JP2003128422A - Conduit structure for molten glass and reduced pressure deaerator for molten glass - Google Patents

Conduit structure for molten glass and reduced pressure deaerator for molten glass

Info

Publication number
JP2003128422A
JP2003128422A JP2001320286A JP2001320286A JP2003128422A JP 2003128422 A JP2003128422 A JP 2003128422A JP 2001320286 A JP2001320286 A JP 2001320286A JP 2001320286 A JP2001320286 A JP 2001320286A JP 2003128422 A JP2003128422 A JP 2003128422A
Authority
JP
Japan
Prior art keywords
molten glass
refractory
joint portion
refractory bricks
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001320286A
Other languages
Japanese (ja)
Other versions
JP4061880B2 (en
Inventor
Yusuke Takei
祐輔 竹居
Shun Kijima
駿 木島
Michito Sasaki
道人 佐々木
Mitsuyoshi Sakai
光美 坂井
Rei Kitamura
礼 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001320286A priority Critical patent/JP4061880B2/en
Publication of JP2003128422A publication Critical patent/JP2003128422A/en
Application granted granted Critical
Publication of JP4061880B2 publication Critical patent/JP4061880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/44Cooling arrangements for furnace walls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conduit structure for molten glass and a reduced pressure deaerator for molten glass in the conduit made of fire bricks in which erosion of a joint part of the fired bricks in direct contact with the molten glass is prevented; bleed out of the molten glass from the joint part is prevented; and erosion of a backup refractory and an insulating refractory is prevented; so that a long life can be achieved. SOLUTION: In a riser tube 216 for a reduced pressure deaerator 10, the cross section of a flow channel 32 in the riser tube 216 is formed in a polygonal shape. In the flow channel 32, joint parts 234 are formed at the corners 236 where the flow rate of the molten glass is small. Cooling tubes 40 are placed at the outside of the joint parts 234. The cooling tubes 40 cool the joint parts 234.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融ガラスの導管
構造及び溶融ガラスの減圧脱泡装置に係り、特に高温の
溶融ガラス内の気泡を除去するための減圧脱泡装置に適
用される溶融ガラスの導管構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten glass conduit structure and a molten glass vacuum degassing apparatus, and more particularly to a molten glass applied to a vacuum degassing apparatus for removing bubbles in hot glass. Concerning the conduit structure of.

【0002】[0002]

【従来の技術】溶融ガラスの減圧脱泡装置は、溶解槽で
溶融されたガラスを脱泡処理して次の成形工程に連続的
に供給するシステムに用いられる装置であり、特開平3
−33020号公報には、サイフォン式と称される減圧
脱泡槽が適用された減圧脱泡装置の一例が開示されてい
る。
A vacuum degassing apparatus for molten glass is an apparatus used in a system for degassing molten glass in a melting tank and continuously supplying it to the next molding step.
JP-A-33020 discloses an example of a vacuum degassing apparatus to which a vacuum degassing tank called a siphon type is applied.

【0003】前記減圧脱泡装置は、主として溶解槽、上
昇管(導管)、減圧脱泡槽、下降管(導管)、及び貯留
槽から構成されている。脱泡前の溶融ガラスは、前記溶
融槽に溜められた後、サイフォンの原理によって前記上
昇管から減圧脱泡槽に導かれ、ここで脱泡される。そし
て、脱泡された溶融ガラスは、前記下降管から貯留槽に
導かれ、そして、成形工程に導かれる。以上が前記減圧
脱泡装置による溶融ガラスの処理の流れである。
The vacuum degassing apparatus is mainly composed of a dissolution tank, an ascending pipe (conduit), a vacuum degassing tank, a descending pipe (conduit), and a storage tank. The molten glass before defoaming is stored in the melting tank, then guided from the rising pipe to the decompression defoaming tank by the siphon principle, and defoamed there. Then, the degassed molten glass is guided from the downcomer pipe to the storage tank and then to the molding step. The above is the flow of processing molten glass by the vacuum degassing apparatus.

【0004】ところで、このような減圧脱泡装置に用い
られる前記上昇管及び下降管は、溶融ガラスによって1
200〜1400℃程度まで加熱されるため、白金等の
耐熱金属製のものが使用されるとともに、その周囲には
断熱材が被覆され、上昇管及び下降管の放熱が防止され
ている。
By the way, the rising pipe and the descending pipe used in such a vacuum degassing apparatus are made of molten glass.
Since it is heated to about 200 to 1400 ° C., a heat-resistant metal such as platinum is used, and a heat insulating material is coated around it to prevent heat dissipation from the rising pipe and the descending pipe.

【0005】一方、最近の減圧脱泡装置では、上昇管及
び下降管の製造コストを削減する目的で、上昇管及び下
降管を耐火煉瓦によって構成する試みがなされている。
本願出願人は、耐火煉瓦式の導管構造の一例を、特開2
000−159525号公報により開示している。
On the other hand, in the recent vacuum degassing apparatus, an attempt has been made to construct the rising pipe and the falling pipe from refractory bricks in order to reduce the manufacturing cost of the rising pipe and the falling pipe.
The applicant of the present invention has disclosed an example of a refractory brick type conduit structure in Japanese Patent Application Laid-Open No.
No. 000-159525.

【0006】かかる導管構造は、断面が略扇形状または
楔形状に形成された複数の耐火煉瓦を円周方向に組み付
けて構成されている。この導管構造によれば、耐火煉瓦
が熱膨張しても、その熱膨張による耐火煉瓦の伸びが主
として放射状に起るので、耐火煉瓦を組み付けた時のバ
ランスが崩れず、熱膨張による導管構造の崩れを抑える
ことができるという利点がある。
Such a conduit structure is constructed by assembling a plurality of refractory bricks each having a substantially fan-shaped or wedge-shaped cross section in the circumferential direction. According to this conduit structure, even if the refractory brick thermally expands, the expansion of the refractory brick due to the thermal expansion mainly occurs radially, so the balance when the refractory brick is assembled is not lost, and the conduit structure There is an advantage that the collapse can be suppressed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開2
000−159525号公報等に開示された耐火煉瓦製
導管構造では、耐火煉瓦の目地部の隙間を溶融ガラスG
が浸食し、目地部の浸食で溶融ガラスに溶け込んだ煉瓦
成分がガラス製品品質を劣化させるという問題がある。
また、耐火煉瓦の目地部の浸食は少なくても、目地部か
らしみ出た溶融ガラスによって外側のバックアップ炉材
や断熱耐火物が浸食するので、減圧脱泡装置自体の寿命
が短くなるという問題もある。
[Patent Document 1] Japanese Unexamined Patent Application Publication No.
In the conduit structure made of refractory bricks disclosed in Japanese Patent Application Laid-Open No. 000-159525, molten glass G is formed in the gap between joints of the refractory brick.
However, there is a problem that the brick component dissolved in the molten glass due to the erosion of the joints deteriorates the quality of glass products.
In addition, even if there is little erosion in the joints of refractory bricks, the molten glass exuding from the joints erodes the external backup furnace material and adiabatic refractories, which also shortens the life of the vacuum degassing apparatus itself. is there.

【0008】また、導管構造全体が一つの炉材で構成さ
れていれば、最も目地部が少なく、よって浸食も少ない
が、炉材の製造可能な大きさに限界があり導管構造全体
を一つの炉材で構成することは困難であった。
Further, if the entire conduit structure is composed of one furnace material, the joint area is the smallest and therefore erosion is also small, but there is a limit to the size of the furnace material that can be manufactured, and the entire conduit structure is It was difficult to construct with furnace material.

【0009】本発明の目的は、上記問題点を解決するこ
とにあり、目地部の浸食を抑制し、溶融ガラスと直接接
触する耐火煉瓦の目地部からのしみ出しを防止し、もし
くは抑制し、溶融ガラスのバックアップ耐火物や断熱耐
火物の浸食を防止し、長寿命化を図ることができる溶融
ガラスの導管構造及び溶融ガラスの減圧脱泡装置を提供
することにある。
An object of the present invention is to solve the above problems, to suppress the erosion of joints and prevent or suppress the exudation of joints of refractory bricks that come into direct contact with molten glass. It is an object of the present invention to provide a conduit structure for molten glass and a vacuum degassing apparatus for molten glass capable of preventing erosion of a backup refractory or adiabatic refractory of molten glass and achieving a long life.

【0010】[0010]

【課題を解決するための手段】本発明は、前記目的を達
成するために、高温の溶融ガラスが流れる流路が形成さ
れた溶融ガラスの導管構造において、前記導管は、前記
流路の断面形状が所定の形状になるように複数の耐火煉
瓦を組み付けて構成されるとともに、これらの耐火煉瓦
による目地部の外側部に目地部冷却手段が配置されたこ
とを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a molten glass conduit structure in which a channel through which high-temperature molten glass flows is formed, wherein the conduit has a cross-sectional shape of the channel. Is constructed by assembling a plurality of refractory bricks so as to have a predetermined shape, and a joint portion cooling means is arranged outside the joint portion formed by these refractory bricks.

【0011】請求項1に記載の発明によれば、複数の耐
火煉瓦を組み付けて構成される流路の目地部の外側部に
目地部冷却手段を配置し、この目地部冷却手段で目地部
を冷却することにより、目地部の浸食を抑制し、目地部
に浸入してきた溶融ガラスを冷却し、目地部からの溶融
ガラスのしみ出しを防止でき、かつ、耐火煉瓦の外側に
配置されたバックアップ炉材や断熱耐火物の浸食を防止
できる。請求項1に記載の発明は、流路の断面形状につ
いては限定しておらず、矩形状、多角形形状、又は円形
状でもよい。また、流路の断面形状とは、溶融ガラスの
流れる方向に対して、垂直な断面の形状を意味する。
According to the first aspect of the present invention, the joint portion cooling means is arranged outside the joint portion of the flow path constituted by assembling a plurality of refractory bricks, and the joint portion is cooled by the joint portion cooling means. Cooling suppresses the erosion of the joints, cools the molten glass that has infiltrated into the joints, prevents the exudation of the molten glass from the joints, and is a backup furnace placed outside the refractory bricks. Erosion of materials and heat-resistant refractories can be prevented. In the invention described in claim 1, the cross-sectional shape of the flow channel is not limited, and may be rectangular, polygonal, or circular. Further, the cross-sectional shape of the flow channel means a cross-sectional shape perpendicular to the flowing direction of the molten glass.

【0012】また、本発明は、前記目的を達成するため
に、高温の溶融ガラスが流れる流路が形成された溶融ガ
ラスの導管構造において、前記導管は、前記流路の断面
形状が多角形形状になるように複数の耐火煉瓦を組み付
けて構成されるとともに、これらの耐火煉瓦による目地
部が多角形形状流路の隅部に形成され、該目地部の外側
部に目地部冷却手段が配置されたことを特徴とする。
In order to achieve the above object, the present invention provides a molten glass conduit structure having a flow path through which high-temperature molten glass flows, wherein the conduit has a polygonal cross section. Is constructed by assembling a plurality of refractory bricks, and joints formed by these refractory bricks are formed in the corners of the polygonal flow path, and joint cooling means is arranged outside the joints. It is characterized by that.

【0013】請求項2に記載の発明は、以下の点に着目
してなされたものである。すなわち、導管の流路を流れ
る溶融ガラスは、多角形形状をなす流路の断面での辺
部、隅部等の流速を比較すると、流路の辺部における流
速よりも、流路の隅部における流速が低くなっている。
一方で、溶融ガラスによる煉瓦浸食を最も受け易いのは
耐火煉瓦の目地部であり、その目地部のうち、接触して
いる溶融ガラスの流速が早い目地部ほど浸食の進行は早
い。
The invention described in claim 2 is made by paying attention to the following points. That is, when comparing the flow velocities of the sides, corners, etc. in the cross section of the polygonal flow passage, the molten glass flowing in the flow passage of the conduit has a corner portion of the flow passage more than a flow velocity at the side portion of the flow passage. The flow velocity at is low.
On the other hand, it is the joints of refractory bricks that are most susceptible to brick erosion by molten glass, and the erosion progresses faster in the joints where the flow velocity of the molten glass in contact is faster.

【0014】よって、目地部の浸食を最低限に抑えるた
めには、本願請求項2に記載の如く、流路の断面を多角
形形状に形成するとともに、この断面多角形形状の流路
において、溶融ガラスの流速が遅い隅部に目地部を形成
すればよい。これにより、耐火煉瓦製導管において、溶
融ガラスによる目地部の浸食を最小限に抑えることがで
きる。また、請求項2に記載の発明は、目地部の外側部
に目地部冷却手段を配置し、この目地部冷却手段で目地
部を冷却することにより、目地部に浸入してきた溶融ガ
ラスを冷却し、目地部からの溶融ガラスのしみ出しを防
止でき、かつ、耐火煉瓦の外側に配置されたバックアッ
プ炉材や断熱耐火物の浸食を防止できる。
Therefore, in order to minimize the erosion of the joint portion, as described in claim 2 of the present application, the cross section of the flow channel is formed in a polygonal shape, and in the flow channel having the polygonal cross section, It suffices to form joints at the corners where the flow velocity of the molten glass is slow. Thereby, in the refractory brick conduit, the erosion of the joint portion by the molten glass can be minimized. Further, in the invention according to claim 2, the joint portion cooling means is arranged on the outer side of the joint portion, and the joint portion is cooled by the joint portion cooling means to cool the molten glass that has penetrated into the joint portion. It is possible to prevent the molten glass from seeping out from the joint portion and prevent the erosion of the backup furnace material and the heat-resistant refractory arranged outside the refractory brick.

【0015】ところで、目地部からの溶融ガラスのしみ
出しを防止するためには、耐火煉瓦の厚みを厚くして目
地部の長さを長くすることが一つの解消手段となり得
る。しかしながら、耐火煉瓦の厚みを単に厚くした場
合、耐火煉瓦のコストが膨大になるという問題がある。
また、コスト削減を考慮して耐火煉瓦の厚みを薄くした
場合には、耐火煉瓦の強度が弱くなるという問題があ
る。
By the way, in order to prevent the molten glass from seeping out from the joints, it is possible to solve the problem by increasing the thickness of the refractory brick to increase the length of the joints. However, if the refractory brick is simply thickened, there is a problem that the cost of the refractory brick becomes enormous.
Further, when the thickness of the refractory brick is reduced in consideration of cost reduction, there is a problem that the strength of the refractory brick becomes weak.

【0016】請求項3に記載の発明は、上記問題を解消
するためになされたものであり、すなわち、前記導管の
流路断面を構成する複数の耐火煉瓦は、前記耐火煉瓦の
両端において突出した耳部を有するユニット耐火煉瓦で
あって、前記耳部は流路の外側に突出しており、前記ユ
ニット耐火煉瓦を前記耳部においてそれぞれ当接させ、
目地部が流路の中心から放射状に伸びる様に形成されて
いることを特徴としている。
The invention as set forth in claim 3 is made in order to solve the above-mentioned problem, that is, a plurality of refractory bricks constituting the flow passage cross section of the conduit are projected at both ends of the refractory brick. A unit refractory brick having ears, wherein the ears project to the outside of the flow path, and the unit refractory bricks are brought into contact with each other at the ears,
The joint portion is formed so as to extend radially from the center of the flow channel.

【0017】これにより、本願請求項3に記載の発明
は、耐火煉瓦の厚みを厚くすることなく目地部の長さを
長くとることができるので、耐火煉瓦コストを抑えて目
地部からの溶融ガラスのしみ出しを防止できる。また、
耐火煉瓦を薄くする必要もないので、耐火煉瓦の強度を
保持できる。
Thus, in the invention according to claim 3 of the present application, the length of the joint portion can be increased without increasing the thickness of the refractory brick, so that the cost of the refractory brick can be suppressed and the molten glass from the joint portion can be suppressed. The exudation can be prevented. Also,
Since it is not necessary to make the refractory brick thin, the strength of the refractory brick can be maintained.

【0018】請求項4記載の発明は、溶融ガラスの減圧
脱泡装置の上昇管と下降管のうち少なくとも一方を、請
求項1、2又は3のうちいずれか1項に記載された溶融
ガラスの導管構造を採用したので、使用寿命の長い減圧
脱泡装置を提供できる。
According to a fourth aspect of the present invention, at least one of the ascending pipe and the descending pipe of the vacuum degassing apparatus for molten glass is provided with the molten glass according to any one of claims 1, 2 and 3. Since the conduit structure is adopted, it is possible to provide a vacuum degassing apparatus having a long service life.

【0019】[0019]

【発明の実施の形態】以下、添付図面に従って本発明に
係る溶融ガラスの導管構造の実施の形態について詳説す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a molten glass conduit structure according to the present invention will be described below in detail with reference to the accompanying drawings.

【0020】図1には、実施の形態に係る導管構造が適
用された溶融ガラスの減圧脱泡装置の斜視図が示され、
図2はその断面図が示されている。
FIG. 1 is a perspective view of a vacuum degassing apparatus for molten glass to which the conduit structure according to the embodiment is applied.
FIG. 2 shows a sectional view thereof.

【0021】図1、図2に示す実施の形態の溶融ガラス
の減圧脱泡装置10は、略門型のステンレス製減圧ハウ
ジング12と、 減圧ハウジング12内に水平に収納配置
され矩形断面をもつ減圧脱泡槽14と、減圧ハウジング
12内に垂直に収納配置され、減圧脱泡槽14の左右両
端部にそれぞれ、各上端部が取り付けられる上昇管16
および下降管18とから構成される。
A vacuum degassing apparatus 10 for molten glass according to the embodiment shown in FIGS. 1 and 2 is a substantially gate-shaped vacuum housing 12 made of stainless steel, and a vacuum housing 12 is horizontally housed in the vacuum housing 12 and has a rectangular cross section. A degassing tank 14 and a riser pipe 16 which is vertically housed in the decompression housing 12 and has upper ends attached to the left and right ends of the decompression degassing tank 14, respectively.
And downcomer 18.

【0022】減圧脱泡装置10は、上流案内管20内の
溶融ガラスGを減圧脱泡処理して、図示しない次の処理
槽、例えば、フロートバスなどの板材の成形処理槽や瓶
などの成形作業槽などに連続的に供給するプロセスに用
いられる。
The vacuum degassing apparatus 10 degasses the molten glass G in the upstream guide pipe 20 under reduced pressure to form a next processing tank (not shown), for example, a plate material forming processing tank such as a float bath or a bottle. It is used in the process of continuously supplying to a work tank.

【0023】上昇管16の下端に連結された上流案内管
20は、不図示の溶解槽に連通した上流側ピット22の
溶融ガラスG内に浸漬されている。また、下降管18の
下端に連結された下流案内管24は、次の処理槽に連通
する下流側ピット26の溶融ガラスG内に浸漬されてい
る。
The upstream guide pipe 20 connected to the lower end of the ascending pipe 16 is immersed in the molten glass G in the upstream pit 22 communicating with a melting tank (not shown). The downstream guide pipe 24 connected to the lower end of the downcomer pipe 18 is immersed in the molten glass G in the downstream pit 26 that communicates with the next processing tank.

【0024】そして、減圧脱泡槽14は、減圧ハウジン
グ12に形成された不図示の吸引口から、不図示の真空
ポンプによって真空吸引されて内部が所定の気圧に減圧
される。これにより、上流側ピット22内の脱泡処理前
の溶融ガラスGは、サイフォンの原理により、上流案内
管20及び上昇管16を介して吸引上昇されて減圧脱泡
槽14に導入される。そして、減圧下にある減圧脱泡槽
14内で減圧脱泡処理が行われた後、下降管18及び下
流案内管24を介して下降し、下流側ピット26に導出
される。
The vacuum degassing tank 14 is vacuum-sucked by a vacuum pump (not shown) from a suction port (not shown) formed in the vacuum housing 12 to reduce the internal pressure to a predetermined atmospheric pressure. As a result, the molten glass G in the upstream pit 22 before the defoaming process is sucked up through the upstream guide pipe 20 and the rising pipe 16 by the siphon principle and introduced into the decompression degassing tank 14. Then, after decompression defoaming processing is performed in the decompression degassing tank 14 under reduced pressure, it descends via the descending pipe 18 and the downstream guide pipe 24, and is led to the downstream pit 26.

【0025】減圧ハウジング12は略門型に形成され
て、減圧脱泡槽14を減圧する際の気密性を確保するた
めのケーシング(圧力容器) として機能し、その両端部
には、上昇管16を収納する脚部12Aと下降管18を
収納する脚部12Bとが形成されている。
The decompression housing 12 is formed in a substantially gate shape and functions as a casing (pressure container) for ensuring airtightness when decompressing the decompression degassing tank 14, and an ascending pipe 16 is provided at both ends thereof. And a leg portion 12B for accommodating the downcomer pipe 18 are formed.

【0026】減圧脱泡槽14は、多数の耐火煉瓦28を
組み付けることにより構成され、また、上昇管16及び
下降管18も同様に多数の耐火煉瓦30、30…を組み
付けることにより構成されている。
The vacuum degassing tank 14 is constructed by assembling a large number of refractory bricks 28, and similarly, the rising pipe 16 and the descending pipe 18 are also constructed by assembling a large number of refractory bricks 30, 30 ... .

【0027】本発明の減圧脱泡装置10においては、減
圧脱泡槽14、上昇管16および下降管18を構成する
多数の耐火煉瓦28および多数の耐火煉瓦30は緻密質
電鋳耐火物が用いられることが好ましい。すなわち、減
圧脱泡装置10における溶融ガラスと直接接触する主要
部分を緻密質電鋳耐火物である電鋳耐火物製煉瓦を組み
上げて形成することにより、従来から用いられてきた貴
金属合金製のものよりも、コストを大幅に低減し、した
がって自由な形状で、かつ、自由な厚さに設計すること
ができる。その結果、減圧脱泡装置10の大容量化が実
現するとともに、より高温での減圧脱泡処理も行えるよ
うになる。
In the vacuum degassing apparatus 10 of the present invention, dense refractory refractory is used as a large number of refractory bricks 28 and a large number of refractory bricks 30 constituting the vacuum degassing tank 14, the rising pipe 16 and the descending pipe 18. Preferably. That is, the main part of the vacuum degassing apparatus 10 that comes into direct contact with the molten glass is formed by assembling bricks made of electroformed refractory, which is a dense electroformed refractory, to form a noble metal alloy that has been conventionally used. The cost can be significantly reduced, and therefore, the shape can be designed to have a free shape and a free thickness. As a result, the capacity of the vacuum degassing apparatus 10 can be increased, and the vacuum degassing process can be performed at a higher temperature.

【0028】電鋳耐火物製煉瓦としては、耐火原料を電
気溶融した後、所定形状に鋳込み成形したものであれば
特に限定されず、従来公知の各種の電鋳耐火物製煉瓦を
使用すればよい。
The electroformed refractory brick is not particularly limited as long as it is obtained by electrically melting a refractory raw material and then cast into a predetermined shape, and various known electroformed refractory bricks can be used. Good.

【0029】中でも耐蝕性が高く、素地からの発泡も少
ない点でアルミナ(Al2 3)系電鋳耐火物製煉瓦、
ジルコニア(ZrO2 )系電鋳耐火物製煉瓦、アルミナ
−ジルコニア−シリカ(Al2 3−ZrO2 −SiO
2 )系電鋳耐火物製煉瓦等が好適に例示され、具体的に
は、溶融ガラスGの温度が1300℃以下の場合はマー
スナイト(MB)を、1300℃以上の場合はZB−X
950、ジルコナイト(ZB)(いずれも旭硝子株式会
社製)等を用いるのが好ましい。
Among them, alumina (Al 2 O 3 ) type electroformed refractory bricks, which have high corrosion resistance and little foaming from the substrate,
Zirconia (ZrO 2 ) type electroformed refractory brick, alumina-zirconia-silica (Al 2 O 3 —ZrO 2 —SiO 2
2 ) A system electrocast refractory brick or the like is preferably exemplified. Specifically, when the temperature of the molten glass G is 1300 ° C. or lower, Marsnite (MB) is used, and when it is 1300 ° C. or higher, ZB-X.
It is preferable to use 950, zirconite (ZB) (all manufactured by Asahi Glass Co., Ltd.), or the like.

【0030】本実施の形態では緻密質電鋳耐火物を用い
るが、緻密質電鋳耐火物に限定されず、緻密質焼成耐火
物を用いてもよい。
Although a dense electroformed refractory material is used in the present embodiment, it is not limited to the dense electroformed refractory material, and a dense fired refractory material may be used.

【0031】緻密質焼成耐火物として用いられる緻密質
焼成耐火物製煉瓦としては、緻密質アルミナ系耐火物製
煉瓦、緻密質ジルコニア−シリカ系耐火物製煉瓦、およ
び緻密質アルミナ−ジルコニア−シリカ系耐火物製煉瓦
の少なくとも1種の緻密質焼成耐火物製煉瓦であること
が好ましい。
Examples of the dense fired refractory bricks used as the dense fired refractory include dense alumina refractory bricks, dense zirconia-silica refractory bricks, and dense alumina-zirconia-silica refractories. It is preferable that at least one kind of refractory brick is a dense fired refractory brick.

【0032】減圧ハウジング12は、減圧脱泡槽14に
必要とされる気密性、及び強度を有するものであれば、
その材質、構造は特に限定されるものではないが、外表
面側については金属製、特にステンレス製または耐熱鋼
製とすることが耐久性の観点から好ましい。
If the vacuum housing 12 has the airtightness and strength required for the vacuum degassing tank 14,
The material and structure thereof are not particularly limited, but it is preferable from the viewpoint of durability that the outer surface side is made of metal, particularly stainless steel or heat-resistant steel.

【0033】次に、上昇管16及び下降管18の構成に
ついて説明する。なお、実施の形態では、上昇管16と
下降管18とは同一の構造なので、ここでは、上昇管1
6についてのみ説明し、下降管18についてはその説明
を省略する。
Next, the structures of the ascending pipe 16 and the descending pipe 18 will be described. In the embodiment, the ascending pipe 16 and the descending pipe 18 have the same structure.
6 will be described, and the description of the downcomer 18 will be omitted.

【0034】図3は、上昇管16の縦断面図であり、図
4は図3上4−4線から見た上昇管16の横断面図であ
り、上昇管16の全体断面を示している。
FIG. 3 is a vertical cross-sectional view of the rising pipe 16, and FIG. 4 is a horizontal cross-sectional view of the rising pipe 16 taken along the line 4-4 in FIG. 3, showing the entire cross-section of the rising pipe 16. .

【0035】上昇管16は図3に示すように、縦方向に
複数の耐火煉瓦30、30…が積み重ねられて構成され
る。実施の形態では耐火煉瓦30を3段積み重ねて上昇
管16を構成しているが、その段数は3段に限定される
ものではない。
As shown in FIG. 3, the rising pipe 16 is constructed by stacking a plurality of refractory bricks 30, 30, ... Vertically. In the embodiment, the refractory bricks 30 are stacked in three stages to form the rising pipe 16, but the number of stages is not limited to three.

【0036】また、上昇管16は、図4に示すように溶
融ガラスの流路32の断面形状が円形状になるように、
8個の耐火煉瓦30、30…を組み付けて構成されてい
る。耐火煉瓦30の個数は8個に限定されるものではな
い。
As shown in FIG. 4, the rising pipe 16 is designed so that the cross section of the flow path 32 for the molten glass is circular.
It is configured by assembling eight refractory bricks 30, 30 ... The number of refractory bricks 30 is not limited to eight.

【0037】更に、これらの耐火煉瓦30、30…によ
る目地部34、34…の外側に目地部34を塞ぐように
冷却管(目地部冷却手段)40が配設されている。この
冷却管40には、目地部34を冷却するための水が不図
示のポンプにより供給されている。なお、冷却管40
は、図4において目地部34に対応して8本配設される
が、各々独立してポンプに接続してもよく、また、8本
の冷却管40、40…を連結して1本構造にし、この1
本の冷却管40にポンプを接続してもよい。また、冷却
管40の中を流す媒体としては、水に限らずエアーであ
ってもよい。
Further, a cooling pipe (joint portion cooling means) 40 is arranged outside the joint portions 34, 34 ... Made of these refractory bricks 30, 30 ... so as to close the joint portions 34. Water for cooling the joint portion 34 is supplied to the cooling pipe 40 by a pump (not shown). The cooling pipe 40
4 are arranged corresponding to the joint portion 34 in FIG. 4, but each may be independently connected to the pump, and the eight cooling pipes 40, 40 ... Are connected to form one structure. And this one
A pump may be connected to the book cooling pipe 40. Further, the medium flowing in the cooling pipe 40 is not limited to water and may be air.

【0038】なお、上昇管16を収納する減圧ハウジン
グ12の脚部12Aと、耐火煉瓦30、30…との隙間
には、不定形耐火物(耐熱材)38が設けられている。
この不定形耐火物38によって上昇管16の放熱が抑制
されている。なお、耐熱材は、不定形耐火物38に限定
されるものではなく、断熱煉瓦でもよい。
An irregular refractory material (heat-resistant material) 38 is provided in the gap between the leg portion 12A of the decompression housing 12 which houses the rising pipe 16 and the refractory bricks 30, 30.
The irregular refractory 38 suppresses heat dissipation from the rising pipe 16. The heat resistant material is not limited to the amorphous refractory material 38, and may be a heat insulating brick.

【0039】次に、実施の形態の上昇管16の特徴につ
いて述べる。
Next, the features of the rising pipe 16 of the embodiment will be described.

【0040】溶融ガラスGによる煉瓦浸食を最も受け易
いのは耐火煉瓦の目地部である。実施の形態の上昇管1
6は、目地部34の外側部に冷却管40を配置し、この
冷却管40を流れる水等によって目地部34を冷却して
いる。これにより、目地部34の浸食が抑制されるとと
もに、目地部34に浸入してきた溶融ガラスGは冷却さ
れるので、溶融ガラスGは目地部34からしみ出さな
い。したがって、耐火煉瓦30の外側に配置されたバッ
クアップ炉材や不定形耐火物38の溶融ガラスGによる
浸食を防止できる。
It is the joints of the refractory bricks that are most susceptible to brick erosion by the molten glass G. Ascending pipe 1 of the embodiment
In No. 6, a cooling pipe 40 is arranged outside the joint portion 34, and the joint portion 34 is cooled by water flowing through the cooling pipe 40. As a result, the erosion of the joint portion 34 is suppressed, and the molten glass G that has entered the joint portion 34 is cooled, so that the molten glass G does not exude from the joint portion 34. Therefore, it is possible to prevent erosion of the backup furnace material and the amorphous refractory 38 arranged outside the refractory bricks 30 by the molten glass G.

【0041】図5は、第2の実施の形態の導管構造を示
す上昇管116の横断面図である。
FIG. 5 is a cross-sectional view of the rising pipe 116 showing the conduit structure of the second embodiment.

【0042】上昇管116は、溶融ガラスの流路32の
断面形状が矩形状(正方形又は長方形)になるように、
4個の耐火煉瓦130、130…を組み付けて構成され
ている。更に、これらの耐火煉瓦130、130…によ
る目地部134、134…が矩形状流路32の4隅部1
36、136…にのみ位置するように、4個の耐火煉瓦
130、130…が組み付けられている。すなわち、耐
火煉瓦130の両辺部を突き合わせるとともに密着させ
て4個の耐火煉瓦130、130…が組み付けられてい
る。これにより、4個の耐火煉瓦130、130…で囲
まれた矩形状流路32が形成される。なお、流路32の
断面は、円形状や矩形状に限定されない。
The rising pipe 116 is so constructed that the cross-sectional shape of the flow path 32 for molten glass is rectangular (square or rectangular).
It is constructed by assembling four refractory bricks 130, 130 ... Further, the joints 134, 134, ... By the refractory bricks 130, 130 ... Are the four corners 1 of the rectangular channel 32.
Four refractory bricks 130, 130 ... Are assembled so as to be located only at 36, 136. That is, the four refractory bricks 130, 130 ... Are assembled by abutting and closely contacting both sides of the refractory brick 130. As a result, the rectangular flow path 32 surrounded by the four refractory bricks 130, 130 ... Is formed. The cross section of the channel 32 is not limited to a circular shape or a rectangular shape.

【0043】また、隣接する耐火煉瓦130、130の
目地部134の外側には、目地部134を塞ぐように冷
却管40が配置されている。
A cooling pipe 40 is disposed outside the joint portion 134 of the adjacent refractory bricks 130, 130 so as to close the joint portion 134.

【0044】次に、実施の形態の上昇管116の特徴に
ついて述べる。
Next, the features of the rising pipe 116 of the embodiment will be described.

【0045】まず、上昇管116の流路32を流れる溶
融ガラスGは、流路32の辺部135における流速より
も、流路32の隅部136における流速が低くなってい
る。
First, the molten glass G flowing in the flow passage 32 of the rising pipe 116 has a lower flow velocity in the corner portion 136 of the flow passage 32 than in the side portion 135 of the flow passage 32.

【0046】一方で、溶融ガラスGによる煉瓦浸食を最
も受け易いのは耐火煉瓦130、130…の目地部13
4、134…であり、その目地部134、134…のう
ち、接触している溶融ガラスGの流速が早い目地部13
4、134…ほど浸食の進行は早い。
On the other hand, the joints 13 of the refractory bricks 130, 130 ... are most susceptible to brick erosion by the molten glass G.
4, of the joint portions 134, 134, ..., Of which, the joint portion 13 in which the molten glass G in contact has a high flow velocity.
4,134 ... The progress of erosion is faster.

【0047】よって、目地部134、134…の浸食を
最低限に抑えるためには、図5に示す上昇管116の如
く、流路32の断面を矩形状に形成するとともに、この
断面形状の流路32において、溶融ガラスGの流速が遅
い4隅部136、136…に目地部134、134…を
形成すればよい。
Therefore, in order to minimize the erosion of the joints 134, 134, ..., Like the ascending pipe 116 shown in FIG. 5, the flow passage 32 is formed in a rectangular cross section, and the flow of this cross sectional shape is formed. In the passage 32, the joints 134, 134 ... May be formed at the four corners 136, 136 ... Where the flow velocity of the molten glass G is slow.

【0048】これにより、図5に示す構造の導管を採用
することによって、溶融ガラスGによる目地部134の
浸食を最小限に抑えることができ、導管の使用寿命が最
大限に延びる。
Thus, by adopting the conduit having the structure shown in FIG. 5, erosion of the joint portion 134 by the molten glass G can be minimized, and the useful life of the conduit is extended to the maximum.

【0049】また、実施の形態の上昇管116は、目地
部134の外側部に冷却管40を配置し、この冷却管4
0を流れる水等によって目地部134を外側より冷却し
ている。これにより、目地部134の浸食が抑制される
とともに、目地部134に浸入してきた溶融ガラスGは
冷却されるので、溶融ガラスGは目地部134からしみ
出さない。したがって、耐火煉瓦130の外側に配置さ
れたバックアップ炉材や不定形耐火物38の溶融ガラス
Gによる浸食を防止できる。
In the rising pipe 116 of the embodiment, the cooling pipe 40 is arranged outside the joint portion 134, and the cooling pipe 4 is provided.
The joint portion 134 is cooled from the outside by water or the like flowing in 0. As a result, the erosion of the joint portion 134 is suppressed, and the molten glass G that has entered the joint portion 134 is cooled, so that the molten glass G does not exude from the joint portion 134. Therefore, it is possible to prevent erosion of the backup furnace material and the amorphous refractory 38 arranged outside the refractory bricks 130 by the molten glass G.

【0050】図6は、第3の実施の形態の導管構造を示
す上昇管216の横断面図である。
FIG. 6 is a cross sectional view of the rising pipe 216 showing the conduit structure of the third embodiment.

【0051】上昇管216は、図5と同様に溶融ガラス
の流路32の断面形状が矩形状になるように、4個のユ
ニット耐火煉瓦230、230…を組み付けて構成され
ている。
As with FIG. 5, the rising pipe 216 is constructed by assembling four unit refractory bricks 230, 230 ... In order that the cross-sectional shape of the flow path 32 for the molten glass becomes rectangular.

【0052】ところで、目地部からの溶融ガラスGのし
み出しを防止するためには、耐火煉瓦の厚みを厚くして
目地部の長さを長くすることが一つの解消手段である
が、耐火煉瓦の厚みを単に厚くした場合、耐火煉瓦のコ
ストが膨大になるという問題がある。また、コスト削減
を考慮して耐火煉瓦の厚みを薄くした場合には、耐火煉
瓦の強度が低下するという問題がある。
By the way, in order to prevent the molten glass G from seeping out from the joint portion, one means for solving the problem is to increase the thickness of the refractory brick to increase the joint length. If the thickness of the brick is simply increased, the cost of the refractory brick becomes enormous. Further, when the thickness of the refractory brick is reduced in consideration of cost reduction, there is a problem that the strength of the refractory brick decreases.

【0053】そこで、実施の形態の上昇管216は、上
記問題を解消するために、目地部234を形成するユニ
ット耐火煉瓦230は、両端において突出した耳部23
0A、230Aを有し、耳部230A、230Aは、流
路の外側へ突出しており、ユニット耐火煉瓦230を耳
部230Aにおいてそれぞれ当接させ、目地部234が
流路の中心から放射状に伸びる様に形成されている。
Therefore, in the rising pipe 216 of the embodiment, in order to solve the above-mentioned problem, the unit refractory brick 230 forming the joint portion 234 has the ear portion 23 protruding at both ends.
0A, 230A, the ears 230A, 230A project to the outside of the flow path, and the unit refractory bricks 230 are brought into contact with each other at the ears 230A, so that the joint 234 extends radially from the center of the flow path. Is formed in.

【0054】これにより、実施の形態の上昇管216
は、ユニット耐火煉瓦230の厚みを厚くすることなく
目地部234の長さを長くとることができるので、煉瓦
コストを抑えて目地部234からの溶融ガラスGのしみ
出しを防止できる。また、ユニット耐火煉瓦230を薄
くする必要もないので、ユニット耐火煉瓦230の強度
を保持できる。
As a result, the rising pipe 216 of the embodiment
Since the joint portion 234 can be made long without increasing the thickness of the unit refractory brick 230, the brick cost can be suppressed and the exudation of the molten glass G from the joint portion 234 can be prevented. Further, since it is not necessary to make the unit refractory brick 230 thin, the strength of the unit refractory brick 230 can be maintained.

【0055】図7は、第4の実施の形態の導管構造を示
す上昇管316の横断面図である。
FIG. 7 is a cross-sectional view of the rising pipe 316 showing the conduit structure of the fourth embodiment.

【0056】同図に示す上昇管316は、6個のユニッ
ト耐火煉瓦330、330…を組み付けることにより構
成され、その流路32の横断面が六角形形状に形成され
ている。また、上昇管316は、目地部334の外側部
に冷却管40が配置され、この冷却管40を流れる水等
によって目地部334が冷却されている。また、目地部
334を形成するユニット耐火煉瓦330は、両端にお
いて突出した耳部330、330Aを有し、耳部330
A、330Aは、流路の外側へ突出しており、ユニット
耐火煉瓦330を耳部330Aにおいてそれぞれ当接さ
せ、目地部334が流路の中心から放射状に伸びる様に
形成されている。
The ascending pipe 316 shown in the figure is constructed by assembling six unit refractory bricks 330, 330 ... And the cross section of the flow passage 32 is formed in a hexagonal shape. Further, in the rising pipe 316, the cooling pipe 40 is arranged outside the joint portion 334, and the joint portion 334 is cooled by water or the like flowing through the cooling pipe 40. Further, the unit refractory brick 330 forming the joint portion 334 has the ear portions 330 and 330A protruding at both ends.
A and 330A are projected to the outside of the flow path, the unit refractory bricks 330 are made to abut at the ear parts 330A, and the joint parts 334 are formed to extend radially from the center of the flow path.

【0057】したがって、横断面六角形形状の流路32
をもつ上昇管316も、図6に示した横断面矩形状の流
路32をもつ上昇管216と同様な効果を奏する。な
お、流路32の断面は矩形状や六角形形状に限定される
ものではない。
Therefore, the channel 32 having a hexagonal cross section
The ascending pipe 316 having the same structure also has the same effect as the ascending pipe 216 having the flow channel 32 having a rectangular cross section shown in FIG. The cross section of the channel 32 is not limited to a rectangular shape or a hexagonal shape.

【0058】以上述べた実施の形態では、上昇管16と
下降管18の双方を図4、図5、図6及び図7に示す耐
火煉瓦製導管構造にしたが、片方のみを実施の形態の構
造としてもよい。また、減圧脱泡装置の上昇管16、下
降管18に本発明の導管構造を適用した例について説明
したが、高温の溶融ガラスGが流れる流路を持つ導管で
あれば、本発明の導管構造を適用できる。
In the above-described embodiment, both the ascending pipe 16 and the descending pipe 18 have the refractory brick conduit structure shown in FIGS. 4, 5, 6 and 7, but only one of them is of the embodiment. It may be a structure. Further, an example in which the conduit structure of the present invention is applied to the ascending pipe 16 and the descending pipe 18 of the vacuum degassing apparatus has been described. Can be applied.

【0059】また、図4に示した耐火煉瓦30の両端部
分を本体部分よりも流路32の外側に延出形成し、この
延出した部分の外側に冷却管40を配置してもよい。
Further, both end portions of the refractory brick 30 shown in FIG. 4 may be formed so as to extend outside the flow path 32 beyond the main body portion, and the cooling pipe 40 may be arranged outside the extended portion.

【0060】[0060]

【発明の効果】以上説明したように本発明に係る溶融ガ
ラスの導管構造によれば、複数の耐火煉瓦を組み付けて
構成される流路の目地部の外側部に目地部冷却手段を配
置し、この目地部冷却手段で目地部を冷却することによ
り、目地部に浸入してきた溶融ガラスを冷却し、目地部
の浸食を抑制し、目地部からの溶融ガラスのしみ出しを
防止でき、かつ、耐火煉瓦の外側に配置されたバックア
ップ炉材や断熱耐火物の浸食を防止できる。
As described above, according to the conduit structure for molten glass according to the present invention, the joint portion cooling means is arranged on the outer side of the joint portion of the flow path constituted by assembling a plurality of refractory bricks, By cooling the joint part with this joint part cooling means, the molten glass that has entered the joint part is cooled, erosion of the joint part is suppressed, and exudation of the molten glass from the joint part can be prevented, and fire resistance It is possible to prevent erosion of backup furnace materials and heat-resistant refractories placed on the outside of bricks.

【0061】また、本発明によれば、流路の断面を多角
形形状に形成するとともに、この断面多角形形状の流路
において、溶融ガラスの流速が遅い隅部に目地部を形成
したので、目地部の浸食を抑えることができ、かつ、目
地部の外側部に目地部冷却手段を配置し、この目地部冷
却手段で目地部を冷却することにより、目地部の浸食を
防止し、目地部に浸入してきた溶融ガラスを冷却し、目
地部からの溶融ガラスのしみ出しを防止したので、耐火
煉瓦の外側に配置されたバックアップ炉材や断熱耐火物
の浸食を防止できる。
Further, according to the present invention, since the cross section of the flow channel is formed in a polygonal shape, and in the flow channel having the polygonal cross section, the joint portion is formed at the corner where the flow velocity of the molten glass is slow, Erosion of the joint can be suppressed, and the joint cooling means is arranged on the outer side of the joint, and by cooling the joint with this joint cooling means, the corrosion of the joint can be prevented, and the joint can be prevented. Since the molten glass that has infiltrated into the refractory is cooled and exudation of the molten glass from the joints is prevented, it is possible to prevent erosion of the backup furnace material and adiabatic refractory disposed outside the refractory brick.

【0062】また、本発明は、導管の流路断面を構成す
る複数の耐火煉瓦は、耐火煉瓦の両端において突出した
耳部を有するユニット耐火煉瓦であって、耳部は流路の
外側に突出しており、ユニット耐火煉瓦を前記耳部にお
いてそれぞれ当接させ、目地部が流路の中心から放射状
に伸びる様に形成したので、耐火煉瓦の厚みを厚くする
ことなく目地部の長さを長くとることができる。よっ
て、耐火煉瓦コストを抑えて目地部からの溶融ガラスの
しみ出しを防止できる。更に、耐火煉瓦を薄くする必要
もないので、耐火煉瓦の強度を低下させることなく、よ
って、ガラスの高品質を保持できる。
Further, according to the present invention, the plurality of refractory bricks forming the channel cross section of the conduit is a unit refractory brick having protruding ears at both ends of the refractory brick, and the ears projecting to the outside of the channel. The unit refractory bricks are brought into contact with each other at the ears, and the joints are formed so as to extend radially from the center of the flow path, so that the joints are made longer without increasing the thickness of the refractory bricks. be able to. Therefore, the cost of refractory bricks can be suppressed and the exudation of the molten glass from the joint can be prevented. Furthermore, since it is not necessary to make the refractory brick thin, the strength of the refractory brick is not reduced, and thus the high quality of the glass can be maintained.

【0063】一方、本発明に係る溶融ガラスの減圧脱泡
装置によれば、溶融ガラスの減圧脱泡装置の上昇管と下
降管のうち少なくとも一方に、前記溶融ガラスの導管構
造を採用したので、使用寿命が長くなる。
On the other hand, according to the vacuum degassing apparatus for molten glass of the present invention, the above-mentioned molten glass conduit structure is used for at least one of the ascending pipe and the descending pipe of the vacuum degassing apparatus for molten glass. Use life is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態に係る導管構造が適用された減圧脱
泡装置を示す斜視図
FIG. 1 is a perspective view showing a vacuum degassing apparatus to which a conduit structure according to an embodiment is applied.

【図2】図1に示した減圧脱泡装置の断面図2 is a sectional view of the vacuum degassing apparatus shown in FIG.

【図3】上昇管の第1の実施の形態を示す拡大断面図FIG. 3 is an enlarged sectional view showing a first embodiment of a rising pipe.

【図4】図3に示した上昇管の横断面図FIG. 4 is a cross-sectional view of the rising pipe shown in FIG.

【図5】上昇管の第2の実施の形態を示す横断面図FIG. 5 is a cross-sectional view showing a second embodiment of the rising pipe.

【図6】上昇管の第3の実施の形態を示す横断面図FIG. 6 is a cross-sectional view showing a third embodiment of a rising pipe.

【図7】上昇管の第4の実施の形態を示す横断面図FIG. 7 is a cross-sectional view showing a fourth embodiment of a rising pipe.

【符号の説明】[Explanation of symbols]

10…減圧脱泡装置、12…減圧ハウジング、14…減
圧脱泡槽、16、116、216、316…上昇管、1
8…下降管、20…上流案内管、22…上流側ピット、
24…下流案内管、26…下流側ピット、28、30、
130、131…耐火煉瓦、32…流路、34、13
4、234、334…目地部、36、136、236、
336…隅部
10 ... Vacuum degassing apparatus, 12 ... Vacuum housing, 14 ... Vacuum degassing tank, 16, 116, 216, 316 ... Ascending pipe, 1
8 ... Down pipe, 20 ... Upstream guide pipe, 22 ... Upstream pit,
24 ... Downstream guide pipe, 26 ... Downstream pit, 28, 30,
130, 131 ... Refractory bricks, 32 ... Flow paths, 34, 13
4, 234, 334 ... Joints, 36, 136, 236,
336 ... Corner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 道人 神奈川県横浜市鶴見区末広町1丁目1番地 旭硝子株式会社内 (72)発明者 坂井 光美 千葉県船橋市北本町1丁目10番1号 旭硝 子株式会社内 (72)発明者 北村 礼 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Michito Sasaki             1-1 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Asahi Glass Co., Ltd. (72) Inventor Mitsumi Sakai             Asahi Shota 1-10-1 Kitahonmachi, Funabashi City, Chiba Prefecture             Child Co., Ltd. (72) Inventor Rei Kitamura             1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa             Asahi Glass Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温の溶融ガラスが流れる流路が形成さ
れた溶融ガラスの導管構造において、 前記導管は、前記流路の断面形状が所定の形状になるよ
うに複数の耐火煉瓦を組み付けて構成されるとともに、
これらの耐火煉瓦による目地部の外側部に目地部冷却手
段が配置されたことを特徴とする溶融ガラスの導管構
造。
1. A conduit structure of molten glass in which a channel through which high-temperature molten glass flows is formed, wherein the conduit is constructed by assembling a plurality of refractory bricks so that the channel has a predetermined cross-sectional shape. As well as
A conduit structure for molten glass, characterized in that a joint portion cooling means is arranged outside the joint portion made of these refractory bricks.
【請求項2】 高温の溶融ガラスが流れる流路が形成さ
れた溶融ガラスの導管構造において、 前記導管は、前記流路の断面形状が多角形形状になるよ
うに複数の耐火煉瓦を組み付けて構成されるとともに、
これらの耐火煉瓦による目地部が多角形形状流路の隅部
に形成され、該目地部の外側部に目地部冷却手段が配置
されたことを特徴とする溶融ガラスの導管構造。
2. A conduit structure of molten glass in which a channel through which high-temperature molten glass flows is formed, wherein the conduit is constructed by assembling a plurality of refractory bricks so that the channel has a polygonal cross-sectional shape. As well as
A conduit structure for molten glass, characterized in that a joint portion made of these refractory bricks is formed at a corner portion of a polygonal flow path, and a joint portion cooling means is arranged outside the joint portion.
【請求項3】 前記導管の流路断面を構成する複数の耐
火煉瓦は、前記耐火煉瓦の両端において突出した耳部を
有するユニット耐火煉瓦であって、前記耳部は流路の外
側に突出しており、前記ユニット耐火煉瓦を前記耳部に
おいてそれぞれ当接させ、目地部が流路の中心から放射
状に伸びる様に形成されていることを特徴とする請求項
1又は2に記載の溶融ガラスの導管構造。
3. A plurality of refractory bricks forming a flow passage cross section of the conduit are unit refractory bricks having protruding ears at both ends of the refractory brick, the ears protruding outside of the flow passage. The conduit for molten glass according to claim 1 or 2, wherein the unit refractory bricks are brought into contact with each other at the ears, and joints are formed to extend radially from the center of the flow path. Construction.
【請求項4】 減圧吸引される真空ハウジングと、前記
真空ハウジング内に収容された減圧脱泡槽と、前記減圧
脱泡槽に連通され脱泡処理前の溶融ガラスを減圧脱泡槽
に導入する上昇管と、前記減圧脱泡槽に連通され脱泡処
理後の溶融ガラスを減圧脱泡槽から導出する下降管と、
を有する溶融ガラスの減圧脱泡装置であって、 前記上昇管と前記下降管の少なくともいずれか一方が、
請求項1、2又は3のうちいずれか1項に記載された溶
融ガラスの導管構造を有することを特徴とする溶融ガラ
スの減圧脱泡装置。
4. A vacuum housing which is sucked under reduced pressure, a vacuum degassing tank accommodated in the vacuum housing, and a molten glass which is in communication with the vacuum degassing tank and which has not been degassed is introduced into the vacuum degassing tank. An ascending pipe, and a descending pipe that is in communication with the vacuum degassing tank and leads out the degassed molten glass from the vacuum degassing tank,
A vacuum degassing apparatus for molten glass having, wherein at least one of the ascending pipe and the descending pipe,
A vacuum degassing apparatus for molten glass, comprising the conduit structure for molten glass according to any one of claims 1, 2 and 3.
JP2001320286A 2001-10-18 2001-10-18 Molten glass conduit structure and vacuum degassing apparatus for molten glass Expired - Fee Related JP4061880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320286A JP4061880B2 (en) 2001-10-18 2001-10-18 Molten glass conduit structure and vacuum degassing apparatus for molten glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320286A JP4061880B2 (en) 2001-10-18 2001-10-18 Molten glass conduit structure and vacuum degassing apparatus for molten glass

Publications (2)

Publication Number Publication Date
JP2003128422A true JP2003128422A (en) 2003-05-08
JP4061880B2 JP4061880B2 (en) 2008-03-19

Family

ID=19137699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320286A Expired - Fee Related JP4061880B2 (en) 2001-10-18 2001-10-18 Molten glass conduit structure and vacuum degassing apparatus for molten glass

Country Status (1)

Country Link
JP (1) JP4061880B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109086B2 (en) * 2005-08-19 2012-12-26 旭硝子株式会社 Molten glass conduit structure and vacuum degassing apparatus using the conduit structure
JP2014069992A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Apparatus and method for producing glass substrate
WO2014174968A1 (en) 2013-04-24 2014-10-30 旭硝子株式会社 Molten glass conduit structure, and device and method using conduit structure
WO2016067801A1 (en) * 2014-10-29 2016-05-06 日本電気硝子株式会社 Glass manufacturing device and glass manufacturing method
WO2020045016A1 (en) * 2018-08-30 2020-03-05 日本電気硝子株式会社 Manufacturing device and manufacturing method for glass article
JP2020200217A (en) * 2019-06-10 2020-12-17 日本電気硝子株式会社 Manufacturing method of glass article

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109086B2 (en) * 2005-08-19 2012-12-26 旭硝子株式会社 Molten glass conduit structure and vacuum degassing apparatus using the conduit structure
JP2014069992A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Apparatus and method for producing glass substrate
WO2014174968A1 (en) 2013-04-24 2014-10-30 旭硝子株式会社 Molten glass conduit structure, and device and method using conduit structure
US9637407B2 (en) 2013-04-24 2017-05-02 Asahi Glass Company, Limited Molten glass conduit structure, and device and method using conduit structure
WO2016067801A1 (en) * 2014-10-29 2016-05-06 日本電気硝子株式会社 Glass manufacturing device and glass manufacturing method
JP2016088754A (en) * 2014-10-29 2016-05-23 日本電気硝子株式会社 Glass manufacturing apparatus and glass manufacturing method
CN106795027A (en) * 2014-10-29 2017-05-31 日本电气硝子株式会社 Glass manufacturing apparatus and glass-making processes
CN106795027B (en) * 2014-10-29 2021-02-19 日本电气硝子株式会社 Glass manufacturing device and glass manufacturing method
WO2020045016A1 (en) * 2018-08-30 2020-03-05 日本電気硝子株式会社 Manufacturing device and manufacturing method for glass article
JP2020200217A (en) * 2019-06-10 2020-12-17 日本電気硝子株式会社 Manufacturing method of glass article
JP7222312B2 (en) 2019-06-10 2023-02-15 日本電気硝子株式会社 Method for manufacturing glass article

Also Published As

Publication number Publication date
JP4061880B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US7650764B2 (en) Vacuum degassing apparatus for molten glass
JP5024045B2 (en) Platinum or platinum alloy hollow tube backup structure
JP5700046B2 (en) Vacuum degassing apparatus for molten glass, vacuum degassing method for molten glass, glass product manufacturing apparatus, and glass product manufacturing method
JP3823544B2 (en) Vacuum degassing apparatus for molten glass and manufacturing method thereof
TWI394724B (en) A ductile structure of a molten glass, a vacuum degassing apparatus using the same, and a vacuum degassing method using a molten glass structure
JP2003128422A (en) Conduit structure for molten glass and reduced pressure deaerator for molten glass
US6948338B2 (en) Vacuum degassing apparatus for molten glass
KR100613638B1 (en) Vacuum degassing apparatus for molten glass
JP5423666B2 (en) Vacuum degassing equipment for molten glass
JP3861459B2 (en) Vacuum degassing equipment for molten glass
JP4674432B2 (en) Molten glass conduit structure, molten glass vacuum degassing apparatus, molten glass manufacturing method and glass article manufacturing method
JP2000007344A5 (en)
JP3915268B2 (en) Vacuum degassing equipment for molten glass
JP3005210B2 (en) Furnace material for vacuum degassing equipment for molten glass and vacuum degassing equipment
JP3915288B2 (en) Vacuum degassing equipment for molten glass
JP4513248B2 (en) Vacuum degassing apparatus and vacuum degassing method
JP2003160340A (en) Vacuum degassing apparatus
JP4058935B2 (en) Vacuum deaerator
JPH11130444A (en) Reduced pressure deforming apparatus for molten glass
JP2006219371A (en) Vacuum degassing apparatus for molten glass and its manufacturing method
CN213296847U (en) Heat retaining electric smelting brick gives sound insulation
JP2015134691A (en) Float glass manufacturing method and float glass manufacturing apparatus
JP2002060816A (en) Stave
JP2005024212A (en) Metal melting and holding furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees