0002 mass% and the upper limit is 0.008 mass%.
Is desirable.

【0012】Si:1.0mass%以下 Siは、耐酸化性、耐食性の向上に有効な元素であり、と
くに大気環境での耐食性を向上させる。その効果を発揮
させるためには、0.2mass%以上の添加が好ましい。し
かし、1.0mass%を超えて含有すると、鋼の機械的性質
とくに靭性や溶接部の耐二次加工脆性を劣化させ、また
製造性も阻害するので、1.0mass%以下に限定する。好
ましくは、0.1〜0.6mass%の範囲に限定する。
Si: 1.0 mass% or less Si is an element effective in improving the oxidation resistance and the corrosion resistance, and particularly improves the corrosion resistance in the atmospheric environment. In order to exert its effect, addition of 0.2 mass% or more is preferable. However, if the content exceeds 1.0 mass%, the mechanical properties of the steel, particularly the toughness and the secondary work embrittlement resistance of the weld, are deteriorated, and the manufacturability is also impaired, so the content is limited to 1.0 mass% or less. Preferably, it is limited to the range of 0.1 to 0.6 mass%.

【0013】Mn:1.5mass%以下 Mnは、耐酸化性の向上に有効な元素であるが、過剰に含
有すると、鋼の靭性を劣化させ、溶接部の耐二次加工脆
性を劣化させるので、1.5mass%以下に限定する。好ま
しくは、0.1〜1.0mass%の範囲に限定する。
Mn: 1.5 mass% or less Mn is an element effective for improving the oxidation resistance, but if it is contained in excess, it deteriorates the toughness of the steel and the secondary work embrittlement resistance of the welded portion. Limited to 1.5 mass% or less. Preferably, it is limited to the range of 0.1 to 1.0 mass%.

【0014】Cr:11〜30mass% Crは、耐酸化性および耐食性の向上に有効な元素であ
り、これらの十分な効果を得るためには、11mass%以上
の含有が必要である。さらに、溶接部や隙間部の耐食性
を確保するためには14mass%以上の含有が好ましい。一
方、Crは、鋼の加工性を低下させる元素であり、特に30
mass%を超えて含有すると、たとえr値が高い場合で
も、強度の増加や延性の低下のため加工性の劣化が顕著
となる。このため、Cr含有量は11〜30mass%の範囲に制
限する。好ましくは、11〜23mass%である。
Cr: 11 to 30 mass% Cr is an element effective for improving oxidation resistance and corrosion resistance, and in order to obtain these sufficient effects, it is necessary to contain 11 mass% or more. Further, in order to secure the corrosion resistance of the welded portion and the gap portion, the content of 14 mass% or more is preferable. On the other hand, Cr is an element that reduces the workability of steel, and especially 30
If the content is more than mass%, the workability is significantly deteriorated due to the increase in strength and the decrease in ductility even if the r value is high. Therefore, the Cr content is limited to the range of 11 to 30 mass%. It is preferably 11 to 23 mass%.

【0015】Mo:3.0mass%以下 Moは、耐食性、特に耐孔食性の向上に有効な元素であ
る。ただし、3.0mass%を超えて含有すると、熱処理時
に析出物を生じて硬質化し、割れ等の加工性の劣化を招
く。よって、Mo含有量は3.0mass%以下、好ましくは2.0
mass%以下とする。一方、下限値は、耐食性と加工性の
観点から、0.3mass%以上の添加が好ましい。しかし、M
o添加は加工性を低下させるので、耐食性が重視されな
い場合には、必ずしも添加する必要はない。
Mo: 3.0 mass% or less Mo is an element effective for improving corrosion resistance, particularly pitting corrosion resistance. However, if the content exceeds 3.0 mass%, precipitates are generated during heat treatment to harden the alloy, resulting in deterioration of workability such as cracking. Therefore, the Mo content is 3.0 mass% or less, preferably 2.0
It should be less than mass%. On the other hand, the lower limit is preferably 0.3 mass% or more from the viewpoint of corrosion resistance and workability. But M
o Addition reduces workability, so it is not necessary to add it when corrosion resistance is not important.

【0016】P:0.06mass%以下 Pは、粒界に偏析しやすい元素であるため、Bを含有し
た場合には、Bの粒界強化作用を低減し、溶接部の耐二
次加工脆性を劣化させる。また、加工性や靭性、高温疲
労特性も劣化させる傾向があり、耐孔食性の劣化も招く
ので、できる限り低い方が望ましく、0.06mass%以下、
好ましくは0.03mass%以下とする。しかし、過度の低P
化は製鋼コストの上昇を招くため、特性との兼ね合いか
ら、下限の値は0.01mass%とするのがよい。
P: 0.06 mass% or less P is an element that is easily segregated at the grain boundaries. Therefore, when B is contained, the grain boundary strengthening action of B is reduced and the secondary work brittleness resistance of the welded portion is reduced. Deteriorate. In addition, workability, toughness, and high temperature fatigue properties tend to deteriorate, leading to deterioration of pitting corrosion resistance, so it is desirable to be as low as possible, 0.06 mass% or less,
It is preferably 0.03 mass% or less. However, excessively low P
However, the lower limit value is preferably 0.01 mass% in consideration of the characteristics, because the increase in the cost of steelmaking increases.

【0017】S:0.03mass%以下 Sは、耐食性を劣化させるので、低減することが望まし
い。しかし、Pと同様、過度の低減は製鋼コストの上昇
を招くため、特性との兼ね合いも考慮し、0.03mass%以
下、好ましくは0.010mass%以下とする。
S: 0.03 mass% or less Since S deteriorates the corrosion resistance, it is desirable to reduce it. However, like P, excessive reduction leads to an increase in steelmaking cost, so considering the balance with the characteristics, the content is made 0.03 mass% or less, preferably 0.010 mass% or less.

【0018】Al:1.0mass%以下 Alは、製鋼における脱酸剤として添加する必要が、過度
の添加は、介在物を生成し、表面外観および耐食性を劣
化させるので1.0mass%以下とする。好ましくは、0.001
〜0.6mass%の範囲とするのがよい。
Al: 1.0 mass% or less Al needs to be added as a deoxidizing agent in steelmaking, but excessive addition thereof causes inclusions to deteriorate the surface appearance and corrosion resistance, so the content is made 1.0 mass% or less. Preferably 0.001
It is recommended to be in the range of ~ 0.6 mass%.

【0019】N:0.04mass%以下 Nは、粒界を強化し靭性を向上させる。しかし、0.04ma
ss%を超えて含有すると、窒化物となって粒界に析出
し、耐食性を劣化させるので、0.04mass%以下に限定す
る。
N: 0.04 mass% or less N strengthens grain boundaries and improves toughness. But 0.04ma
If it is contained in excess of ss%, it becomes a nitride and precipitates at grain boundaries, deteriorating the corrosion resistance, so the content is limited to 0.04 mass% or less.

【0020】Nb:0.8mass%以下および/またはTi:1.0
mass%以下かつ 18≦Nb/(C+N)+2(Ti/(C+N))≦60 Nb,Tiは、固溶C,Nを炭窒化物として固定することに
より、耐食性や深絞り性(平均r値)を向上させる効果を
有しており、単独もしくは複合して添加する。その効果
を得るためには、それぞれ0.01mass%以上を含有させる
ことが望ましい。一方、Nb含有量が、0.8mass%を超え
ると靭性の劣化を招き、また、Ti含有量が、1.0mass%
を超えると、外観および靭性の劣化を招くため、Nbは0.
8mass%以下、Tiは1.0mass%以下に限定する。また、鋼
中のC,Nを炭窒化物として固定し、一層優れた加工性
を確保するには、18≦Nb/(C+N)+2(Ti/(C+N))
≦60の関係を満たすように合金設計する。ここで、C,
N,Nb,Tiの各含有量(mass%)を、上記のように限定す
る理由は、18未満となると、鋼中のC,Nを炭窒化物と
して充分に固定できないため、加工性、耐食性が著しく
低下し、一方、60を超えると、炭窒化物の析出物が増加
して、加工性が低下するためである。
Nb: 0.8 mass% or less and / or Ti: 1.0
mass% or less and 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60 Nb and Ti are corrosion resistance and deep drawability (average r value) by fixing solid solution C and N as carbonitrides. ) Is improved, and it is added alone or in combination. In order to obtain the effect, it is desirable to contain 0.01 mass% or more of each. On the other hand, when the Nb content exceeds 0.8 mass%, the toughness is deteriorated, and the Ti content is 1.0 mass%.
If it exceeds 1.0, the appearance and toughness will deteriorate, so Nb is 0.
8 mass% or less, Ti is limited to 1.0 mass% or less. Further, in order to secure C and N in steel as carbonitrides and further improve workability, 18 ≦ Nb / (C + N) +2 (Ti / (C + N))
Design the alloy so as to satisfy the relationship of ≦ 60. Where C,
The reason for limiting the contents (mass%) of N, Nb, and Ti as described above is that if the content is less than 18, C and N in steel cannot be sufficiently fixed as carbonitrides, resulting in workability and corrosion resistance. On the other hand, when it exceeds 60, carbonitride precipitates increase and the workability deteriorates.

【0021】本発明の鋼板は、上記各成分の他に、Feお
よび不可避的不純物を含む鋼である。ただし、Niは、耐
食性の向上に有効な元素であるため、必要に応じて2.0m
ass%以下の範囲で添加してもよい。また、Co,Bは、
粒界脆性改善の観点から、それぞれ0.3mass%以下、0.0
1mass%以下の範囲で含有することができる。さらに、Z
r:0.5mass%以下、Ca:0.1mass%以下、Ta:0.3mass%
以下、W:0.3mass%以下、Cu:1mass%以下およびSn:
0.3mass%以下の範囲内で含有していても、本発明の効
果に特に影響を及ぼすものではない。
The steel sheet of the present invention is a steel containing Fe and inevitable impurities in addition to the above components. However, Ni is an element effective in improving corrosion resistance, so 2.0m
You may add in the range of ass% or less. Also, Co and B are
From the viewpoint of improving the grain boundary brittleness, each is 0.3 mass% or less, 0.0
It can be contained in a range of 1 mass% or less. Furthermore, Z
r: 0.5 mass% or less, Ca: 0.1 mass% or less, Ta: 0.3 mass%
Below, W: 0.3 mass% or less, Cu: 1 mass% or less, and Sn:
Even if it is contained within the range of 0.3 mass% or less, it does not particularly affect the effects of the present invention.

【0022】次に、本発明において、最も重要な役割を
担う熱延板焼鈍について説明する。熱延焼鈍材は、スラ
ブ加熱、熱間粗圧延、熱間仕上圧延、1回または2回以
上の熱延板焼鈍の工程を経て製造される。そして、冷延
鋼板は、前記熱延焼鈍板をさらに、酸洗、1回または中
間焼鈍を挟む2回以上の冷間圧延および仕上焼鈍の各工
程を経て製造される。以下、本発明に係る熱延板、冷延
板の製造条件について、各工程毎に説明する。
Next, the hot rolled sheet annealing that plays the most important role in the present invention will be described. The hot rolled annealed material is manufactured through the steps of slab heating, hot rough rolling, hot finish rolling, and one or more hot-rolled sheet annealing steps. Then, the cold-rolled steel sheet is manufactured by further performing each step of cold-rolling and finish-annealing the hot-rolled annealed sheet, which is subjected to pickling, one time or two or more times with intermediate annealing interposed. Hereinafter, the manufacturing conditions of the hot-rolled sheet and the cold-rolled sheet according to the present invention will be described for each step.

【0023】(1)スラブ加熱 上記の成分組成を有する鋼スラブは、偏析防止の観点か
ら連続鋳造により製造することが好ましい。この鋼スラ
ブは、熱間圧延するに当たり、再加熱される。このスラ
ブ加熱温度が低すぎると、所定の条件での粗圧延が困難
となる。一方、加熱温度が高すぎると、熱延板の板厚方
向の集合組織が不均一になるとともに、Ti422析出
物が溶解し、最終冷延前の鋼板中の固溶Cが増大する。
このため、スラブの加熱温度は、1000〜1200℃の範囲と
するのが好ましい。より好ましい温度範囲は1100〜1200
℃である。
(1) Heating of slab The steel slab having the above composition is preferably produced by continuous casting from the viewpoint of preventing segregation. This steel slab is reheated during hot rolling. If this slab heating temperature is too low, rough rolling under predetermined conditions becomes difficult. On the other hand, if the heating temperature is too high, the texture of the hot-rolled sheet in the sheet thickness direction becomes non-uniform, and the Ti 4 C 2 S 2 precipitate is dissolved, and the solid solution C in the steel sheet before final cold rolling is dissolved. Increase.
Therefore, the heating temperature of the slab is preferably in the range of 1000 to 1200 ° C. More preferable temperature range is 1100 to 1200
℃.

【0024】(2)熱間粗圧延 熱間粗圧延(以下、「粗圧延」と略記する)は、少なくと
も1パスを、圧延温度850〜1100℃、圧下率50%以上の
条件で行うのが好ましい。粗圧延の圧延温度が850℃未
満では、再結晶が進みにくく、スラブの柱状組織に起因
した粗大な(100)コロニーの残存により、仕上焼鈍後の
加工性が劣り、また圧延ロールへの負荷が大きくなり、
ロール寿命が短くなる。一方、1100℃を超えると、フェ
ライト結晶粒が粗大化し、{111}核発生サイトとなる粒
界面積が減少し、仕上焼鈍後の鋼板のr値低下を招くこ
とになる。したがって、粗圧延の圧延温度は850〜1100
℃にする。さらに、好ましい温度範囲は900〜1050℃で
ある。また、粗圧延の1パス当たりの圧下率が50%未満
では、板厚方向の中心部に、バンド状の未再結晶組織が
残存し、深絞り性を劣化させる。しかし、粗圧延の1パ
ス当たりの圧下率が75%を超えると、圧延時にロールと
鋼板の焼き付けを起こし、また、圧延ロールへの噛み込
み不良を生じる危険がある。このため、圧下率は50〜60
%の範囲が好ましい。
(2) Hot rough rolling Hot rough rolling (hereinafter abbreviated as "rough rolling") is carried out by performing at least one pass under conditions of a rolling temperature of 850 to 1100 ° C and a rolling reduction of 50% or more. preferable. If the rolling temperature of the rough rolling is less than 850 ° C, recrystallization is difficult to proceed, and the coarse (100) colonies due to the columnar structure of the slab remain, resulting in poor workability after finish annealing, and a load on the rolling roll. Getting bigger,
Roll life is shortened. On the other hand, if it exceeds 1100 ° C., the ferrite crystal grains become coarse, the grain boundary area that becomes the {111} nucleation site decreases, and the r value of the steel sheet after finish annealing decreases. Therefore, the rolling temperature of rough rolling is 850-1100.
To ℃. Furthermore, the preferred temperature range is 900-1050 ° C. If the rolling reduction per pass of rough rolling is less than 50%, a band-shaped unrecrystallized structure remains in the central portion in the sheet thickness direction, deteriorating the deep drawability. However, if the rolling reduction per pass of rough rolling exceeds 75%, there is a risk that the roll and the steel sheet will be baked during rolling, and defective biting into the rolling roll may occur. Therefore, the reduction rate is 50-60.
% Range is preferred.

【0025】なお、鋼の高温強度が低い材料では、粗圧
延時に鋼板表面に強い剪断歪みが生じて、板厚中心部に
未再結晶組織が残り、また、ロールと鋼板の焼き付きを
生じることもある。このような場合には、必要に応じ
て、摩擦係数0.3以下になるような潤滑を施してもよ
い。上述した圧延温度と圧下率の条件を満たす粗圧延
を、少なくとも1パス行うことにより、深絞り性が向上
する。この1パスは、粗圧延のどのパスで行ってもよい
が、圧延機の能力からは、最終パスで行うのが最も好ま
しい。このような粗圧延に引き続き、下記の条件を満た
す仕上圧延を行うことにより、さらに加工性が改善され
る。
In the case of a steel material having a low high-temperature strength, a strong shear strain is generated on the surface of the steel sheet during rough rolling, and an unrecrystallized structure remains at the center of the sheet thickness, and seizure between the roll and the steel sheet may occur. is there. In such a case, if necessary, lubrication may be performed so that the friction coefficient is 0.3 or less. The deep drawing property is improved by performing at least one pass of the rough rolling satisfying the conditions of the rolling temperature and the rolling reduction described above. This single pass may be performed in any of the rough rolling passes, but it is most preferable to perform the final pass in view of the capability of the rolling mill. Subsequent to such rough rolling, finish rolling satisfying the following conditions is performed to further improve the workability.

【0026】(3)熱間仕上圧延 粗圧延に続く熱間仕上圧延(以下、「仕上圧延」と略記
する)は、少なくとも1パスを、圧延温度650〜900℃、
圧下率20〜40%で行うのが好ましい。圧延温度が650℃
未満では、変形抵抗が大きくなって20%以上の圧下率を
確保することが難しくなるとともに、ロール負荷が大き
くなる。一方、仕上圧延温度が900℃を超えると、圧延
歪の蓄積が小さくなり、次工程以降における加工性の改
善効果が小さくなる。このため、仕上圧延温度は650〜9
00℃、さらに好ましくは、700〜800℃の範囲で行うのが
よい。
(3) Hot Finish Rolling In the rough finish rolling followed by hot finish rolling (hereinafter abbreviated as “finish rolling”), at least one pass is performed at a rolling temperature of 650 to 900 ° C.
It is preferable to perform the rolling reduction at 20 to 40%. Rolling temperature is 650 ℃
If it is less than 1, the deformation resistance becomes large and it becomes difficult to secure a reduction rate of 20% or more, and the roll load becomes large. On the other hand, when the finish rolling temperature exceeds 900 ° C., the accumulation of rolling strain becomes small, and the workability improving effect in the subsequent steps becomes small. Therefore, the finish rolling temperature is 650-9.
The temperature is preferably 00 ° C, more preferably 700 to 800 ° C.

【0027】また、仕上圧延時に、650〜900℃での圧下
率が20%未満では、加工性の低下やリジングの原因にな
る(100)//ND、(110)//NDコロニー(横田ら、川崎製
鉄技報、30(1998)2,p115)が大きく残存する。一方、40
%を超えると、噛み込み不良や鋼板の形状不良を引き起
こし、鋼の表面性状の劣化を招く。よって、仕上圧延に
おいては、圧下率20〜40%の圧延を少なくとも1パス以
上行うのがよい。より好ましい圧下率範囲は25〜35%で
ある。上述した圧延温度と圧下率の条件を満たす仕上圧
延を、少なくとも1パス行うことにより深絞り性は改善
される。その1パスは、どのパスで行ってもよいが、圧
延機の能力から、最終パスで行うのが最も好ましい。
In the finish rolling, if the rolling reduction at 650 to 900 ° C. is less than 20%, the workability may be deteriorated or ridging may be caused by (100) // ND, (110) // ND colonies (Yokota et al. , Kawasaki Steel Technical Report, 30 (1998) 2, p115) remains largely. On the other hand, 40
If it exceeds%, defective biting or defective shape of the steel sheet is caused, resulting in deterioration of the surface properties of the steel. Therefore, in finish rolling, it is preferable to perform rolling with a reduction rate of 20 to 40% in at least one pass. A more preferable rolling reduction range is 25 to 35%. The deep drawing property is improved by performing at least one pass of the finish rolling satisfying the conditions of the rolling temperature and the rolling reduction described above. The first pass may be performed in any pass, but it is most preferable to perform the last pass because of the capability of the rolling mill.

【0028】(4)熱延板焼鈍 熱延板焼鈍は、上述したとおり、本発明の工程の中で最
も重要な工程である。最近の熱延技術の発達に伴う制御
圧延や潤滑圧延の採用により、熱延鋼板の特性改善が進
んでいるが、これら熱延での特性改善効果を最大限に生
かすには、その後の焼鈍条件の適正化が重要である。特
に、本発明において、リジング性と深絞り性(r値)をバ
ランスよく改善するためには熱延板焼鈍温度の制御が重
要である。
(4) Hot-rolled sheet annealing Hot-rolled sheet annealing is the most important step among the steps of the present invention, as described above. With the recent development of hot rolling technology, the adoption of controlled rolling and lubrication rolling is improving the properties of hot rolled steel sheets.To maximize the effect of these hot rolling property improvements, the subsequent annealing conditions should be used. Optimization of is important. Particularly, in the present invention, in order to improve the ridging property and the deep drawing property (r value) in a well-balanced manner, it is important to control the hot-rolled sheet annealing temperature.

【0029】本発明のステンレス鋼板において、リジン
グの発生を抑制するためには、熱延板の段階で未再結晶
組織を残存させないことが必要である。すなわち、発明
者らは、熱延板の特性とリジングとの関係を詳細に調査
した結果、リジングの発生を防止するためには、熱延板
の状態で、再結晶組織(再結晶率)が95%以上でかつ圧延
方向断面における結晶粒のアスペクト比(板厚方向長/
圧延方向長)が0.8以下である時に、リジングが最も良
好であることを見出した。なお、再結晶率を95%以上と
したのは、再結晶率は高いほど好ましいが、熱延条件に
よっては板厚方向で再結晶挙動が異なるためである。好
ましくは98%以上である。また、アスペクト比(板厚方
向長/圧延方向長)が0.8を超えて球状に近くなると、r
値が低下するので0.8以下とする。しかし、0.4以下とな
ると再結晶率95%以上を確保することが難しくなるの
で、0.4〜0.6の範囲とするのが好ましい。
In order to suppress the occurrence of ridging in the stainless steel sheet of the present invention, it is necessary not to leave an unrecrystallized structure at the stage of hot rolling. That is, the inventors, as a result of detailed investigation of the relationship between the characteristics and ridging of the hot rolled sheet, in order to prevent the occurrence of ridging, in the state of the hot rolled sheet, the recrystallization structure (recrystallization rate) is Aspect ratio of crystal grains in the cross section in the rolling direction of 95% or more (length in plate thickness direction /
It was found that the ridging was the best when the length in the rolling direction) was 0.8 or less. The reason for setting the recrystallization rate to 95% or more is that the higher the recrystallization rate is, the more preferable, but the recrystallization behavior varies in the plate thickness direction depending on the hot rolling conditions. It is preferably 98% or more. In addition, when the aspect ratio (length in the plate thickness direction / length in the rolling direction) exceeds 0.8 and becomes nearly spherical, r
The value decreases, so 0.8 or less. However, if it is 0.4 or less, it becomes difficult to secure a recrystallization rate of 95% or more, so that it is preferable to set it in the range of 0.4 to 0.6.

【0030】一方、r値改善のためには、熱延板中の固
溶Cを可能な限り低減することが必要である。熱延鋼板
中に固溶したCは、冷延後の仕上焼鈍時における{111}
集合組織の成長を阻害し、最終冷延板のr値の低下を招
くからである。ところで、上述したように、リジング性
を改善するためには再結晶率を上げる必要があり、この
ためにはできる限り高温で焼鈍を行う必要がある。しか
し、焼鈍温度の高温化は、固溶中Cを固定した炭化物を
再溶解させ、固溶C量を増加させることになるため好ま
しくない。
On the other hand, in order to improve the r value, it is necessary to reduce the solid solution C in the hot rolled sheet as much as possible. C dissolved in hot-rolled steel sheet is {111} during finish annealing after cold rolling.
This is because it inhibits the growth of the texture and causes a decrease in the r value of the final cold-rolled sheet. By the way, as described above, it is necessary to increase the recrystallization rate in order to improve the ridging property, and for this purpose, it is necessary to perform annealing at a temperature as high as possible. However, increasing the annealing temperature is not preferable because it re-dissolves the carbide in which C is fixed during solid solution and increases the amount of solid solution C.

【0031】そこで、熱延板焼鈍を2回以上に分けて行
い、1回目の焼鈍は再結晶を主目的とし、2回目以降の
焼鈍は熱延鋼板中の固溶Cを炭化物として析出させ、固
溶Cを低減することを主目的とする焼鈍法を採用するの
が好ましい。1回目の熱延板焼鈍は、目的とする再結晶
率とアスペクト比を確保するため、800〜1100℃、好ま
しくは、800〜1050℃で焼鈍するのが良い。また、2回
目以降の焼鈍は、固溶C量を低減するため、初回の焼鈍
温度より30℃から200℃低い温度で焼鈍する必要があ
り、均熱時間は30秒以上が好ましい。このような2回以
上の熱延板焼鈍は、475℃脆性の観点から巻取温度を450
℃以下に制御する必要がある高Cr−Mo含有鋼の熱延板に
対し特に効果的である。
Therefore, the hot-rolled sheet annealing is divided into two or more times, the first annealing is mainly for recrystallization, and the second and subsequent annealing precipitates solid solution C in the hot-rolled steel sheet as carbides. It is preferable to adopt an annealing method whose main purpose is to reduce solute C. The first hot-rolled sheet annealing should be annealed at 800 to 1100 ° C, preferably 800 to 1050 ° C in order to secure the desired recrystallization rate and aspect ratio. Further, the second and subsequent annealings need to be annealed at a temperature lower by 30 to 200 ° C than the initial annealing temperature in order to reduce the amount of solid solution C, and the soaking time is preferably 30 seconds or more. Such two or more hot-rolled sheet annealing operations have a coiling temperature of 450 at 475 ° C from the viewpoint of brittleness.
It is especially effective for hot-rolled steel of high Cr-Mo containing steel that needs to be controlled to below ℃.

【0032】なお、固溶C量は、時効指数を測定するこ
とにより推定することができる。この指数は、JIS 5号
引張試験片を引張方向が圧延方向となるように採取し、
常温で7.5%予歪後の引張応力と、その試験片をさらに1
00℃×30分時効後、再度引張試験を行った時の降伏応力
との差を云い、r値向上のためには、20MPa以下とする
ことが好ましい。
The amount of dissolved C can be estimated by measuring the aging index. This index is a JIS No. 5 tensile test piece taken so that the tensile direction is the rolling direction,
Tensile stress after 7.5% pre-strain at room temperature and 1 more test piece
It is the difference from the yield stress when the tensile test is conducted again after aging at 00 ° C for 30 minutes, and it is preferably 20 MPa or less in order to improve the r value.

【0033】(5)冷間圧延 冷間圧延は、1回冷延法好ましくは中間焼鈍を挟んだ2
回以上の冷延法とする。また、全圧下率は、1回冷延
法、2回以上の冷延法の場合とも75%以上とする。全圧
下率の増加は、仕上焼鈍板の{111}集積度の向上に寄与
し、r値向上に有効である。平均r値1.5以上を満たす
ためには、全圧下率は75%以上、好ましくは80〜90%未
満とするのが好ましい。なお、2回以上の冷延法の場合
には、この全圧下率を2回以上に分けて圧延する。ただ
し、この場合、(1回目冷延の圧下率)/(最終冷延の圧
下率)で表される圧下比を、0.7〜1.3として行う。この
圧下比は、最終冷延前の結晶粒径、中間焼鈍板中の{11
1}集合組織の発達、仕上焼鈍板中の{111}集積度の向上
と密接な関係がある。高r値化を達成するには、この圧
下比を0.7〜1.3とするのが好ましく、より好ましくは0.
8〜1.1の範囲として冷間圧延するのがよい。なお、各回
の冷間圧延の圧下率は、いずれも50%以上とし、各回の
圧下率の差を30%以下とするのが望ましい。各回の圧下
率が50%未満でも、圧下率差が30%超えでも、{111}
集積度が低くなり、r値が低下する。
(5) Cold Rolling Cold rolling is a one-time cold rolling method, preferably 2 with intermediate annealing.
Use cold rolling more than once. Further, the total rolling reduction is 75% or more in both the one-time cold rolling method and the two or more cold rolling method. An increase in the total rolling reduction contributes to the improvement of the {111} integration degree of the finished annealed sheet, and is effective in improving the r value. In order to satisfy the average r value of 1.5 or more, the total rolling reduction is preferably 75% or more, preferably 80 to less than 90%. When the cold rolling method is performed twice or more, the total rolling reduction is divided into two or more times for rolling. However, in this case, the reduction ratio represented by (the reduction ratio of the first cold rolling) / (the reduction ratio of the final cold rolling) is set to 0.7 to 1.3. This reduction ratio depends on the crystal grain size before the final cold rolling and the {11
1) It is closely related to the development of texture and the improvement of {111} accumulation in the finished annealed sheet. In order to achieve a high r-value, this reduction ratio is preferably 0.7 to 1.3, more preferably 0.1.
Cold rolling is recommended as a range of 8 to 1.1. In addition, it is desirable that the reduction rate of each cold rolling is 50% or more and the difference between the reduction rates of each time is 30% or less. Even if the rolling reduction of each time is less than 50% or the rolling reduction difference exceeds 30%, {111}
The degree of integration is low and the r value is low.

【0034】さらに、本発明における冷間圧延において
は、被圧延材表面の剪断変形を低減し、(222)/(200)
のX線積分強度比を高めて、r値の向上を図るために
は、ロール径と圧延方向の影響を考慮することが望まし
い。すなわち、通常、ステンレス鋼板の最終冷延は、表
面光沢を得るために、ロール径が例えば200mmφ以下の
ワークロールを用いて行われる。しかし、本発明では、
ロール径300mmφ以上の大径ワークロールを使用するこ
とが好ましい。また、本発明においては、タンデム圧延
を採用し、さらに、2回以上の冷間圧延の場合には、い
ずれの冷間圧延も、1方向に圧延するのが好ましい。上
記理由は、ロール径100〜200mmφのリバース圧延に比
べ、300mmφ以上のロール径を有するタンデム圧延機に
よる1方向圧延の方が、表面の剪断変形を低減し、{11
1}組織を増加し、r値を高めるうえで効果的であるから
である。なお、より高r値を安定して得るため、線圧
(圧延荷重/板幅)を増大させて板厚方向に均一に歪を
与えることも効果的である。このためには、熱延温度の
低下、高合金化、熱延速度の増加を適宜組み合わせるこ
とが有効である。
Further, in the cold rolling of the present invention, the shear deformation of the surface of the material to be rolled is reduced to (222) / (200)
In order to increase the X-ray integrated intensity ratio and improve the r value, it is desirable to consider the influence of the roll diameter and the rolling direction. That is, usually, the final cold rolling of a stainless steel sheet is performed using a work roll having a roll diameter of, for example, 200 mmφ or less in order to obtain surface gloss. However, in the present invention,
It is preferable to use a large-diameter work roll having a roll diameter of 300 mmφ or more. Further, in the present invention, tandem rolling is adopted, and when cold rolling is performed twice or more, it is preferable that all cold rolling be performed in one direction. The reason is that the one-way rolling by the tandem rolling mill having the roll diameter of 300 mmφ or more reduces the shear deformation of the surface, compared with the reverse rolling of the roll diameter of 100 to 200 mmφ,
1) It is effective in increasing the texture and increasing the r value. In addition, in order to stably obtain a higher r value, it is also effective to increase the linear pressure (rolling load / plate width) to uniformly give strain in the plate thickness direction. For this purpose, it is effective to appropriately combine reduction of hot rolling temperature, high alloying, and increase of hot rolling speed.

【0035】(6)中間焼鈍 2回以上の冷延法における中間焼鈍は、2回目以降の熱
延板焼鈍と同様の理由により、重要な工程である。すな
わち、中間焼鈍後の鋼板は、未済結晶組織が残存せず、
かつ固溶Cの低減を図る必要がある。この中間焼鈍の焼
鈍温度が750℃に満たない場合には、再結晶が不十分と
なり、平均r値が低下するとともに、バンド状組織に起
因して、リジングが著しくなる。一方、1000℃を超える
と、組織が粗大化するとともに、炭化物が再固溶し、鋼
中の固溶Cが増大し、深絞り性に好適な集合組織の形成
を阻害する。また、2回冷延法の場合、仕上焼鈍板を微
細粒かつ高r値とするためには、最終冷延直前における
フェライト結晶粒径を50μm以下とすることが好まし
い。これらのことから、中間焼鈍温度は、焼鈍後の固溶
Cが低く、結晶粒径50μm以下を満たし、かつ未再結晶
組織が残存しない温度範囲で低温ほどよく、750℃〜100
0℃の範囲が好ましく、さらには熱延板焼鈍温度より50
℃以上低い温度とするのがより好ましい。
(6) Intermediate annealing The intermediate annealing in the cold rolling method of two or more times is an important step for the same reason as the second and subsequent hot-rolled sheet annealing. That is, in the steel sheet after the intermediate annealing, the unfinished crystal structure does not remain,
Moreover, it is necessary to reduce the solid solution C. If the annealing temperature of this intermediate annealing is less than 750 ° C., recrystallization becomes insufficient, the average r value decreases, and ridging becomes remarkable due to the band-like structure. On the other hand, when the temperature exceeds 1000 ° C., the structure becomes coarse, the carbides are re-dissolved, the solid solution C in the steel increases, and the formation of a texture suitable for deep drawability is hindered. Further, in the case of the two-time cold rolling method, in order to make the finished annealed plate fine particles and have a high r value, the ferrite crystal grain size immediately before the final cold rolling is preferably 50 μm or less. From these facts, the intermediate annealing temperature is as low as possible in the temperature range in which the solid solution C after annealing is low, the crystal grain size is 50 μm or less, and the unrecrystallized structure does not remain, 750 ° C. to 100 ° C.
The range of 0 ° C is preferable, and it is more than 50 from the annealing temperature of hot-rolled sheet.
It is more preferable that the temperature is lower than 0 ° C.

【0036】(7)仕上焼鈍 仕上焼鈍は、高温で焼鈍するほど、{111}粒が選択的に
成長し、高い平均r値が得られる。しかし、焼鈍温度が
800℃未満では、平均r値1.5以上を確保できないばかり
か、鋼板板厚の中央にバンド状の組織が残存し、深絞り
性を阻害する。また、平均r値の増大を図るには、高温
焼鈍が有効であるが、高温に過ぎると結晶粒が粗大化
し、加工後に肌荒れが生じ、成形限界の低下と耐食性の
劣化をもたらす。このため、仕上焼鈍温度は、好ましく
は結晶粒径50μm以下を確保できる範囲で、高温である
ほど良い。本発明の鋼板では、850〜1050℃の温度範囲
で仕上焼鈍するのが好ましい。
(7) Finish annealing In the finish annealing, the higher the annealing temperature is, the more the {111} grains grow preferentially and the higher average r value can be obtained. However, if the annealing temperature is
If it is less than 800 ° C, not only an average r value of 1.5 or more cannot be secured, but also a band-like structure remains in the center of the steel sheet thickness, which hinders deep drawability. Further, high temperature annealing is effective for increasing the average r value, but if the temperature is too high, the crystal grains become coarse and the surface becomes rough after processing, resulting in lowering of the molding limit and deterioration of corrosion resistance. For this reason, the finish annealing temperature is preferably in a range where a crystal grain size of 50 μm or less can be secured, and the higher the temperature, the better. The steel sheet of the present invention is preferably finish annealed in the temperature range of 850 to 1050 ° C.

【0037】なお、以上説明した本発明の鋼板を溶接す
る場合には、TIG、MIGを始めとするアーク溶接、
電縫溶接、レーザー溶接など、通常の溶接方法はすべて
適用可能である。
When welding the steel sheet of the present invention described above, arc welding such as TIG and MIG,
Usual welding methods such as electric resistance welding and laser welding are all applicable.

【0038】[0038]

【実施例】本発明の実施例を比較例とともに説明する。
なお、以下の実施例においては、表1に示した5種類の
成分組成を有する鋼を転炉で溶製し、連続鋳造により製
造したスラブを素材として用いた。 (実施例1)表1に示した、請求項1の成分組成を満た
す鋼3および比較鋼である鋼5の鋼スラブを、1150℃に
加熱後、仕上温度を780℃とする熱間圧延を行い、板厚
5.0mmの熱延鋼板とした。この鋼板に焼鈍温度を変えて
熱延板焼鈍を1回行った後、サンプルを採取し、焼鈍後
の再結晶率、アスペクト比および時効指数の測定を行っ
た。なお、時効指数の測定は、前述の方法に従った。そ
の後、この熱延焼鈍板を、1mmの板厚まで冷間圧延(圧下
率80%)し、仕上焼鈍して冷延板とした。この冷延鋼板
から、試験片を採取し、リジング性および平均r値を測
定した。
EXAMPLES Examples of the present invention will be described together with comparative examples.
In the following examples, steels having the five types of composition shown in Table 1 were melted in a converter, and slabs manufactured by continuous casting were used as raw materials. (Example 1) Steel slabs of Steel 3 and Steel 5 as a comparative steel satisfying the composition of claim 1 shown in Table 1 were heated to 1150 ° C and then hot-rolled to a finishing temperature of 780 ° C. Done, plate thickness
A 5.0 mm hot rolled steel sheet was used. This steel sheet was annealed once by changing the annealing temperature and then sampled, and the recrystallization rate, aspect ratio and aging index after annealing were measured. The aging index was measured according to the method described above. Then, this hot-rolled annealed sheet was cold-rolled (reduction rate 80%) to a sheet thickness of 1 mm, and finish-annealed to obtain a cold-rolled sheet. Test pieces were taken from this cold rolled steel sheet, and the ridging property and the average r value were measured.

【0039】[0039]

【表1】 [Table 1]

【0040】ここで、平均r値とは、JIS 13号B引張試
験片を用いて測定した圧延方向のr値(r)、圧延方向
に対して45°方向のr値(r)および圧延方向に村して
90°方向のr値(r)を基に、次式により求めた値であ
る。 平均r値=(r+2r+r)/4 また、リジング性は、圧延方向を引張方向にして切り出
したJIS 5号引張試験片の両面を#600で湿式研磨し、そ
の後、20%の歪を付与し、試験片表面に生じた凹凸のう
ねり高さを、粗度計を用いて、引張試験片の中央部を引
張方向に直角に測定し、この値が15μm以下をランク
A、16〜30μmをランクB、31〜45μmをランクC、46〜
60μmをランクD、61μm以上をランクEとする5段階に
評価した。なお、この評価がランクB以上であれば、成
形限界曲線による成形性評価から、実用上問題ないレベ
ルと判断できる。しかし、ランクC以下になると、r値
をいくら向上させても成形限界が低下する。
Here, the average r value means the r value in the rolling direction (r L ) measured using JIS No. 13B tensile test pieces, the r value in the 45 ° direction with respect to the rolling direction (r D ) and Village in the rolling direction
It is a value obtained by the following equation based on the r value (r C ) in the 90 ° direction. Mean r value = (r L + 2r D + r C) / 4 Further, ridging property, the both surfaces of JIS 5 No. Tensile test piece cut to the rolling direction in the pulling direction was wet polished with # 600, then 20% The height of the waviness of unevenness generated on the surface of the test piece with strain is measured with a roughness meter at the center of the tensile test piece at right angles to the tensile direction, and if this value is 15 μm or less, rank A, 16 ~ 30μm Rank B, 31 ~ 45μm Rank C, 46 ~
60 μm was ranked as rank D and 61 μm or more was ranked as rank E. If this evaluation is rank B or higher, it can be determined that there is no practical problem from the evaluation of the moldability based on the molding limit curve. However, when the rank is C or less, the molding limit is lowered no matter how much the r value is improved.

【0041】表2に、熱延焼鈍板および最終冷延板の特
性調査結果を示した。請求項1の成分組成を満たす鋼3
(Ti添加極低炭素鋼)では、熱延板焼鈍温度の上昇に従
い、再結晶率が増加し、また再結晶率95%以上でアスペ
クト比の測定が可能となる。そして、再結晶率95%以上
の熱延板から製造した冷延板は、平均r値も比較的良好
で、かつリジング性もランクB以上であり、r値−リジ
ング性のバランスに優れた鋼板が得られている。一方、
比較鋼である鋼5(Nb,Ti無添加の低炭素鋼)では、熱延
板焼鈍温度を980℃まで上げないと再結晶率95%以上が
得られず、かつ焼鈍後の時効指数も高く、冷延板の平均
r値、リジング性も劣ったものしか得られていない。以
上のことから、平均r値とリジング性を兼ね備えたフェ
ライト系ステンレス鋼を得るためには、Nb,Tiを適量添
加した極低炭素鋼を素材とし、熱延焼鈍後の鋼板の再結
晶率を95%以上とすることが、有効であると言える。
Table 2 shows the results of the characteristic investigation of the hot-rolled annealed sheet and the final cold-rolled sheet. Steel 3 satisfying the composition of claim 1
With (Ti-added ultra-low carbon steel), the recrystallization rate increases as the hot-rolled sheet annealing temperature rises, and the aspect ratio can be measured at a recrystallization rate of 95% or more. A cold-rolled sheet produced from a hot-rolled sheet having a recrystallization rate of 95% or more has a relatively good average r value and has a ridging property of rank B or more, and is a steel plate having an excellent r-value-riding property balance. Has been obtained. on the other hand,
For steel 5 (low carbon steel without Nb and Ti added), which is a comparative steel, a recrystallization rate of 95% or more cannot be obtained unless the hot-rolled sheet annealing temperature is raised to 980 ° C, and the aging index after annealing is also high. However, only the cold rolled sheet with an inferior average r value and ridging property was obtained. From the above, in order to obtain a ferritic stainless steel having both an average r value and ridging property, an ultra-low carbon steel with an appropriate amount of Nb and Ti added is used as a material, and the recrystallization rate of the steel sheet after hot rolling annealing is performed. It can be said that 95% or more is effective.

【0042】[0042]

【表2】 [Table 2]

【0043】(実施例2)本発明の成分組成を満たす鋼
1,2および4の鋼スラブを、熱延条件を種々変化させ
て熱延鋼板とした後、再結晶率100%となる1回の熱延
板焼鈍を行った。その後、実施例1と同条件で冷延板と
した。この鋼板の、熱延焼鈍板のアスペクト比と冷延板
の平均r値の関係を図1に示した。この図から、アスペ
クト比を0.8以下にすることにより、平均r値1.5以上の
高r値が得られることがわかる。
(Example 2) Steel slabs of steels 1, 2 and 4 satisfying the composition of the present invention were formed into hot-rolled steel sheets under various hot-rolling conditions, and then the recrystallization rate was 100%. The hot rolled sheet was annealed. Then, a cold rolled sheet was prepared under the same conditions as in Example 1. The relationship between the aspect ratio of the hot rolled annealed sheet and the average r value of the cold rolled sheet of this steel sheet is shown in FIG. From this figure, it can be seen that by setting the aspect ratio to 0.8 or less, a high r value with an average r value of 1.5 or more can be obtained.

【0044】(実施例3)本発明の成分組成を満たす鋼
3の鋼スラブを、実施例1と同条件で熱間圧延して熱延
鋼板とし、実施例1において再結晶率96%、アスペクト
比0.55が得られた890℃で1回目の熱延板焼鈍を行った
後、さらに2回目の熱延板焼鈍を、焼鈍温度を650〜960
℃の範囲に変化させて行った。この熱延焼鈍板を、実施
例1と同条件で冷延した後、仕上焼鈍し、冷延板とし
た。この時、2回目の熱延焼鈍後の鋼板について再結晶
率、アスペクト比および時効指数を、また冷延板につい
てリジング性および平均r値を測定した。結果を表3に
示した。この表より、2回目の熱延板焼鈍温度が、1回
目の温度より高くなると、再結晶率は向上するものの、
炭化物の再固溶により固溶Cが増加して時効指数が増加
し、最終冷延板の平均r値の劣化を招くことがわかる。
一方、2回目の熱延板焼鈍温度が、1回目の焼鈍温度に
対し200℃よりも下回ると、中間焼鈍後の組織が未再結
晶組織になるとともに、炭化物の析出ノーズ以下の温度
となり、逆に鋼中の固溶Cが多く残留することとなり、
平均r値の劣化を招く。したがって、2回目の熱延板焼
鈍温度は、1回目の焼鈍温度に対し、−30℃〜−200℃と
することが好ましい。
Example 3 A steel slab of Steel 3 satisfying the composition of the present invention was hot-rolled under the same conditions as in Example 1 to obtain a hot-rolled steel sheet. After carrying out the first hot-rolled sheet annealing at 890 ° C. at which a ratio of 0.55 was obtained, a second hot-rolled sheet annealing was performed at an annealing temperature of 650 to 960.
The temperature was changed to the range of ° C. This hot rolled annealed sheet was cold rolled under the same conditions as in Example 1 and then finish annealed to obtain a cold rolled sheet. At this time, the recrystallization rate, the aspect ratio and the aging index of the steel sheet after the second hot rolling annealing, and the ridging property and the average r value of the cold rolled sheet were measured. The results are shown in Table 3. From this table, when the second hot-rolled sheet annealing temperature is higher than the first temperature, the recrystallization rate improves,
It can be seen that the solid solution C increases due to the re-dissolution of carbides, the aging index increases, and the average r value of the final cold-rolled sheet deteriorates.
On the other hand, when the second hot-rolled sheet annealing temperature is lower than 200 ° C with respect to the first-annealing temperature, the structure after the intermediate annealing becomes a non-recrystallized structure and the temperature becomes equal to or lower than the precipitation nose of carbide. A large amount of solid solution C in the steel remains,
This causes deterioration of the average r value. Therefore, the second hot-rolled sheet annealing temperature is preferably −30 ° C. to −200 ° C. with respect to the first annealing temperature.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
リジング性−深絞り性に優れたフェライト系ステンレス
冷延鋼板の素材として好適な熱延焼鈍板を得ることがで
きる。また本発明によれば、自動車用強度部材のほか、
家電、厨房、建材用途等、リジング性−深絞り性が必要
な用途に好適に用いられるフェライト系ステンレス冷延
鋼板の製造が可能となる。
As described above, according to the present invention,
It is possible to obtain a hot-rolled annealed sheet suitable as a material for a ferritic stainless steel cold-rolled steel sheet having excellent ridging property and deep drawability. According to the present invention, in addition to strength members for automobiles,
It is possible to manufacture a ferritic stainless cold-rolled steel sheet that is suitable for use in home appliances, kitchens, building materials, and other applications that require ridging and deep drawing properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】 熱延焼鈍板のアスペクト比と冷延板の平均r
値の関係を示した図である。
FIG. 1 Aspect ratio of hot rolled annealed sheet and average r of cold rolled sheet
It is the figure which showed the relationship of a value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 芳宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA01 EA04 EA12 EA15 EA17 EA18 EA19 EA23 EA25 EA27 EA31 EB03 EB06 EB09 FF02 FF03 FG03 FJ00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihiro Ozaki             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. (72) Inventor Osamu Furu             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. F term (reference) 4K037 EA01 EA04 EA12 EA15 EA17                       EA18 EA19 EA23 EA25 EA27                       EA31 EB03 EB06 EB09 FF02                       FF03 FG03 FJ00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.01mass%以下、Si:1.0mass%以
下、Mn:1.5mass%以下、Cr:11〜30mass%、Mo:3.0ma
ss%以下、P:0.06mass%以下、S:0.03mass%以下、
Al:1.0mass%以下、N:0.04mass%以下、Nb:0.8mass
%以下および/またはTi:1.0%以下、 18≦Nb/(C+N)+2(Ti/(C+N))≦60 を含み、残部がFe及び不可避的不純物からなり、熱延板
焼鈍後における鋼板の再結晶率が95%以上でかつ圧延方
向断面の結晶粒のアスペクト比(板厚方向長/圧延方向
長)が0.8以下であるフェライト系ステンレス鋼板。
1. C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to 30 mass%, Mo: 3.0 ma
ss% or less, P: 0.06 mass% or less, S: 0.03 mass% or less,
Al: 1.0 mass% or less, N: 0.04 mass% or less, Nb: 0.8 mass
% Or less and / or Ti: 1.0% or less, containing 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60, the balance consisting of Fe and unavoidable impurities, and re-forming the steel sheet after hot-rolled sheet annealing. A ferritic stainless steel sheet having a crystal ratio of 95% or more and an aspect ratio (length in the thickness direction / length in the rolling direction) of crystal grains in a cross section in the rolling direction is 0.8 or less.
【請求項2】C:0.01mass%以下、Si:1.0mass%以
下、Mn:1.5mass%以下、Cr:11〜30mass%、Mo:3.0ma
ss%以下、P:0.06mass%以下、S:0.03mass%以下、
Al:1.0mass%以下、N:0.04mass%以下、Nb:0.8mass
%以下および/またはTi:1.0%以下、 18≦Nb/(C+N)+2(Ti/(C+N))≦60 を含み、残部がFe及び不可避的不純物からなる鋼スラブ
を熱間圧延し、次いで、鋼板の再結晶率を95%以上かつ
圧延方向断面の結晶粒径のアスペクト比(板厚方向長/
圧延方向長)を0.8以下とする熱延板焼鈍を行うことを特
徴とするフェライト系ステンレス鋼板の製造方法。
2. C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to 30 mass%, Mo: 3.0 ma
ss% or less, P: 0.06 mass% or less, S: 0.03 mass% or less,
Al: 1.0 mass% or less, N: 0.04 mass% or less, Nb: 0.8 mass
% And / or Ti: 1.0% or less, containing 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60, the balance being Fe and unavoidable impurities, and hot rolling a steel slab, and then The recrystallization rate of the steel sheet is 95% or more, and the aspect ratio of the crystal grain size in the cross section in the rolling direction
A method for producing a ferritic stainless steel sheet, which comprises performing hot-rolled sheet annealing with a rolling direction length of 0.8 or less.
【請求項3】上記熱延板焼鈍は2回以上行い、2回目以
降の熱延板焼鈍を、1回目の焼鈍の焼鈍温度よりも30℃
〜200℃低い温度で行うことを特徴とする請求項2に記
載のフェライト系ステンレス鋼板の製造方法。
3. The hot-rolled sheet annealing is performed twice or more, and the hot-rolled sheet annealing after the second time is 30 ° C. higher than the annealing temperature of the first annealing.
The method for producing a ferritic stainless steel sheet according to claim 2, which is performed at a temperature lower by about 200 ° C.
【請求項4】請求項2または3に記載の熱延板焼鈍後、
冷間圧延を行い、さらに、仕上焼鈍を施して冷延鋼板と
することを特徴とするリジング性と深絞り性に優れたフ
ェライト系ステンレス鋼板の製造方法。
4. After annealing the hot-rolled sheet according to claim 2 or 3,
A method for producing a ferritic stainless steel sheet excellent in ridging property and deep drawability, which comprises cold rolling and then finish annealing to obtain a cold rolled steel sheet.
JP2001334174A 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof Expired - Lifetime JP3709833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334174A JP3709833B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334174A JP3709833B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003138348A true JP2003138348A (en) 2003-05-14
JP3709833B2 JP3709833B2 (en) 2005-10-26

Family

ID=19149342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334174A Expired - Lifetime JP3709833B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3709833B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224342A (en) * 2006-02-22 2007-09-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet causing little orange peel due to working and having superior formability, production method therefor, and press forming method
JP2011149101A (en) * 2011-02-25 2011-08-04 Nippon Steel & Sumikin Stainless Steel Corp Method for producing ferritic stainless steel sheet having excellent moldability and having reduced working surface roughening
KR20180068087A (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferritic stainless steel with improved impact toughness and method of manufacturing the same
WO2019039774A1 (en) * 2017-08-25 2019-02-28 주식회사 포스코 Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor
US20200385835A1 (en) * 2017-04-27 2020-12-10 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
US11230756B2 (en) 2016-09-02 2022-01-25 Jfe Steel Corporation Ferritic stainless steel
CN114318153A (en) * 2021-12-31 2022-04-12 长春工业大学 Al-modified Cu-rich phase reinforced ferrite stainless steel and preparation method thereof
CN114703352A (en) * 2022-04-18 2022-07-05 东北大学 Cold rolling method for improving comprehensive performance of BCC structure corrosion-resistant alloy sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224342A (en) * 2006-02-22 2007-09-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet causing little orange peel due to working and having superior formability, production method therefor, and press forming method
JP2011149101A (en) * 2011-02-25 2011-08-04 Nippon Steel & Sumikin Stainless Steel Corp Method for producing ferritic stainless steel sheet having excellent moldability and having reduced working surface roughening
US11230756B2 (en) 2016-09-02 2022-01-25 Jfe Steel Corporation Ferritic stainless steel
KR20180068087A (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferritic stainless steel with improved impact toughness and method of manufacturing the same
WO2018110866A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferrite-based stainless steel having improved impact toughness, and method for producing same
US20200385835A1 (en) * 2017-04-27 2020-12-10 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
WO2019039774A1 (en) * 2017-08-25 2019-02-28 주식회사 포스코 Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
JP2020164956A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor
CN114318153A (en) * 2021-12-31 2022-04-12 长春工业大学 Al-modified Cu-rich phase reinforced ferrite stainless steel and preparation method thereof
CN114318153B (en) * 2021-12-31 2022-11-08 长春工业大学 Al-modified Cu-rich phase reinforced ferrite stainless steel and preparation method thereof
CN114703352A (en) * 2022-04-18 2022-07-05 东北大学 Cold rolling method for improving comprehensive performance of BCC structure corrosion-resistant alloy sheet

Also Published As

Publication number Publication date
JP3709833B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2002285300A (en) Ferritic stainless steel sheet and production method therefor
JP2001220641A (en) High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP4367091B2 (en) High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
JP4962440B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP3788311B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2003138348A (en) Ferritic stainless steel sheet, and production method therefor
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP4848423B2 (en) Deep drawing thin steel sheet having excellent secondary work brittleness resistance, fatigue characteristics and plating characteristics, and its manufacturing method
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5176599B2 (en) Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof
JP2000054070A (en) Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP2009052108A (en) Extra-low carbon and extremely thin cold rolled steel sheet for building material, and method for producing the same
JP3373983B2 (en) Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties
JP6984320B2 (en) Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP2003138349A (en) Ferritic stainless steel sheet having excellent deep drawability, and production method therefor
JP3288620B2 (en) Steel sheet for double-wound pipe and method for producing the same
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3709833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term