JP2003137644A - Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic - Google Patents

Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Info

Publication number
JP2003137644A
JP2003137644A JP2001339797A JP2001339797A JP2003137644A JP 2003137644 A JP2003137644 A JP 2003137644A JP 2001339797 A JP2001339797 A JP 2001339797A JP 2001339797 A JP2001339797 A JP 2001339797A JP 2003137644 A JP2003137644 A JP 2003137644A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
carbonitrides
carbon
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001339797A
Other languages
Japanese (ja)
Inventor
Takeshi Asada
剛 浅田
Riichi Yasukochi
利一 安河内
Masanobu Takasu
正信 高巣
Kenji Okamura
研二 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2001339797A priority Critical patent/JP2003137644A/en
Publication of JP2003137644A publication Critical patent/JP2003137644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic having a low coefficient of thermal expansion, semi-conductive property and wear resistance. SOLUTION: The ceramic having properties mentioned above contains 80 to 90 wt.% cordierite and 4 to 20 wt.% oxide, nitride, carboxide, carbonitride, carboxynitride or carbide of one or more of metals of groups 2a, 3a, 4a and 4b. The dense semi-conductive low thermal expansion ceramic, characterized in that the relative density is >=95%, the coefficient of thermal expansion is <=1×10<-6> / deg.C in the temperature range of 10 to 40 deg.C, the electric resistivity is 1×10<2> to 1×10<9> Ω.cm, is obtained by firing a powdery raw material at 1,100 to 1,400 deg.C under a carbon atmosphere, and if necessary, subjecting the fired material to HIP treatment. The dense low thermal expansion ceramic is utilized as a light shielding member such as a blind for light exposure or a lens-barrel and a member for a semiconductor manufacturing equipment, such as a vacuum chuck for an aligner or a mirror for measuring the stage position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、超精密加工用治具、超精密加工
機器部材、測定機器用部材、治具さらには半導体製造プ
ロセスにおける各種部材などに好適に使用でき、コーデ
ィエライトを主体とする低熱膨張セラミックスに関す
る。
INDUSTRIAL APPLICABILITY The present invention can be suitably used for a jig for ultra-precision machining, a member for ultra-precision machining equipment, a member for measuring equipment, a jig and various members in a semiconductor manufacturing process. Regarding expanded ceramics.

【0002】[0002]

【従来技術】近年、超精密加工分野においては高い精度
が要求されており、温度変化に伴う熱変形による寸法変
化抑制、高剛性、耐摩耗性の観点から炭化珪素、窒化珪
素セラミックスなどの比較的熱膨張率が小さく、熱伝導
率の高い材料が主流となっている。ところが、これらの
材料の熱的特性では更なる超精密性を要求される治具や
部材などへの利用は難しい。そこでより低熱膨張性を有
する材料が求められており、それ自体が低熱膨張性であ
るコーディエライト材料が注目されている。
2. Description of the Related Art In recent years, high precision has been demanded in the field of ultra-precision machining, and from the viewpoint of suppressing dimensional change due to thermal deformation due to temperature change, high rigidity, and wear resistance, silicon carbide, silicon nitride ceramics, etc. Materials with a low coefficient of thermal expansion and high thermal conductivity are the mainstream. However, the thermal characteristics of these materials make it difficult to use them for jigs and members that require further ultraprecision. Therefore, there is a demand for a material having a lower thermal expansion property, and a cordierite material which itself has a low thermal expansion property is drawing attention.

【0003】コーディエライト系焼結体はフィルター、
ハニカム、耐火物などに応用されている。このコーディ
エライト系焼結体は、一般には合成コーディエライト粉
末、或いはコーディエライトを形成するMgO、Al
、SiO 粉末を配合して、これに焼結助剤と
して、希土類元素酸化物や、SiO 、CaO、Mg
Oなどを添加し、所定形状に成形後、1100〜140
0℃の温度で焼成することによって作製される(特公昭
57−3629号公報、特開平2−229760号公
報)。また、最近では、コーディエライトなどの低熱膨
張セラミックスを半導体製造装置用部品として応用する
ことが特開平1−191422号公報や特公平6−97
675号公報にて提案されている。しかしながらこのコ
ーディエライト材料を超精密加工用治具や半導体製造装
置用部材への適用とするためには材料自体の剛性率が低
く、この剛性率を高めるために低熱膨張特性を維持しつ
つ他の特性を付加した複合コーディエライト材料が提案
されている。例えば特開平11−79830号公報に
は、高剛性率を得るために窒化珪素、炭化珪素、酸窒化
珪素を10〜70質量%配合し、さらには希土類金属の
酸化物を添加することによって150GPa以上の剛性
率を有したコーディエライト材料が得られることが提案
されている。また、特開平11−255557号公報に
は、コーディエライト結晶の化学量論組成比よりも過剰
にAl、MgOを結晶相に固溶させ、更には窒化
珪素、炭化珪素、酸窒化珪素と希土類金属の酸化物を含
有させることにより170GPa以上の高剛性率を有す
るコーディエライト材料が得られることが提案されてい
る。
The cordierite sintered body is a filter,
It is applied to honeycombs and refractories. This cordierite-based sintered body is generally a synthetic cordierite powder, or MgO, Al 2 which forms cordierite.
O 3 and SiO 2 powders are mixed, and rare earth element oxides, SiO 2 , CaO, and Mg are added as a sintering aid to the mixture.
After adding O etc. and shaping it into a predetermined shape, 1100 to 140
It is produced by baking at a temperature of 0 ° C. (Japanese Patent Publication No. 57-3629, JP-A No. 2-229760). Recently, it has been proposed to apply low thermal expansion ceramics such as cordierite as parts for semiconductor manufacturing equipment in Japanese Patent Laid-Open No. 1-194222 and Japanese Patent Publication No. 6-97.
It is proposed in Japanese Patent No. 675. However, in order to apply this cordierite material to jigs for ultra-precision machining and semiconductor manufacturing equipment members, the rigidity of the material itself is low. A composite cordierite material having the properties described above has been proposed. For example, in JP-A No. 11-79830, silicon nitride, silicon carbide, and silicon oxynitride are blended in an amount of 10 to 70% by mass in order to obtain a high rigidity, and 150 GPa or more by adding an oxide of a rare earth metal. It has been proposed that a cordierite material with a modulus of elasticity of Further, in Japanese Patent Laid-Open No. 11-255557, Al 2 O 3 and MgO are dissolved in the crystal phase in excess of the stoichiometric composition ratio of cordierite crystals, and further, silicon nitride, silicon carbide, and oxynitride are used. It has been proposed that a cordierite material having a high rigidity of 170 GPa or more can be obtained by containing silicon and an oxide of a rare earth metal.

【0004】更に、コーディエライト材料は体積抵抗が
1014Ω・cmと高抵抗であり、このような高電気抵
抗材料を超精密加工用治具、超精密加工機器部材や測定
機器用部材などに使用した場合、その部材に徐々に静電
気が蓄積され、空気中に浮遊するホコリやゴミなどが付
着しやすく、また、プラズマ発生装置内においてはプラ
ズマの発生に影響を与え、更には半導体製造装置におい
ては半導体ウェハーと接触部材間の静電気放電によって
半導体を破壊するという致命的な問題がある。特開20
00−247732号公報によれば半導体製造装置部材
における静電気帯電防止方法としてコーディエライトを
主成分とし、希土類酸化物を加えた成形体をカーボンの
含有する雰囲気下で焼成するか、カーボン源を含有する
成形体を不活性雰囲気または非酸化性雰囲気で焼成し、
カーボンの揮散を抑制することにより低抵抗を有すると
ともに低熱膨張性を有するセラミックスが得られること
が提案されている。
Further, the cordierite material has a high volume resistance of 10 14 Ω · cm, and such a high electric resistance material is used for a jig for ultra-precision machining, a member for ultra-precision machining equipment, a member for measuring equipment, etc. When it is used in a plasma generator, static electricity is gradually accumulated, and dust and dirt floating in the air are likely to adhere to the member. In addition, it affects the generation of plasma in the plasma generator. However, there is a fatal problem that the semiconductor is destroyed by electrostatic discharge between the semiconductor wafer and the contact member. JP 20
According to Japanese Unexamined Patent Publication No. 00-247732, as a method for preventing electrostatic charge in a semiconductor manufacturing apparatus member, a molded body containing cordierite as a main component and containing a rare earth oxide is fired in an atmosphere containing carbon or contains a carbon source. Firing the molded body in an inert atmosphere or a non-oxidizing atmosphere,
It has been proposed that a ceramic having low resistance and low thermal expansion can be obtained by suppressing volatilization of carbon.

【0005】[0005]

【発明が解決しようとする課題】炭化珪素や窒化珪素に
比較して熱膨張率が極端に低いコーディエライト材料
は、常温付近で負の熱膨張特性を有するため、超精密加
工用治具や半導体製造装置部材などに常温域で使用する
場合には精度維持の観点から望ましくない。更に超精密
加工用治具、超精密加工機器用部材においては外部から
の応力による変形が極力制御されることが望ましいこと
から、それ自体の熱膨張が小さく、剛性率の高い材料が
望ましい。そこで、前記の様にコーディエライト材料の
高剛性率化のために窒化珪素、炭化珪素、酸窒化珪素を
添加する複合材料での検討がなされているが、窒化珪
素、炭化珪素、酸窒化珪素を多量に添加した場合には剛
性率の向上は図れるもののコーディエライト材料自体の
熱膨張性が阻害されることや添加粒子とコーディエライ
ト粒子との熱膨張差により局所的な亀裂の発生、材料の
破壊や反り発生の可能性がある。また、コーディエライ
ト結晶相と整合性の高いAlやMgOを過剰に固
溶させる場合には大型部材などの焼結の際に材料内外で
固溶の不十分な部分、更には冷却時間に差が生じ、コー
ディエライト結晶中の固溶量に差が生じることとなりそ
の結果コーディエライト結晶の格子定数に差が生じ、更
には粒界への析出量にも差が生じることとなり材料の局
所的な熱膨張や剛性率に相違を生むこととなる。
A cordierite material having an extremely low coefficient of thermal expansion as compared with silicon carbide or silicon nitride has a negative coefficient of thermal expansion at around room temperature, so that it cannot be used for jigs for ultra-precision machining. It is not desirable from the viewpoint of maintaining accuracy when used in a room temperature range for semiconductor manufacturing equipment members. Further, in the ultra-precision machining jig and the member for ultra-precision machining equipment, it is desirable to control the deformation due to external stress as much as possible, and therefore, a material having a small thermal expansion and a high rigidity is desirable. Therefore, as described above, in order to increase the rigidity of the cordierite material, studies have been made on a composite material to which silicon nitride, silicon carbide, and silicon oxynitride are added. However, silicon nitride, silicon carbide, and silicon oxynitride have been studied. When a large amount of is added, it is possible to improve the rigidity, but the thermal expansion of the cordierite material itself is impeded and the occurrence of local cracks due to the difference in thermal expansion between the added particles and the cordierite particles, Material may be broken or warped. Further, when Al 2 O 3 or MgO having a high compatibility with the cordierite crystal phase is excessively solid-solved, the portion where the solid solution is insufficient inside or outside the material during the sintering of a large member or the like, and further cooling This causes a difference in time, which causes a difference in the amount of solid solution in the cordierite crystal, which results in a difference in the lattice constant of the cordierite crystal and a difference in the amount of precipitation at grain boundaries. This causes a difference in local thermal expansion and rigidity of the material.

【0006】また、導電性を付与すべくカーボン源と希
土類酸化物を添加し、カーボンとして材料内部に残有さ
せた場合には雰囲気、接触摩擦によりカーボン部分が腐
食、摩耗、炭素粒子の脱落を局所的に起こす恐れが有
り、更にコーディエライト材料との硬さ、剛性率、光反
射率の相違により吸着、光反射の際に吸着圧力むら、乱
反射などの現象を引き起こすなど、半導体製造工程に使
用する際の障害の原因となり得る。従来のコーディエラ
イト材料は緻密化が難しく、光学鏡面の必要なレーザー
光反射用部材や表面コーティングが必要な部材のように
表面の平滑性が要求される場合には、気孔などの凹凸の
存在は測距用レーザーなどの乱反射の原因となり、位置
測定決めの際の致命的な問題となっていた。このような
気孔は、材料自体の相対密度が低いことによって引き起
こされるものであることから、これらの部材に対しては
材料の緻密性が要求されている。また構造用部材などへ
用いる場合、気孔の存在は材料強度を劣化させる原因に
なり得る。この緻密化向上を行う際、前記の如く希土類
酸化物を添加して焼成を行うと、焼結性を上げ緻密化が
促進する反面、同程度の密度を持ち希土類元素を加えて
いない組成の焼結体と比較して硬度が大きく低下する。
硬度が低下すると特に接触、摩擦の際に摩耗が大きくな
り、摩耗屑が発生し、ウェハーおよび装置を汚染するに
とどまらず、部材が短寿命のために交換が頻繁に必要と
なり、操業面、コスト面からみて望ましくない。また、
焼結体中にカーボンが残有すると雰囲気、接触摩擦によ
りカーボン部分が腐食、摩耗を局所的に起こす、或いは
コーディエライト部との硬度、ヤング率、光反射率の相
違により吸着、光反射の際に吸着圧力むら、乱反射など
の現象を引き起こすなど、半導体製造工程に使用する際
の障害の原因となる。また、焼結体表面に光学膜コーテ
ィングを施す際はコーティングむらの原因となり得るこ
とから、焼結体中にカーボンは残有していないことが望
ましい。本発明が解決しようとする課題は、低熱膨張材
料であるコーディエライト材料の低熱膨張性に影響を与
えること無く、半導電性を付与することである。
Further, when a carbon source and a rare earth oxide are added to impart conductivity and left as carbon inside the material, the carbon portion is corroded, worn, and carbon particles fall off due to atmosphere and contact friction. There is a possibility that it will occur locally, and due to the difference in hardness, rigidity, and light reflectance with the cordierite material, it causes adsorption phenomena such as adsorption pressure unevenness and irregular reflection at the time of light reflection. It may cause a trouble in use. Conventional cordierite materials are difficult to densify, and if surface smoothness is required such as laser light reflecting members that require optical mirror surfaces or members that require surface coating, the presence of irregularities such as pores Causes diffuse reflection of lasers for distance measurement, which has been a fatal problem in determining position measurement. Since such pores are caused by the low relative density of the material itself, the denseness of the material is required for these members. In addition, when used as a structural member or the like, the presence of pores may cause deterioration of material strength. When performing the densification improvement by adding a rare earth oxide as described above and firing, sinterability is increased and densification is promoted, but on the other hand, a composition having a similar density and containing no rare earth element is burned. The hardness is significantly reduced as compared with the case of the aggregate.
When the hardness is lowered, wear is increased particularly when contacting and rubbing, and abrasion debris is generated, which not only contaminates wafers and equipment, but also requires frequent replacement due to the short service life of the members. It is not desirable from the aspect. Also,
If carbon remains in the sintered body, the carbon portion is locally corroded or abraded due to the atmosphere or contact friction, or adsorption or light reflection due to the difference in hardness, Young's modulus or light reflectance with the cordierite portion. In this case, it causes a phenomenon such as uneven adsorption pressure and irregular reflection, which causes troubles in use in a semiconductor manufacturing process. Further, when the optical film coating is applied to the surface of the sintered body, it may cause uneven coating, so it is desirable that carbon is not left in the sintered body. The problem to be solved by the present invention is to impart semiconductivity without affecting the low thermal expansion of the cordierite material which is a low thermal expansion material.

【0007】また、他の課題は、低熱膨張材料であるコ
ーディエライト材料の低熱膨張性に影響を与えること無
く、材料の硬度を向上させることである更に、他の課題
は、低熱膨張材料であるコーディエライト材料の低熱膨
張性に影響を与えること無く、緻密化を達成することで
ある。
Another problem is to improve the hardness of the cordierite material, which is a low thermal expansion material, without affecting the low thermal expansion property of the cordierite material. Achieving densification without affecting the low thermal expansion of certain cordierite materials.

【0008】また更に、他の課題は、低熱膨張材料であ
るコーディエライト材料の低熱膨張性に影響を与えるこ
と無く、剛性率を向上させることである。
Still another object is to improve the rigidity without affecting the low thermal expansion property of the cordierite material which is a low thermal expansion material.

【0009】また、本発明は、低熱膨張材料であるコー
ディエライト材料を主原料とする超精密加工用治具、超
精密加工機器部材、測定機器用部材、治具さらには半導
体製造プロセスにおける各種部材などを提供することを
目的とするものである。
The present invention also provides a jig for ultra-precision machining, a member for ultra-precision machining equipment, a member for measuring equipment, a jig and a variety of semiconductor manufacturing processes, which are mainly made of cordierite material which is a low thermal expansion material. It is intended to provide members and the like.

【0010】[0010]

【課題を解決するための手段】コーディエライトを80
重量%以上含有し2a、3a、4a、4b族金属の1種
または2種以上の酸化物、窒化物、炭化物、炭酸化物、
炭窒化物、炭酸窒化物を20重量%以下含有する低熱膨
張セラミックスを得ることにより前記課題を解決した。
そして、前記焼結体を得るためにコーディエライト粉末
を80重量%以上、2a、3a、4a、4b族金属の1
種または2種以上の酸化物、窒化物、炭化物、炭酸化
物、炭窒化物、炭酸窒化物を20重量%以下混合し、所
望の形状に成形し、焼結を行うことにより優れた性質を
持つ低熱膨張セラミックスを得ることができた。また、
半導電性を付与するために必要に応じて原料粉末に炭素
を遊離供給する高温分解性の有機物を炭素換算で2.0
重量%以下添加するものである。請求項1に示す本発明
の低熱膨張セラミックスは、コーディエライトを80重
量%以上含有し、2a、3a、4a、4b族金属の1種
または2種以上の酸化物、窒化物、炭化物、炭酸化物、
炭窒化物、炭酸窒化物を20重量%以下特に10重量%
以下含む低熱膨張セラミックスである。コーディエライ
トを主成分とするため熱膨張率を1×10−6/℃以下
に制御することができ、2a、3a、4a、4b族金属
の1種または2種以上の酸化物、窒化物、炭化物、炭酸
化物、炭窒化物、炭酸窒化物を含有させることにより焼
結性が向上し半導電性を付与することができる。請求項
2に示す本発明の低熱膨張セラミックスは2a、3a、
4a、4b族金属の1種または2種以上の酸化物、窒化
物、炭化物、炭酸化物、炭窒化物、炭酸窒化物が化学量
論組成比を成していない状態でコーディエライトを主成
分とする低熱膨張セラミックス内に存在するものであ
り、特に電気抵抗が低下する。請求項3に示す本発明の
低熱膨張セラミックスは相対密度が95%以上で、電気
抵抗1×10Ω・cm〜1×10Ω・cmの低熱膨
張セラミックスである。相対密度が95%以下より小さ
いと、半導体製造用部材として用いられる際に吸着む
ら、乱反射、ゴミの噛み込みなど有害な現象を生じやす
くなる。また、1×10Ω・cmを超える電気抵抗を
有する部材によって各種部品を製造した場合、その部品
に徐々に静電気が蓄積されるために、その部品にゴミな
どが付着しやすく、また、プラズマ発生装置内において
はプラズマの発生に影響を与えたり、特に半導体ウェハ
ーと接触部材においては静電気の放電によって半導体を
破壊するという致命的な問題がある。また、電気抵抗が
1×10Ω・cmより小さい導電性部材であれば、大
電流を一度に通電するためにやはり破壊を生じる原因に
なる。本発明の低熱膨張セラミックスは相対密度が95
%以上であり、電気抵抗が1×10Ω・cm〜1×1
Ω・cmであるので、超精密加工用治具や半導体製
造用部材として使用することができる。請求項4に示す
本発明の低熱膨張セラミックスは10〜40℃における
熱膨張率が1×10−6/℃以下の低熱膨張セラミック
スである。工作機械や半導体製造装置などは常温付近で
使用される。本発明の低熱膨張セラミックスは10〜4
0℃における熱膨張率が1×10−6/℃以下であるこ
とから熱による応力変形が小さく、超精密加工用部材な
どへの使用ができる。
[Means for Solving the Problems] Cordierite 80
1% or more of 2a, 3a, 4a, and 4b group metal containing at least wt%, oxides, nitrides, carbides, carbonates,
The above problem was solved by obtaining a low thermal expansion ceramic containing carbonitride and carbonitride in an amount of 20% by weight or less.
80 wt% or more of cordierite powder is used to obtain the above-mentioned sintered body.
Excellent properties by mixing 20% by weight or less of one kind or two or more kinds of oxides, nitrides, carbides, carbon oxides, carbonitrides, carbonitrides, forming into a desired shape, and sintering. A low thermal expansion ceramic could be obtained. Also,
A high-temperature decomposable organic substance that supplies carbon to the raw material powder as needed to impart semiconductivity is 2.0 in terms of carbon.
It is added in an amount of not more than wt%. The low thermal expansion ceramics of the present invention as set forth in claim 1 contains 80 wt% or more of cordierite, and contains one or more oxides, nitrides, carbides and carbonates of 2a, 3a, 4a and 4b group metals. monster,
20% by weight or less of carbonitride and carbonitride, especially 10% by weight
Low thermal expansion ceramics including: Since the main component is cordierite, the coefficient of thermal expansion can be controlled to 1 × 10 −6 / ° C. or less, and one or more oxides or nitrides of 2a, 3a, 4a, and 4b group metals. , Sinterability can be improved and semiconductivity can be imparted by containing a carbide, a carbonate, a carbonitride, or a carbonitride. The low thermal expansion ceramics of the present invention according to claim 2 is 2a, 3a,
The main component is cordierite in a state where one or more oxides, nitrides, carbides, carbon oxides, carbonitrides, and carbonitrides of 4a and 4b metals are not in a stoichiometric composition ratio. Existing in the low thermal expansion ceramics, and the electrical resistance is particularly lowered. The low thermal expansion ceramics of the present invention according to claim 3 is a low thermal expansion ceramic having a relative density of 95% or more and an electric resistance of 1 × 10 2 Ω · cm to 1 × 10 9 Ω · cm. When the relative density is less than 95%, harmful phenomena such as uneven adsorption, irregular reflection, and dust trapping are likely to occur when used as a semiconductor manufacturing member. Further, when various parts are manufactured by using a member having an electric resistance of more than 1 × 10 9 Ω · cm, dust and the like are apt to adhere to the parts because static electricity is gradually accumulated in the parts and plasma is generated. There is a fatal problem that the generation of plasma is affected in the generator and the semiconductor is destroyed by electrostatic discharge particularly in the semiconductor wafer and the contact member. Further, if the conductive member has an electric resistance of less than 1 × 10 2 Ω · cm, a large amount of current is applied at once, which also causes destruction. The low thermal expansion ceramics of the present invention have a relative density of 95.
% Or more, and the electric resistance is 1 × 10 2 Ω · cm to 1 × 1.
Since it is 0 9 Ω · cm, it can be used as an ultra-precision machining jig or a semiconductor manufacturing member. The low thermal expansion ceramics of the present invention according to claim 4 is a low thermal expansion ceramic having a coefficient of thermal expansion at 10 to 40 ° C. of 1 × 10 −6 / ° C. or less. Machine tools and semiconductor manufacturing equipment are used near room temperature. The low thermal expansion ceramics of the present invention are 10 to 4
Since the coefficient of thermal expansion at 0 ° C. is 1 × 10 −6 / ° C. or less, stress deformation due to heat is small and it can be used as a member for ultra-precision machining.

【0011】請求項5に示す本発明の低熱膨張セラミッ
クスは剛性率が130GPa以上であることを特徴とす
るものである。超精密加工用治具や半導体製造用部材は
外部応力による材料変形が極力小さいことが望ましい。
本材料は通常のコーディエライト材料に比して、高剛性
率材料であることから各種部材への使用が可能である。
請求項6に示す本発明の低熱膨張セラミックスはビッカ
ース硬さがHv800以上であることを特徴とする。本
発明の低熱膨張セラミックスはビッカース硬さがHv8
00以上の材料であるので、耐摩耗性を有することから
超精密加工用治具や半導体製造用部材などへの活用がで
きる。請求項7に示す本発明の低熱膨張セラミックスは
最大気孔が3μm以下を特徴とするものである。気孔の
大きな材料を半導体製造装置などに使用した場合、吸着
むら、乱反射、ゴミの噛み込みなどが発生しやすくなる
とともに材料破壊の起点となり、強度劣下を招くことと
なる。
The low thermal expansion ceramics of the present invention as set forth in claim 5 is characterized by having a rigidity of 130 GPa or more. It is desirable that the material deformation due to external stress of the ultra-precision processing jig and the semiconductor manufacturing member is as small as possible.
Since this material is a material having a high rigidity as compared with a normal cordierite material, it can be used for various members.
The low thermal expansion ceramics of the present invention according to claim 6 has a Vickers hardness of Hv 800 or more. The low thermal expansion ceramics of the present invention have a Vickers hardness of Hv8.
Since it is a material of 00 or more, since it has abrasion resistance, it can be used as a jig for ultra-precision machining, a member for semiconductor manufacturing, and the like. The low thermal expansion ceramics of the present invention according to claim 7 is characterized in that the maximum pores are 3 μm or less. When a material having large pores is used in a semiconductor manufacturing apparatus or the like, uneven adsorption, irregular reflection, dust entrapment and the like are likely to occur, and it becomes a starting point of material destruction, resulting in poor strength.

【0012】本材料は緻密で最大気孔が3μm以下であ
ることから光学鏡面を要するような反射ミラーなどへの
適用が可能である。請求項8に示す本発明は請求項1か
ら請求項7のいずれかに記載の低熱膨張セラミックスを
用いた超精密加工用治具、超精密加工機器部材、測定機
器用部材、治具さらには半導体製造プロセスにおける各
種部材である。請求項1から請求項7のいずれかに記載
の低熱膨張セラミックスを用いると、常温域での熱膨張
率が小さく、半導電性があり、高硬度であることから高
精度の加工が可能となり、静電気の帯電によるゴミの付
着や半導体の破壊がなくなり、耐摩耗性が要求される部
材としても使用可能である。請求項9に示す本発明は、
本発明の低熱膨張セラミックスの製造方法である。コー
ディエライトを80重量%以上、2a、3a、4a、4
b族金属の1種または2種以上の酸化物、、窒化物、炭
化物、炭酸化物、炭窒化物、炭酸窒化物を20重量%以
下、特に10重量%以下添加し、1100℃〜1500
℃の温度で焼成を行うことを特徴とするものである。本
発明の方法によれば低熱膨張率、半導電性、高硬度、高
密度の本発明の低熱膨張セラミックスを得ることができ
る。また、上記の方法で残存気孔が使用上障害になる程
度残る場合には1000KPa以上の加圧下でHIP処
理を行うことも可能である。また、必要に応じて炭素を
遊離供給する高温分解性の有機物を炭素量換算で2.0
重量%以下特に1.0重量%以下添加し、導電性の結晶
構造を一部生成させる、または導電性の化合物を生成さ
せることにより、電気抵抗1×10Ω・cm〜1×1
Ω・cmの半導電性を得ることができる。前記の場
合は、投入された炭素を遊離供給する高温分解性の有機
物は、焼成過程中において炭素を主成分とするガスに主
に分解されるが、一部はガスとして分解せずに成形体中
に残こる。残った一部の炭素原子は金属酸化物の一部か
ら酸素を奪い結晶に欠陥を生じさせることによって、結
晶を半導体状態とさせ半導電性を持たせることに寄与す
る。この現象は酸化チタンから低級チタン酸化物への変
化、カルシウム、ジルコニウム酸化物から低級酸化物へ
の変化などの際に顕著に現れるが、他の2a、3a、4
a、4b族金属の酸化物、窒化物であっても程度は異な
るが同様の反応が生じる。また、コーディエライトおよ
び助剤の酸化物および窒化物は、一部炭素原子の介在に
より焼成中に導電性の炭酸化物、炭酸窒化物、炭窒化物
または炭化物へと変化する。この現象は酸化チタンが導
電性の炭酸化チタンに変化、酸化モリブデンの導電性の
炭化2モリブデンへの変化、酸化ゲルマニウムから導電
性の窒化ゲルマニウムへの変化などにみられ、他の2
a、3a、4a、4b族金属の酸化物、窒化物であって
も程度は異なるが同様の反応が生じる。このように炭素
を遊離供給する高温分解性の有機物を用いると、導電性
の酸化物、窒化物、炭化物、炭酸化物、炭窒化物、炭酸
窒化物をより微細に結晶粒界に析出、もしくは一部結晶
粒内に固溶させることができる。従って、同じ導電性に
なるように粉末状で添加した場合と比較して、より少な
い存在量で同等の導電性を得ることができ、かつ存在量
が少ないため熱膨張性も小さく抑えることができる。よ
って、半導電性と極めて小さい熱膨張性が必要な場合に
有効である。この際に添加した、炭素を遊離供給する高
温分解性の有機物は、一部成分を導電性の炭酸化物、炭
化物、炭窒化物、炭酸窒化物と変化、残部は分解および
雰囲気中または成形体中に残存する酸素などと化学反応
を起こし、ガスとして成形体中より排出される。その結
果、焼結後に残存カーボンは実質的に含有しない。請求
項10に示す本発明は80重量%以上のコーディエライ
トに、2a、3a、4a、4b族金属の1種または2種
以上の酸化物、、窒化物、炭化物、炭酸化物、炭窒化
物、炭酸窒化物を20重量%以下、特に10重量%以下
添加したセラミックスに少なくとも1種の2a、3a、
4a、4b族の金属アルコキシドの加水分解物を添加し
て焼結すること特徴とする低熱膨張セラミックスの製造
方法である。2a、3a、4a、4b族の金属アルコキ
シドの加水分解物はカーボン炉などのカーボン源を有す
る真空または不活性ガス雰囲気で焼結することにより熱
分解し、導電性の炭酸化物、炭化物、炭窒化物、炭酸窒
化物と変化する。これらも前述した導電性の炭酸化物、
炭化物、炭窒化物、炭酸窒化物と同様により少ない含有
量で十分な導電性を得ることができる。
Since this material is dense and has a maximum pore size of 3 μm or less, it can be applied to a reflection mirror or the like which requires an optical mirror surface. The present invention as set forth in claim 8 is a jig for ultra-precision machining, a member for ultra-precision machining equipment, a member for measuring equipment, a jig and a semiconductor using the low thermal expansion ceramics according to any one of claims 1 to 7. These are various members in the manufacturing process. When the low thermal expansion ceramics according to any one of claims 1 to 7 is used, the coefficient of thermal expansion in the room temperature range is small, the material has semiconductivity, and the hardness is high, so that high-precision processing is possible, It can be used as a member that is required to have wear resistance, since dust adhesion and semiconductor destruction due to electrostatic charging are eliminated. The present invention according to claim 9 provides
It is a manufacturing method of the low thermal expansion ceramics of the present invention. 80% by weight or more of cordierite, 2a, 3a, 4a, 4
Addition of 20% by weight or less, particularly 10% by weight or less of one or more oxides of group b metals, nitrides, carbides, carbon oxides, carbonitrides, carbonitrides, and 1100 ° C to 1500
It is characterized by performing firing at a temperature of ° C. According to the method of the present invention, the low thermal expansion ceramics of the present invention having a low coefficient of thermal expansion, semiconductivity, high hardness and high density can be obtained. Further, when the remaining pores remain in the above-mentioned method to the extent that they hinder the use, the HIP treatment can be performed under a pressure of 1000 KPa or more. In addition, the high-temperature decomposable organic substance that liberally supplies carbon as necessary is converted into a carbon amount of 2.0.
The electrical resistance is 1 × 10 2 Ω · cm to 1 × 1 by adding not more than 1.0% by weight, particularly not more than 1.0% by weight, to partially form a conductive crystal structure or to generate a conductive compound.
A semiconductivity of 09 Ω · cm can be obtained. In the above case, the high-temperature decomposable organic substance that liberally supplies the charged carbon is mainly decomposed into a gas containing carbon as a main component during the firing process, but a part of the formed product does not decompose as a gas. Leave inside. Some of the remaining carbon atoms deprive oxygen of a part of the metal oxide to cause defects in the crystal, thereby making the crystal a semiconductor state and contributing to have semiconductivity. This phenomenon is prominent when changing from titanium oxide to lower titanium oxide, or from calcium or zirconium oxide to lower oxide.
Similar reactions occur even though the oxides and nitrides of the metals a and 4b are different in degree. Further, the oxides and nitrides of cordierite and the auxiliary agent are converted into conductive carbonates, carbonitrides, carbonitrides or carbides during firing due to the interposition of some carbon atoms. This phenomenon is observed when titanium oxide changes to conductive titanium carbonate, when molybdenum oxide changes to conductive 2 molybdenum carbide, and when germanium oxide changes to conductive germanium nitride.
Similar reactions occur even if the oxides or nitrides of the metals a, 3a, 4a, and 4b are different in degree. By using a high-temperature decomposable organic substance that liberates carbon in this manner, conductive oxides, nitrides, carbides, carbonates, carbonitrides, and carbonitrides are more finely precipitated at the grain boundaries, or It is possible to form a solid solution within the crystal grains. Therefore, as compared with the case where the powder is added so as to have the same conductivity, the same conductivity can be obtained with a smaller amount, and the thermal expansion can be suppressed to be small because the amount is small. . Therefore, it is effective when semiconductivity and extremely low thermal expansion are required. At this time, the high temperature decomposable organic substance that liberates carbon changes some components to conductive carbonates, carbides, carbonitrides and carbonitrides, and the rest decomposes and is in the atmosphere or in the molded body. A chemical reaction occurs with the residual oxygen, etc., and is discharged as gas from the molded body. As a result, substantially no residual carbon is contained after sintering. The present invention according to claim 10 provides 80% by weight or more of cordierite with one or more oxides of 2a, 3a, 4a, and 4b group metals, nitrides, carbides, carbonates, and carbonitrides. , At least one of 2a, 3a in ceramics containing 20% by weight or less of carbonitride, particularly 10% by weight or less,
A method for producing a low thermal expansion ceramics, which comprises adding a hydrolyzate of a metal alkoxide of Groups 4a and 4b and sintering. The hydrolyzate of the metal alkoxide of the 2a, 3a, 4a, and 4b groups is thermally decomposed by sintering in a vacuum or an inert gas atmosphere having a carbon source such as a carbon furnace, and is then converted into a conductive carbonate, carbide, or carbonitride. Things, carbonitrides. These are also the above-mentioned conductive carbonates,
Similar to carbides, carbonitrides, and carbonitrides, sufficient conductivity can be obtained with a smaller content.

【0013】[0013]

【発明の実施の形態】本発明の低熱膨張セラミックス
は、一般式2MgO・2Al ・5SiO
表されるコーディエライト材料を主体とするものであ
る。このコーディエライト結晶は、平均粒径が1〜8μ
mの結晶粒子として存在し、焼結体中に80重量%以上
の割合で存在する。また、この焼結体中には、副成分と
して2a、3a、4a、4b族金属の1種または2種以
上の酸化物、窒化物、炭化物、炭酸化物、炭窒化物、炭
酸窒化物を20重量%以下、特に10重量%以下含む。
コーディエライトが100重量%であってもある程度の
緻密化は可能であるが、導電性を付与することができな
い。またコーディエライト100重量%のものは焼成可
能温度領域が±5℃と非常に狭いために量産には不向き
である。また、従来の発明の如く希土類元素を添加し、
液相部分を生成させると、焼結は容易に行うことができ
るが硬度が大きく低下する。2a、3a、4a、4b族
の金属酸化物中で主に添加するものはMg、Ca、T
i、Al、Si、Ga、Ge、Zrの酸化物である。こ
のうち、特にAlおよびTiの酸化物は半導電性のチタ
ン酸アルミを生成するために、他の添加物と比較して容
易に半導電性を得られるとともに緻密化を促進すること
から添加することが望ましい。また、本発明の低熱膨張
セラミックスは、カーボンを添加しない、または添加し
た場合でもカーボンを実質的に焼結体中に残存させない
ことによりセラミックスの表層部のカーボンが構造用部
材として悪影響を及ぼすことを防止している。また、カ
ーボンが焼結体中に残存していないことにより、セラミ
ックスの表面を研磨加工したり、コーティングを施す場
合において優れた表面平滑性を形成することができる。
なお、優れた表面平滑性を達成する上で、セラミックス
中の最大気孔径が3μm以下であることが望ましい。上
記のような低熱膨張セラミックスを作製するには、平均
粒径が10μm以下のコーディエライト粉末80重量%
以上に、2a、3a、4a、4b族の金属を1種または
2種以上の酸化物、窒化物、炭化物炭酸化物、炭窒化
物、炭酸窒化物の粉末を20重量%以下、特に10重量
%以下含有した組成のものを用いる。この各種添加物の
組み合わせによっては添加物の総量が10重量%以上含
むセラミックスの場合、本発明範囲内である熱膨張率を
1×10−6/℃以下に制御することが難しく、本発明
外のものが生成される場合がある。また上記の組成で十
分な導電性が得られない場合は、上記の組成の他に、炭
素を遊離供給する高温分解性の有機物を炭素量換算で
2.0重量%以下特に1.0重量%以下添加しボールミ
ルなどにより十分に混合する。この有機物はその分解が
急激に起こらないようベンゼン基を有していることが望
ましい。その後、この混合物を所望の成形手段、例え
ば、金型プレス、冷間静水圧プレス、射出成形、押出し
成形など公知の方法により任意の形状に成形するか、ま
たは混合粉末を型内に充填して焼成する。焼成は、酸素
分圧0.01気圧以下に制御したカーボン源を有する真
空中または不活性雰囲気中更にはN、H、CO、C
雰囲気中で100KPa以上、特に150KPa以
上の加圧下で、1100〜1500℃の温度範囲で行
う。成形体中には添加した有機物より一部の炭素原子が
取り込まれるが、これらの炭素原子の一部はコーディエ
ライトおよび助剤成分より酸素原子を奪いCOxガスと
して排出される。酸素を奪われた結晶はひずみを生じ、
電子はひずんだ部分の原子空孔を介して移動できるよう
になる。その結果低熱膨張セラミックスに導電性が付与
される。また、上記の現象とは別に一部の酸化物は炭素
原子の存在により半導電性の炭酸化物に化学変化を起こ
し、半導電性に寄与する。この現象は酸化チタンが導電
性の炭酸化チタンに変化、酸化モリブデンの導電性の炭
化2モリブデンへの変化、酸化ゲルマニウムから導電性
の窒化ゲルマニウムへの変化などに顕著にみられる。炭
酸化物、炭窒化物、炭酸窒化物、または窒化物について
も上記炭化物、酸化物と同様の現象が見られ、導電性を
付与することができる。また、必要に応じ高温分解性の
有機物は炭素量換算で2.0重量%以下特に1.0重量
%以下添加するが、過剰に添加した場合、焼成後にカー
ボン粒子として焼結体中に残存し、材料強度の低下更に
は高い面粗度を形成できないことから本発明のような超
精密加工用治具、超精密加工機器部材、測定機器用部
材、治具さらには半導体製造プロセスにおける各種部材
への使用には望ましくない。その場合には、1100℃
〜1500℃程度の焼結後期の段階で、酸素分圧を0.
002〜0.01気圧で制御し、昇温速度を下げるまた
は温度保持時間を設けるなどの焼成方法により成形体中
のカーボンをCOxガスとして成形体から十分に排出す
るという手法を用いる。また、添加材料として2a、3
a、4a、4b族のうち少なくとも1種の金属アルコキ
シドの加水分解物を用いることができる。これら金属ア
ルコキシドの加水分解物と前述した材料を混合した後、
カーボン炉、カーボンケースなどのカーボン源を有する
真空または不活性ガス雰囲気中更にはN、H、C
O、CO雰囲気中で焼結することにより、添加した金
属アルコキシドの加水分解物が焼結過程において熱分解
をおこし、周囲のカーボンと反応して導電性の炭酸化
物、炭窒化物、炭酸窒化物が得られる。これら導電性の
炭酸化物、炭窒化物、炭酸窒化物はコーディエライト結
晶粒界に微細に存在しているため、混合時に炭酸化物、
炭窒化物、炭酸窒化物粉末として添加するよりも少ない
添加量で同程度の電気抵抗が得られる。その結果、熱膨
張係数を1×10−6/℃以下と小さく抑えることが可
能である。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion ceramics of the present invention is mainly composed of a cordierite material represented by the general formula 2MgO.2Al 2 O 3 .5SiO 2 . This cordierite crystal has an average particle size of 1 to 8 μ.
It exists as crystal particles of m and is present in the sintered body at a ratio of 80% by weight or more. In this sintered body, 20 or more oxides, nitrides, carbides, carbon oxides, carbonitrides, carbonitrides of one or more of 2a, 3a, 4a, and 4b group metals are added as subcomponents. It is contained in an amount of not more than 10% by weight, particularly not more than 10% by weight.
Even if the cordierite is 100% by weight, it is possible to densify the cordierite to some extent, but conductivity cannot be imparted. Further, cordierite of 100% by weight is not suitable for mass production because the calcinable temperature range is ± 5 ° C, which is very narrow. In addition, adding a rare earth element like the conventional invention,
When the liquid phase portion is generated, the sintering can be easily performed, but the hardness is greatly reduced. Of the metal oxides of the 2a, 3a, 4a, and 4b groups, the main additions are Mg, Ca, and T.
It is an oxide of i, Al, Si, Ga, Ge, and Zr. Among them, particularly, oxides of Al and Ti are added because they generate semiconductive aluminum titanate, so that they can easily obtain semiconductivity and promote densification as compared with other additives. Is desirable. Further, the low thermal expansion ceramics of the present invention, when carbon is not added, or even if carbon is not substantially left in the sintered body, carbon in the surface layer portion of the ceramic may adversely affect as a structural member. To prevent. In addition, since carbon does not remain in the sintered body, excellent surface smoothness can be formed when polishing the surface of the ceramic or applying a coating.
In order to achieve excellent surface smoothness, it is desirable that the maximum pore diameter in the ceramic be 3 μm or less. To produce the above low thermal expansion ceramics, 80% by weight of cordierite powder having an average particle size of 10 μm or less
Above, 20 wt% or less, especially 10 wt% of powders of one or more oxides, nitrides, carbides, carbonitrides, carbonitrides of 2a, 3a, 4a, 4b group metals. The following composition is used. Depending on the combination of these various additives, when the total amount of the additives is 10 wt% or more, it is difficult to control the coefficient of thermal expansion within the range of the present invention to 1 × 10 −6 / ° C. or less. May be generated. When sufficient conductivity cannot be obtained with the above composition, in addition to the above composition, a high temperature decomposable organic substance that liberates carbon is 2.0% by weight or less, especially 1.0% by weight, in terms of carbon amount. Add the following and mix thoroughly with a ball mill or the like. It is desirable that this organic substance has a benzene group so that its decomposition does not occur rapidly. Then, the mixture is molded into a desired shape by a known method such as a desired molding means, for example, a mold press, a cold isostatic press, an injection molding, an extrusion molding, or a mixed powder is filled in a mold. Bake. The firing is performed in a vacuum or in an inert atmosphere having a carbon source whose oxygen partial pressure is controlled to 0.01 atm or less, and further N 2 , H 2 , CO, C.
It is performed in a temperature range of 1100 to 1500 ° C. under a pressure of 100 KPa or more, particularly 150 KPa or more in an O 2 atmosphere. Some carbon atoms are taken into the molded body from the added organic matter, but some of these carbon atoms are deprived of cordierite and auxiliary components of oxygen atoms and discharged as COx gas. Crystals deprived of oxygen will be distorted,
The electrons can move through the distorted atomic vacancies. As a result, conductivity is imparted to the low thermal expansion ceramics. In addition to the above phenomenon, some oxides cause a chemical change in the semiconductive carbonate due to the presence of carbon atoms, and contribute to the semiconductivity. This phenomenon is conspicuously seen in the change of titanium oxide to conductive titanium carbonate, the change of molybdenum oxide to conductive di-molybdenum carbide, and the change of germanium oxide to conductive germanium nitride. Regarding carbon oxides, carbonitrides, carbonitrides, or nitrides, similar phenomena to those of the above-mentioned carbides and oxides are observed, and conductivity can be imparted. If necessary, the high-temperature decomposable organic substance is added in an amount of 2.0% by weight or less, especially 1.0% by weight or less in terms of carbon amount. However, if excessively added, it remains in the sintered body as carbon particles after firing. In addition, it is not suitable for ultra-precision machining jigs, ultra-precision machining equipment members, measuring equipment members, jigs, and various other members in the semiconductor manufacturing process because it is not possible to form a high surface roughness due to a decrease in material strength. Is not recommended for use. In that case, 1100 ℃
The oxygen partial pressure was adjusted to 0.
A method is used in which carbon in the compact is sufficiently discharged as COx gas from the compact by a firing method such as controlling at 002 to 0.01 atm, decreasing the rate of temperature rise, or providing a temperature holding time. In addition, as an additive material, 2a, 3
A hydrolyzate of at least one metal alkoxide of the groups a, 4a, and 4b can be used. After mixing the hydrolyzate of these metal alkoxides with the materials described above,
In a vacuum or an inert gas atmosphere having a carbon source such as a carbon furnace and a carbon case, and further N 2 , H 2 , C
By sintering in an O 2 or CO 2 atmosphere, the hydrolyzate of the added metal alkoxide causes thermal decomposition in the sintering process and reacts with the surrounding carbon to produce a conductive carbonate, carbonitride, carbonitride. The thing is obtained. Since these electrically conductive carbonates, carbonitrides, and carbonitrides are finely present in the cordierite crystal grain boundaries, the carbonates, when mixed,
Similar electrical resistance can be obtained with a smaller amount of addition than carbonitride or carbonitride powder. As a result, it is possible to keep the coefficient of thermal expansion as small as 1 × 10 −6 / ° C. or less.

【0014】そして、かかる緻密質、半導電性、低熱膨
張セラミックスは、超精密加工用治具、超精密加工機器
部材、測定機器用部材、治具さらには半導体製造プロセ
スにおける各種部材などに好適に使用される。また特
に、その低熱膨張セラミックスの表面に、光学膜コーテ
ィングが施されるような部材並びに遮光性が要求される
部材などに最も好適に使用される。
The dense, semi-conductive and low thermal expansion ceramics are suitable for ultra-precision machining jigs, ultra-precision machining equipment members, measuring equipment members, jigs and various members in the semiconductor manufacturing process. used. In particular, it is most preferably used for a member having an optical film coating on the surface of the low thermal expansion ceramic, a member requiring a light shielding property, and the like.

【0015】[0015]

【実施例】純度99%以上、平均粒径が3μmのコーデ
ィエライト粉末に添加物として平均粒径が1μmのTi
、Al、HfO、GeO、TiN、TiC
O、TiCN、ZrC、TiCON、TiC、Y
、Yb、ZrOを表1、表2に示す配合
で調合後、ボールミルで24時間湿式混合した。この混
合粉末を乾燥後、ワックス成分と炭素量換算で表2に示
す割合の有機物成分を加え、金型にて1.0tonの圧
力で成形した後、成形体を表1および表2の酸素分圧に
てAr雰囲気150KPaの加圧中で、表1および表2
に示す温度で焼成を行い、得られた焼結体を不活性雰囲
気中にて高圧HIP処理した。得られた焼結体の相対密
度、熱膨張係数、電気抵抗、硬度を測定した。その結果
を表1、表2に示す。
[Example] A cordierite powder having a purity of 99% or more and an average particle diameter of 3 μm was added with Ti having an average particle diameter of 1 μm.
O 2 , Al 2 O 3 , HfO 2 , GeO, TiN, TiC
O, TiCN, ZrC, TiCON, TiC, Y
2 O 3 , Yb 2 O 3 and ZrO 2 were blended in the formulations shown in Tables 1 and 2 and wet-mixed in a ball mill for 24 hours. After drying this mixed powder, the wax component and the organic component in the ratio shown in Table 2 in terms of carbon amount were added, and the mixture was molded with a mold at a pressure of 1.0 ton. Table 1 and Table 2 under a pressure of 150 KPa in Ar atmosphere under pressure.
Firing was performed at the temperature shown in (1), and the obtained sintered body was subjected to high pressure HIP treatment in an inert atmosphere. The relative density, thermal expansion coefficient, electric resistance, and hardness of the obtained sintered body were measured. The results are shown in Tables 1 and 2.

【0016】[0016]

【表1】 *印は本発明の範囲外 **印は金属アルコキシドの加水分解物を用いた場合[Table 1] * Indicates outside the scope of the present invention ** indicates when a hydrolyzate of a metal alkoxide is used

【0017】表1の結果から、本発明に基づき、コーデ
ィエライト80〜95重量%と2a、3a、4a、4b
族の金属酸化物、酸炭化物を1種または2種以上を5〜
20重量%含む組成の混合粉末を、酸素分圧0.01気
圧以下でAr雰囲気150KPaの加圧下1100℃〜
1500℃の温度で焼成することにより、緻密で半導電
性を有する焼結体を得ることができた。(試料No.
3、No.4、No.6〜No.8、No.11、N
o.17〜No.18) 同様にコーディエライト80〜96重量%と2a、3
a、4a、4b族の金属窒化物、炭窒化物、炭酸窒化物
および炭化物を1種または2種以上を5.0重量%含む
組成の混合粉末を、酸素分圧0.01気圧以下に制御さ
れたカーボン雰囲気中1100℃〜1500℃の温度で
雰囲気150KPaの加圧下にて焼成することによ
り、緻密で半導電性をもつ焼結体を得ることができた。
(試料No.12〜No.15) また、試料No.11の組成物にTiのアルコキシドの
加水分解物を添加し同条件で焼成することにより、他の
特性を維持しながら電気抵抗を低下させた焼結体を得る
ことができた。(試料No.16)
From the results of Table 1, according to the present invention, 80 to 95% by weight of cordierite and 2a, 3a, 4a, 4b.
Group 1 metal oxides or oxycarbides, or 5 or more
The mixed powder having a composition containing 20% by weight is heated at 1100 ° C. under a partial pressure of oxygen of 0.01 atm or less and a pressure of 150 KPa in an Ar atmosphere.
By firing at a temperature of 1500 ° C., a dense and semi-conductive sintered body could be obtained. (Sample No.
3, No. 4, No. 6-No. 8, No. 11, N
o. 17-No. 18) Similarly, 80-96% by weight of cordierite and 2a, 3
A mixed powder having a composition containing 5.0% by weight of one or two or more kinds of metal nitrides, carbonitrides, carbonitrides, and carbides belonging to groups a, 4a, and 4b is controlled to an oxygen partial pressure of 0.01 atm or less. It was possible to obtain a dense and semi-conductive sintered body by firing in a carbon atmosphere at a temperature of 1100 ° C. to 1500 ° C. under a pressure of N 2 atmosphere of 150 KPa.
(Sample No. 12 to No. 15) Further, the sample No. By adding a hydrolyzate of Ti alkoxide to the composition of No. 11 and firing it under the same conditions, it was possible to obtain a sintered body with reduced electrical resistance while maintaining other properties. (Sample No. 16)

【0018】[0018]

【表2】 *印は本発明の範囲外[Table 2] * Indicates outside the scope of the present invention

【0019】また、表2に示すように、組成によっては
十分に半導電性を得ることができなかったが(試料N
o.31)この場合は炭素を遊離供給する高温分解性の
有機物を添加することにより半導電性を得ることができ
た(試料No.2、No.5、No.9、No.32、
No.33)。これに対し、炭素を遊離供給する高温分
解性の有機物を炭素量換算で3.0重量%添加した試料
は、焼結体表面、内部にカーボンの残存が確認された
(試料No.34)。また、試料No.24の組成は焼
結時の酸素分圧0.01気圧のときは導電性を示した
が、試料No.25に示すように酸素分圧を0.001
気圧以下に下げて焼結を行った場合、焼結は進行するも
のの焼結体中にカーボンの残存がみられた。逆に試料N
o.27のように酸素分圧を0.1気圧より上げて焼結
を行った場合のカーボンは焼結初期の段階で酸化され、
焼結体に導電性を付与する以前に焼結体外にCOxガス
として排出されたために導電性が付与されなかった。
Further, as shown in Table 2, depending on the composition, a sufficient semiconductivity could not be obtained (Sample N
o. 31) In this case, it was possible to obtain semiconductivity by adding a high-temperature decomposable organic substance that liberally supplies carbon (Sample No. 2, No. 5, No. 9, No. 32,
No. 33). On the other hand, in the sample to which 3.0 wt% of the high-temperature decomposable organic substance that liberally supplies carbon was added in terms of the amount of carbon, it was confirmed that carbon remained on the surface and inside of the sintered body (Sample No. 34). In addition, the sample No. The composition of Sample No. 24 exhibited conductivity when the oxygen partial pressure during sintering was 0.01 atm, but Sample No. As shown in 25, the oxygen partial pressure is 0.001
When the sintering was carried out at a pressure lower than the atmospheric pressure, although the sintering proceeded, carbon remained in the sintered body. Conversely, sample N
o. When the oxygen partial pressure is raised to 0.1 atm or more and the sintering is performed as in No. 27, carbon is oxidized in the early stage of sintering,
The conductivity was not imparted because it was discharged as COx gas outside the sintered body before imparting the conductivity to the sintered body.

【0020】また、焼成温度が1100℃よりも低い試
料No.23では、相対密度を95%以上にすることが
できなかった。逆に焼成温度が1500℃よりも高い試
料No.22は試料が融解した。
Further, in the sample No. 23 having a firing temperature lower than 1100 ° C., the relative density could not be 95% or more. On the contrary, the sample No. 22 having a firing temperature higher than 1500 ° C. melted.

【0021】更に、希土類金属酸化物を添加した試料N
o.28、試料No.29および試料No.30では気
孔率0.5%以下の緻密な焼結体を得ることができた
が、2a、3a、4a、4b族の金属酸化物を添加した
ものと比較してビッカース硬度は低下しており、望むビ
ッカース硬度Hv800以上のものは得られなかった。
Further, a sample N containing a rare earth metal oxide added
o. 28, sample No. 29 and sample No. In No. 30, a dense sintered body having a porosity of 0.5% or less could be obtained, but the Vickers hardness was lower than that in the case where the metal oxides of groups 2a, 3a, 4a, and 4b were added. The desired Vickers hardness Hv 800 or more could not be obtained.

【0022】本発明の試料No.2〜試料No.15お
よび試料No.24、26、32、33の各セラミック
スを用いて工作機械用部品および半導体製造用部材を作
製し、以前から使用されている関連部材と性能を比較し
たところ、それらに対し熱膨張係数が小さいことによ
り、加工精度が飛躍的に向上した。また、本発明の部材
は半導電性であるためSi、Al−TiCなどの
ウェハーとウェハー製造用部材間の静電気放電による半
導体破壊の問題は生じなかった。また、本発明の低熱膨
張セラミックスは十分に緻密なことから、以前より使用
されている材料と比較して光の反射率、寿命ともに同等
であった。
Sample No. of the present invention. 2 to sample No. 15 and sample No. 15 Machine tool parts and semiconductor manufacturing members were made using 24, 26, 32, and 33 ceramics, and the performance was compared with related members that have been used before. As a result, processing accuracy has improved dramatically. Further, since the member of the present invention is semi-conductive, the problem of semiconductor destruction due to electrostatic discharge between the wafer such as Si and Al 2 O 3 —TiC and the member for wafer production did not occur. Further, since the low thermal expansion ceramics of the present invention are sufficiently dense, both the light reflectance and the life are equivalent to those of the materials used before.

【0023】[0023]

【発明の効果】以上詳述した通り本発明により、コーデ
ィエライト材料の優れた低熱膨張特性を維持しつつ半導
電性を持つ材料を得ることができた。その結果、この半
導電性低熱膨張セラミックスを超精密加工用治具、超精
密加工機器部材、測定機器用部材やこれらの治具として
使用することが可能であり、半導体製造装置用部品など
へ用いる場合には、雰囲気の温度変化に対しても寸法の
変化が小さく、また、部品表面の平滑性が向上すること
により、優れた精度が得られることから、半導体素子製
造の品質と量産性を高めることができる。また、熱膨張
率、硬度、剛性率や面性状の観点からもこの材料は撮像
用レンズなどの成形用の金型としても十分に活用でき
る。
As described in detail above, according to the present invention, it is possible to obtain a material having semiconductivity while maintaining the excellent low thermal expansion characteristics of the cordierite material. As a result, it is possible to use this semi-conductive low thermal expansion ceramics as a jig for ultra-precision machining, a member for ultra-precision machining equipment, a member for measuring equipment and these jigs, and to be used for parts for semiconductor manufacturing equipment. In this case, the dimensional change is small with respect to the temperature change of the atmosphere, and since the smoothness of the surface of the component is improved, excellent accuracy can be obtained, so that the quality and mass productivity of semiconductor device manufacturing are improved. be able to. Also, from the viewpoints of coefficient of thermal expansion, hardness, rigidity and surface properties, this material can be sufficiently utilized as a mold for molding an imaging lens or the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA07 AA08 AA16 AA17 AA18 AA34 AA36 AA37 AA45 AA49 BA02 BA18 BA24 GA04 GA11 GA15 GA22 GA24 GA26 GA27 GA29 HA18 5F031 HA02 HA03 PA21 PA30    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G030 AA07 AA08 AA16 AA17 AA18                       AA34 AA36 AA37 AA45 AA49                       BA02 BA18 BA24 GA04 GA11                       GA15 GA22 GA24 GA26 GA27                       GA29 HA18                 5F031 HA02 HA03 PA21 PA30

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】コーディエライトを80重量%以上含有し
2a、3a、4a、4b族の金属の酸化物、窒化物、炭
化物、炭酸化物、炭窒化物、炭酸窒化物のうちの少なく
とも一種を20重量%以下含有することを特徴とする低
熱膨張セラミックス。
1. At least one of oxides, nitrides, carbides, carbonates, carbonitrides and carbonitrides of 2a, 3a, 4a and 4b group metals containing 80% by weight or more of cordierite. Low thermal expansion ceramics characterized by containing 20% by weight or less.
【請求項2】コーディエライトおよび2a、3a、4
a、4b族の金属の酸化物、窒化物、炭化物、炭酸化
物、炭窒化物、炭酸窒化物が化学量論組成比を成してい
ないことを特徴とする請求項1に記載の低熱膨張セラミ
ックス。
2. Cordierite and 2a, 3a, 4
The low thermal expansion ceramics according to claim 1, wherein the oxides, nitrides, carbides, carbonates, carbonitrides, and carbonitrides of the metals a and 4b do not have a stoichiometric composition ratio. .
【請求項3】相対密度95%以上で、電気抵抗率が1×
10Ω・cmから1×10Ω・cmであることを特
徴とする請求項1または請求項2に記載の低熱膨張セラ
ミックス。
3. An electrical resistivity of 1 × with a relative density of 95% or more.
The low thermal expansion ceramics according to claim 1 or 2, wherein the ceramic has a resistance of 10 2 Ω · cm to 1 × 10 9 Ω · cm.
【請求項4】10〜40℃における熱膨張係数が1×1
−6/℃以下であることを特徴とする請求項1から請
求項3のいずれかに記載の低熱膨張セラミックス。
4. The coefficient of thermal expansion at 10 to 40 ° C. is 1 × 1.
0 -6 / ° C. low thermal expansion ceramic as claimed in any one of claims 3, wherein the or less.
【請求項5】剛性率が130GPa以上であることを特
徴とする請求項1から請求項4のいずれかに記載の低熱
膨張セラミックス。
5. The low thermal expansion ceramics according to claim 1, which has a rigidity of 130 GPa or more.
【請求項6】硬さがビッカース硬さでHv800以上で
あることを特徴とする請求項1から請求項5のいずれか
に記載の低熱膨張セラミックス。
6. The low thermal expansion ceramics according to claim 1, wherein the hardness is Hv 800 or more in Vickers hardness.
【請求項7】最大気孔が3μm以下であることを特徴と
する請求項1から請求項6のいずれかに記載の低熱膨張
セラミックス。
7. The low thermal expansion ceramics according to claim 1, wherein the maximum pore size is 3 μm or less.
【請求項8】請求項1から請求項7のいずれかに記載の
低熱膨張セラミックスを用いる超精密機械構造用部材、
測定機器用部材および半導体製造装置用部材。
8. A member for an ultra-precision machine structure, which uses the low thermal expansion ceramics according to any one of claims 1 to 7,
Measuring instrument members and semiconductor manufacturing equipment members.
【請求項9】コーディエライト粉末80重量%以上に2
a、3a、4a、4b族の金属の酸化物、窒化物、炭化
物、炭酸化物、炭窒化物、炭酸窒化物のうち少なくとも
一種が20重量%以下と炭素を遊離供給する高温分解性
の有機物を炭素量換算で2.0重量%以下添加して混合
後、カーボン源を有する真空中または不活性雰囲気中更
にはN、H、CO、CO雰囲気中で1100℃〜
1500℃の温度で焼結して得られることを特徴とする
低熱膨張セラミックスの製造方法。
9. A cordierite powder of 80% by weight or more and 2
At least one of oxides, nitrides, carbides, carbonates, carbonitrides, and carbonitrides of a, 3a, 4a, and 4b group metals is a high-temperature decomposable organic substance that releases carbon at 20% by weight or less. after mixing was added 2.0 wt% or less of carbon content in terms, further in vacuum or in an inert atmosphere with a carbon source is N 2, H 2, CO, 1100 ℃ in CO 2 atmosphere ~
A method for producing low thermal expansion ceramics, which is obtained by sintering at a temperature of 1500 ° C.
【請求項10】コーディエライト粉末80重量%以上に
2a、3a、4a、4b族の金属の酸化物、窒化物、炭
化物、炭酸化物、炭窒化物、炭酸窒化物のうち少なくと
も一種が20重量%以下と炭素を遊離供給する高温分解
性の有機物を炭素量換算で2.0重量%以下、更に少な
くとも一種の2a、3a、4a、4b族の金属のアルコ
キシド加水分解物を添加して混合後、カーボン源を有す
る真空中または不活性雰囲気中更にはN、H、C
O、CO雰囲気中で1100℃〜1500℃の温度で
焼結して得られることを特徴とする低熱膨張セラミック
スの製造方法。
10. At least one of oxides, nitrides, carbides, carbonates, carbonitrides, and carbonitrides of 2a, 3a, 4a, and 4b metals in 20% by weight or more of 80% by weight or more of cordierite powder. % Or less and a high-temperature decomposable organic substance that liberally supplies carbon, in an amount of 2.0% by weight or less in terms of carbon amount, and after further adding and mixing at least one alkoxide hydrolyzate of a metal of 2a, 3a, 4a, or 4b , In a vacuum having a carbon source or in an inert atmosphere, and further N 2 , H 2 , C
A method for producing low thermal expansion ceramics, characterized by being obtained by sintering at a temperature of 1100 ° C. to 1500 ° C. in an O, CO 2 atmosphere.
JP2001339797A 2001-11-05 2001-11-05 Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic Pending JP2003137644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339797A JP2003137644A (en) 2001-11-05 2001-11-05 Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339797A JP2003137644A (en) 2001-11-05 2001-11-05 Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Publications (1)

Publication Number Publication Date
JP2003137644A true JP2003137644A (en) 2003-05-14

Family

ID=19154092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339797A Pending JP2003137644A (en) 2001-11-05 2001-11-05 Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Country Status (1)

Country Link
JP (1) JP2003137644A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347802A (en) * 2005-06-15 2006-12-28 Nippon Steel Corp Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP2008156214A (en) * 2006-11-28 2008-07-10 Ngk Insulators Ltd Cordierite ceramic and method for manufacturing cordierite ceramic
DE102007047871B4 (en) 2006-11-28 2023-04-27 Ngk Insulators, Ltd. CORDIERITE CERAMIC , THEIR USE AND PROCESS FOR MAKING THE SAME
US11697619B2 (en) 2014-09-25 2023-07-11 Schott Ag Pore-free ceramic component
CN116813357A (en) * 2023-06-28 2023-09-29 哈尔滨工业大学 Carbon dioxide atmosphere sintering molding method for simulating Mars soil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JPH11255557A (en) * 1998-03-11 1999-09-21 Kyocera Corp Ceramic sintered compact and its production, and member for semiconductor device production unit using the same
JP2000247732A (en) * 1999-02-22 2000-09-12 Kyocera Corp Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2001151563A (en) * 1999-09-17 2001-06-05 Toto Ltd Dense cordierite sintered compact and method of producing the same
JP2002179459A (en) * 2000-09-20 2002-06-26 Sumitomo Metal Ind Ltd Low thermal expansion ceramic material and member for exposure device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179830A (en) * 1997-08-29 1999-03-23 Kyocera Corp Low-thermal expansion ceramics, their production and part for producing semiconductor
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JPH11255557A (en) * 1998-03-11 1999-09-21 Kyocera Corp Ceramic sintered compact and its production, and member for semiconductor device production unit using the same
JP2000247732A (en) * 1999-02-22 2000-09-12 Kyocera Corp Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2001151563A (en) * 1999-09-17 2001-06-05 Toto Ltd Dense cordierite sintered compact and method of producing the same
JP2002179459A (en) * 2000-09-20 2002-06-26 Sumitomo Metal Ind Ltd Low thermal expansion ceramic material and member for exposure device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学大辞典編集委員会, 化学大辞典9, vol. 縮刷版第23刷発行, JPNX007039426, 10 November 1979 (1979-11-10), JP, pages 328, ISSN: 0000877127 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347802A (en) * 2005-06-15 2006-12-28 Nippon Steel Corp Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP2008156214A (en) * 2006-11-28 2008-07-10 Ngk Insulators Ltd Cordierite ceramic and method for manufacturing cordierite ceramic
DE102007047871B4 (en) 2006-11-28 2023-04-27 Ngk Insulators, Ltd. CORDIERITE CERAMIC , THEIR USE AND PROCESS FOR MAKING THE SAME
US11697619B2 (en) 2014-09-25 2023-07-11 Schott Ag Pore-free ceramic component
CN116813357A (en) * 2023-06-28 2023-09-29 哈尔滨工业大学 Carbon dioxide atmosphere sintering molding method for simulating Mars soil
CN116813357B (en) * 2023-06-28 2024-04-12 哈尔滨工业大学 Carbon dioxide atmosphere sintering molding method for simulating Mars soil

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JPH1045461A (en) Corrosion resistant member
KR19990088209A (en) High thermal conductivity silicon nitride sintered body and method for manufacturing the same
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP2001068754A (en) Actuator piezoelectric member and its manufacture
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP4761948B2 (en) Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same
JP2007063124A (en) Ceramic substrate
JP3231950B2 (en) Surface coated silicon nitride material
JPH09157030A (en) Production of silicon nitride sintered compact
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP2005298304A (en) Highly dense silicon carbide ceramic and its producing method
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JPH1129378A (en) Ceramic composite member
JP2002173366A (en) Cordierite based ceramic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624