JP3788311B2 - Ferritic stainless steel sheet and manufacturing method thereof - Google Patents

Ferritic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP3788311B2
JP3788311B2 JP2001334173A JP2001334173A JP3788311B2 JP 3788311 B2 JP3788311 B2 JP 3788311B2 JP 2001334173 A JP2001334173 A JP 2001334173A JP 2001334173 A JP2001334173 A JP 2001334173A JP 3788311 B2 JP3788311 B2 JP 3788311B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
rolling
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001334173A
Other languages
Japanese (ja)
Other versions
JP2003138347A (en
Inventor
好弘 矢沢
古君  修
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001334173A priority Critical patent/JP3788311B2/en
Publication of JP2003138347A publication Critical patent/JP2003138347A/en
Application granted granted Critical
Publication of JP3788311B2 publication Critical patent/JP3788311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、深絞り性とともにリジング性、耐肌荒れ性に優れたフェライト系ステンレス鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼板は、普通鋼に比べて耐熱性や耐食性に優れると共に、Niを含有しないためオーステナイト系ステンレス鋼に比べるとコスト的に有利で、応力腐食割れ(SCC)が発生しないという利点を有している。このため、従来から種々の産業分野で利用されてきた。
【0003】
しかし、従来のフェライト系ステンレス鋼板は、例えば板厚0.8mmにおける伸び値は30%程度、r値は1.5以下であり、同じ板厚の普通鋼の高張力鋼板やオーステナイト系ステンレス鋼板の特性に比べ成形性に劣る欠点があった。このため、自動車強度部材などの複雑な成形加工が要求される用途には、その利用が大幅に制限されてきた。ここで、自動車強度部材用途とは、例えばリインフォース、サイドメンバー、アーム、ビーム材等を指す。
【0004】
これらの部材には、従来、成形加工性が良好な軟鋼板表面にめっきを施した合金化溶融亜鉛めっき鋼板等が広く用いられてきた。そこで、これら部材に、フェライト系ステンレス鋼板を適用できれば、その優れた耐食性を生かし、めっき工程や塗装工程の省略もしくは塗装目付量の低下が可能になるため、トータルコストで比較すると安価な材料となる。また、ステンレス鋼板は、母材の耐食性に優れていることから、腐食に起因した塗膜剥離等の心配や電着塗装が回り込まない部位における腐食の心配も少ない。しかもステンレス鋼板は、リサイクルが容易であることから、地球環境という観点からも大きな利益がもたらされる。
【0005】
このような背景から、これまでにもフェライト系ステンレス鋼板の加工性を高めるための試みがなされ、研究成果がいくつか報告されている。例えば、特開平3-264652号公報には、NbおよびTiを複合添加したフェライト系ステンレス鋼の製造条件を適正化し、{111}集積度(X線回折強度比(222)/(200))が5以上の集合組織を得て加工性を改善する技術が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の深絞り用フェライト系ステンレス鋼板では、r値は2.0程度までしか得られない。このため、複雑な形状への成形加工が必要な用途では、金型調整や潤滑コートの利用等の工夫で対応していたが、素材そのものの成形性の向上が望まれていた。
また、深絞り性と肌荒れやリジング性とのバランスも十分考慮されていたとは言い難い。すなわち、深絞り成形を行った際に鋼板表面に発生する凹凸(リシング)や肌荒れは、成形加工性の低下に大きな影響を及ぼすが、これらの特性と深絞り性を兼ね備えた鋼板の検討は今まで行われていなかった。ここで、リジングとは、冷間加工を受けた際に圧延方向(L方向)に平行に表れる板幅方向に凹凸を有する波状の表面欠陥であり、また肌荒れとは、冷間加工を受けた際に表面に生じる結晶粒の凹凸に起因したオレンジピール(Orange Peal)を指す。
【0007】
本発明の目的は、深絞り性(r値)とリジング性、耐肌荒れ性に優れたフェライト系ステンレス鋼板およびその製造方法を提案することにある。
【0008】
【課題を解決するための手段】
発明者らは、上記問題点を解決し、自動車強度部材等の深絞り用途に適用するために必要な、フェライト系ステンレス鋼板の深絞り性、リシング性および耐肌荒れ性について詳細に調査した。その結果、最終冷延前焼鈍板の結晶粒微細化、{111}集積度向上のほか、冷延条件や仕上焼鈍温度の適正化により、上記特性のいずれをも満たした鋼板の製造が可能であることを見出した。
【0009】
とくに、最終冷延前焼鈍板は、未再結晶組織が5%以上残存しない範囲で微細(結晶粒径40μm以下)な組織ほど良く、{111}集積度 2.0 以上とすることに加え、冷間圧延を全圧下率75%以上とし、仕上焼鈍を、焼鈍後の平均結晶粒径を50μm以下とする温度で行うことにより、r値>2.0でかつリシング性、肌荒れ性をも兼ね備えた深絞り性に優れたフェライト系ステンレス鋼板が得られることを見出した。
【0010】
すなわち本発明は、C:0.01mass%以下、Si:1.0mass%以下、Mn:1.5mass%以下、Cr:11〜23mass%、Ni:2.0mass%以下、P:0.06mass%以下、S:0.03mass%以下、Al:1.0mass%以下、N:0.04mass%以下、Nb:0.8mass%以下および/またはTi:1.0mass%以下、ただし、これらは下記(1)式を満足するように含有し、残部がFe及び不可避的不純物からなるフェライト系ステンレス鋼板であって、再結晶率95%以上でかつ、平均結晶粒径が40μm以下、{111}集積度が2.0以上である最終冷延前鋼板を冷間圧延し、仕上焼鈍してなることを特徴とするフェライト系ステンレス鋼板である。

18≦Nb/(C+N)+2(Ti/(C+N))≦60 ・・・・・・ (1)
ここで、C,N,NbおよびTiは各元素の含有量(mass%)
【0011】
なお本発明は、上記成分組成に加えてさらに、Moを0.1〜3.0mass%かつ下記(2)式を満足するように含有することが好ましい。また、Bを0.0005〜0.01mass%含有することが好ましい。

(Cr+3.3Mo)≧14mass% ……(2)
【0012】
本発明はまた、上記鋼板が、平均結晶粒径50μm以下であるフェライト系ステンレス鋼板であることが好ましい。さらに、上記鋼板は、平均r値≧2.0であることが好ましい。
【0013】
また、本発明は、上記組成からなるフェライト系ステンレス鋼板の製造方法において、熱延板焼鈍後の鋼板の再結晶率95%以上とし、かつ最終冷延前鋼板の再結晶率95%以上、平均結晶粒径が40μm以下、{111}集積度が2.0以上となる条件で最終冷延前焼鈍を行い、全圧下率75%以上とする冷間圧延を行い、その後、平均結晶粒径を50μm以下とする仕上焼鈍を行うことを特徴とする深絞り性、リジング性および耐肌荒れ性に優れたフェライト系ステンレス鋼板の製造方法である。
【0014】
【発明の実施の形態】
まず、本発明において、成分組成を上記範囲に限定した理由について説明する。
C:0.01mass%以下
Cは、固溶状態で存在すると鋼の加工性を低下させる。Cはまた、炭化物を形成して主に粒界に析出し、耐二次加工脆性や粒界の耐食性を低下させる。C量が0.01mass%を超えると、加工性、耐食性への悪影響が顕著となるため、0.01mass%以下に制限する。しかし、過度のC低減は、精練コスト上昇を招くので、0.002mass%超え0.008mass%以下の含有量が望ましい。
【0015】
Si:1.0mass%以下
Siは、耐酸化性、耐食性の向上に有効な元素であり、とくに大気環境での耐食性を向上させる。その効果を発揮させるためには、0.2mass%以上の添加が好ましい。しかしながら、1.0mass%を超えて含有すると鋼を脆化させ、溶接部の耐二次加工脆性をも劣化させるので、1.0mass%を上限とする。好ましくは、0.1〜0.6mass%の範囲に限定する。
【0016】
Mn:1.5mass%以下
Mnは、耐酸化性を向上するのに有効な元素であるが、過剰に含有すると鋼を脆化させ、溶接部の耐二次加工脆性を劣化させるので、1.5mass%以下に限定する。好ましくは、0.1〜1.0mass%の範囲に限定する。
【0017】
Cr:11〜23mass%
Crは、耐食性の向上に有効な元素であり、十分な耐食性を得るためには11mass%以上含有している必要がある。また溶接部の耐食性の観点からは、16mass%以上の含有が好ましい。一方、Crは加工性を低下させる元素であり、特に23mass%を超えて含有するとその影響が顕著となるので、23mass%を上限とする。
【0018】
Ni:2.0mass%以下
Niは、ステンレス鋼の耐食性を向上させるので、2.0mass%以下の範囲で含有させることができる。しかし、2.0mass%を超えて多量に含有すると,鋼が硬質化し、また、応力腐食割れの懸念が生ずる。したがって、その含有量は2.0mass%を上限とする。好ましくは、0.1〜0.8mass%の範囲に限定する。
【0019】
P:0.06mass%以下
Pは、粒界に偏析しやすく、Bを含有した場合、その粒界強化作用を低減させ、溶接部の耐二次加工脆性を劣化させる。また、耐食性や高温疲労特性も劣化させるので、できる限り低い方が望ましい。このため0.06mass%を上限とする。好ましくは0.03mass%以下である。しかし、過度の低下は精練コスト上昇を招く。
【0020】
S:0.03mass%以下
Sは、耐食性を劣化させるので、少ないことが望ましいが、過度の低減は製鋼コストの上昇を招くため、その含有量は0.03mass%以下とする。好ましくは0.003〜0.008mass%である。
【0021】
Al:1.0mass%以下
Alは、製鋼における脱酸剤として必要である。しかし、過度の添加は介在物生成のために、表面外観、耐食性および加工性を劣化させるので、1.0mass%以下に制限する。好ましくは、0.001〜0.6mass%の範囲に限定する。
【0022】
N:0.04mass%以下
Nは、粒界を強化し勒性を向上させる元素であるが、0.04mass%を超えて含有すると、窒化物となって粒界に析出し、耐食性に悪影響を及ぼすようになるので、上限を0.04mass%とする。
【0023】
Nb:0.8mass%以下および/またはTi:1.0mass%以下、
18≦Nb/(C+N)+2(Ti/(C+N))≦60
Nb,Tiは、固溶C,Nを化合物として固定することにより、耐食性改善およびr値を向上させる効果を有しており、単独もしくは複合で添加することが必要である。上記の効果を得るためには、それぞれ0.01mass%以上を含有させることが望ましい。一方、Nb含有量が0.8mass%を超えると靭性の低下を、また、Ti含有量が1.0mass%を超えると外観および靭性の低化を招くため、これらの値をそれぞれ上限とする。
また、鋼中のC,Nを炭窒化物として固定し、一層優れた加工性を確保するには、18≦Nb/(C+N)+2(Ti/(C+N))≦60とすることが必要となる。ここで、C,N,Nb,Tiは、各元素の含有量(mass%)である。Nb/(C+N)+2(Ti/(C+N))が18未満となると、鋼中のC,Nを炭窒化物として充分に固定できないため、加工性、耐食性が著しく低下する。一方、60を超えると、炭窒化物の析出量が増加して、加工性が低下する。
【0024】
Mo:3.0mass%以下
Moは、耐食性、特に耐穴あき性の向上に有効な元素である。この効果を得るためには、0.1mass%以上の添加が望ましい。しかし、3.0mass%を超えて含有すると、熱処理時に析出物を生じ、加工性の劣化を招く。よって、Mo含有量は3.0mass%以下、好ましくは0.1〜2.0mass%とする。
【0025】
Cr+3.3Mo:14以上
Cr+3.3Mo(但し、Cr,Moは各元素の含有量(mass%))は、孔食指数(Pitting Index)としてステンレス鋼の耐食性を表す指標として一般に用いられている。自動車強度部材に用いて十分な耐食性を得るためには、Cr+3.3Moを14以上とすることが必要である。ただし、このCr+3.3Moが30を超えると、鋼板が硬質化して加工性を損なうので30以下とするのが好ましい。
【0026】
B:0.0005〜0.01mass%
Bは、粒界に偏析し、粒界強度を強化し、二次加工脆性を改善する効果を有する。また、鋼の靭性劣化を招くTiNの析出を、BNの形成により抑制する効果もある。これらの効果を得るためには、0.0005mass%以上の添加が必要である。しかし、0.01mass%を超える添加は、熱間加工性を害するため、0.01mass%以下に制限する。
【0027】
上記各成分の他は、Feおよび不可避的不純物である。ただし、粒界脆性改善のため、Coを0.3mass%以下、また、機械的特性改善のため、Zr:0.5mass%以下、Ca:0.1mass%以下、Ta:0.3mass%以下、W:0.3mass%以下、Cu:1mass%以下およびSn:0.3mass%以下を含有していても、本発明の各特性に格別の影響を及ぼさない。
【0028】
次に、本発明に係る仕上焼鈍後のステンレス鋼板の特性を限定した理由について説明する。
(1)平均r値≧2.0
本発明のステンレス鋼板を、自動車用外板や補強部材等の複雑形状に適用するためには、優れた深絞り性を有する必要がある。このためには、平均r値は高いほど好ましく、仕上焼鈍後の鋼板の平均r値は2.0以上に制限する。好ましくは2.4以上である。
【0029】
(2)平均結晶粒径:50μm以下
仕上焼鈍後の最終冷延板の平均結晶粒径は、成形性(特にr値)に影響を及ぼし、一般に、結晶粒が大きいほど{111}組織が発達し、r値は高い。このため、仕上焼鈍温度を高温として粒成長を促進することも可能である。しかし、結晶粒の過度の粗大化は、逆に成形加工後の肌荒れや成形性等に悪影響を及ぼす。すなわち、結晶粒径が50μmを超えて大きくなると、加工後の製品表面に、オレンジピールと呼ばれる肌荒れが生じて、外観の悪化を招くだけでなく、肌荒れに起因して、著しい耐食性の劣化や成形限界の低下を引き起こす。このため、最終冷延板の平均結晶粒径は50μm以下、好ましくは40μm以下に制限する。なお、上記結晶粒径は、JIS G 0552に準拠して測定したものであり、圧延方向(L方向)断面の板厚1/2,1/4,1/6位置において、各々4点ずつ測定した値の平均値(n数12)である。
【0030】
次に、上記仕上焼鈍後の鋼板の特性を得るために、最終冷延前鋼板が具備すべき特性について説明する。なお、ここで言う最終冷延前鋼板とは、冷延工程で中間焼鈍を行わない1回冷延法では、熱延焼鈍後の鋼板のことであり、中間焼鈍を行う2回冷延法では、文字通り、中間焼鈍後の最終冷延前の鋼板を意味するが、熱延焼鈍後の鋼板も下記の特性を満たすことが好ましい。
【0031】
(1)再結晶率:95%以上
最終冷延前鋼板の組織は、製品板(仕上焼鈍後の鋼板)のリジング性やr値に大きな影響を及ぼし、特に未再結晶のバンド状組織が5%以上残存すると、リジング性やr値が著しく低下する。このため、最終焼鈍前の鋼板の再結晶率は95%以上とする。
【0032】
(2)平均結晶粒径:40μm以下
最終冷延前鋼板の結晶粒径は、微細なほど仕上焼鈍後鋼板の{111}集積度を高めるには有利である。すなわち、最終冷延前鋼板の結晶粒径と仕上焼鈍後鋼板のr値との間には相関があり、結晶粒が微細なほど平均r値は高くなり、△rは小さくなる傾向がある。この理由は、結晶粒界は、圧延による歪みの整合性をはかるために多重すべりが起こって均一な変形組織となるため、{111}再結晶粒の核生成サイトになりやすい。したがって、結晶粒の微細化は、相対的に結晶粒界の比率が増大することになり、{111}集合組織の発達が促進されるためと考えられる。
また最終冷延前鋼板の粒径が大きくなると、仕上焼鈍後鋼板の結晶粒も粗大化するため、リジング、肌荒れが顕著になる。
以上のことから、最終冷延前鋼板の結晶粒径は、熱延板焼鈍板であれ中間焼鈍板であれ、その上限を40μmとする。
【0033】
(3) 最終冷延前鋼板の{111}集積度 2.0
最終冷延前鋼板において、{111}集合組織(γ−fiber)主体の集合組織を形成することができれば、その後の最終冷間圧延では、γ−fiberは、γ−fiber近傍での方位変化を起こすだけである。このため、γ−fiber主体の鋼板では、仕上焼鈍での再結晶で、より強い{111}集合組織が形成されることになる。したがって、熱延板焼鈍板および中間焼鈍後の鋼板の{111}集積度は高いほど望ましく、仕上焼鈍後の鋼板の平均r値2.0以上を確保するためには、{111}集積度2.0 以上とする必要がある。特に、平均r値2.4以上を得るためには、{111}集積度2.5以上とすることが好ましい。
【0034】
なお、最終冷延前鋼板の時効指数を測定した場合、20.0MPa以下であることが、r値向上には好ましい。ここで、上記時効指数とは、最終冷延前鋼板に7.5%予歪を付与した時の強度(変形応力)と、その鋼板にさらに100℃×30分の時効処理を施した後の降伏応力の差で定義した値である。この時効指数は、鋼中の固溶C量と相関があり、固溶C量が多いほど時効指数が大きくなる。前述したように、ステンレス鋼板においては、固溶Cは加工性を劣化させる。すなわち、鋼中の固溶Cは、{111}集合組織の形成を阻害するとともに、時効により材質を劣化させる。このメカニズムには、回復再結晶時に影響を及ぼすという説と回復再結晶時に影響を及ぼすという説の2つの説が考えられている。したがって、最終冷延前の鋼板中の固溶Cは低いほど好ましく、平均r値2.0以上を目標とする本発明においては、上記の時効指数を20.0MPa以下に制限することが必要である。
【0035】
次に、本発明のステンレス鋼板の製造条件について説明する。
本発明の鋼板は、製鋼、熱間圧延(スラブ加熱、粗圧延、仕上圧延)、熱延板焼鈍、酸洗、1回または中間焼鈍を挟む2回以上の冷間圧延および仕上焼鈍の各工程を経て製造される。平均r値2.0以上でかつリジング性、肌荒れ性に優れた鋼板を得るためには、上記各製造工程の製造条件を、以下に説明するように適切に調整する必要がある。
【0036】
a.スラブ加熱温度
スラブ加熱温度が低すぎると、所定の条件での熱間粗圧延が困難となり、一方、加熱温度が高すぎると、熱延板の板厚方向の集合組織が不均一になるとともに、Ti422析出物が再溶解し、最終冷延前の鋼板中の固溶Cが増大する。このためスラブ加熱温度は1000〜1200℃の範囲とするのがよい。さらに、好ましい温度範囲は1050〜1150℃である。
【0037】
b.熱間粗圧延
熱間粗圧延(以下、「粗圧延」と略記する)の少なくとも1パスを、圧延温度850〜1100℃、圧下率35%以上で行うことが好ましい。粗圧延の圧延温度が850℃未満では、再結晶が進みにくく、主にスラブ中の柱状組織に起因した粗大な(100)コロニーの残存により、仕上焼鈍後の加工性が劣り、また圧延ロールへの負荷が大きくなり、ロール寿命が短くなる。一方、1100℃を超えると、フェライト結晶粒が粗大化し、{111}核発生サイトとなる粒界面積が減少し、仕上焼鈍後の鋼板のr値低下を招くことになる。したがって、粗圧延の圧延温度は850〜1100℃とするのが好ましい。より好ましい温度範囲は900〜1050℃である。
また、粗圧延の圧下率が35%未満では、板厚方向の中心部に、バンド状の未再結晶組織が大量に残存し、深絞り性を劣化させる。逆に、粗圧延の1パス当たりの圧下率が60%を超えると、圧延時にロールと鋼板の焼き付けを起こしたり、圧延ロールへの噛み込み不良を生じる危険がある。このため、圧下率は40〜60%の範囲が好ましい。
【0038】
なお、鋼の高温強度が低い材料では、粗圧延時に鋼板表面に強い剪断歪みが生じて、板厚中心部に未再結晶組織が残ったり、ロールと鋼板の焼き付きを生じることがある。このような場合には、必要に応じて、摩擦係数0.3以下になるような潤滑を施してもよい。
上述した圧延温度と圧下率の条件を満たす粗圧延を、少なくとも1パス行うことにより深絞り性が向上する。この1パスは、粗圧延のどのパスで行ってもよいが、圧延機の能力から、最終パスで行うのが最も好ましい。
【0039】
c.熱間仕上圧延
粗圧延に続く熱間仕上圧延(以下、「仕上圧延」と略記する)では、少なくとも1パスを、圧延温度650〜900℃、圧下率20〜40%で行うことが好ましい。圧延温度が650℃未満では、変形抵抗が大きくなって20%以上の圧下率を確保することが難しくなるとともに、ロール負荷が大きくなる。一方、仕上圧延温度が900℃を超えると、圧延歪みの蓄積が小さくなり、次工程以降における深絞り性向上効果を得にくくなる。このため、仕上圧延温度は650〜900℃、好ましくは700〜800℃の範囲で行うのがよい。
【0040】
また、仕上圧延における650〜900℃での圧下率が20%未満では、r値の低下やリジングの原因になる(100)//ND、(110)//NDコロニー(横田ら、川崎製鉄技報、30(1998)2,p115)が大きく残存してしまう。一方、40%を超えると、噛み込み不良や鋼板の形状不良を引き起こし、鋼の表面性状の劣化を招く。よって、仕上圧延においては、圧下率20〜40%の圧延を少なくとも1パス以上行うのがよい。より好ましい範囲は25〜35%である。
上述した圧延温度と圧下率の条件を満たす仕上圧延を、少なくとも1パス行うことにより深絞り性は改善される。その1パスは、どのパスで行ってもよいが、圧延機の能力から、最終パスで行うことが好ましい。
【0041】
d.熱延板焼鈍
冷延工程として1回冷延法を採用する場合には、熱延板焼鈍が、最終冷延前の焼鈍に該当する。この場合の熱延板焼鈍は、焼鈍後の鋼板の再結晶率が95%以上かつ平均結晶粒径40μm以下が得られる条件が好ましい。この理由は、熱延焼鈍板に未再結晶のバンド状組織が5%以上残存すると、仕上焼鈍後の鋼板のr値や、特にリジングの低下が著しいからである。適正な焼鈍温度は成分により異なるが、750〜1100℃の温度範囲が好ましい。上限を制限したのは、焼鈍温度が高くなると、結晶粒が粗大化するとともに、固溶Cを固定した炭化物(NbC,TiC,M3C,M73他)が再溶解し、鋼中の固溶C量が増大し、仕上焼鈍後鋼板のr値の低下を招く。また、熱延焼鈍板の結晶粒が粗大化すると、仕上焼鈍後鋼板の粒径も大きくなり、成形後に肌荒れが生じて成形限界の低下や耐食性の低下を引き起こすからである。したがって、未再結晶組織が5%未満でありかつ結晶粒径が40μm以下、好ましくは未再結晶組織が0%かつ結晶粒径35μm以下が得られる条件とするのがよい。
なお、2回以上の冷延法の場合には、熱延板焼鈍は、最終冷延前焼鈍に該当しないが、熱延焼鈍板の特性が、仕上焼鈍後の鋼板特性にも影響するため、上記の条件に適合させることが好ましい。
【0042】
e.冷間圧延
冷間圧延は、1回冷延法または中間焼鈍を挟んだ2回以上の冷延法とする。また、全圧下率は、1回冷延法、2回以上の冷延法の場合とも75%以上とする。全圧下率の増大は、仕上焼鈍板の{111}集積度を向上し、r値向上に有効である。仕上焼鈍後の鋼板が平均r値2.0以上を満たすためには、全圧下率は75%以上が必要であり、好ましくは80〜90%未満とするのがよい。
なお、2回以上の冷延法の場合、(1回目冷延の圧下率)/(最終冷延の圧下率)で表される圧下比は、最終冷延前鋼板の粒径や中間焼鈍板および仕上焼鈍板中の{111}集合組織と密接な関係があり、高r値化を達成するには、この圧下比を、0.7〜1.3とするのが好ましい。より好ましくは0.8〜1.1の範囲として冷間圧延するのがよい。また、2回以上の冷延法を行う時には、各冷延はいずれも圧下率50%以上とし、それぞれの圧下率の差は30%以下とするのが望ましい。これは圧下率が50%未満でも、圧下率差が30%超えでも、{111}集積量が低くなりr値が低下するためである。
【0043】
さらに、本発明における冷間圧延は、被圧延材表面の剪断変形を低減し、(222)/(200)を高めて、r値の向上に有効に寄与するため、ロール径と圧延方向の影響を考慮することが望ましい。すなわち、ロール径100〜200mmφのリバース圧延に比べ、300mmφ以上のロール径を有する1方向圧延のタンデム圧延を用いることは、表面の剪断変形を低減して{111}を増加し、r値を高めるうえで効果的である。
なお、より高r値を安定して得るためには、線圧(圧延荷重/板幅)を増大させて板厚方向に均一に歪みを与えるとよい。そのためには、熱延温度の低下、高合金化、熱延速度の増加を任意に組み合わせることも有効である。
【0044】
f.中間焼鈍
冷延工程として2回以上の冷延法を採用する場合には、冷間圧延に挟まれた中間焼鈍が最終冷延前焼鈍に該当する。最終の仕上焼鈍板を微細結晶粒かつ高r値化するためには、熱延板焼鈍の場合と同様の理由で、中間焼鈍後のフェライト結晶粒の微細化と固溶Cの低減が重要なポイントとなる。このため、中間焼鈍温度は最終冷延前の結晶粒径40μm以下を満たし、かつ未再結晶組織が5%以上残存しない温度範囲で低温ほどよい。これらのことから、中間焼鈍温度は750〜1000℃とするのが好ましい。より好ましくは熱延板焼鈍温度より50℃以上低い温度とするのがよい。
【0045】
g.仕上焼鈍
仕上焼鈍における焼鈍温度は、高温であるほど結晶粒が大きくなり、{111}集積度が向上し、高r値化が達成される。これは、{111}結晶粒が他の結晶方位の粒を蚕食して粒成長するからである。しかし、最終冷延前の鋼板に未再結晶組織が残存する場合には、r値向上に有効な{111}結晶方位の優先成長が起こらず、リジングの低下も著しい。すなわち未再結晶組織が残存すると、平均r値2.0以上を達成できないばかりか、鋼板板厚方向中央にバンド状組織が残存し、深絞り性、加工性を著しく阻害する。したがって、仕上焼鈍で、高r値を得るためには、その前の最終冷延前鋼板の特性管理が重要である。
なお、上述したように、r値向上のためには、高温焼鈍により{111}粒の優先成長を促進することが有効であるが、結晶粒が過度に大きくなると、加工後の肌荒れ(オレンジピール)が生じて、成形限界の低下と耐食性の劣化をもたらす。このため、仕上焼鈍温度は、焼鈍後の結晶粒径50μm以下を確保できる範囲で高温ほど良い。但し、二次加工脆性が問題となる用途では、40μm以下に微細化することが好ましい。具体的には、850〜1050℃の温度範囲で仕上焼鈍するのが好ましい。
【0046】
なお、以上説明した本発明の鋼板を溶接する場合には、TIG、MIGを始めとするアーク溶接、電縫溶接、レーザー溶接など、通常の溶接方法はすべて適用可能である。
【0047】
【実施例】
(実施例1)
表1に示した成分組成を有する15種類の鋼スラブを、転炉−連続鋳造法で製造し、1150℃に加熱したのち熱間圧延し、5.0mmの熱延鋼板とした。この熱延鋼板を、850〜980℃で熱延板焼鈍し、酸洗後、1回法では0.8mmに冷間圧延し、2回法では800〜930℃で中間焼鈍後、2回目の冷間圧延を行い、最終板厚0.8mm(全圧下率84%)とした。これらの鋼板について、熱延焼鈍板、中間焼鈍後鋼板(最終冷延前鋼板)および仕上焼鈍後鋼板(製品板)の特性を調査した結果を表2に示した。
【0048】
なお表2中の平均r値、耐肌荒れ性およびリジング性の評価は、以下の方法で行った。
(1)平均r値:r値をJIS Z 2254に準拠して測定し、下記式により平均r値を求めた。なお、r、rおよびrは、それぞれ圧延方向、圧延方向に村して45°および圧延方向に対して90°方向のr値である。
平均r値=(r+2r+r)/4
(2)耐肌荒れ性:鋼板の圧延方向からJIS 5号試験片を切り出し、25%の引張歪みを加えて肌荒れを発生させた後、引張方向に垂直な方向の表面粗度Raを測定し肌荒れ度を評価した。測定は、JIS B 0601に準拠し、触針法により試験片長手方向中央部を5点測定し、その平均値を求めた。評価は、表面粗度Raが2.0μm以下を耐肌荒れ性良好とした。
(3)リジング性:圧延方向から切り出したJIS 5号引張試験片の両面を#600のエメリー研磨紙で湿式研磨し、その後、20%の歪を付与し、粗度計を用いて、試験片表面に生じた凹凸のうねり高さを測定した。測定位置は引張試験片の中央部、測定方向は引張方向に直角方向とした。そして、うねり高さが15μm以下をランクA、16〜30μmをランクB、31〜45μmをランクC、46〜60μmをランクD、61μm以上をランクEとする5段階に評価した。なお、この評価がランクB以上であれば、成形限界曲線による成形性評価から、実用上問題ないレベルと判断できる。しかし、ランクC以下になると、r値をいくら向上させても成形限界が低下する。
【0049】
表2から、本発明の成分組成を有する鋼1〜12は、上記条件で製造した場合、最終冷延前の鋼板はいずれも、再結晶率が100%、{111}集積度が2.0以上および結晶粒径が40μm以下であり、さらに仕上焼鈍後の鋼板も、平均r値が2.0以上でかつ肌荒れ性やリジング性に優れた鋼板となる。これに対して、本発明の成分基準を外れる鋼13〜15は、最終冷延前の再結晶率を100%としても、{111}集積度2.0 以上を得ることはできず、仕上焼鈍後の鋼板の平均r値も2.0未満のものしか得られない。
【0050】
【表1】

Figure 0003788311
【0051】
【表2】
Figure 0003788311
【0052】
(実施例2)
表3は、表1の本発明の成分範囲を満たす鋼6のスラブを、実施例1の製造条件をベースにし、粗および仕上熱間圧延温度および圧下配分、熱延板焼鈍温度、冷間圧延条件等を変化させ、鋼板特性の変化を調査した結果である。No.16〜19は、冷延1回法を採用した場合で、熱延板焼鈍の温度を変化させたときの特性変化のデータである。熱延焼鈍板の再結晶率が95%以上であるNo.16,17では、仕上焼鈍後、r値、リジング性、肌荒れ性との良好な特性が得られているが、熱延板焼鈍温度が低く、再結晶率が95%未満となったNo.18,19ではリジング性の低下が著しい。No.20〜24は、冷延2回法で、中間焼鈍温度を変化させたときの特性変化を示したものである。No.22〜24は、中間焼鈍を高温で焼鈍した場合で、中間焼鈍後の結晶粒径が40μm以上に粗大化した結果、リジング性が劣化する、あるいは、固溶Cが増加して時効指数が大きくなり、平均r値が劣化している。No.25〜30は、仕上焼鈍温度を変化させたときの特性の変化を示したもので、仕上焼鈍温度を高温で焼鈍したNo.28〜30の鋼板は、仕上焼鈍後の結晶粒が粗大化したため、平均r値には影響は少ないが、肌荒れ性あるいはリジング性の低下を招いている。No.31〜33は、熱延板焼鈍、中間焼鈍条件を変化させ、最終冷延前鋼板の{111}集積度を変化させたときの、最終冷延板の特性を示したものである。{111}集積度が2.0 未満であるNo.33は、平均r値が低い。No.34〜37は、熱延板焼鈍および中間焼鈍条件を変化させた、最終冷延板の特性を示したものである。この場合も、最終冷延前鋼板の{111}集積度が本発明の要求を満たさないNo.36,37では、r値の劣化が大きい。No.38は、熱延板焼鈍および中間焼鈍条件を変化させ、最終冷延前鋼板の再結晶率を90%とした場合の最終冷延板の特性を示したものである。再結晶率95%未満のNo.38鋼は、表面粗さは良好なものの、リジング性、r値が著しく悪い。
【0053】
【表3】
Figure 0003788311
【0054】
(実施例3)
表1の本発明鋼6のスラブを、実施例1の製造条件に従い、5.0mmの熱延鋼板とし、熱延板焼鈍を施した。その後、あるものは、冷延1回法により、タンデム圧延機で全圧下率を40〜84%に変化させて0.8〜3.0mmの板厚に圧延したのち、仕上焼鈍を行った。また、あるものは、冷延2回法を採用し、タンデム圧延とリバース圧延で、ロール径を変化させて、0.8mmの板厚まで冷延し、仕上焼鈍を行った。これらの最終冷延板の特性を、実施例1と同様に調査した結果を表4に示した。
【0055】
結果を、表4に示した。
表4のNo.39〜44は、冷延1回法における冷延圧下率の影響を示したデータである。圧下率の低下に伴いr値も低下しており、2.0以上のr値を得るためには、全圧下率を75%以上確保することが必要である。
また、No.45〜50は、冷延2回法で、圧延方向とロール径の影響を示したものである。同じロール径では、リバース式の圧延より1方向圧延の方が平均r値は向上すること、また同じ圧延方向では、ロール径が大きいほど平均r値が向上する傾向が認められる。
【0056】
【表4】
Figure 0003788311
【0057】
【発明の効果】
以上説明したように、本発明によれば、高r値のほか優れたリジング性、耐肌荒れ性を兼ね備えた深絞り成形性に好適なフェライト系ステンレス鋼板を得ることができる。このフェライト系ステンレス鋼板は、自動車用外板や強度部材のほか家電、厨房、建材等の強加工用途に適用可能であり、産業上に大きな功を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel sheet having excellent drawability as well as ridging properties and rough skin resistance, and a method for producing the same.
[0002]
[Prior art]
Ferritic stainless steel sheets are superior in heat resistance and corrosion resistance compared to ordinary steels, and because they do not contain Ni, they are advantageous in terms of cost compared to austenitic stainless steels and do not generate stress corrosion cracking (SCC). is doing. For this reason, it has been used in various industrial fields.
[0003]
However, the conventional ferritic stainless steel sheet, for example, has an elongation value of about 30% at a thickness of 0.8 mm and an r value of 1.5 or less, compared to the characteristics of ordinary high-strength steel sheets and austenitic stainless steel sheets with the same thickness. There was a disadvantage of inferior moldability. For this reason, its use has been greatly restricted for applications that require complicated molding such as automobile strength members. Here, the automotive strength member application refers to, for example, reinforcements, side members, arms, beam materials, and the like.
[0004]
Conventionally, alloyed hot-dip galvanized steel sheets obtained by plating the surface of mild steel sheets having good formability have been widely used for these members. Therefore, if a ferritic stainless steel plate can be applied to these members, it is possible to make use of its excellent corrosion resistance, omit the plating process and painting process, or reduce the coating weight, so that it becomes an inexpensive material compared with the total cost. . In addition, since the stainless steel plate is excellent in the corrosion resistance of the base material, there is little concern about the peeling of the coating film due to the corrosion or the corrosion in the portion where the electrodeposition coating does not go around. Moreover, since stainless steel plates are easy to recycle, they also bring great benefits from the viewpoint of the global environment.
[0005]
Against this background, attempts have been made to improve the workability of ferritic stainless steel sheets, and several research results have been reported. For example, in JP-A-3-264652, the manufacturing conditions of ferritic stainless steel with a composite addition of Nb and Ti are optimized, and the {111} integration degree (X-ray diffraction intensity ratio (222) / (200)) A technique for improving workability by obtaining a texture of 5 or more is disclosed.
[0006]
[Problems to be solved by the invention]
However, in the conventional deep drawing ferritic stainless steel sheet, the r value can be obtained only up to about 2.0. For this reason, in applications that require molding into a complicated shape, measures such as mold adjustment and the use of a lubrication coat have been used, but improvement in the moldability of the material itself has been desired.
In addition, it is difficult to say that the balance between deep drawability and rough skin and ridging properties has been sufficiently considered. In other words, the unevenness (rising) and rough surface that occur on the surface of the steel sheet when deep drawing is performed have a significant effect on the deterioration of the formability, but the study of steel sheets that combine these characteristics with deep drawability is now underway. It was not done until. Here, ridging is a wavy surface defect having irregularities in the plate width direction that appears parallel to the rolling direction (L direction) when subjected to cold working, and rough skin is subjected to cold working. This refers to orange peel caused by crystal grain irregularities on the surface.
[0007]
An object of the present invention is to propose a ferritic stainless steel sheet excellent in deep drawability (r value), ridging properties, and rough skin resistance, and a method for producing the same.
[0008]
[Means for Solving the Problems]
The inventors have investigated in detail the deep drawability, leasing properties, and rough skin resistance of ferritic stainless steel sheets that are necessary for solving the above-mentioned problems and applying them to deep drawing applications such as automotive strength members. As a result, it is possible to manufacture steel sheets that satisfy both of the above characteristics by refinement of grain size of the annealed sheet before final cold rolling, improvement of {111} integration degree, and optimization of cold rolling conditions and finish annealing temperature. I found out.
[0009]
  In particular, as for the annealed sheet before final cold rolling, the finer structure (with a crystal grain size of 40 μm or less) is better as long as 5% or more of the unrecrystallized structure does not remain.The 2.0 more thanIn addition to cold rolling, the total rolling reduction is 75% or more, and the finish annealing is performed at a temperature at which the average grain size after annealing is 50 μm or less. It has been found that a ferritic stainless steel sheet having excellent drawability and excellent drawability can be obtained.
[0010]
  That is, the present invention is C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to 23 mass%, Ni: 2.0 mass% or less, P: 0.06 mass% or less, S: 0.03 mass% or less, Al: 1.0 mass% or less, N: 0.04 mass% or less, Nb: 0.8 mass% or less and / or Ti: 1.0 mass% or less, but these are contained so as to satisfy the following formula (1) The remainder from Fe and unavoidable impuritiesFerritic stainless steel sheetThe recrystallization rate is 95% or more, the average crystal grain size is 40 μm or less, and the {111} accumulation degree is 2.0 or moreCold-rolled steel sheet before final cold rolling and finish annealingThis is a ferritic stainless steel sheet.
              Record
  18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60 (1)
Here, C, N, Nb and Ti are the contents of each element (mass%)
[0011]
In addition to the above component composition, the present invention preferably further contains Mo in an amount of 0.1 to 3.0 mass% and satisfies the following formula (2). Moreover, it is preferable to contain B 0.0005-0.01 mass%.
Record
(Cr + 3.3Mo) ≧ 14mass% …… (2)
[0012]
In the present invention, the steel sheet is preferably a ferritic stainless steel sheet having an average crystal grain size of 50 μm or less. Further, the steel sheet preferably has an average r value ≧ 2.0.
[0013]
  Further, the present invention provides a method for producing a ferritic stainless steel plate having the above composition, wherein the recrystallization rate of the steel plate after hot-rolled sheet annealing is 95% or more, and the recrystallization rate of the steel plate before final cold rolling is 95% or more, average Under the condition that the crystal grain size is 40μm or less and the {111} accumulation degree is 2.0 or moreAnnealing before final cold rollingFerrite series with excellent deep drawability, ridging properties, and rough skin resistance, characterized by performing cold rolling with a total rolling reduction of 75% or more and then performing finish annealing with an average grain size of 50 μm or less It is a manufacturing method of a stainless steel plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason why the component composition is limited to the above range in the present invention will be described.
C: 0.01 mass% or less
C, when present in a solid solution state, lowers the workability of steel. C also forms carbides and precipitates mainly at the grain boundaries, reducing the secondary work brittleness resistance and the corrosion resistance of the grain boundaries. If the amount of C exceeds 0.01 mass%, the adverse effects on workability and corrosion resistance become significant, so the amount is limited to 0.01 mass% or less. However, excessive C reduction leads to an increase in scouring costs, so a content of more than 0.002 mass% and not more than 0.008 mass% is desirable.
[0015]
Si: 1.0 mass% or less
Si is an element effective for improving oxidation resistance and corrosion resistance, and improves corrosion resistance particularly in an atmospheric environment. In order to exhibit the effect, addition of 0.2 mass% or more is preferable. However, if the content exceeds 1.0 mass%, the steel is embrittled and the secondary work brittleness resistance of the welded portion is deteriorated, so 1.0 mass% is the upper limit. Preferably, it limits to the range of 0.1-0.6 mass%.
[0016]
Mn: 1.5 mass% or less
Mn is an element effective for improving the oxidation resistance, but if contained excessively, the steel is embrittled and the secondary work brittleness resistance of the weld is deteriorated, so it is limited to 1.5 mass% or less. Preferably, it limits to the range of 0.1-1.0 mass%.
[0017]
Cr: 11-23mass%
Cr is an element effective for improving corrosion resistance, and in order to obtain sufficient corrosion resistance, it is necessary to contain 11 mass% or more. Further, from the viewpoint of corrosion resistance of the welded portion, the content is preferably 16 mass% or more. On the other hand, Cr is an element that deteriorates workability. In particular, when the content exceeds 23 mass%, the effect becomes remarkable, so 23 mass% is the upper limit.
[0018]
Ni: 2.0 mass% or less
Since Ni improves the corrosion resistance of stainless steel, it can be contained in a range of 2.0 mass% or less. However, if it is contained in a large amount exceeding 2.0 mass%, the steel becomes hard and there is a concern about stress corrosion cracking. Therefore, the upper limit of the content is 2.0 mass%. Preferably, it limits to the range of 0.1-0.8 mass%.
[0019]
P: 0.06 mass% or less
P is easily segregated at the grain boundary, and when B is contained, the grain boundary strengthening action is reduced and the secondary work brittleness resistance of the welded portion is deteriorated. Moreover, since corrosion resistance and a high temperature fatigue characteristic are also deteriorated, the lower one is desirable. For this reason, 0.06 mass% is made the upper limit. Preferably it is 0.03 mass% or less. However, excessive reduction leads to increased scouring costs.
[0020]
S: 0.03 mass% or less
Since S deteriorates corrosion resistance, it is desirable that the S content be small. However, excessive reduction leads to an increase in steelmaking cost, so its content is set to 0.03 mass% or less. Preferably it is 0.003-0.008 mass%.
[0021]
Al: 1.0 mass% or less
Al is necessary as a deoxidizer in steelmaking. However, excessive addition degrades the surface appearance, corrosion resistance, and workability due to inclusion formation, so it is limited to 1.0 mass% or less. Preferably, it limits to the range of 0.001-0.6 mass%.
[0022]
N: 0.04 mass% or less
N is an element that strengthens the grain boundary and improves the fertility. However, if it exceeds 0.04 mass%, N precipitates at the grain boundary and adversely affects the corrosion resistance. 0.04 mass%.
[0023]
Nb: 0.8 mass% or less and / or Ti: 1.0 mass% or less,
18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60
Nb and Ti have the effect of improving the corrosion resistance and improving the r value by fixing solute C and N as compounds, and it is necessary to add them alone or in combination. In order to acquire said effect, it is desirable to contain 0.01 mass% or more, respectively. On the other hand, when the Nb content exceeds 0.8 mass%, the toughness is lowered, and when the Ti content exceeds 1.0 mass%, the appearance and the toughness are lowered.
Moreover, in order to fix C and N in the steel as carbonitride and to secure further excellent workability, it is necessary to satisfy 18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60. Become. Here, C, N, Nb, and Ti are the contents (mass%) of each element. If Nb / (C + N) +2 (Ti / (C + N)) is less than 18, C and N in the steel cannot be sufficiently fixed as carbonitrides, so that workability and corrosion resistance are remarkably lowered. On the other hand, when it exceeds 60, the precipitation amount of carbonitride increases and the workability decreases.
[0024]
Mo: 3.0mass% or less
Mo is an element effective for improving the corrosion resistance, particularly the hole resistance. In order to acquire this effect, addition of 0.1 mass% or more is desirable. However, when it contains exceeding 3.0 mass%, a precipitate will be produced at the time of heat processing and the workability will be deteriorated. Therefore, the Mo content is 3.0 mass% or less, preferably 0.1 to 2.0 mass%.
[0025]
Cr + 3.3Mo: 14 or more
Cr + 3.3Mo (where Cr and Mo are the contents of each element (mass%)) is generally used as an index representing the corrosion resistance of stainless steel as a pitting index. In order to obtain sufficient corrosion resistance when used for automobile strength members, Cr + 3.3Mo needs to be 14 or more. However, if this Cr + 3.3Mo exceeds 30, the steel plate becomes hard and the workability is impaired, so it is preferable to make it 30 or less.
[0026]
B: 0.0005 ~ 0.01mass%
B segregates at the grain boundaries, strengthens the grain boundary strength, and has the effect of improving secondary work brittleness. Moreover, there is also an effect of suppressing the precipitation of TiN causing the toughness deterioration of the steel by the formation of BN. In order to obtain these effects, addition of 0.0005 mass% or more is necessary. However, since addition exceeding 0.01 mass% harms hot workability, it limits to 0.01 mass% or less.
[0027]
In addition to the above components, Fe and unavoidable impurities. However, to improve grain boundary brittleness, Co is 0.3 mass% or less, and to improve mechanical properties, Zr: 0.5 mass% or less, Ca: 0.1 mass% or less, Ta: 0.3 mass% or less, W: 0.3 mass % Or less, Cu: 1 mass% or less, and Sn: 0.3 mass% or less do not particularly affect each characteristic of the present invention.
[0028]
Next, the reason which limited the characteristic of the stainless steel plate after the finish annealing which concerns on this invention is demonstrated.
(1) Average r value ≥ 2.0
In order to apply the stainless steel plate of the present invention to a complicated shape such as an automobile outer plate or a reinforcing member, it is necessary to have excellent deep drawability. For this purpose, the average r value is preferably as high as possible, and the average r value of the steel sheet after finish annealing is limited to 2.0 or more. Preferably it is 2.4 or more.
[0029]
(2) Average crystal grain size: 50 μm or less
The average crystal grain size of the final cold-rolled sheet after finish annealing affects the formability (particularly the r value). In general, the larger the crystal grain, the more the {111} structure develops and the higher the r value. For this reason, it is also possible to promote grain growth by setting the finish annealing temperature to a high temperature. However, excessive coarsening of the crystal grains adversely affects the roughness of the skin after molding and the moldability. In other words, when the crystal grain size becomes larger than 50 μm, rough skin called orange peel occurs on the processed product surface, which not only deteriorates the appearance but also causes significant corrosion resistance degradation and molding due to rough skin. Causes the limit to drop. Therefore, the average crystal grain size of the final cold rolled sheet is limited to 50 μm or less, preferably 40 μm or less. The crystal grain size is measured in accordance with JIS G 0552, and is measured at four points each at the thickness 1/2, 1/4, 1/6 position in the rolling direction (L direction) section. This is the average value (n number 12).
[0030]
Next, in order to obtain the characteristics of the steel sheet after the finish annealing, the characteristics that the steel sheet before final cold rolling should have will be described. In addition, the steel plate before the final cold rolling referred to here is a steel plate after hot rolling annealing in the one-time cold rolling method in which intermediate annealing is not performed in the cold rolling process, and in the two-time cold rolling method in which intermediate annealing is performed. Literally, it means the steel sheet before the final cold rolling after the intermediate annealing, but the steel sheet after the hot rolling annealing preferably satisfies the following characteristics.
[0031]
(1) Recrystallization rate: 95% or more
The structure of the steel sheet before the final cold rolling has a significant effect on the ridging property and r value of the product plate (steel plate after finish annealing). Especially when 5% or more of the non-recrystallized band structure remains, the ridging property and r value are increased. Is significantly reduced. For this reason, the recrystallization rate of the steel sheet before final annealing is 95% or more.
[0032]
(2) Average crystal grain size: 40μm or less
The finer the grain size of the steel sheet before final cold rolling, the more advantageous is to increase the degree of {111} accumulation in the steel sheet after finish annealing. That is, there is a correlation between the crystal grain size of the steel sheet before final cold rolling and the r value of the steel sheet after finish annealing. The finer the crystal grains, the higher the average r value and the smaller Δr tends to be. The reason for this is that the grain boundary tends to be a nucleation site of {111} recrystallized grains because multiple slips occur in order to achieve consistency of strain due to rolling, resulting in a uniform deformation structure. Therefore, it is considered that the refinement of crystal grains relatively increases the ratio of crystal grain boundaries and promotes the development of {111} texture.
Moreover, since the crystal grain of the steel plate after finish annealing will also become coarse when the particle size of the steel plate before final cold rolling becomes large, a ridging and rough skin will become remarkable.
From the above, the upper limit of the crystal grain size of the steel sheet before final cold rolling is 40 μm, whether it is a hot-rolled sheet annealed sheet or an intermediate annealed sheet.
[0033]
(3) {111} accumulation degree of steel plate before final cold rolling 2.0
  If the {111} texture (γ-fiber) -based texture can be formed in the steel sheet before final cold rolling, γ-fiber will change its orientation in the vicinity of γ-fiber in the subsequent cold rolling. It only wakes up. For this reason, in the steel sheet mainly composed of γ-fiber, a stronger {111} texture is formed by recrystallization by finish annealing. Therefore, it is desirable that the {111} accumulation degree of the steel sheet after hot-rolled sheet annealing and intermediate annealing is higher, and in order to secure an average r value of 2.0 or more of the steel sheet after finish annealing, the {111} accumulation degree2.0 more thanIt is necessary to. In particular, in order to obtain an average r value of 2.4 or more, the {111} integration degree is preferably 2.5 or more.
[0034]
In addition, when the aging index of the steel sheet before the final cold rolling is measured, it is preferably 20.0 MPa or less for improving the r value. Here, the aging index is the strength (deformation stress) when 7.5% pre-strain is applied to the steel plate before final cold rolling, and the yield stress after the steel plate is further subjected to aging treatment at 100 ° C for 30 minutes. It is a value defined by the difference of. This aging index correlates with the amount of solute C in the steel, and the aging index increases as the amount of solute C increases. As described above, in the stainless steel plate, the solid solution C deteriorates workability. That is, solute C in steel inhibits the formation of {111} texture and degrades the material due to aging. There are two theories for this mechanism: the theory of affecting recovery and recrystallization, and the theory of affecting recovery and recrystallization. Therefore, the lower the solute C in the steel sheet before the final cold rolling, the better. In the present invention aiming at an average r value of 2.0 or more, it is necessary to limit the aging index to 20.0 MPa or less.
[0035]
Next, manufacturing conditions for the stainless steel plate of the present invention will be described.
The steel sheet of the present invention includes steelmaking, hot rolling (slab heating, rough rolling, finish rolling), hot-rolled sheet annealing, pickling, one time or two or more cold rolling and finishing annealing sandwiching intermediate annealing. It is manufactured through. In order to obtain a steel sheet having an average r value of 2.0 or more and excellent ridging properties and rough skin properties, it is necessary to appropriately adjust the production conditions of the above production steps as described below.
[0036]
a. Slab heating temperature
If the slab heating temperature is too low, hot rough rolling under predetermined conditions becomes difficult, while if the heating temperature is too high, the texture in the thickness direction of the hot-rolled sheet becomes uneven and TiFourC2S2The precipitate is re-dissolved, and the solid solution C in the steel sheet before the final cold rolling increases. Therefore, the slab heating temperature is preferably in the range of 1000 to 1200 ° C. Furthermore, a preferable temperature range is 1050-1150 degreeC.
[0037]
b. Hot rough rolling
It is preferable to perform at least one pass of hot rough rolling (hereinafter abbreviated as “rough rolling”) at a rolling temperature of 850 to 1100 ° C. and a reduction rate of 35% or more. If the rolling temperature of rough rolling is less than 850 ° C, recrystallization is difficult to proceed, and the coarse (100) colony remaining mainly due to the columnar structure in the slab results in poor workability after finish annealing, and to the rolling roll This increases the load of the roll and shortens the roll life. On the other hand, when the temperature exceeds 1100 ° C., the ferrite crystal grains become coarse, the grain interfacial area that becomes {111} nucleation sites decreases, and the r value of the steel sheet after finish annealing is lowered. Therefore, the rolling temperature for rough rolling is preferably 850 to 1100 ° C. A more preferable temperature range is 900 to 1050 ° C.
If the rolling reduction of rough rolling is less than 35%, a large amount of band-like non-recrystallized structure remains in the central portion in the plate thickness direction, and the deep drawability deteriorates. Conversely, if the rolling reduction per pass of rough rolling exceeds 60%, there is a risk of causing the roll and the steel sheet to be baked during rolling, or causing a poor biting into the rolling roll. For this reason, the rolling reduction is preferably in the range of 40 to 60%.
[0038]
In the case of a steel having a low high-temperature strength, a strong shear strain may be generated on the surface of the steel sheet during rough rolling, and an unrecrystallized structure may remain in the center of the thickness or the roll and the steel sheet may be seized. In such a case, if necessary, lubrication may be performed so that the friction coefficient is 0.3 or less.
Deep drawability is improved by performing at least one pass of rough rolling that satisfies the above-described conditions of rolling temperature and rolling reduction. This one pass may be performed in any pass of rough rolling, but is most preferably performed in the final pass because of the capability of the rolling mill.
[0039]
c. Hot finish rolling
In hot finish rolling subsequent to rough rolling (hereinafter abbreviated as “finish rolling”), it is preferable to perform at least one pass at a rolling temperature of 650 to 900 ° C. and a reduction rate of 20 to 40%. When the rolling temperature is less than 650 ° C., the deformation resistance increases and it becomes difficult to ensure a rolling reduction of 20% or more, and the roll load increases. On the other hand, when the finish rolling temperature exceeds 900 ° C., the accumulation of rolling strain is reduced, and it becomes difficult to obtain the effect of improving deep drawing in the subsequent steps. For this reason, the finish rolling temperature is 650 to 900 ° C, preferably 700 to 800 ° C.
[0040]
In addition, if the rolling reduction at 650 to 900 ° C. in finish rolling is less than 20%, the (100) // ND, (110) // ND colony (Yokota et al., Kawasaki Ironworks) , 30 (1998) 2, p115) remains large. On the other hand, if it exceeds 40%, the biting failure and the shape failure of the steel plate are caused, and the surface properties of the steel are deteriorated. Therefore, in finish rolling, it is preferable to perform rolling at a rolling reduction of 20 to 40% at least one pass. A more preferable range is 25 to 35%.
Deep drawability is improved by performing at least one pass of finish rolling that satisfies the conditions of the rolling temperature and the rolling reduction described above. The one pass may be performed in any pass, but is preferably performed in the final pass because of the capability of the rolling mill.
[0041]
d. Hot-rolled sheet annealing
When a single cold rolling method is adopted as the cold rolling process, the hot rolled sheet annealing corresponds to the annealing before the final cold rolling. In this case, the hot-rolled sheet annealing is preferably performed under such conditions that the recrystallization rate of the annealed steel sheet is 95% or more and the average crystal grain size is 40 μm or less. The reason for this is that if 5% or more of the non-recrystallized band-like structure remains on the hot-rolled annealed sheet, the r value of the steel sheet after finish annealing, particularly the ridging, is significantly reduced. An appropriate annealing temperature varies depending on the components, but a temperature range of 750 to 1100 ° C is preferable. The upper limit was limited because when the annealing temperature was increased, the crystal grains were coarsened, and the carbides (NbC, TiC, M with fixed solute C) were fixed.ThreeC, M7CThreeOthers) are remelted, and the amount of dissolved C in the steel increases, resulting in a decrease in the r value of the steel sheet after finish annealing. Moreover, when the crystal grains of the hot-rolled annealed sheet become coarse, the grain size of the steel sheet after finish annealing also increases, and the surface becomes rough after forming, causing a reduction in forming limit and a decrease in corrosion resistance. Therefore, it is preferable that the non-recrystallized structure is less than 5% and the crystal grain size is 40 μm or less, and preferably the non-recrystallized structure is 0% and the crystal grain size is 35 μm or less.
In the case of two or more cold rolling methods, hot-rolled sheet annealing does not correspond to annealing before the final cold-rolling, but the characteristics of the hot-rolled annealed sheet also affect the steel sheet characteristics after finish annealing, It is preferable to adapt to the above conditions.
[0042]
e. Cold rolling
Cold rolling is a cold rolling method of two or more times with a single cold rolling method or intermediate annealing. In addition, the total rolling reduction is 75% or more for both the cold rolling method and the cold rolling method of 2 times or more. The increase in the total rolling reduction improves the {111} accumulation degree of the finish annealed plate, and is effective in improving the r value. In order for the steel sheet after finish annealing to satisfy the average r value of 2.0 or more, the total rolling reduction needs to be 75% or more, preferably 80 to less than 90%.
In the case of two or more cold rolling methods, the rolling ratio represented by (rolling ratio of the first cold rolling) / (rolling ratio of the final cold rolling) is the grain size of the steel sheet before the final cold rolling or the intermediate annealing plate. In order to achieve a high r value, the reduction ratio is preferably set to 0.7 to 1.3, which is closely related to the {111} texture in the finish annealed plate. More preferably, cold rolling is performed in the range of 0.8 to 1.1. Moreover, when performing the cold rolling method twice or more, it is desirable that each cold rolling has a reduction rate of 50% or more, and the difference between the reduction rates is 30% or less. This is because, even if the rolling reduction is less than 50% or the rolling reduction difference is more than 30%, the amount of {111} accumulation decreases and the r value decreases.
[0043]
Furthermore, the cold rolling in the present invention reduces the shear deformation of the surface of the material to be rolled, increases (222) / (200), and contributes effectively to the improvement of the r value. It is desirable to consider. That is, compared to reverse rolling with a roll diameter of 100 to 200 mmφ, using unidirectional rolling tandem rolling with a roll diameter of 300 mmφ or more reduces the surface shear deformation, increases {111}, and increases the r value. It is effective.
In order to obtain a higher r value stably, it is preferable to increase the linear pressure (rolling load / sheet width) to uniformly strain in the sheet thickness direction. For this purpose, it is also effective to arbitrarily combine the reduction of the hot rolling temperature, the formation of a high alloy, and the increase of the hot rolling speed.
[0044]
f. Intermediate annealing
When adopting the cold rolling method two or more times as the cold rolling process, the intermediate annealing sandwiched between the cold rolling corresponds to the annealing before the final cold rolling. For the same reason as in the case of hot-rolled sheet annealing, refinement of ferrite crystal grains after intermediate annealing and reduction of solute C are important in order to increase the final finished annealed sheet to fine crystal grains and a high r value. It becomes a point. For this reason, the intermediate annealing temperature is preferably as low as possible within a temperature range that satisfies the crystal grain size of 40 μm or less before the final cold rolling and does not leave 5% or more of the unrecrystallized structure. For these reasons, the intermediate annealing temperature is preferably 750 to 1000 ° C. More preferably, the temperature is 50 ° C. or more lower than the hot-rolled sheet annealing temperature.
[0045]
g. Finish annealing
As the annealing temperature in the finish annealing is higher, the crystal grains are larger, the {111} accumulation degree is improved, and a high r value is achieved. This is because {111} crystal grains engulf grains of other crystal orientations and grow. However, when an unrecrystallized structure remains in the steel sheet before the final cold rolling, preferential growth of {111} crystal orientation effective for improving the r value does not occur, and ridging is significantly reduced. That is, when the non-recrystallized structure remains, not only the average r value of 2.0 or more cannot be achieved, but also a band-like structure remains in the center in the thickness direction of the steel sheet, which significantly impedes deep drawability and workability. Therefore, in order to obtain a high r value by finish annealing, it is important to manage the properties of the steel sheet before the final cold rolling before that.
As described above, in order to improve the r value, it is effective to promote the preferential growth of {111} grains by high-temperature annealing. However, if the crystal grains become excessively large, rough skin after processing (orange peel) ) Occurs, resulting in lowering of the molding limit and deterioration of corrosion resistance. For this reason, the finish annealing temperature is preferably as high as possible within a range in which a crystal grain size of 50 μm or less after annealing can be secured. However, in applications where secondary work embrittlement is a problem, it is preferable to make it finer to 40 μm or less. Specifically, finish annealing is preferably performed in a temperature range of 850 to 1050 ° C.
[0046]
In addition, when welding the steel plate of this invention demonstrated above, all the usual welding methods, such as arc welding including TIG and MIG, electric welding, and laser welding, are applicable.
[0047]
【Example】
Example 1
Fifteen types of steel slabs having the composition shown in Table 1 were produced by a converter-continuous casting method, heated to 1150 ° C., and then hot-rolled to form a 5.0 mm hot-rolled steel sheet. This hot-rolled steel sheet is hot-rolled sheet annealed at 850 to 980 ° C., pickled, cold-rolled to 0.8 mm in the first method, intermediate-annealed at 800 to 930 ° C. in the second method, and then cooled for the second time. Hot rolling was performed to obtain a final thickness of 0.8 mm (total rolling reduction of 84%). Table 2 shows the results of investigating the properties of the hot-rolled annealing plate, the steel plate after intermediate annealing (the steel plate before final cold rolling), and the steel plate after finish annealing (product plate).
[0048]
The average r value, the rough skin resistance and the ridging property in Table 2 were evaluated by the following methods.
(1) Average r value: The r value was measured according to JIS Z 2254, and the average r value was determined by the following formula. RL, RDAnd rCThese are r values in the rolling direction, 45 ° in the rolling direction and 90 ° in the rolling direction, respectively.
Average r value = (rL+ 2rD+ RC)/Four
(2) Rough skin resistance: Cut out a JIS No. 5 test piece from the rolling direction of the steel sheet, apply 25% tensile strain to generate rough skin, and then measure the surface roughness Ra in the direction perpendicular to the tensile direction to rough the skin. The degree was evaluated. The measurement was performed in accordance with JIS B 0601, and the central part of the test piece in the longitudinal direction was measured by a stylus method, and the average value was obtained. In the evaluation, when the surface roughness Ra is 2.0 μm or less, the skin roughness resistance is good.
(3) Ridging properties: Both sides of a JIS No. 5 tensile test piece cut out from the rolling direction were wet-polished with # 600 emery abrasive paper, then 20% strain was applied, and the test piece was measured using a roughness meter The undulation height of the irregularities generated on the surface was measured. The measurement position was the center of the tensile test piece, and the measurement direction was perpendicular to the tensile direction. Then, the swell height was evaluated in five stages, with rank A being 15 μm or less, rank B, 16-30 μm being rank B, 31-45 μm being rank C, 46-60 μm being rank D, and 61 μm or more being rank E. In addition, if this evaluation is rank B or more, it can be judged from a formability evaluation by a forming limit curve that there is no practical problem. However, when the value is lower than rank C, the molding limit is lowered no matter how much the r value is improved.
[0049]
  From Table 2, when steels 1 to 12 having the composition of the present invention were produced under the above conditions, the steel sheets before final cold rolling had a recrystallization rate of 100%, a {111} accumulation degree of 2.0 or more, and The steel sheet having a crystal grain size of 40 μm or less and having undergone finish annealing is also a steel sheet having an average r value of 2.0 or more and excellent skin roughness and ridging properties. In contrast, the steels 13 to 15 that deviate from the component criteria of the present invention have {111} accumulation degree even if the recrystallization rate before the final cold rolling is 100%.2.0 more thanThe average r value of the steel sheet after finish annealing is less than 2.0.
[0050]
[Table 1]
Figure 0003788311
[0051]
[Table 2]
Figure 0003788311
[0052]
(Example 2)
  Table 3 shows the slab of steel 6 satisfying the component ranges of the present invention in Table 1, based on the production conditions of Example 1, rough and finish hot rolling temperature and rolling distribution, hot rolled sheet annealing temperature, cold rolling. It is the result of investigating changes in steel sheet characteristics by changing conditions and the like. Nos. 16 to 19 are data of characteristic changes when the temperature of the hot-rolled sheet annealing is changed when the cold rolling method is adopted. In No.16 and 17 where the recrystallization rate of hot-rolled annealed sheet is 95% or more, good characteristics such as r-value, ridging property, and rough skin are obtained after finish annealing. Nos. 18 and 19 with a low recrystallization rate of less than 95%, the ridging properties are significantly reduced. Nos. 20 to 24 show changes in characteristics when the intermediate annealing temperature is changed by the cold rolling twice method. Nos. 22 to 24 are cases where the intermediate annealing is performed at a high temperature, and the crystal grain size after the intermediate annealing is coarsened to 40 μm or more, so that the ridging property is deteriorated or the solute C is increased and the aging index is increased. Becomes larger and the average r-value is deteriorated. No.25-30 shows the change in characteristics when the finish annealing temperature is changed. The steel plates of No.28-30, which were annealed at a high finish annealing temperature, have coarse grains after finish annealing. As a result, the average r value has little influence, but the rough skin property or ridging property is lowered. Nos. 31 to 33 show the characteristics of the final cold rolled sheet when the hot rolling sheet annealing and intermediate annealing conditions are changed to change the {111} accumulation degree of the steel sheet before final cold rolling. {111} accumulation is2.0 Less thanNo. 33, which has a low average r value. Nos. 34 to 37 show the properties of the final cold-rolled sheet in which the hot-rolled sheet annealing and intermediate annealing conditions are changed. Also in this case, the degradation of the r value is large in Nos. 36 and 37 in which the {111} integration degree of the steel sheet before the final cold rolling does not satisfy the requirements of the present invention. No. 38 shows the characteristics of the final cold-rolled sheet when the hot-rolled sheet annealing and intermediate annealing conditions are changed and the recrystallization rate of the steel sheet before final cold-rolling is 90%. The No. 38 steel with a recrystallization rate of less than 95% has a good surface roughness but a very poor ridging property and r value.
[0053]
[Table 3]
Figure 0003788311
[0054]
(Example 3)
The slab of the inventive steel 6 in Table 1 was made into a 5.0 mm hot-rolled steel sheet according to the production conditions of Example 1, and subjected to hot-rolled sheet annealing. Thereafter, some were rolled by a tandem rolling mill with a tandem rolling mill to a thickness of 0.8 to 3.0 mm by a cold rolling method, and then finish annealing was performed. In some cases, the cold rolling method was adopted, the roll diameter was changed by tandem rolling and reverse rolling, cold rolling was performed to a plate thickness of 0.8 mm, and finish annealing was performed. Table 4 shows the results of investigating the properties of these final cold-rolled sheets in the same manner as in Example 1.
[0055]
The results are shown in Table 4.
Nos. 39 to 44 in Table 4 are data showing the influence of the cold rolling reduction ratio in the cold rolling one time method. The r value also decreases as the rolling reduction decreases. In order to obtain an r value of 2.0 or higher, it is necessary to secure a total rolling reduction of 75% or higher.
Nos. 45 to 50 show the influence of the rolling direction and the roll diameter by the cold rolling method. At the same roll diameter, it is recognized that the average r value is improved in the unidirectional rolling than the reverse rolling, and that the average r value is improved as the roll diameter is increased in the same rolling direction.
[0056]
[Table 4]
Figure 0003788311
[0057]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a ferritic stainless steel sheet suitable for deep drawing formability, which has not only a high r value but also excellent ridging properties and skin roughness resistance. This ferritic stainless steel sheet can be applied to strong processing applications such as home appliances, kitchens, and building materials as well as automotive outer plates and strength members, and has great industrial advantages.

Claims (6)

C:0.01mass%以下、Si:1.0mass%以下、Mn:1.5mass%以下、Cr:11〜23mass%、Ni:2.0mass%以下、P:0.06mass%以下、S:0.03mass%以下、Al:1.0mass%以下、N:0.04mass%以下、Nb:0.8mass%以下および/またはTi:1.0mass%以下、ただし、これらは下記(1)式を満足するように含有し、残部がFe及び不可避的不純物からなるフェライト系ステンレス鋼板であって、再結晶率95%以上でかつ、平均結晶粒径が40μm以下、{111}集積度が2.0以上である最終冷延前鋼板を、冷間圧延し、仕上焼鈍してなることを特徴とするフェライト系ステンレス鋼板。

18≦Nb/(C+N)+2(Ti/(C+N))≦60 ……(1)
ここで、C,N,NbおよびTiは各元素の含有量(mass%)
C: 0.01 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Cr: 11 to 23 mass%, Ni: 2.0 mass% or less, P: 0.06 mass% or less, S: 0.03 mass% or less, Al : 1.0 mass% or less, N: 0.04 mass% or less, Nb: 0.8 mass% or less and / or Ti: 1.0 mass% or less. However, these are contained so as to satisfy the following formula (1), and the balance is Fe and Cold-rolled ferritic stainless steel sheet consisting of inevitable impurities, with a recrystallization rate of 95% or more, an average crystal grain size of 40 μm or less, and a {111} accumulation degree of 2.0 or more before cold rolling. And a ferritic stainless steel sheet characterized by being subjected to finish annealing.
Record
18 ≦ Nb / (C + N) +2 (Ti / (C + N)) ≦ 60 (1)
Here, C, N, Nb and Ti are the contents of each element (mass%)
上記成分組成に加えてさらに、Moを0.1〜3.0mass%かつ下記(2)式を満足するように含有したことを特徴とする請求項1に記載のフェライト系ステンレス鋼板。

(Cr+3.3Mo)≧14mass% ……(2)
The ferritic stainless steel sheet according to claim 1, further comprising Mo in an amount of 0.1 to 3.0 mass% and satisfying the following expression (2) in addition to the above component composition.
Record
(Cr + 3.3Mo) ≧ 14mass% …… (2)
上記成分組成に加えてさらに、Bを0.0005〜0.01mass%含有することを特徴とする請求項1または2に記載のフェライト系ステンレス鋼板。The ferritic stainless steel sheet according to claim 1 or 2, further comprising 0.0005 to 0.01 mass% of B in addition to the above component composition. 平均結晶粒径が50μm以下であることを特徴とする請求項1〜3のいずれか1項に記載のフェライト系ステンレス鋼板。The ferritic stainless steel sheet according to any one of claims 1 to 3, wherein an average crystal grain size is 50 µm or less. 平均r値≧2.0であることを特徴とする請求項1〜4のいずれか1項に記載のフェライト系ステンレス鋼板。The ferritic stainless steel sheet according to claim 1, wherein an average r value ≧ 2.0. 請求項1〜3に記載の組成からなるフェライト系ステンレス鋼板の製造方法において、最終冷延前鋼板が再結晶率95%以上かつ平均結晶粒径が40μm以下、{111}集積度が2.0以上となる条件で最終冷延前焼鈍を行い、全圧下率75%以上とする冷間圧延を行い、その後、平均結晶粒径を50μm以下とする仕上焼鈍を行うことを特徴とする深絞り性、リジング性および耐肌荒れ性に優れたフェライト系ステンレス鋼板の製造方法。In the manufacturing method of the ferritic stainless steel plate which consists of a composition of Claims 1-3, the steel plate before final cold rolling is 95% or more of recrystallization rate, an average crystal grain size is 40 micrometers or less, and {111} accumulation degree is 2.0 or more. Deep drawability, ridging, characterized by performing annealing before final cold rolling under the following conditions, performing cold rolling to a total rolling reduction of 75% or more, and then performing finish annealing to an average grain size of 50 μm or less For producing ferritic stainless steel sheet excellent in heat resistance and rough skin resistance.
JP2001334173A 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof Expired - Lifetime JP3788311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334173A JP3788311B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334173A JP3788311B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003138347A JP2003138347A (en) 2003-05-14
JP3788311B2 true JP3788311B2 (en) 2006-06-21

Family

ID=19149341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334173A Expired - Lifetime JP3788311B2 (en) 2001-10-31 2001-10-31 Ferritic stainless steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3788311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188094A1 (en) 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
KR20210034054A (en) 2018-11-09 2021-03-29 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI280417B (en) * 2004-01-09 2007-05-01 Furukawa Electric Co Ltd Light reflector
JP4721916B2 (en) * 2005-01-24 2011-07-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with small in-plane anisotropy during molding and excellent ridging resistance and skin roughness resistance, and method for producing the same
JP4784239B2 (en) * 2005-02-28 2011-10-05 Jfeスチール株式会社 Ferritic stainless steel filler rod for TIG welding
KR100821060B1 (en) * 2006-12-28 2008-04-08 주식회사 포스코 Ferritic stainless steel with excellent corrosion resistance properties and excellent discoloration resistance properties
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler
WO2015141674A1 (en) * 2014-03-17 2015-09-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same
KR101641793B1 (en) * 2014-12-22 2016-07-22 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
KR20160080314A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
MX2020004428A (en) * 2017-10-30 2020-08-06 Jfe Steel Corp Ferritic stainless-steel sheet and method for manufacturing same.
EP3901292A4 (en) * 2018-12-21 2022-11-23 NIPPON STEEL Stainless Steel Corporation Cr-based stainless steel having excellent hydrogen embrittlement resistance
JP6738927B1 (en) * 2019-03-29 2020-08-12 日鉄ステンレス株式会社 Ferritic stainless steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188094A1 (en) 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet and method for producing same
KR20200100159A (en) 2018-03-30 2020-08-25 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method
KR20210034054A (en) 2018-11-09 2021-03-29 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet

Also Published As

Publication number Publication date
JP2003138347A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
EP2426230B1 (en) High-strength hot-dip zinc-coated steel sheet having excellent workability, weldability and fatigue properties, and process for production thereof
JP3680272B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
EP2327810A1 (en) High-strength steel sheet and method for production thereof
JP3680829B2 (en) Ferritic stainless steel sheet excellent in deep drawability, secondary work brittleness resistance and corrosion resistance, and method for producing the same
EP1741800A1 (en) Steel sheet for can and method for production thereof
JP5924459B1 (en) Stainless steel for cold rolled steel
EP1616971B1 (en) High strength cold rolled steel sheet and method for production thereof
JP3788311B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
EP3828301A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP3451830B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and workability and method for producing the same
EP3464666B1 (en) Method for the manufacture of a recovered steel sheet having an austenitic matrix
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JP3709833B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP3709834B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JP4192688B2 (en) High strength cold-rolled steel sheet
CN116490630A (en) High-strength plated steel sheet excellent in formability and surface quality, and method for producing same
CN116368253A (en) High-strength steel sheet excellent in heat stability and method for producing same
JP3456365B2 (en) High gloss stainless steel sheet excellent in ridging resistance and workability and method for producing the same
JP4747473B2 (en) Hot-rolled steel sheet and hot-dip galvanized steel sheet excellent in stretch flangeability and methods for producing them
CN107995931B (en) High-strength thin steel sheet excellent in drawability and bake hardenability, and method for producing same
KR102468036B1 (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Ref document number: 3788311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8