JP2003128977A - Hydrophilic coating - Google Patents

Hydrophilic coating

Info

Publication number
JP2003128977A
JP2003128977A JP2001320127A JP2001320127A JP2003128977A JP 2003128977 A JP2003128977 A JP 2003128977A JP 2001320127 A JP2001320127 A JP 2001320127A JP 2001320127 A JP2001320127 A JP 2001320127A JP 2003128977 A JP2003128977 A JP 2003128977A
Authority
JP
Japan
Prior art keywords
particles
cellulose
average particle
cellulose particles
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001320127A
Other languages
Japanese (ja)
Inventor
Shinichiro Ishihara
晋一郎 石原
Kazuo Kobayashi
一夫 小林
Masafumi Ikeda
政史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2001320127A priority Critical patent/JP2003128977A/en
Publication of JP2003128977A publication Critical patent/JP2003128977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrophilic coating which is applied to the surface of fins for heat exchange of air conditioner, etc., hydrophilizes the surface of a coating film, improves wettability by water, controls occurrence of water drop and a hydrophilic coating for forming the surface having excellent deodorizing properties and mildew resistance. SOLUTION: This hydrophilic coating comprises spherical particles having 0.5-50 μm, preferably 2-10 μm average particle diameter and a particle diameter distribution of >=70 wt.% of particles having ±40% of average particle diameter or cellulose composite particles obtained by adding an antimicrobial agent, a mildewproofing agent, perfume and a deodorant to the spherical cellulose particles and a film-forming resin component, preferably a polyvinyl alcohol- based resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、球状セルロース粒
子を含有した、塗膜表面を親水性にして水濡れ性を向上
し水滴の発生を抑制する親水性塗料に関し、さらに、消
臭性、抗カビ性に優れた表面を形成する親水性塗料に関
する。
TECHNICAL FIELD The present invention relates to a hydrophilic coating material containing spherical cellulose particles, which makes the surface of the coating film hydrophilic to improve water wettability and suppress the generation of water droplets. The present invention relates to a hydrophilic paint that forms a surface with excellent moldability.

【0002】[0002]

【従来の技術】空調機(エアコン)の熱交換部には、軽
量で加工性に優れ熱伝導性に優れるアルミニウム材の熱
交換用フィンが多用されている。そして熱交換部は、熱
交換効率を上げるためにフィン間の間隔が狭められてい
る。このため冷房時には、凝縮した水滴がフィン間を埋
めて熱交換効率を悪化させるという欠点があり、通常、
フィン表面は親水化処理がなされている。また近年、建
材等においても、表面についた汚れが雨水で流されやす
くなるということから、汚染を抑制する親水性化処理が
実用化されている。これら親水化処理に用いられる親水
性塗料としては、特開昭63−38481号公報や特開
平1−299877号公報にみられるごとく、ポリビニ
ルアルコール系の親水性樹脂を中心とした塗料が用いら
れているが、更に親水性の粉体を配合することにより、
表面粗度を向上させ優れた親水性を付与できることも公
知である。例えば、特開昭53−125437号公報、
同54−142650号公報には、シリカ、酸化チタン
等の無機粉体が配合できることが開示されている。しか
しながらこれら無機粉体は硬度が高いため、エアコンの
フィンなどのように親水性塗料を塗布後、金型成型する
プレコート法の場合においては、プレスに用いられる金
型を著しく摩耗し、成型物の成型不良や塗膜の破壊など
の問題点があった。一方、特開平7−196977号公
報には、セルロース粒子などを含む親水性もしくは吸水
性の有機粒子を配合できることが記載されている。
2. Description of the Related Art In a heat exchange section of an air conditioner (air conditioner), a heat exchange fin made of an aluminum material, which is lightweight, excellent in workability and excellent in heat conductivity, is often used. In the heat exchange section, the space between the fins is narrowed in order to improve the heat exchange efficiency. Therefore, during cooling, there is a drawback that condensed water droplets fill the space between the fins and deteriorate the heat exchange efficiency.
The fin surface is hydrophilized. In recent years, also in building materials and the like, since stains on the surface are easily washed away by rainwater, a hydrophilic treatment for suppressing contamination has been put into practical use. As the hydrophilic paint used for these hydrophilic treatments, as shown in JP-A-63-38481 and JP-A-1-299877, a paint mainly composed of a polyvinyl alcohol-based hydrophilic resin is used. However, by adding more hydrophilic powder,
It is also known that surface roughness can be improved and excellent hydrophilicity can be imparted. For example, JP-A-53-125437,
Japanese Patent Laid-Open No. 54-142650 discloses that inorganic powders such as silica and titanium oxide can be blended. However, since the hardness of these inorganic powders is high, in the case of the precoating method in which a hydrophilic paint is applied, such as fins of an air conditioner, and then the mold is molded, the mold used for the press is significantly worn and There were problems such as defective molding and coating film destruction. On the other hand, Japanese Patent Application Laid-Open No. 7-196977 describes that hydrophilic or water-absorbing organic particles including cellulose particles can be blended.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、通常の
セルロース微粒子であるセルロースパウダーあるいは微
結晶セルロースパウダーは、いずれも不定形あるいは繊
維状であり親水性向上の効果は非常に小さく、また、親
水性を向上させるために多量に配合すると塗料を薄く均
一に塗布することが困難であること、またプレコート法
による金型成型時にセルロース微粒子が脱落しやすいこ
と、という問題点があった。更に、エアコンを長期間使
用していると、フィンに発生したカビが原因で運転時に
強いカビ臭を発生する場合があり、これを防止するため
に塗料に防カビ剤を配合すると、防カビ剤により塗料の
粘度が変化したり場合によってはゲル化し、その塗膜性
を大きく悪化させていた。
However, both the cellulose powder and the microcrystalline cellulose powder, which are ordinary cellulose fine particles, have an amorphous or fibrous shape, and the effect of improving hydrophilicity is very small, and the hydrophilicity is small. If a large amount is added for improvement, it is difficult to apply the coating thinly and uniformly, and the cellulose fine particles are likely to fall off during mold molding by the precoat method. In addition, if the air conditioner is used for a long period of time, the mold generated on the fins may cause a strong mold odor during operation. As a result, the viscosity of the coating material changed or gelled in some cases, greatly deteriorating the coating property.

【0004】[0004]

【発明が解決しようとする課題】本発明者らはかかる問
題点を解決すべく検討の結果、皮膜を形成できる樹脂溶
液あるいはエマルジョンに、特定の球状セルロース粒子
を配合した塗料を塗布することにより、優れた水濡れ性
を有する表面を得られること、さらには消臭性、防カビ
性に優れた塗膜が得られることを見いだし、本発明を完
成するに至った。すなわち本発明は、(1)平均粒子径
が0.5〜50μm、粒径分布が平均粒子径の±40%
の範囲に70重量%以上を占める球状セルロース粒子
と、被膜を形成する樹脂分とを含有した親水性塗料、
(2)球状セルロース粒子の平均粒子径が2〜10mμ
である、上記(1)記載の親水性塗料、(3)球状セル
ロース粒子が、抗菌剤、抗カビ剤、香料、消臭剤のうち
1種以上を含むセルロース複合粒子である、上記(1)
乃至(2)記載の親水性塗料、(4)被膜を形成する樹
脂分がポリビニルアルコール系樹脂である、上記(1)
乃至(3)記載の親水性樹脂、を提供するものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of investigations aimed at solving such problems, the inventors of the present invention applied a coating composition containing specific spherical cellulose particles to a resin solution or emulsion capable of forming a film, It has been found that a surface having excellent wettability can be obtained, and further, a coating film excellent in deodorant property and antifungal property can be obtained, and the present invention has been completed. That is, in the present invention, (1) the average particle size is 0.5 to 50 μm, and the particle size distribution is ± 40% of the average particle size.
A hydrophilic coating material containing spherical cellulose particles occupying 70% by weight or more of the above range and a resin component forming a film,
(2) The average particle size of the spherical cellulose particles is 2 to 10 mμ.
The hydrophilic paint according to (1) above, and (3) the spherical cellulose particles are cellulose composite particles containing at least one kind of an antibacterial agent, an antifungal agent, a fragrance, and a deodorant.
(4) The hydrophilic coating composition according to (2), (4) the resin component forming the coating film is a polyvinyl alcohol-based resin, and (1) above.
The hydrophilic resin according to any one of (3) to (3) is provided.

【0005】以下本発明を詳細に説明する。本発明で使
用するセルロース粒子は、球状で、その平均粒子径が
0.5〜50μm、好ましくは2〜10μmのものであ
る。本発明でいう、球状とは、概ね球状あるいは真球状
のもので、長軸と短軸の比が1.5以下、好ましくは
1.2以下のものをいう。球状のセルロース粒子を用い
ることで、塗料塗布時において転がり性が高く薄く均一
な塗膜を得ることができる。一方、形状が不定形である
と、塗布面に均一にセルロース粒子を分散させることが
困難で、極めて不均一な塗膜となる。また、その平均粒
子径が0.5μmより小さいと大きな親水性が発揮され
ず、50μmより大きいと皮膜を形成する樹脂分に対す
るセルロース粒子の配合量が多くなり、塗膜性を悪化さ
せるばかりでなく、塗膜からのセルロース粒子の脱落が
多くなり好ましくない。
The present invention will be described in detail below. The cellulose particles used in the present invention are spherical and have an average particle diameter of 0.5 to 50 μm, preferably 2 to 10 μm. The term “spherical” as used in the present invention means a generally spherical or true spherical one having a ratio of major axis to minor axis of 1.5 or less, preferably 1.2 or less. By using the spherical cellulose particles, it is possible to obtain a thin and uniform coating film having high rolling property during coating of the coating material. On the other hand, if the shape is irregular, it is difficult to uniformly disperse the cellulose particles on the coated surface, resulting in an extremely uneven coating film. Further, if the average particle size is smaller than 0.5 μm, great hydrophilicity is not exhibited, and if it is larger than 50 μm, the blending amount of cellulose particles with respect to the resin component forming the film is increased and not only the coating property is deteriorated. However, the amount of cellulose particles falling off from the coating film is increased, which is not preferable.

【0006】球状セルロース粒子の粒度分布は、平均粒
子径の±40%に70重量%以上、好ましくは90重量
%以上、さらに好ましくは平均粒子径の±30%に90
重量%以上である必要がある。粒度分布がブロードであ
ると、適切な塗布厚みが設定しにくくなると共に、必然
的にセルロース粒子の配合量が多くなり、塗膜性、塗膜
面の均一性が劣り、かつ、セルロース粒子の脱落が多く
なるため好ましくない。
The particle size distribution of the spherical cellulose particles is ± 40% of the average particle size and 70% by weight or more, preferably 90% by weight or more, and more preferably ± 30% of the average particle size.
It must be at least wt%. If the particle size distribution is broad, it becomes difficult to set an appropriate coating thickness, and the amount of cellulose particles inevitably increases, resulting in poor coating property and coating surface uniformity, and loss of cellulose particles. It is not preferable because it increases.

【0007】セルロース粒子の原料は特に制限はない
が、球状に成型しやすく粒度の制御が容易な点で、再生
セルロースが好ましい。再生セルロースは、天然セルロ
ースをそのままあるいは誘導体とし適当な溶媒に溶解し
た後、溶媒を除去し必要に応じて置換基を除去すること
によって得られる、天然セルロースとは結晶構造の異な
るセルロースである。再生セルロースは、その結晶性が
低いため天然セルロースと比較して吸水性および吸湿性
に優れ、親水性塗料の配合剤として好適である。セルロ
ース粒子の構造は、多孔性あるいは無孔性のいずれでも
よいが、親水性の観点から多孔性の方が好ましい。この
ようなセルロース粒子は、例えば、特開昭61−241
337号公報等に記載の方法により容易に調整すること
ができる。
The raw material for the cellulose particles is not particularly limited, but regenerated cellulose is preferred because it can be easily molded into a spherical shape and the particle size can be easily controlled. Regenerated cellulose is a cellulose having a crystal structure different from that of natural cellulose, which is obtained by dissolving natural cellulose as it is or as a derivative, and dissolving it in an appropriate solvent, and then removing the solvent and, if necessary, removing the substituent. Regenerated cellulose is excellent in water absorption and hygroscopicity as compared with natural cellulose because of its low crystallinity, and is suitable as a compounding agent for hydrophilic coatings. The structure of the cellulose particles may be either porous or non-porous, but porous is preferable from the viewpoint of hydrophilicity. Such cellulose particles are disclosed in, for example, JP-A 61-241.
It can be easily adjusted by the method described in Japanese Patent No. 337 or the like.

【0008】本発明で用いるセルロース粒子は、必要に
応じて表面処理を行うことができる。例えば、粒子表面
の親水性の向上のためにキトサン処理が好適に用いられ
る。
The cellulose particles used in the present invention may be surface-treated as necessary. For example, chitosan treatment is preferably used to improve the hydrophilicity of the particle surface.

【0009】本発明で使用する被膜を形成する樹脂分は
特に限定されないが、分子内に水酸基、カルボキシル
基、アミノ基等のイオン性を有する親水性の高い高分子
が好適に用いられる。中でも、ポリビニルアルコール
系、ポリビニルアルコール/ポリエチレングリコール系
は、塗膜からセルロース粒子が脱落しにくく、特に好ま
しい。これら樹脂は、溶液、液状、エマルジョンであ
り、被膜形成が可能な状態で使用される。また、液状の
モノマーを使用する場合は、被覆物に塗布した後、適切
な開始剤のもと加熱や紫外線照射によってモノマーを重
合させ皮膜を形成させることもできる。
The resin component forming the film used in the present invention is not particularly limited, but a highly hydrophilic polymer having ionicity such as hydroxyl group, carboxyl group, amino group in the molecule is preferably used. Among them, polyvinyl alcohol-based and polyvinyl alcohol / polyethylene glycol-based are particularly preferable because the cellulose particles do not easily fall off from the coating film. These resins are solutions, liquids and emulsions, and are used in a state capable of forming a film. Further, when a liquid monomer is used, it is possible to form a film by polymerizing the monomer by heating or irradiating an ultraviolet ray with an appropriate initiator after coating the coating material.

【0010】本発明で使用するセルロース粒子は、両親
媒性であり、樹脂液への分散性は極めて良好であり、シ
リカ粒子等で問題となる塗料中でのシリカ粒子同士の経
時的な凝集もない。従って、セルロース樹脂液中への分
散方法は、特別な装置を必要とせず、簡単な撹拌装置で
混合することにより容易に実施することができる。
The cellulose particles used in the present invention are amphipathic and have a very good dispersibility in a resin liquid, and the silica particles may be agglomerated with time in a paint, which is a problem with silica particles. Absent. Therefore, the method of dispersion in the cellulose resin liquid does not require a special device and can be easily carried out by mixing with a simple stirring device.

【0011】セルロース粒子の配合量は、塗膜の厚み、
及び使用するセルロース粒子の粒径によるが、概ね被膜
を形成する樹脂分(固形分)に対して2〜200重量%
程度である。例えば、セルロースの平均粒子径が5μm
の場合、セルロース粒子の配合量は10〜30重量%が
好ましく、平均粒子径が50μmの場合、20〜100
重量%が好ましい。セルロース粒子の配合量が2%より
少ないと十分な親水性が得られず、一方200%より多
いと塗膜性が悪くなるばかりでなく、セルロース粒子の
脱落が多くなり好ましくない。
The blending amount of the cellulose particles depends on the thickness of the coating film,
2 to 200% by weight based on the resin content (solid content) forming the film, depending on the particle size of the cellulose particles used.
It is a degree. For example, the average particle size of cellulose is 5 μm
In the case of, the blending amount of the cellulose particles is preferably 10 to 30% by weight, and when the average particle diameter is 50 μm, 20 to 100%.
Weight percent is preferred. If the content of the cellulose particles is less than 2%, sufficient hydrophilicity cannot be obtained. On the other hand, if the content is more than 200%, not only the coating property is deteriorated, but also the cellulose particles fall off, which is not preferable.

【0012】本発明の塗料を塗布する方法は、均一な塗
膜面が得られれば特に限定されず公知の方法が用いら
れ、例えば、浸漬、スプレー、ロールコート等が好適に
用いられる。また、硬化処理のために塗膜を100〜3
00℃の焼き付け処理を行うことができる。本処理にお
いても、セルロース粒子は耐熱性が高いため粒子の溶融
や変形は起こらず、また、親水性性能に影響もない。
The method of applying the coating composition of the present invention is not particularly limited as long as a uniform coating surface can be obtained, and known methods are used, for example, dipping, spraying, roll coating and the like are preferably used. In addition, the coating film is 100 to 3 for curing treatment.
A baking process at 00 ° C. can be performed. Also in this treatment, since the cellulose particles have high heat resistance, the particles do not melt or deform, and the hydrophilic performance is not affected.

【0013】形成される塗膜の厚みは、通常、使用され
る範囲で十分であり、被膜を形成する樹脂成分換算で2
0μm以下、特に5μm以下がより好ましい。また、塗
布する被覆物に予め耐蝕処理等を施すこともできる。
The thickness of the coating film to be formed is usually sufficient within the range used, and is 2 in terms of the resin component forming the coating film.
It is more preferably 0 μm or less, and particularly preferably 5 μm or less. In addition, the coating to be applied may be previously subjected to anticorrosion treatment or the like.

【0014】本発明の親水性塗料は、水に濡れた状態で
使用されることが多く、カビや細菌が発生しやすくなる
ため、塗膜に防カビ性能や脱臭性能を付与するため、抗
菌剤、抗カビ剤、香料あるいは消臭剤をセルロース粒子
に含ませたセルロース複合粒子を使用することができ
る。これら抗カビ剤等の成分は樹脂用液に配合すること
も可能であるが、塗料の粘度への影響あるいはゲル化と
いう問題を引き起こす場合が多く、セルロース複合粒子
として用いることがより好ましい。かかるセルロース複
合粒子は、例えば特開昭63−92603号公報記載の
方法により、あるいはセルロース粒子に水酸化金属のコ
ロイド、金属アンミン錯体等で処理することにより、容
易に製造することができる。
Since the hydrophilic coating material of the present invention is often used in a wet state, it is apt to generate mold and bacteria, and thus imparts antifungal and deodorizing properties to the coating film. Cellulose composite particles in which an antifungal agent, a fragrance, or a deodorant is contained in the cellulose particles can be used. Although components such as antifungal agents can be blended in the liquid for resin, they often cause problems such as influence on the viscosity of the coating material or gelation, and it is more preferable to use them as cellulose composite particles. Such cellulose composite particles can be easily produced, for example, by the method described in JP-A-63-92603, or by treating the cellulose particles with a metal hydroxide colloid, a metal ammine complex, or the like.

【0015】本発明の特徴は、特定のセルロース粒子を
用いることにある。特開平7−196977号公報に
は、親水性もしくは吸水性有機粒子が配合剤として用い
られること、有機粒子の例としてセルロース粒子が開示
されている。しかしながら具体例の記載はなく、通常の
セルロース粒子であるセルロースパウダーあるいは微結
晶セルロースパウダーを用い、本発明者等が確認したと
ころ(比較例参照)、親水性作用は極めて低くそのため
多量に配合する必要があり、多量に配合すると均一に塗
布することが困難であるとともに、プレコート法による
金型成型時に粒径の大きい粒子が金型との摩擦によって
脱落しやすかった。本発明者等は、かかる欠点について
検討を行い、セルロース粒子の形状、及び粒度分布が極
めて大きな影響を与えることを見いだし、かかる知見を
もとに、特定のセルロース粒子を配合した本発明に到達
したものである。
A feature of the present invention is the use of specific cellulose particles. JP-A-7-196977 discloses that hydrophilic or water-absorbing organic particles are used as a compounding agent, and cellulose particles are an example of the organic particles. However, there is no description of specific examples, and when the present inventors have confirmed that cellulose powder or microcrystalline cellulose powder which is a normal cellulose particle is used (see Comparative Example), the hydrophilic action is extremely low and therefore it is necessary to mix a large amount. However, when a large amount of the compound is blended, it is difficult to apply it uniformly, and particles having a large particle size are easily removed by friction with the mold during molding of the mold by the precoat method. The present inventors have investigated such drawbacks and found that the shape of the cellulose particles and the particle size distribution have an extremely large effect, and based on such knowledge, arrived at the present invention in which specific cellulose particles were blended. It is a thing.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。尚、以下において%および部とあるのはそれ
ぞれ重量%および重量部を示す。なお、本実施例の評価
は、以下の方法によった。 (1)塗膜の均一性…得られた塗膜中の粒子の分散性を
目視で確認した。 ○:均一に分散されている。 ×:粒子が凝集したり偏っている。 (2)接触角…20℃に調整した塗膜表面にイオン交換
水15μlを静かに滴下し、20秒後に接触角を測定し
た。 (3)耐スクラッチ性…10円硬貨を用いて、塗膜表面
の引っかき試験を行い、目視にて評価した。 ○:変化なし △:一部粒子の脱落が見られた。 ×:粒子ほとんど脱落した。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following,% and parts mean% by weight and parts by weight, respectively. The evaluation of this example was based on the following method. (1) Uniformity of coating film: The dispersibility of particles in the obtained coating film was visually confirmed. ◯: Evenly dispersed. X: Particles are aggregated or biased. (2) Contact angle: 15 μl of ion-exchanged water was gently dropped on the surface of the coating film adjusted to 20 ° C., and after 20 seconds, the contact angle was measured. (3) Scratch resistance ... A scratch test of the coating film surface was performed using a 10-yen coin, and visually evaluated. ◯: No change Δ: Some particles were lost. X: Almost all particles fell off.

【0017】調整例1 球状セルロース粒子1の調整 ビスコース(セルロース濃度10%、ガンマ価50、ア
ルカリ濃度5%)120g、ポリアクリル酸ソーダ(分
子量50万)の10wt%水溶液480gと炭酸カルシ
ウム10gとを室温下10分間、回転数400rpmで
混合し、ビスコースの微粒子を得た。約10分間かけて
80℃に昇温し、さらに30分間、80℃にて該微粒子
を凝固せしめた。ガラスフィルターにて凝固微粒子を濾
別し、0.5wt%塩酸にて中和し、さらに過剰の水と
メタノールで洗浄したのち、真空下で乾燥し、球状セル
ロース粒子を得た。得られたセルロース粒子は、真球状
で平均粒子径が6μm、平均粒子径の±40%に全体の
85%の重量を占めていた。また、水膨潤度は150%
であった。
Preparation Example 1 Preparation of spherical cellulose particles 1 120 g of viscose (cellulose concentration 10%, gamma value 50, alkali concentration 5%), 480 g of a 10 wt% aqueous solution of sodium polyacrylate (molecular weight 500,000) and 10 g of calcium carbonate. Was mixed at a rotation speed of 400 rpm for 10 minutes at room temperature to obtain fine particles of viscose. The temperature was raised to 80 ° C over about 10 minutes, and the fine particles were solidified at 80 ° C for 30 minutes. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, washed with excess water and methanol, and then dried under vacuum to obtain spherical cellulose particles. The obtained cellulose particles were spherical and had an average particle size of 6 μm, and accounted for ± 40% of the average particle size and accounted for 85% of the total weight. The degree of water swelling is 150%
Met.

【0018】調整例2 球状セルロース粒子2の調整 ビスコース(セルロース濃度10%、アルカリ濃度5
%)120g、ポリアクリル酸ソーダ(分子量200
万)の10wt%水溶液480gと炭酸カルシウム10
gと水酸化カルシウム2gを室温下10分間、回転数4
00rpmで混合し、ビスコースの微粒子を得た。約1
0分間かけて80℃に昇温し、さらに30分間、80℃
にて該微粒子を凝固せしめた。ガラスフィルターにて凝
固微粒子を濾別し、0.5wt%塩酸にて中和し、さら
に過剰の水とメタノールで洗浄したのち、真空下で乾燥
し、球状セルロース粒子を得た。得られたセルロース粒
子は、真球状で平均粒子径が3μm、平均粒子径の±3
0%に全体の92%の重量を占めていた。また、水膨潤
度は165%であった。
Preparation Example 2 Preparation of spherical cellulose particles 2 Viscose (cellulose concentration 10%, alkali concentration 5)
%) 120 g, sodium polyacrylate (molecular weight 200
10% aqueous solution (480 g) and calcium carbonate 10
g and calcium hydroxide 2g at room temperature for 10 minutes, rotation speed 4
The mixture was mixed at 00 rpm to obtain fine particles of viscose. About 1
Raise the temperature to 80 ° C over 0 minutes, and continue for 30 minutes at 80 ° C
The fine particles were solidified by. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, washed with excess water and methanol, and then dried under vacuum to obtain spherical cellulose particles. The cellulose particles obtained were spherical and had an average particle diameter of 3 μm, and the average particle diameter was ± 3.
The total weight of 0% was 92%. The degree of water swelling was 165%.

【0019】調整例3 球状セルロース粒子3の調整 ビスコース(セルロース濃度10%、ガンマ価50、ア
ルカリ濃度5%)120g、ポリアクリル酸ソーダ(分
子量5万)の10wt%水溶液480gと炭酸カルシウ
ム10gと水酸化カルシウム2gを室温下10分間、回
転数400rpmで混合し、ビスコースの微粒子を得
た。約10分間かけて80℃に昇温し、さらに30分
間、80℃にて該微粒子を凝固せしめた。ガラスフィル
ターにて凝固微粒子を濾別し、0.5wt%塩酸にて中
和し、さらに過剰の水とメタノールで洗浄したのち、真
空下で乾燥し、球状セルロース粒子を得た。得られたセ
ルロース粒子は、真球状で平均粒子径が27μm、平均
粒子径の±30%に全体の91%の重量を占めていた。
また、水膨潤度は145%であった。
Preparation Example 3 Preparation of spherical cellulose particles 3 120 g of viscose (cellulose concentration 10%, gamma value 50, alkali concentration 5%), 480 g of a 10 wt% aqueous solution of sodium polyacrylate (molecular weight 50,000) and 10 g of calcium carbonate. 2 g of calcium hydroxide was mixed at room temperature for 10 minutes at a rotation speed of 400 rpm to obtain fine particles of viscose. The temperature was raised to 80 ° C over about 10 minutes, and the fine particles were solidified at 80 ° C for 30 minutes. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, washed with excess water and methanol, and then dried under vacuum to obtain spherical cellulose particles. The obtained cellulose particles were spherical and had an average particle size of 27 μm, and accounted for ± 30% of the average particle size of 91% of the total weight.
The degree of water swelling was 145%.

【0020】調整例4 球状セルロース粒子4の調整 ビスコース(セルロース濃度10%、アルカリ濃度5
%)120g、ポリエチレングリコール(分子量600
0)5gを添加し十分に混合した後、ポリアクリル酸ソ
ーダ(重合度200万)の10wt%水溶液480gと
炭酸カルシウム10gと水酸化カルシウム2gを室温下
10分間、回転数400rpmで混合し、ビスコースの
微粒子を得た。約10分間かけて80℃に昇温し、さら
に30分間、80℃にて該微粒子を凝固せしめた。ガラ
スフィルターにて凝固微粒子を濾別し、0.5wt%塩
酸にて中和し、さらに過剰の水とメタノールで洗浄した
のち、真空下で乾燥し、球状セルロース粒子を得た。得
られたセルロース粒子は、真球状で平均粒子径が7μ
m、平均粒子径の±30%に全体の85%の重量を占め
ていた。また、水膨潤度は248%であった。
Preparation Example 4 Preparation of spherical cellulose particles 4 Viscose (10% cellulose concentration, 5 alkali concentration)
%) 120 g, polyethylene glycol (molecular weight 600
0) After adding 5 g and thoroughly mixing, 480 g of a 10 wt% aqueous solution of sodium polyacrylate (polymerization degree: 2,000,000), 10 g of calcium carbonate and 2 g of calcium hydroxide were mixed at room temperature for 10 minutes at a rotation speed of 400 rpm, Fine particles of course were obtained. The temperature was raised to 80 ° C over about 10 minutes, and the fine particles were solidified at 80 ° C for 30 minutes. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, washed with excess water and methanol, and then dried under vacuum to obtain spherical cellulose particles. The obtained cellulose particles are spherical and have an average particle size of 7μ.
The average particle diameter was ± 30% and accounted for 85% of the total weight. The degree of water swelling was 248%.

【0021】比較調整例1 比較セルロース粒子1の調
整 ビスコース(セルロース濃度10%、ガンマ価50、ア
ルカリ濃度5%)120g、ポリアクリル酸ソーダ(重
合度1万)の10wt%水溶液480gと炭酸カルシウ
ム5gとを室温下10分間、回転数400rpmで混合
し、ビスコースの微粒子を得た。約10分間かけて80
℃に昇温し、さらに30分間、80℃にて該微粒子を凝
固せしめた。ガラスフィルターにて凝固微粒子を濾別
し、0.5wt%塩酸にて中和し、さらに過剰の水とメ
タノールで洗浄したのち、真空下で乾燥し、球状セルロ
ース粒子を得た。得られたセルロース粒子は、真球状で
平均粒子径が120μmであった。
Comparative Preparation Example 1 Preparation of comparative cellulose particles 1 120 g of viscose (cellulose concentration 10%, gamma value 50, alkali concentration 5%), 480 g of 10 wt% aqueous solution of sodium polyacrylate (polymerization degree 10,000) and calcium carbonate 5 g was mixed at a rotation speed of 400 rpm for 10 minutes at room temperature to obtain fine particles of viscose. 80 for about 10 minutes
The temperature was raised to 0 ° C, and the fine particles were solidified at 80 ° C for a further 30 minutes. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, washed with excess water and methanol, and then dried under vacuum to obtain spherical cellulose particles. The cellulose particles obtained were spherical and had an average particle diameter of 120 μm.

【0022】比較調整例2 比較セルロース粒子2の調
整 セルロースパウダーPH−105(興人製、平均繊維長
2.05mm)を3%の水スラローにし、ダイノミル
(ジルコニア1mmビーズ使用)で湿式粉砕した。30
パス繰り返し、微粉砕したセルロース粒子を得た。その
後遠心分離にて十分に脱水した。得られたセルロース粒
子の平均粒子径は0.3μm、平均粒子径の±30%に
全重量の27%が含まれていた。
Comparative Preparation Example 2 Preparation of Comparative Cellulose Particles 2 Cellulose powder PH-105 (manufactured by Kojin Co., Ltd., average fiber length 2.05 mm) was made into 3% water slurry and wet pulverized with a dyno mill (using 1 mm beads of zirconia). Thirty
The pass was repeated to obtain finely pulverized cellulose particles. Then, it was sufficiently dehydrated by centrifugation. The average particle size of the obtained cellulose particles was 0.3 μm, and ± 30% of the average particle size contained 27% of the total weight.

【0023】実施例1〜4及び比較例1〜5 完全ケン化タイプのポリビニルアルコール(以下、PV
Aと略称する。ケン化度95%以上、平均重合度約15
00)とポリエチレングリコール(以下、PEGと略称
する。平均分子量6000)をお湯に加えて溶解し、P
VA4wt%、PEG1wt%の水溶液を調整した。こ
れに表1に記載したセルロース粒子を、表1の組成比に
なるように添加し、親水性塗料を調整した。これを、ポ
リエチレンテレフタレート(PET)のシート(厚み1
50μm)上にメイヤーバーを用いて乾燥後の塗膜層の
厚みが表1に示すように流延した。このシートを100
℃で1.5分間乾燥、塗膜形成後、220℃で2分間焼
き付け処理を行った。得られた表面処理シートについ
て、塗膜の均一性、接触角、耐スクラッチ性を試験し、
結果を表1に示した。
Examples 1 to 4 and Comparative Examples 1 to 5 Completely saponified polyvinyl alcohol (hereinafter referred to as PV
It is abbreviated as A. Saponification degree 95% or more, average degree of polymerization about 15
00) and polyethylene glycol (hereinafter abbreviated as PEG, average molecular weight 6000) are added to hot water and dissolved to form P
An aqueous solution containing 4 wt% VA and 1 wt% PEG was prepared. Cellulose particles shown in Table 1 were added to this so that the composition ratio shown in Table 1 was obtained to prepare a hydrophilic coating material. This is a sheet of polyethylene terephthalate (PET) (thickness 1
The thickness of the coating layer after drying was cast using a Meyer bar as shown in Table 1. 100 this sheet
After drying at 1.5 ° C for 1.5 minutes and forming a coating film, baking treatment was performed at 220 ° C for 2 minutes. The obtained surface-treated sheet was tested for uniformity of coating film, contact angle, and scratch resistance,
The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1からも明らかなとおり、粒度の均一な
球状セルロース粒子を配合した塗料の場合、塗膜の均一
性及び耐スクラッチ性は良好であり、接触角も、球状セ
ルロース粒子を配合しない比較例1と比べると非常に低
い値を示し、本発明の塗料が極めて高い親水性を有して
た。一方、粒子径の大きい比較例2においては、親水性
向上の効果はほとんど認められないばかりか、耐スクラ
ッチ性も劣っていた。粒子径が小さい比較例3において
は、親水性向上の効果が劣っていた。粒度分布が広く不
定形なセルロースを用いた比較例4においては、塗膜の
均一性も悪くなり、親水性向上効果も小さく、耐スクラ
ッチ性も劣っていた。繊維状のセルロース粒子を用いた
比較例5では、塗料溶液中でのセルロース粒子の分散性
が悪く、満足な塗膜が得られなかった。
As is clear from Table 1, in the case of a coating material containing spherical cellulose particles having a uniform particle size, the uniformity and scratch resistance of the coating film are good, and the contact angle is also not compared with spherical cellulose particles. The value was very low as compared with Example 1, and the coating material of the present invention had extremely high hydrophilicity. On the other hand, in Comparative Example 2 having a large particle size, the effect of improving hydrophilicity was hardly recognized, and the scratch resistance was inferior. In Comparative Example 3 having a small particle size, the effect of improving hydrophilicity was poor. In Comparative Example 4 in which an amorphous cellulose having a wide particle size distribution was used, the uniformity of the coating film was poor, the effect of improving hydrophilicity was small, and the scratch resistance was poor. In Comparative Example 5 using fibrous cellulose particles, the dispersibility of the cellulose particles in the coating solution was poor and a satisfactory coating film could not be obtained.

【0026】実施例5 セパラブルフラスコに水200gとメタノール220g
を入れ、還流管、温度計、攪拌機、窒素導入管を取り付
けた後、加温し、メタノール−水混合液を還流させた。
これに2−ヒドロキシメチルメタクリレート100gと
アクリロイルモルホリン35gの混合液を、窒素ガス雰
囲気下で30gずつ徐々に滴下し、その間重合開始剤と
してAIBNを添加し、完全に滴下した後、3時間反応
させた。反応終了後、アンモニアを加えて溶液を中和
し、水を加え、アクリル共重合体溶液を得た。これに、
球状セルロース粒子1を加え、アクリル共重合体5wt
%、球状セルロース粒子1、1.5wt%の親水性塗料
を得た。本塗料を、アルミニウムシート上にメイヤーバ
ーで乾燥後の塗膜の厚みが2μmになるように流延し、
塗膜の均一性、接触角、耐スクラッチ性を試験した。そ
の結果、塗膜の均一性及び耐スクラッチ性は良好で、接
触角は10°以下であった。
Example 5 200 g of water and 220 g of methanol were placed in a separable flask.
Was charged, a reflux tube, a thermometer, a stirrer, and a nitrogen introducing tube were attached, and then the mixture was heated to reflux the methanol-water mixture.
A mixture of 100 g of 2-hydroxymethylmethacrylate and 35 g of acryloylmorpholine was gradually added dropwise to the mixture in an amount of 30 g under a nitrogen gas atmosphere, AIBN was added as a polymerization initiator during the addition, and the mixture was completely added and reacted for 3 hours. . After completion of the reaction, ammonia was added to neutralize the solution, and water was added to obtain an acrylic copolymer solution. to this,
Spherical cellulose particles 1 were added, and acrylic copolymer 5 wt
%, Spherical cellulose particles 1, 1.5 wt% hydrophilic coating material was obtained. The coating composition is cast on an aluminum sheet with a Meyer bar so that the thickness of the coating film after drying is 2 μm,
The coating film was tested for uniformity, contact angle, and scratch resistance. As a result, the uniformity and scratch resistance of the coating film were good, and the contact angle was 10 ° or less.

【0027】実施例6 ビーカーに、球状セルロース粒子2、10gにイオン交
換水及び無水硫酸銅0.4gを加え、ガラス棒で約10
分間攪拌した。引き続き撹拌しながら、0.3mol/
Lの水酸化ナトリウム溶液を徐々に添加し、pH7にし
た。得られた銅担持セルロース粒子をガラスフィルター
上で過剰の水で十分に水洗し、次いでメタノールで洗浄
後、真空乾燥し、セルロース複合粒子を得た。銅の担持
量は3wt%であった。得られたセルロース複合粒子を
用い、実施例5と同様に塗膜を形成し、塗膜の均一性、
接触角、耐スクラッチ性を試験した。その結果、何れの
特性も良好であった。また、得られたシートを5cm角
にカットし、2Lのテドラーバッグに30ppmの硫化
水素ガスと共に入れ、10分間後の硫化水素ガスの減少
量を測定したところ、99%の減少率を示した。比較に
用いた比較例1のシートの減少率は3%であったことか
ら、実施例5の親水性塗料は、硫化水素に対して非常に
高い消臭能力を有していることが分かる。更に、得られ
たシートを用いJIS−Z2911カビ抵抗性試験法に
従い抗カビ性を試験した。すなわち、直径3cmの円盤
状にシートを切り抜き、Epidermophyton
floccosumの胞子液0.5mlを塗抹して2
7℃で培養し、2週間目に目視にてシート上の菌の発育
を観察した。その結果、セルロース複合粒子を添加しな
いコントロールシートにはびっしりと胞子が成長してい
たが、本実施例のシート上には菌の生育は見られず、非
常に高い抗カビ性を示した。
Example 6 In a beaker, ion-exchanged water and 0.4 g of anhydrous copper sulfate were added to 2, 10 g of spherical cellulose particles, and a glass rod was used for about 10 g.
Stir for minutes. With continued stirring, 0.3 mol /
L sodium hydroxide solution was added slowly to bring the pH to 7. The obtained copper-supported cellulose particles were thoroughly washed with excess water on a glass filter, washed with methanol, and then vacuum dried to obtain cellulose composite particles. The amount of copper supported was 3 wt%. Using the obtained cellulose composite particles, a coating film was formed in the same manner as in Example 5, and the uniformity of the coating film,
The contact angle and scratch resistance were tested. As a result, all the characteristics were good. Further, the obtained sheet was cut into 5 cm square pieces, put into a 2 L Tedlar bag together with 30 ppm of hydrogen sulfide gas, and the amount of reduction of hydrogen sulfide gas after 10 minutes was measured. As a result, a reduction rate of 99% was shown. Since the reduction rate of the sheet of Comparative Example 1 used for comparison was 3%, it can be seen that the hydrophilic coating material of Example 5 has a very high deodorizing ability with respect to hydrogen sulfide. Further, the obtained sheet was tested for antifungal property according to JIS-Z2911 fungus resistance test method. That is, the sheet is cut out into a disk shape with a diameter of 3 cm, and the Epidermophyton is cut out.
smear 0.5 ml of spore fluid of floccosum and
After culturing at 7 ° C., the growth of bacteria on the sheet was visually observed after 2 weeks. As a result, spores were densely grown on the control sheet to which the cellulose composite particles were not added, but no growth of the bacterium was observed on the sheet of this example, showing a very high antifungal property.

【0028】実施例7 ヒバ油を用い3wt%ヒノキチオールの水酸化ナトリウ
ム4.0wt%、メタノール10wt%水溶液を調整し
た。この水溶液1gを、ビスコース(セルロース濃度1
0%、ガンマ価50、アルカリ濃度5%)120gに添
加しホモミキサーで撹拌した後、ポリアクリル酸ソーダ
(分子量50万)の10wt%水溶液480gと炭酸カ
ルシウム5gとを室温下10分間、回転数400rpm
で混合し、ヒノキチオール含有ビスコースの微粒子を得
た。約10分間かけて80℃に昇温し、さらに30分
間、80℃にて該微粒子を凝固せしめた。ガラスフィル
ターにて凝固微粒子を濾別し、0.5wt%塩酸にて中
和し、さらに過剰の水とメタノールで洗浄したのち、真
空下で乾燥し、セルロース複合粒子を得た。得られたセ
ルロース粒子は、真球状で平均粒子径が7μmであっ
た。得られたセルロース複合粒子を用い、実施例5と同
様に塗膜を形成し、本発明の親水性塗料が塗布されたア
ルミニウムシートを得た。本シートは、ヒバ油成分に由
来するきわめてさわやかな香りが持続的に感じられた。
Example 7 Using Hiba oil, an aqueous solution of 3 wt% hinokitiol sodium hydroxide 4.0 wt% and methanol 10 wt% was prepared. 1 g of this aqueous solution was added to viscose (concentration of cellulose: 1
0%, gamma value 50, alkali concentration 5%) 120 g, and after stirring with a homomixer, 480 g of a 10 wt% aqueous solution of sodium polyacrylate (molecular weight 500,000) and 5 g of calcium carbonate are allowed to rotate at room temperature for 10 minutes. 400 rpm
And mixed to obtain fine particles of hinokitiol-containing viscose. The temperature was raised to 80 ° C over about 10 minutes, and the fine particles were solidified at 80 ° C for 30 minutes. Coagulated fine particles were filtered off with a glass filter, neutralized with 0.5 wt% hydrochloric acid, further washed with excess water and methanol, and then dried under vacuum to obtain cellulose composite particles. The cellulose particles obtained were spherical and had an average particle diameter of 7 μm. A coating film was formed using the obtained cellulose composite particles in the same manner as in Example 5 to obtain an aluminum sheet coated with the hydrophilic coating material of the present invention. On this sheet, an extremely refreshing scent derived from the Hiba oil component was continuously felt.

【0029】[0029]

【発明の効果】以上の説明したように、本発明による
と、塗膜表面を親水化して水濡れ性を向上し、水滴の発
生を抑制する親水性塗料、更に、消臭性、抗カビ性に優
れた表面を形成する親水性塗料が提供される。
As described above, according to the present invention, a hydrophilic coating which makes the surface of the coating film hydrophilic to improve water wettability and suppresses the generation of water droplets, and further has deodorant and antifungal properties. Provided is a hydrophilic coating which forms a surface excellent in heat resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が0.5〜50μm、粒径分
布が平均粒子径の±40%の範囲に70重量%以上を占
める球状セルロース粒子と、被膜を形成する樹脂分とを
含有した親水性塗料。
1. Spherical cellulose particles having an average particle size of 0.5 to 50 μm and a particle size distribution of 70% by weight or more in a range of ± 40% of the average particle size, and a resin component forming a coating film. Hydrophilic paint.
【請求項2】 球状セルロース粒子の平均粒子径が2〜
10mμである、請求項1記載の親水性塗料。
2. The average particle diameter of the spherical cellulose particles is from 2 to 2.
The hydrophilic paint according to claim 1, which has a thickness of 10 mμ.
【請求項3】 球状セルロース粒子が、抗菌剤、抗カビ
剤、香料、消臭剤のうち1種以上を含むセルロース複合
粒子である、請求項1乃至2記載の親水性塗料。
3. The hydrophilic paint according to claim 1, wherein the spherical cellulose particles are cellulose composite particles containing one or more kinds of antibacterial agents, antifungal agents, fragrances and deodorants.
【請求項4】 被膜を形成する樹脂分がポリビニルアル
コール系樹脂である、請求項1乃至3記載の親水性樹
脂。
4. The hydrophilic resin according to claim 1, wherein the resin component forming the coating film is a polyvinyl alcohol resin.
JP2001320127A 2001-10-18 2001-10-18 Hydrophilic coating Pending JP2003128977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320127A JP2003128977A (en) 2001-10-18 2001-10-18 Hydrophilic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320127A JP2003128977A (en) 2001-10-18 2001-10-18 Hydrophilic coating

Publications (1)

Publication Number Publication Date
JP2003128977A true JP2003128977A (en) 2003-05-08

Family

ID=19137564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320127A Pending JP2003128977A (en) 2001-10-18 2001-10-18 Hydrophilic coating

Country Status (1)

Country Link
JP (1) JP2003128977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103540A (en) * 2005-09-30 2007-04-19 Nippon Chemicon Corp Separator for capacitor and capacitor using same
US8383526B2 (en) * 2006-06-05 2013-02-26 Rengo Co., Ltd. Sheet for total heat exchanger
JP2013221000A (en) * 2012-04-16 2013-10-28 Daito Kasei Kogyo Kk Spherical cellulose powder and cosmetic including the same
CN107929746A (en) * 2018-01-17 2018-04-20 肥城林原高分子材料有限公司 A kind of preparation method of pharmaceutic adjuvant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103540A (en) * 2005-09-30 2007-04-19 Nippon Chemicon Corp Separator for capacitor and capacitor using same
US8383526B2 (en) * 2006-06-05 2013-02-26 Rengo Co., Ltd. Sheet for total heat exchanger
JP2013221000A (en) * 2012-04-16 2013-10-28 Daito Kasei Kogyo Kk Spherical cellulose powder and cosmetic including the same
CN107929746A (en) * 2018-01-17 2018-04-20 肥城林原高分子材料有限公司 A kind of preparation method of pharmaceutic adjuvant
CN107929746B (en) * 2018-01-17 2021-03-30 肥城林原高分子材料有限公司 Preparation method of pharmaceutic adjuvant

Similar Documents

Publication Publication Date Title
JP5570127B2 (en) Hydrophilic treatment agent, aluminum-containing metal material and aluminum alloy heat exchanger
CN109880470B (en) Preparation method of water-based acrylate time-delay antibacterial coating
CN104334269A (en) Hybrid organic-inorganic nano-particles
JP2009126948A (en) Hydrophilizing agent
JP5255340B2 (en) Porous hollow polymer particle, method for producing porous hollow polymer particle, perfume-carrying polymer particle, and method for producing perfume-carrying polymer particle
TW200932291A (en) Methods for forming stabilized metal salt particles
CN105567030A (en) Waterborne carpentry paint
KR20200013587A (en) Coating-type antifogging agent for films for agricultural use, and film for agricultural use
JP2003128977A (en) Hydrophilic coating
JP6706222B2 (en) Antibacterial and antifungal paint, and method for producing antibacterial and antifungal member using the paint
JP2003013038A (en) Coating antifogging agent and agricultural film
KR102021926B1 (en) Coated granular fertilizer preventing solidification and floating in water and manufacturing method thereof
JP2011094252A (en) Method for fixing photocatalyst particle on fiber surface
WO2016021071A1 (en) Hydrophilization treatment agent for aluminum-containing metal material
CN109796814B (en) Antibacterial interior wall coating and preparation method thereof
JP3982953B2 (en) Antibacterial coating film and substrate with coating film
JP2003041181A (en) Hydrophilic coating composition
JPH0472691B2 (en)
JP2000336347A (en) Antifogging agent composition
JPS63372A (en) Antibacterial coating for air-conditioning equipment
JPH1123175A (en) Heat-exchanging material
JP3225793B2 (en) Highly hydrophilic paint
JPH1030069A (en) Aqueous hydrophilicity imparting agent and production of pre-coated fin material for heat exchanger using the same
JP3403906B2 (en) Manufacturing method of highly hydrophilic paint
JP3051196B2 (en) Coated aluminum material and method for producing the same