JP2003125530A - Leakage detection device for high-voltage vehicle - Google Patents

Leakage detection device for high-voltage vehicle

Info

Publication number
JP2003125530A
JP2003125530A JP2001317148A JP2001317148A JP2003125530A JP 2003125530 A JP2003125530 A JP 2003125530A JP 2001317148 A JP2001317148 A JP 2001317148A JP 2001317148 A JP2001317148 A JP 2001317148A JP 2003125530 A JP2003125530 A JP 2003125530A
Authority
JP
Japan
Prior art keywords
voltage
leakage
circuit
power supply
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001317148A
Other languages
Japanese (ja)
Inventor
Hideomi Adachi
英臣 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001317148A priority Critical patent/JP2003125530A/en
Publication of JP2003125530A publication Critical patent/JP2003125530A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect leakage of a DC power supply system, in an electric vehicle by blocking misdetermination of ground fault. SOLUTION: This leakage detector for high-voltage vehicle, which detects leakage of the DC power supply system electrically insulated from a vehicle body in an electric vehicle, is provided with a leakage detector, including an oscillating part OS which oscillates the AC signal of a constant level, and outputs the AC signal to the DC power supply system B through a capacitor C and a determining section for determining whether the level of the outputted AC signal drops by a voltage drop amount, caused by an insulation resistor, occurring between the DC power supply B and the vehicle body during leakage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば、電気自
動車に搭載した駆動用バッテリからの漏電を検出する高
電圧車両用漏電検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leak detector for a high-voltage vehicle, which detects a leak from a driving battery mounted on an electric vehicle, for example.

【0002】[0002]

【従来の技術】従来、このような漏電検出器として、例
えば、図7に示す漏電検知方法(特開昭57−1192
63号公報)がある。この方法は交流電源71から交流
電圧が、常時、直流電源Bgと接地との間に印加され、
またコンデンサ74は直流電源Bgに対して等価的に示
す対地キャパシタンスとして作用する。
2. Description of the Related Art Conventionally, as such an earth leakage detector, for example, an earth leakage detecting method shown in FIG. 7 (Japanese Patent Laid-Open No. 57-1192).
63). In this method, an AC voltage is constantly applied from the AC power supply 71 between the DC power supply Bg and the ground,
Further, the capacitor 74 acts as an equivalent capacitance to ground for the DC power source Bg.

【0003】一方、可変コンデンサ75の容量値をコン
デンサ74の容量と同じ値に設定しておけば、差動変流
器72の一次巻線でコンデンサ75から流れる電流はコ
ンデンサ74に流れる電流を相殺し、起磁力が零となる
ので、差動変流器72の二次巻線にはほとんど電流が流
れない。
On the other hand, if the capacitance value of the variable capacitor 75 is set to the same value as the capacitance of the capacitor 74, the current flowing from the capacitor 75 in the primary winding of the differential current transformer 72 cancels the current flowing in the capacitor 74. However, since the magnetomotive force becomes zero, almost no current flows in the secondary winding of the differential current transformer 72.

【0004】しかし、直流電源Bgの内部又は母線に短
絡事故が生じると、コンデンサ74のキャパシタンスが
変化し、その結果コンデンサ75との相殺関係が崩れ、
差動変流器72の二次巻線に出力を生じ、この出力信号
を検出すれば直流電源Bg側の漏電を検知できる。
However, when a short-circuit accident occurs in the DC power source Bg or in the bus bar, the capacitance of the capacitor 74 changes, and as a result, the canceling relationship with the capacitor 75 is broken.
An output is generated in the secondary winding of the differential current transformer 72, and by detecting this output signal, the leakage current on the DC power supply Bg side can be detected.

【0005】また、車両に搭載したバッテリーと車体と
の間の漏電を検出する従来の回路として、特開平8−7
0503号公報に示す検出回路がある。この検出回路は
図5および図6に示す様に、走行駆動回路系Aにおける
車体Eへの地絡を検出するためのもので、交流信号出力
回路として発振回路10と、電圧レベル変化検出回路と
して検出部20とからなり、発振回路10と検出部20
との接続点Pと走行駆動回路系Aのバッテリ群Bのプラ
ス母線4との間がカップリングコンデンサ10Aで接続
されており、直流成分が遮断される。
Further, as a conventional circuit for detecting electric leakage between a battery mounted on a vehicle and a vehicle body, Japanese Patent Laid-Open No. 8-7
There is a detection circuit shown in Japanese Patent No. 0503. As shown in FIGS. 5 and 6, this detection circuit is for detecting a ground fault to the vehicle body E in the traveling drive circuit system A. The detection circuit is an oscillation circuit 10 as an AC signal output circuit and a voltage level change detection circuit. The detecting unit 20 and the oscillation circuit 10 and the detecting unit 20.
A coupling capacitor 10A connects between a connection point P of the connection point P and the positive bus 4 of the battery group B of the traveling drive circuit system A, and the DC component is cut off.

【0006】発振回路10において発振器11は、デュ
ーティ比50%の一定周波数の矩形波パルスを発生し、
次段のインピーダンス変換器12は、発振器11の矩形
波パルスをそのままのデューティ比で出力し、発振回路
10の交流信号出力は、検出抵抗13を介して接続点P
に現れる。検出抵抗13は、地絡発生時に、地絡抵抗3
1によって分圧器として作用する。
In the oscillator circuit 10, the oscillator 11 generates a rectangular wave pulse having a constant frequency with a duty ratio of 50%,
The impedance converter 12 at the next stage outputs the rectangular wave pulse of the oscillator 11 with the same duty ratio, and the AC signal output of the oscillation circuit 10 is connected to the connection point P via the detection resistor 13.
Appear in. The detection resistor 13 is provided with a ground fault resistor 3 when a ground fault occurs.
1 acts as a voltage divider.

【0007】検出部20には、発振回路10の交流信号
出力が現れる検出抵抗13とカップリングコンデンサ1
0Aとの接続点Pの電圧レベルを基準電圧V1と比較す
るための比較器21が設けられており、接続点Pは比較
器21の反転入力端子に接続されている。比較器21の
非反転入力端子には、分圧抵抗22、23によって基準
電圧V1を設定した基準電圧回路が接続されている。
In the detection section 20, the detection resistor 13 and the coupling capacitor 1 in which the AC signal output of the oscillation circuit 10 appears.
A comparator 21 is provided for comparing the voltage level of the connection point P with 0A with the reference voltage V1, and the connection point P is connected to the inverting input terminal of the comparator 21. A reference voltage circuit in which the reference voltage V1 is set by the voltage dividing resistors 22 and 23 is connected to the non-inverting input terminal of the comparator 21.

【0008】なお、インピーダンス変換器12および比
較器21を構成する演算増幅器は、地絡発生時に逆電
圧、過電圧から保護するため、インピーダンス変換器1
2の出力側、比較器21の入力側に保護用のダイオード
15〜18が接続されている。
Incidentally, the operational amplifiers constituting the impedance converter 12 and the comparator 21 are protected from reverse voltage and overvoltage when a ground fault occurs, so that the impedance converter 1
The protective diodes 15 to 18 are connected to the output side of 2 and the input side of the comparator 21.

【0009】このような回路構成により、地絡が発生し
ていない平常時には、接続点Pのインピーダンスに変化
がないため、比較器21の反転入力端子には、予め設定
した基準電圧V1より高い波高値を有する矩形波パルス
が入力されるため、比較器21の出力はデューティ比5
0%の矩形波パルスとなる。このため、抵抗24および
コンデンサ25の平滑回路26によって現れる平滑電圧
は、基準電圧より低くなり、それが比較器27の非反転
入力端子に入力されて、比較器27の出力は正常を示す
ローレベルとなる。
With such a circuit configuration, the impedance of the connection point P does not change during normal times when a ground fault does not occur. Since a rectangular wave pulse having a high value is input, the output of the comparator 21 has a duty ratio of 5
It becomes a rectangular wave pulse of 0%. Therefore, the smoothed voltage appearing by the smoothing circuit 26 of the resistor 24 and the capacitor 25 becomes lower than the reference voltage, which is input to the non-inverting input terminal of the comparator 27, and the output of the comparator 27 is low level indicating normal. Becomes

【0010】しかし、マイナス母線と車体Eとの間に地
絡が発生し、図5に示す地絡抵抗31が現れた場合に
は、カップリングコンデンサ10Aは、バッテリ群1、
カップリングコンデンサ10A、検出抵抗13、インピ
ーダンス変換器12、アースラインGND、車体E、地
絡抵抗31、バッテリ群Bの経路で、バッテリ群Bの電
圧値まで充電される。
However, if a ground fault occurs between the minus busbar and the vehicle body E and the ground fault resistance 31 shown in FIG. 5 appears, the coupling capacitor 10A is connected to the battery group 1,
The coupling capacitor 10A, the detection resistor 13, the impedance converter 12, the earth line GND, the vehicle body E, the ground fault resistor 31, and the battery group B are charged to the voltage value of the battery group B through the path.

【0011】同時に、インピーダンス変換器12の出力
は、交流信号出力の矩形波パルスであるため、検出抵抗
13、カップリングコンデンサ10A、バッテリ群B、
地絡抵抗31、車体E、インピーダンス変換器12の経
路で伝達し、カップリングコンデンサ10Aの充電完了
と共に、インピーダンス変換器12の出力である矩形波
パルスの波高値が検出抵抗13および地絡抵抗31で分
圧される発振振幅に小さくなって安定する。
At the same time, since the output of the impedance converter 12 is a rectangular wave pulse of the AC signal output, the detection resistor 13, the coupling capacitor 10A, the battery group B,
The peak value of the rectangular wave pulse, which is the output of the impedance converter 12, is transmitted through the path of the ground fault resistance 31, the vehicle body E, and the impedance converter 12 and the charging of the coupling capacitor 10A is completed. The oscillation amplitude divided by is reduced and becomes stable.

【0012】このため、比較器21の反転入力端子に
は、基準電圧V1より低い波高値の矩形波パルスが入力
され、比較器21のデューティ比は100%に変化す
る。この結果、抵抗24およびコンデンサ25の平滑回
路26によって現れる平滑電圧Vrは、基準電圧V2よ
り高くなり、それが比較器27の非反転入力端子に入力
されて、比較器27の出力は地絡を示すハイレベルとな
る。以上の通り、バッテリ群Bにおいて地絡が発生した
場合には、比較器27の論理レベルより地絡を検出する
ことができる。
Therefore, a rectangular wave pulse having a peak value lower than the reference voltage V1 is input to the inverting input terminal of the comparator 21, and the duty ratio of the comparator 21 changes to 100%. As a result, the smoothed voltage Vr generated by the smoothing circuit 26 of the resistor 24 and the capacitor 25 becomes higher than the reference voltage V2, which is input to the non-inverting input terminal of the comparator 27, and the output of the comparator 27 is grounded. It becomes the high level shown. As described above, when the ground fault occurs in the battery group B, the ground fault can be detected from the logic level of the comparator 27.

【0013】[0013]

【発明が解決しようとする課題】上記特開昭57−11
9263号公報に記載された従来技術は、地絡事故を判
定する直流電源と車体間の絶縁抵抗値の変化に拘わりな
く、直流電源がアース側に短絡し対地キャパシタンス1
4が変化してコンデンサ15との相殺関係が崩れ、差動
変流器12の二次巻線に出力が生じた時に地絡を判定す
るものである。そのため地絡事故を判定するための絶縁
抵抗値を設定できず、直流電源と車体間の絶縁劣化が進
行して絶縁抵抗値がどの程度低下した時に地絡事故を判
定するか予め設定することはできなかった。従って、直
流電源と車体間の絶縁劣化が進行し始めると頻繁に地絡
事故を判定することになり、事故判定に対する信頼性が
低い。また、対地キャパシタンス14が多少変化しても
コンデンサ15との相殺関係が崩れて差動変流器12の
二次巻線に出力が生じるため、地絡事故判定を正確に行
えなかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the conventional technology disclosed in Japanese Patent No. 9263, the DC power supply is short-circuited to the ground side regardless of the change in the insulation resistance value between the DC power supply for judging a ground fault and the vehicle body, and the ground capacitance 1
4 is changed, the canceling relationship with the capacitor 15 is broken, and an output is generated in the secondary winding of the differential current transformer 12, a ground fault is determined. Therefore, the insulation resistance value for determining the ground fault cannot be set, and it is not possible to set in advance how much the insulation resistance between the DC power supply and the vehicle body will deteriorate and the insulation resistance value will decrease. could not. Therefore, when the insulation deterioration between the DC power supply and the vehicle body starts to progress, a ground fault is frequently determined, and the reliability of the fault determination is low. Further, even if the ground capacitance 14 is slightly changed, the canceling relationship with the capacitor 15 is broken and an output is generated in the secondary winding of the differential current transformer 12, so that the ground fault accident determination cannot be accurately performed.

【0014】特開平8−70503号公報に記載された
従来技術は、インピーダンス変換器12を通して発振器
11より比較器21に入力される矩形波パルスのレベル
はダイオードの順方向電圧のみで制限される。そのた
め、周囲温度の上昇によりダイオードの順方向電圧に変
化が生じて矩形波パルスのレベルが、地絡判定用の基準
電圧V1より低下して比較器21に入力されると地絡事
故を誤判定することになる。
In the conventional technique disclosed in Japanese Patent Laid-Open No. 8-70503, the level of the rectangular wave pulse input from the oscillator 11 to the comparator 21 through the impedance converter 12 is limited only by the forward voltage of the diode. Therefore, when the ambient voltage rises, the forward voltage of the diode changes, and the level of the rectangular wave pulse falls below the reference voltage V1 for ground fault determination and is input to the comparator 21, so that a ground fault accident is erroneously determined. Will be done.

【0015】この発明は、上記のような問題点を解消す
るためになされたもので、ダイオードの温度特性に影響
を受けず、また絶縁破壊時の絶縁抵抗値を予め設定する
ことで地絡発生の誤判定を阻止して信頼性よく漏電を検
出することができる高電圧車両用漏電検出器を得ること
を目的とする。
The present invention has been made to solve the above problems, and is not affected by the temperature characteristics of the diode, and a ground fault occurs by presetting the insulation resistance value at the time of dielectric breakdown. It is an object of the present invention to provide a leakage detector for a high-voltage vehicle that can prevent the erroneous determination of and reliably detect the leakage.

【0016】[0016]

【課題を解決するための手段】この発明は図1の基本構
成図に示すように、電気自動車内で車体と電気的に絶縁
された直流電源系統の漏電を検出する高電圧車両用漏電
検出器において、一定レベルの交流信号を発振し、この
交流信号をコンデンサCを通して前記直流電源系統Bに
出力する発振部OSと、この出力された交流信号のレベ
ルが、漏電時に前記直流電源系統Bと車体間に発生する
絶縁抵抗による電圧降下分、低下したかを判定する判定
部とを含む漏電検出器LEDを備えたものである。
As shown in the basic configuration diagram of FIG. 1, the present invention is a high voltage vehicle leakage detector for detecting a leakage of a DC power supply system electrically insulated from a vehicle body in an electric vehicle. , An oscillating unit OS that oscillates an AC signal of a constant level and outputs this AC signal to the DC power supply system B through a capacitor C, and the level of the output AC signal is the DC power supply system B and the vehicle body at the time of leakage. A leakage detector LED including a determination unit that determines whether or not a voltage drop due to an insulation resistance that occurs between the two is provided.

【0017】この発明によれば、直流電源系統と車体間
の絶縁が劣化して、直流電源系統と車体に絶縁抵抗が生
じたならば発振部より出力された一定レベルの交流信号
はコンデンサ、絶縁抵抗を通してアースとなる車体に流
れるため、この流れる交流信号を電圧にて検出し、この
電圧レベルが予めその抵抗値を設定した絶縁抵抗の両端
電圧分低下したかを判定することで漏電検出を行う。
According to the present invention, if the insulation between the DC power supply system and the vehicle body deteriorates and an insulation resistance occurs between the DC power supply system and the vehicle body, a constant level AC signal output from the oscillating unit is isolated by the capacitor and the insulation. Since the current flows through the resistor to the vehicle body that serves as the ground, this AC signal that flows is detected as a voltage, and it is determined whether or not this voltage level has dropped by the voltage across the insulation resistance for which the resistance value has been set in advance. .

【0018】この発明に係る高電圧車両用漏電検出器に
おける絶縁抵抗の値は直流電源系統より車体に漏電電流
が流れると予想されるしきい値で予め設定する。この発
明によれば、絶縁抵抗の値を、直流電源系統と車体間の
絶縁が劣化して漏電が開始されるしきい値にて設定する
ことで、検出した交流信号のレベルが、しきい値を超え
た絶縁抵抗における電圧降下分、低下したかを判定する
ことで漏電検出を行う。
The value of the insulation resistance in the leakage detector for a high-voltage vehicle according to the present invention is preset with a threshold value at which leakage current is expected to flow from the DC power supply system to the vehicle body. According to the present invention, the value of the insulation resistance is set at the threshold value at which the insulation between the DC power supply system and the vehicle body is deteriorated and the electric leakage is started. Leakage detection is performed by determining whether the voltage has dropped by the amount of voltage drop in the insulation resistance that exceeded.

【0019】この発明に係る高電圧車両用漏電検出器に
おける発振部OSは温度補償手段を設けたものである。
この発明によれば、発振部OSは温度補償手段を設ける
ことにより、発振される交流信号は周囲温度の上昇によ
りそのレベルが変動することがないため、交流信号のレ
ベルに基づいて漏電検出を行う際にも、周囲温度の上昇
により漏電の誤検出を阻止できる。
The oscillator section OS in the leakage detector for a high-voltage vehicle according to the present invention is provided with temperature compensating means.
According to the present invention, by providing the temperature compensating means in the oscillating unit OS, the level of the oscillated AC signal does not fluctuate due to the rise in the ambient temperature, so that the leakage detection is performed based on the level of the AC signal. Also in this case, it is possible to prevent erroneous detection of electric leakage due to an increase in ambient temperature.

【0020】[0020]

【発明の実施の形態】実施の形態 次に本発明における高電圧車両用漏電検出器の実施の形
態を図について説明する。図2は本実施の形態に係る高
電圧車両用漏電検出器の回路構成を示す図である。図に
おいて、PGは無安定マルチバイブレータから構成され
る矩形波パルス(以下、矩形波と記載する。)発振回路
である。この矩形波発振回路PGは、演算増幅器Q3の
反転入力端子(+入力端子と記載する。)に印加するバ
イアス電圧(+6V)を、抵抗R31,32との分圧比
で決まる電圧に設定することでデューティ比50%の矩
形波を出力するようにしている。また、パルス幅はコン
デンサC3と帰還抵抗R34との時定数と+入力端子に
かかる電圧にて決まる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a leakage detector for a high-voltage vehicle according to the present invention will be described with reference to the drawings. FIG. 2 is a diagram showing a circuit configuration of the leakage detector for a high voltage vehicle according to the present embodiment. In the figure, PG is a rectangular wave pulse (hereinafter, referred to as rectangular wave) oscillation circuit composed of an astable multivibrator. In this rectangular wave oscillating circuit PG, the bias voltage (+6 V) applied to the inverting input terminal (described as + input terminal) of the operational amplifier Q3 is set to a voltage determined by the voltage division ratio between the resistors R31 and R32. A rectangular wave with a duty ratio of 50% is output. The pulse width is determined by the time constant of the capacitor C3 and the feedback resistor R34 and the voltage applied to the + input terminal.

【0021】矩形波発振回路PGは抵抗R4を通して矩
形波を演算増幅器Q4で構成されるインピーダンス変換
回路に入力するが、演算増幅器Q4の+入力端子には入
力される矩形波の振幅p−pを、一定値に制限する理想
ダイオードから構成される制限回路(温度補償手段)L
M1,LM2が接続されている。
The rectangular wave oscillating circuit PG inputs the rectangular wave to the impedance conversion circuit composed of the operational amplifier Q4 through the resistor R4, and the amplitude pp of the rectangular wave input to the + input terminal of the operational amplifier Q4. , A limiting circuit (temperature compensating means) L composed of an ideal diode for limiting to a constant value
M1 and LM2 are connected.

【0022】制限回路LM1は、入力された矩形波のハ
イ側レベルを演算増幅器Q1の+入力端子に抵抗R11
とR12との分圧比できまる基準電圧(Vh=+4V)
に制限するように動作する。また、制限回路LM2は、
入力された矩形波のロー側レベルを演算増幅器Q2の+
入力端子に抵抗R21とR22との分圧比できまる基準
電圧(Vl=+1V)に制限するように動作する。従っ
て、インピーダンス変換回路を構成する演算増幅器Q4
を通して出力される矩形波はピーク−ピークの振幅は3
Vとなる。
The limiting circuit LM1 connects the high side level of the input rectangular wave to the + input terminal of the operational amplifier Q1 by the resistor R11.
Reference voltage (Vh = + 4V) that can be calculated by the voltage division ratio of R12 and R12
Works to limit to. Further, the limiting circuit LM2 is
The low side level of the input rectangular wave is set to + of the operational amplifier Q2.
The input terminal operates so as to be limited to the reference voltage (Vl = + 1V) that can be obtained by the voltage division ratio of the resistors R21 and R22. Therefore, the operational amplifier Q4 forming the impedance conversion circuit
The square wave output through is peak-peak with an amplitude of 3
It becomes V.

【0023】インピーダンス変換回路Q4の出力は直列
接続された検出抵抗R1、抵抗R2を通して整流回路R
ECに入力される。この整流回路RECは演算増幅器Q
51からなるインピーダンス変換回路Q51、インピー
ダンス変換回路Q51より出力された矩形波を半波整流
する整流ダイオードD51,52、演算増幅器Q52等
を用いて構成した理想ダイオード、インピーダンス変換
回路Q51の出力と理想ダイオードの整流出力を加算し
て出力電圧の正・負極性に関係なく、その大きさに比例
した単一極性の電圧を出力する反転増幅加算回路(以
下、加算回路と記載する。)より構成されている。
The output of the impedance conversion circuit Q4 passes through a detection resistor R1 and a resistor R2 connected in series, and a rectifier circuit R
Input to EC. This rectifier circuit REC is an operational amplifier Q
An impedance conversion circuit Q51 composed of 51, rectifying diodes D51 and 52 for half-wave rectifying the rectangular wave output from the impedance conversion circuit Q51, an ideal diode configured by using an operational amplifier Q52, the output of the impedance conversion circuit Q51 and the ideal diode. It is configured by an inverting amplification adder circuit (hereinafter, referred to as an adder circuit) that adds the rectified outputs of the above and outputs a voltage of a single polarity proportional to the magnitude of the output voltage regardless of the positive or negative polarity of the output voltage. There is.

【0024】理想用ダイオードにおける演算増幅器Q5
2は、+入力端子に、矩形波の振幅の中心を0Vから見
て2.5Vに設定するように、電源電圧6Vを抵抗R5
1,R52の抵抗比で分圧した2.5Vが基準電圧とし
て印加され、また−入力端子(非反転入力端子)と出力
端子との間には、−入力端子にカソードを、出力端子に
アノードを接続したダイオードD51を接続し、出力端
子にカソードを接続したダイオードD52のアノードと
−入力端子との間に帰還抵抗R54を接続し、−入力端
子とインピーダンス変換回路Q51の出力端子に入力抵
抗R52を接続して構成している。
Operational amplifier Q5 in ideal diode
2 has a power supply voltage of 6 V and a resistor R5 at the + input terminal so that the center of the amplitude of the rectangular wave is set to 2.5 V when viewed from 0 V.
2.5 V divided by the resistance ratio of R1 and R52 is applied as a reference voltage, and between the −input terminal (non-inverting input terminal) and the output terminal, the cathode is at the −input terminal and the anode is at the output terminal. The feedback resistor R54 is connected between the anode of the diode D52 having the cathode connected to the output terminal and the −input terminal, and the input resistor R52 is connected to the −input terminal and the output terminal of the impedance conversion circuit Q51. Are connected and configured.

【0025】また、加算回路を構成する演算増幅器Q5
3は、+入力端子に、矩形波の振幅の中心を2.5Vに
設定するように電源電圧6Vを抵抗R51,R52の抵
抗比で分圧した2.5Vが基準電圧として印加され、−
入力端子と出力端子との間にはコンデンサC5と帰還抵
抗R57の並列回路を接続し、−入力端子と理想ダイオ
ード側のダイオードD52のアノードとの間には入力抵
抗R56を接続している。
Further, an operational amplifier Q5 forming an adder circuit.
In No. 3, 2.5 V obtained by dividing the power supply voltage 6 V by the resistance ratio of the resistors R51 and R52 is applied as a reference voltage to the + input terminal so that the center of the amplitude of the rectangular wave is set to 2.5 V.
A parallel circuit of a capacitor C5 and a feedback resistor R57 is connected between the input terminal and the output terminal, and an input resistor R56 is connected between the negative input terminal and the anode of the diode D52 on the ideal diode side.

【0026】理想ダイオードを構成する入力抵抗R52
と帰還抵抗R54とは同抵抗値とし、演算増幅器Q52
のゲインを1とする。また、加算回路を構成する入力抵
抗R56の値は帰還抵抗R57の値に対して1/2とし
演算増幅器Q53のゲインを2とする。
Input resistor R52 forming an ideal diode
And the feedback resistor R54 have the same resistance value, and the operational amplifier Q52
The gain of is set to 1. Further, the value of the input resistor R56 forming the adder circuit is 1/2 of the value of the feedback resistor R57, and the gain of the operational amplifier Q53 is 2.

【0027】また、加算回路は直流出力を得るために、
矩形波から成る加算結果を帰還抵抗R57とコンデンサ
C5との積分時定数で平滑化して直流電圧を比較回路に
出力し、漏電判定するしきい値と比較されて漏電判定を
行う。比較回路を構成する演算増幅器Q6は、+入力端
子と演算増幅器Q53との間に入力抵抗R63を接続
し、また+入力端子と出力端子との間に帰還抵抗R64
を接続している。
In order to obtain a DC output, the adder circuit
The addition result composed of a rectangular wave is smoothed by the integration time constant of the feedback resistor R57 and the capacitor C5, and a DC voltage is output to the comparison circuit. The operational amplifier Q6 that constitutes the comparison circuit has an input resistor R63 connected between the + input terminal and the operational amplifier Q53, and a feedback resistor R64 between the + input terminal and the output terminal.
Are connected.

【0028】−入力端子には抵抗R61,R62との抵
抗比で決まる電圧のしきい値が印加される。出力端子は
抵抗R65を通してオープンコレクタTRのベースに接
続される。
A voltage threshold value determined by the resistance ratio of the resistors R61 and R62 is applied to the input terminal. The output terminal is connected to the base of the open collector TR through the resistor R65.

【0029】比較回路Q6は加算回路Q53に混入した
ノイズにより誤動作を生じないように、出力がローから
ハイに変わる直流入力電圧と、ハイからローに変わる直
流入力電圧に有る程度の幅を持たせシュミット回路を採
用している。
The comparator circuit Q6 should have a width within the range of the DC input voltage whose output changes from low to high and the DC input voltage whose output changes from high to low so as to prevent malfunction due to noise mixed in the adder circuit Q53. Uses a Schmidt circuit.

【0030】上記インピーダンス変換回路Q4の出力端
子と整流回路REC側におけるインピーダンス変換回路
Q51の入力端子との間に挿入された、直列回路からな
る検出抵抗R1及び抵抗R2の接続点と車載用バッテリ
ー群Bgの−電極端子との間には、車載用バッテリー群
Bgと本回路とを直流的に絶縁すると共に、矩形波発振
回路PGよりインピーダンス変換回路Q4を通して出力
された矩形波を、検出抵抗R1を通して車載用バッテリ
ー群Bgの−電極端子Nおよび車載用バッテリー群Bg
の+電極端子Pに流すカップリングコンデンサCPが接
続されている。インピーダンス変換回路Q4の出力端子
とインピーダンス変換回路Q51の入力端子には、アー
スに対してツェナーダイオードZD1,ZD2が過電圧
保護、逆電圧保護の目的で接続されている。
A connection point between the detection resistor R1 and the resistor R2 formed of a series circuit inserted between the output terminal of the impedance conversion circuit Q4 and the input terminal of the impedance conversion circuit Q51 on the rectifier circuit REC side, and a vehicle battery group. Between the negative electrode terminal of Bg, the in-vehicle battery group Bg and this circuit are galvanically isolated, and the rectangular wave output from the rectangular wave oscillation circuit PG through the impedance conversion circuit Q4 is passed through the detection resistor R1. -Electrode terminal N of vehicle battery group Bg and vehicle battery group Bg
A coupling capacitor CP that flows to the + electrode terminal P of is connected. Zener diodes ZD1 and ZD2 are connected to the ground at the output terminal of the impedance conversion circuit Q4 and the input terminal of the impedance conversion circuit Q51 for the purpose of overvoltage protection and reverse voltage protection.

【0031】以下、本実施の形態に係る高電圧車両用漏
電検出器の動作について説明する。矩形波発振回路PG
は、コンデンサC3,抵抗R33,R34の値でパルス
幅が決まり、抵抗R31,R32の抵抗比で決まるバイ
アス電圧に基づいて設定されたデューティ比50%の矩
形波を、抵抗R4を通して出力する。
The operation of the leakage detector for a high voltage vehicle according to this embodiment will be described below. Square wave oscillator PG
The pulse width is determined by the values of the capacitor C3 and the resistors R33 and R34, and a rectangular wave having a duty ratio of 50% set based on the bias voltage determined by the resistance ratio of the resistors R31 and R32 is output through the resistor R4.

【0032】矩形波は図3のCH1に示すようにハイレ
ベルが約5V、ローレベルが0.5Vのパルス信号であ
る。この矩形波は同じく図3のCH2に示されるよう
に、ハイレベルは制限回路LM1により+4に制限され
ると共にローレベルは制限回路LM2により+1に制限
され、最終的にピーク−ピークが3Vに制限された矩形
波がインピーダンス変換回路Q4を通して出力される。
インピーダンス変換回路Q4は、地絡発生時に負荷イン
ピーダンスが変動しても矩形波発振回路PGの発振周波
数が変動しないよう設けてある。
The rectangular wave is a pulse signal having a high level of about 5V and a low level of 0.5V, as indicated by CH1 in FIG. This rectangular wave also has a high level limited to +4 by the limiting circuit LM1 and a low level limited to +1 by the limiting circuit LM2 as shown by CH2 in FIG. The rectangular wave thus generated is output through the impedance conversion circuit Q4.
The impedance conversion circuit Q4 is provided so that the oscillation frequency of the rectangular wave oscillation circuit PG does not change even if the load impedance changes when a ground fault occurs.

【0033】制限回路LM1の動作としては、演算増幅
器Q1の−入力端子に入力される矩形波のハイレベルが
+入力端子に印加されたバイアス電圧+4Vを超えると
演算増幅器Q1の出力端子はローレベルとなり、ダイオ
ードD1が導通し矩形波のハイレベルが+4Vに制限さ
れる。
The operation of the limiting circuit LM1 is as follows. When the high level of the rectangular wave input to the-input terminal of the operational amplifier Q1 exceeds the bias voltage + 4V applied to the + input terminal, the output terminal of the operational amplifier Q1 becomes low level. Then, the diode D1 becomes conductive and the high level of the rectangular wave is limited to + 4V.

【0034】また、制限回路LM2の動作としては、演
算増幅器Q2の−入力端子に入力される矩形波のローレ
ベルが+入力端子に印加されたバイアス電圧+1Vを低
下すると演算増幅器Q2の出力端子はハイレベルとな
り、ダイオードD2が導通し矩形波のローレベルが+1
Vに制限される。
Further, as the operation of the limiting circuit LM2, when the low level of the rectangular wave input to the-input terminal of the operational amplifier Q2 lowers the bias voltage + 1V applied to the + input terminal, the output terminal of the operational amplifier Q2 becomes It becomes high level, the diode D2 becomes conductive and the low level of the rectangular wave becomes +1.
Limited to V.

【0035】ここで、車載用バッテリー群Bgと車体間
の絶縁状態が正常な場合は、車載用バッテリー群Bgの
+および−電極端子と車体間の絶縁抵抗RLは無限大に
近いため、矩形波はカップリングコンデンサCPを通し
て車載用バッテリー群Bgの+電極端子および−電極端
子と車体間に流れることは無く、検出抵抗R1、抵抗R
2を通して整流回路RECに入力される。
Here, when the insulation state between the vehicle-mounted battery group Bg and the vehicle body is normal, the insulation resistance RL between the + and-electrode terminals of the vehicle-mounted battery group Bg and the vehicle body is close to infinity, so that the rectangle The wave does not flow between the + electrode terminal and the − electrode terminal of the vehicle battery group Bg and the vehicle body through the coupling capacitor CP, and the detection resistor R1 and the resistor R
It is input to the rectifier circuit REC through 2.

【0036】整流回路RECにおいては、矩形波はイン
ピーダンス変換回路Q51を通して入力点aに現れて理
想ダイオードに入力されるが、矩形波は経路1L1,経
路2L2の二つの経路を通って加算回路Q53に入力さ
れる。経路1L1を通った矩形波は抵抗R55を通して
インピーダンス変換回路Q51に入力された状態で点c
に現れ加算回路Q53に入力される。一方、経路2L2
を通った点bの現れた矩形波は、矩形波のVm=2.5
V以上を反転した半波整流波形となる。
In the rectifying circuit REC, the rectangular wave appears at the input point a through the impedance conversion circuit Q51 and is input to the ideal diode, but the rectangular wave passes through the two paths 1L1 and 2L2 to the adding circuit Q53. Is entered. The rectangular wave that has passed through the path 1L1 is input to the impedance conversion circuit Q51 through the resistor R55, and the point c
Appears on the input side and is input to the adding circuit Q53. On the other hand, route 2L2
The rectangular wave in which the point b that has passed through appears is Vm = 2.5 of the rectangular wave.
The half-wave rectified waveform is obtained by inverting V or more.

【0037】c点に現れた矩形波はR56=R57でゲ
イン1となる加算器(反転増幅加算器)Q53に入力さ
れ、また点bに現れた矩形波はR56(R57/2)、
R57でゲイン2となる加算器(反転増幅加算器)Q5
3に入力され、各経路1,2L1,L2を通った矩形波
を加算する。
The rectangular wave appearing at point c is input to an adder (inverting amplification adder) Q53 having a gain of 1 when R56 = R57, and the rectangular wave appearing at point b is R56 (R57 / 2),
Adder with gain of 2 at R57 (inverted amplification adder) Q5
The rectangular waves that are input to 3 and have passed through the paths 1, 2L1 and L2 are added.

【0038】加算結果として、経路1L1を通して入力
された矩形を反転すると共に、経路2L2を通して入力
された半波整流波形をレベルを2倍にして反転して双方
の矩形波を加算する。加算器Q53より実際に出力され
る加算後の矩形波は、Vm=2.5V以上の波形はVm
=2.5V以下の波形で減算されてVm=2.5V以上
の整流波形となって出力される。
As a result of the addition, the rectangle input through the path 1L1 is inverted, and the half-wave rectified waveform input through the path 2L2 is doubled in level and inverted to add both rectangular waves. The square wave after addition which is actually output from the adder Q53 has a waveform of Vm = 2.5V or more.
= 2.5V or less is subtracted and a rectified waveform of Vm = 2.5V or more is output.

【0039】この整流波形は抵抗R57とコンデンサC
5の積分回路で平滑され、直流電圧として比較回路Q6
の+入力端子に入力される。比較回路Q6の−入力端子
には、以下の式で導き出した漏電検出判定のしきい値が
設定されている。
This rectified waveform has a resistor R57 and a capacitor C.
It is smoothed by the integrating circuit of No. 5 and is compared with the comparison circuit Q6 as a DC voltage.
Is input to the + input terminal of. The negative input terminal of the comparison circuit Q6 is set with the threshold value of the leakage detection determination derived by the following formula.

【0040】[0040]

【数1】 [Equation 1]

【0041】この式において、RLは絶縁抵抗、1/j
ωCはカップリングコンデンサのインピーダンス、Rは
検出抵抗、VPPは+,−電源電圧、VOSは矩形波電圧レ
ベルである。
In this equation, R L is the insulation resistance, 1 / j
ωC is the impedance of the coupling capacitor, R is the detection resistance, V PP is the + and-power supply voltages, and V OS is the rectangular wave voltage level.

【0042】この式から明らかなように絶縁破壊により
生じる絶縁抵抗RLを、例えば自動車メーカが決めた1
00KΩを低下すると、直流化された矩形波のレベルV
は、絶縁抵抗RLを100KΩにして設定したしきい値
電圧より下がるため比較回路Q6の出力はハイレベルと
なる。
As is clear from this equation, the insulation resistance R L caused by the dielectric breakdown is determined by, for example, 1
When 00KΩ is decreased, the level V of the rectangular wave converted to DC is
Is lower than the threshold voltage set by setting the insulation resistance R L to 100 KΩ, the output of the comparison circuit Q6 becomes high level.

【0043】しかし、絶縁破壊が生じていない間は、矩
形波はカップリングコンデンサCP、擬似的な絶縁抵抗
Lを通してアースに流れることは無いため、カップリ
ングコンデンサCP、絶縁抵抗RLにより電圧降下を起
こし、レベルがしきい値以下に下がることはなく漏電判
定はなされない。
However, as long as the insulation breakdown does not occur, the rectangular wave does not flow to the ground through the coupling capacitor CP and the pseudo insulation resistance R L. Therefore, the voltage drop occurs due to the coupling capacitor CP and the insulation resistance R L. And the level does not drop below the threshold value, and the leakage is not judged.

【0044】しかし、車載用バッテリー群Bgの+電極
端子あるいは−電極端子と車体間の絶縁が劣化し、電極
端子と車体間の絶縁抵抗RLが100KΩ以下に低下す
ると、インピーダンス変換回路Q4より矩形波が、検出
抵抗R1、カップリングコンデンサCP、絶縁抵抗RL
を通して接地側に流れる。点Xにおいて抵抗R2の両端
に現れる矩形波のレベルは上記式で示されるように検出
抵抗R1、絶縁抵抗R L、カップリングコンデンサCP
のインピーダンス1/jωCによる電圧降下分だけレベ
ルは低下する。
However, the positive electrode of the on-vehicle battery group Bg
Insulation between the terminal or-electrode terminal and the car body deteriorates
Insulation resistance R between terminal and car bodyLDrops below 100 KΩ
Then, the rectangular wave is detected by the impedance conversion circuit Q4.
Resistance R1, coupling capacitor CP, insulation resistance RL
Through to the ground side. Both ends of the resistor R2 at the point X
The square wave level appearing at is detected as shown in the above equation.
Resistance R1, insulation resistance R L, Coupling capacitor CP
Of the voltage drop due to the impedance 1 / jωC of
Le drops.

【0045】この絶縁抵抗RLの発生によりレベルが低
下した矩形波を整流回路RECにおいて全波整流し平滑
化した後に、抵抗R63を通して比較回路Q6の+入力
端子に入力すると、平滑化信号のレベルは抵抗61,6
2の抵抗比で決まる基準電圧と比較される。平滑化信号
のレベルが基準電圧より低下すると、比較回路Q6の出
力端子はローレベルからハイレベルに反転し抵抗R65
を通してオープンコレクタを動作させ、図示しない漏電
警報手段を稼働させる。
When the rectangular wave whose level is lowered due to the generation of the insulation resistance R L is full-wave rectified and smoothed by the rectifier circuit REC and then input to the + input terminal of the comparison circuit Q6 through the resistor R63, the level of the smoothed signal is Are resistors 61 and 6
It is compared with a reference voltage determined by a resistance ratio of 2. When the level of the smoothed signal becomes lower than the reference voltage, the output terminal of the comparison circuit Q6 is inverted from low level to high level and the resistor R65 is turned on.
The open collector is operated through to activate the leak warning means (not shown).

【0046】なお、整流回路RECから出力された信号
にノイズが混入すると、信号レベルは+6Vを中心に
+、−方向に変動することがある。その結果、比較回路
Q6の出力はハイ、ローを繰り返し、誤った漏電警報、
誤った漏電解除を出すことになる。
When noise is mixed in the signal output from the rectifier circuit REC, the signal level may fluctuate in + and-directions around + 6V. As a result, the output of the comparator circuit Q6 repeats high and low, resulting in a false leakage alarm,
You will issue an incorrect leak release.

【0047】従って、本実施の形態では比較回路Q6に
シュミット回路を採用し、平滑化信号のレベルが基準電
圧レベルより低下し、一旦比較回路Q6の出力レベルが
ハイとなったならば、この出力信号を帰還抵抗R64よ
り+入力端子側に流す。
Therefore, in the present embodiment, the Schmitt circuit is adopted as the comparison circuit Q6, and if the level of the smoothed signal becomes lower than the reference voltage level and the output level of the comparison circuit Q6 once becomes high, this output is output. A signal is made to flow from the feedback resistor R64 to the + input terminal side.

【0048】この結果、帰還抵抗R64による電圧降下
分、+入力端子側の電圧レベルが低下する。このため、
比較回路Q6は、平滑化信号のレベルがノイズにより多
少プラス方向に変動しても基準電圧を超えることはない
ため、漏電警報を維持できる。
As a result, the voltage level at the + input terminal side decreases by the amount of the voltage drop due to the feedback resistor R64. For this reason,
The comparator circuit Q6 can maintain the leakage alarm because the level of the smoothed signal does not exceed the reference voltage even if the level of the smoothed signal fluctuates in the positive direction due to noise.

【0049】[0049]

【発明の効果】この発明によれば、電気自動車内で車体
と電気的に絶縁された直流電源系統の漏電を検出する高
電圧車両用漏電検出器において、一定レベルの交流信号
を発振し、この交流信号をコンデンサCを通して前記直
流電源系統Bに出力する発振部OSと、この出力された
交流信号のレベルが、漏電時に前記直流電源系統Bと車
体間に発生する絶縁抵抗による電圧降下分、低下したか
を判定する判定部DTとを含む漏電検出器LEDを備え
ることで、直流電源系統と車体間の絶縁が劣化して、直
流電源系統と車体に絶縁抵抗が生じたならば発振部より
出力された一定レベルの交流信号はコンデンサ、絶縁抵
抗を通してアースとなる車体に流れるため、この流れる
交流電流を電圧にて検出しこの電圧レベルが、予めその
抵抗値を設定した絶縁抵抗の両端電圧分低下したかを判
定して漏電検出を行うことで、漏電検出を確実に行える
という効果がある。
According to the present invention, in a high-voltage vehicle leakage detector for detecting a leakage of a DC power supply system electrically insulated from a vehicle body in an electric vehicle, an AC signal of a constant level is oscillated, and An oscillation unit OS that outputs an AC signal to the DC power supply system B through a capacitor C, and the level of the output AC signal is reduced by a voltage drop due to an insulation resistance generated between the DC power supply system B and the vehicle body at the time of leakage. By providing the leakage detector LED including the determination unit DT that determines whether or not the DC power supply system and the vehicle body are deteriorated in insulation, and an insulation resistance occurs between the DC power supply system and the vehicle body, an output from the oscillation unit is generated. Since the generated AC signal of a certain level flows through the capacitor and the insulation resistance to the vehicle body that serves as the ground, the flowing AC current is detected by the voltage, and this voltage level sets the resistance value in advance. By performing the determination to leakage detection or dropped across voltage of the edge resistance, there is an effect that surely perform a leakage detection.

【0050】この発明によれば、絶縁抵抗の値を、直流
電源系統と車体間の絶縁が劣化して漏電が開始されるし
きい値にて設定することで、検出した交流信号のレベル
が、しきい値を超えた抵抗値となった絶縁抵抗における
電圧降下分、低下したかを判定して漏電検出を行うこと
で、絶縁劣化の進行と共に早期に漏電検出を行うことが
できるという効果がある。
According to the present invention, by setting the value of the insulation resistance at the threshold value at which the insulation between the DC power supply system and the vehicle body deteriorates and electric leakage starts, the detected AC signal level is By detecting whether or not the voltage drop has occurred in the insulation resistance that has become a resistance value that exceeds the threshold value and detecting the leakage, it is possible to detect the leakage early as the insulation deterioration progresses. .

【0051】この発明によれば、発振部OSは温度補償
手段を設けることにより、発振される交流信号は周囲温
度の上昇によりそのレベルが変動することがないため、
交流信号のレベルに基づいて漏電検出を行う際にも、周
囲温度の上昇により漏電の誤検出を阻止できるため、漏
電検出の信頼性を向上できるという効果がある。
According to the present invention, since the oscillator section OS is provided with the temperature compensating means, the level of the oscillated AC signal does not fluctuate due to the rise of the ambient temperature.
Even when the leakage detection is performed based on the level of the AC signal, it is possible to prevent erroneous detection of the leakage due to the rise in the ambient temperature, and thus it is possible to improve the reliability of the leakage detection.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明に係る高電圧車両用漏電検出器
の基本構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of a leakage detector for a high-voltage vehicle according to the present invention.

【図2】図2は本実施の形態に係る高電圧車両用漏電検
出器の構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a high voltage vehicle leakage detector according to the present embodiment.

【図3】図3は本実施の形態に係る矩形波発振回路より
出力される矩形波の波形図である。
FIG. 3 is a waveform diagram of a rectangular wave output from the rectangular wave oscillator circuit according to the present embodiment.

【図4】図4は図に示す高電圧車両用漏電検出器の各点
に矩形波の波形を示す図である。
FIG. 4 is a diagram showing a waveform of a rectangular wave at each point of the leakage detector for a high-voltage vehicle shown in FIG.

【図5】図5は従来の地絡検出器の構成を示す図であ
る。
FIG. 5 is a diagram showing a configuration of a conventional ground fault detector.

【図6】図6は従来の地絡検出器の動作を説明する波形
図である。
FIG. 6 is a waveform diagram for explaining the operation of the conventional ground fault detector.

【図7】図7は従来技術による漏電検知方法を説明する
図である。
FIG. 7 is a diagram illustrating a leakage detection method according to a conventional technique.

【符号の説明】[Explanation of symbols]

C コンデンサ OS 発振部 B 直流電源系統 LED 漏電検出器 C capacitor OS oscillator B DC power supply system LED leakage detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気自動車内で車体と電気的に絶縁され
た直流電源系統の漏電を検出する高電圧車両用漏電検出
器において、一定レベルの交流信号を発振し、この交流
信号をコンデンサを通して前記直流電源系統に出力する
発振部と、この出力された交流信号のレベルが、漏電時
に前記直流電源系統と車体間に発生する絶縁抵抗による
電圧降下分、低下したかを判定する判定部とを含む漏電
検出器を備えたことを特徴とする高電圧車両用漏電検出
器。
1. A leakage detector for a high-voltage vehicle, which detects a leakage of a DC power supply system electrically insulated from a vehicle body in an electric vehicle, oscillates an AC signal of a constant level, and passes this AC signal through a capacitor. An oscillating unit for outputting to the DC power supply system, and a judging unit for judging whether or not the level of the outputted AC signal is reduced by a voltage drop due to an insulation resistance generated between the DC power supply system and the vehicle body at the time of electric leakage. A leakage detector for a high-voltage vehicle, which is provided with a leakage detector.
【請求項2】 前記絶縁抵抗の値は、直流電源系統より
車体に漏電電流が流れると予想されるしきい値で予め設
定することを特徴とする請求項1に記載の高電圧車両用
漏電検出器。
2. The leakage detection for a high-voltage vehicle according to claim 1, wherein the value of the insulation resistance is preset with a threshold value at which a leakage current is expected to flow from the DC power supply system to the vehicle body. vessel.
【請求項3】 前記発振部は温度補償手段を設けたこと
を特徴とする請求項1に記載の高電圧車両用漏電検出
器。
3. The leakage detector for a high voltage vehicle according to claim 1, wherein the oscillating unit is provided with a temperature compensating means.
JP2001317148A 2001-10-15 2001-10-15 Leakage detection device for high-voltage vehicle Withdrawn JP2003125530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317148A JP2003125530A (en) 2001-10-15 2001-10-15 Leakage detection device for high-voltage vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317148A JP2003125530A (en) 2001-10-15 2001-10-15 Leakage detection device for high-voltage vehicle

Publications (1)

Publication Number Publication Date
JP2003125530A true JP2003125530A (en) 2003-04-25

Family

ID=19135066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317148A Withdrawn JP2003125530A (en) 2001-10-15 2001-10-15 Leakage detection device for high-voltage vehicle

Country Status (1)

Country Link
JP (1) JP2003125530A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172373A (en) * 2010-02-18 2011-09-01 Toyota Motor Corp Drive system
KR101065583B1 (en) 2008-09-04 2011-09-19 주식회사 엘지화학 Apparatus and Method for detecting leakage current of battery
CN103176095A (en) * 2011-12-23 2013-06-26 比亚迪股份有限公司 Device and method for electric leakage detection
JP5823007B1 (en) * 2014-09-25 2015-11-25 三菱電機株式会社 Electric leakage detection device for vehicles
JP2016050921A (en) * 2014-09-02 2016-04-11 富士電機機器制御株式会社 Current detector
CN113433484A (en) * 2021-07-29 2021-09-24 上海玖行能源科技有限公司 Alternating current pile grounding detection system and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065583B1 (en) 2008-09-04 2011-09-19 주식회사 엘지화학 Apparatus and Method for detecting leakage current of battery
JP2011172373A (en) * 2010-02-18 2011-09-01 Toyota Motor Corp Drive system
CN103176095A (en) * 2011-12-23 2013-06-26 比亚迪股份有限公司 Device and method for electric leakage detection
JP2016050921A (en) * 2014-09-02 2016-04-11 富士電機機器制御株式会社 Current detector
JP5823007B1 (en) * 2014-09-25 2015-11-25 三菱電機株式会社 Electric leakage detection device for vehicles
CN113433484A (en) * 2021-07-29 2021-09-24 上海玖行能源科技有限公司 Alternating current pile grounding detection system and control method
CN113433484B (en) * 2021-07-29 2024-05-03 上海玖行能源科技有限公司 AC pile grounding detection system and control method

Similar Documents

Publication Publication Date Title
JP2933490B2 (en) Ground fault detection circuit for electric vehicles
KR101013696B1 (en) Insulating resistance detection apparatus
US9322867B2 (en) Detection of an insulation defect
US9255957B2 (en) Earth fault detection circuit and power source device
JP5972972B2 (en) DC power supply equipment
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
JP2002296316A (en) Leakage detecting circuit for power-supply device
TWI453432B (en) Insulating detection circuit and method thereof
US7012435B2 (en) State detecting method and insulation resistance fall detector
US20090167314A1 (en) Method and Device for Detecting Ground Faults in a Supply Cable
AU2014204920B2 (en) Measurement arrangement and method for detecting an AC voltage as a rail potential in DC railway systems and use of the measurement arrangement
EP3992012B1 (en) Earth leakage detecting device, and vehicular power supply system
WO2010113927A1 (en) Electric vehicle charger and ground fault detection method
US10205315B2 (en) Fault detection system
CN107110904B (en) Grounding detection device for vehicle
US20210039520A1 (en) Method and device for operating a motor vehicle
JP2003125530A (en) Leakage detection device for high-voltage vehicle
US9579978B2 (en) In-vehicle charger
WO2021106285A1 (en) Earth leakage detecting device, and vehicular power supply system
US11933831B2 (en) Method for monitoring at least one Y-capacitance of an electrical on-board power supply of a vehicle, and electrical on-board power supply
US20230152359A1 (en) Electricity leakage detection device and vehicle power supply system
CN111051143B (en) Travel tool, system and device for evaluating signals of an airbag control device
GB2047488A (en) Battery charger fault detector
JP2016015826A (en) Isolated detection device
JP2019049473A (en) Charger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104