JP2019049473A - Charger - Google Patents

Charger Download PDF

Info

Publication number
JP2019049473A
JP2019049473A JP2017173893A JP2017173893A JP2019049473A JP 2019049473 A JP2019049473 A JP 2019049473A JP 2017173893 A JP2017173893 A JP 2017173893A JP 2017173893 A JP2017173893 A JP 2017173893A JP 2019049473 A JP2019049473 A JP 2019049473A
Authority
JP
Japan
Prior art keywords
resistor
switch
charger
signal
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017173893A
Other languages
Japanese (ja)
Inventor
鳥井 祐次
Yuji Torii
祐次 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2017173893A priority Critical patent/JP2019049473A/en
Publication of JP2019049473A publication Critical patent/JP2019049473A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To solve the problem that a conventional charger has insufficient measures against false detection by an electrical-leakage detection function.SOLUTION: A charger of the present invention comprises: a power source PWR; a cathode-wiring WH connected to a cathode of the power source PWR; an anode-wiring WL connected to an anode of the power source PWR; a first resistor R1 with one end thereof connected to the cathode-wiring WH; a first switch SW1 connected between the other end of the first resistor R1 and an earth terminal; a second resistor R2 with one end thereof connected to the anode-wiring WL; a second switch SW2 connected between the other end of the second resistor R2 and the earth terminal; an electrical-leakage determination circuit 22 for setting an electrical-leakage signal DETb to an enable state in response to deviation, from a predetermined range, of a voltage difference between the one end of the first resistor R1 and the one end of the second resistor; and an alternating-current-signal detection circuit 21 for turning the first switch SW1 and the second switch SW2 off when detecting that alternating-current signals are superimposed on voltage signals transmitting on at least one of the cathode-wiring WH or the anode-wiring WL.SELECTED DRAWING: Figure 1

Description

本発明は充電器に関し、例えば、充電先の二次電池に電力を供給する経路で発生する漏電を検出する機能を有する充電器に関する。   The present invention relates to a charger, and, for example, to a charger having a function of detecting a leakage occurring in a path for supplying power to a secondary battery to be charged.

ハイブリッド自動車或いは電気自動車には、外部から充電可能な二次電池が搭載される。特に自動車用に利用される二次電池は、電力容量が大きく且つ高い電圧を出力する。そのため、このような二次電池を搭載する車両には、二次電池から車両ボディへの漏電を検出する漏電検出回路が搭載される。この漏電検出回路の一例が特許文献1に開示されている。   A hybrid vehicle or an electric vehicle is equipped with an externally chargeable secondary battery. In particular, secondary batteries used for automobiles have large power capacities and output high voltages. Therefore, a leak detection circuit for detecting a leak from the secondary battery to the vehicle body is mounted on a vehicle equipped with such a secondary battery. Patent Document 1 discloses an example of the leakage detection circuit.

特許文献1に記載の漏電検出回路は、車両ボディと絶縁された電池パックが有する組電池に、一次巻線を並列に接続する。また、一次巻線とトランス結合される電流計側二次巻線と、電流計側二次巻線に直列に接続される交流電源と、車両ボディと交流電源との間に接続される電流計とを有する電流検出回路を構成する。そして、電流源から交流電流を電流計側二次巻線に供給することにより、電流計で漏電電流を検出する。以上のように、トランスを用いて、電池パックと車両ボディに接続された電流検出回路とを直流的に絶縁する。   In the leakage detection circuit described in Patent Document 1, a primary winding is connected in parallel to a battery assembly of a battery pack insulated from a vehicle body. In addition, an ammeter-side secondary winding coupled to the primary winding and a transformer, an AC power supply connected in series to the ammeter-side secondary winding, and an ammeter connected between the vehicle body and the AC power supply And a current detection circuit comprising: Then, the alternating current is supplied from the current source to the ammeter-side secondary winding, whereby the leakage current is detected by the ammeter. As described above, the transformer is used to galvanically isolate the battery pack and the current detection circuit connected to the vehicle body.

特開2014−98710号公報JP 2014-98710 A

特許文献1に記載の漏電検出回路は、車両側に設けられるものであるが、近年充電器側にも漏電検出回路を設けることが要求されている。これは、車両によっては漏電検出回路が設けられていないものもあること、或いは、漏電検出回路の故障に対する安全対策が求められていること、等の事情があるためである。しかしながら、特許文献1に記載の漏電検出回路は電池に対応した構成のもので有り、そのまま充電器に適用することができない問題がある。   Although the leakage detection circuit described in Patent Document 1 is provided on the vehicle side, it has recently been required to provide the leakage detection circuit also on the charger side. This is because some vehicles do not have a leak detection circuit, or there is a need for a safety measure against a failure of the leak detection circuit. However, the leakage detection circuit described in Patent Document 1 has a configuration corresponding to a battery, and there is a problem that it can not be applied to a battery charger as it is.

本発明は、上記事情に鑑みてなされたものであり、充電器に設ける漏電検出回路を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a leakage detection circuit provided in a charger.

本発明の充電器の一態様は、二次電池に電力を供給する電源と、前記電源の正極に接続される正極配線と、前記電源の負極に接続される負極配線と、前記正極配線に一端が接続される第1の抵抗と、前記第1の抵抗の他端と接地端子との間に接続される第1のスイッチと、前記負極配線に一端が接続される第2の抵抗と、前記第2の抵抗の他端と接地端子との間に接続される第2のスイッチと、前記第1の抵抗の一端と前記第2の抵抗の一端との間の電圧差が予め設定した範囲を外れたことに応じて漏電検出信号をイネーブル状態とする漏電判定回路と、前記正極配線と前記負極配線を伝達する電圧信号の少なくとも一方に対して交流信号が重畳されたことを検出した場合に前記第1のスイッチ及び前記第2のスイッチをオフさせる交流信号検出回路と、を有する。   One aspect of the charger according to the present invention is a power supply for supplying power to a secondary battery, a positive electrode wire connected to the positive electrode of the power supply, a negative electrode wire connected to the negative electrode of the power supply, and one end to the positive electrode wire , A first switch connected between the other end of the first resistor and the ground terminal, a second resistor whose one end is connected to the negative electrode wire, and A second switch connected between the other end of the second resistor and the ground terminal, and a range in which a voltage difference between one end of the first resistor and one end of the second resistor is preset When it is detected that an alternating current signal is superimposed on at least one of a leakage detection circuit that enables a leakage detection signal in response to a disconnection and a voltage signal transmitted through the positive electrode wiring and the negative electrode wiring. AC signal for turning off the first switch and the second switch It has a circuit out, the.

本発明にかかる充電器は、正極配線と負極配線を伝達する電圧信号の少なくとも一方に対して交流信号が重畳されたことを検出した場合に第1の抵抗と第2の抵抗とを無効化する。これにより、本発明にかかる充電器は、車両側に搭載された漏電検出回路が誤動作することを防止する。   The charger according to the present invention invalidates the first resistance and the second resistance when detecting that an AC signal is superimposed on at least one of the voltage signals transmitted through the positive electrode wiring and the negative electrode wiring. . Thus, the battery charger according to the present invention prevents the malfunction of the leakage detection circuit mounted on the vehicle side.

本発明の充電器によれば、充電器に漏電検出機能を有しながら、車両側に搭載された漏電検出回路の誤動作を防止することが可能になる。   According to the charger of the present invention, it is possible to prevent the malfunction of the leakage detection circuit mounted on the vehicle side while having the leakage detection function in the charger.

実施の形態1にかかる充電器の第1の例を示すブロック図である。5 is a block diagram showing a first example of a charger according to Embodiment 1. FIG. 実施の形態1にかかる充電器の第2の例を示すブロック図である。FIG. 6 is a block diagram showing a second example of the charger according to the first embodiment. 実施の形態1にかかる交流信号検出回路の回路図である。FIG. 1 is a circuit diagram of an AC signal detection circuit according to a first embodiment. 車両側漏電検出回路がない場合の実施の形態1にかかる充電器の動作を説明する充電器のブロック図である。It is a block diagram of a charger explaining operation of a charger concerning Embodiment 1 when there is no vehicle side leak detection circuit.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are omitted and simplified as appropriate for clarification of the explanation. In the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted as necessary.

図1に実施の形態1にかかる充電器2のブロック図を示す。図1では、充電器2が電力を供給する車両1を示した。車両1は、例えば、ハイブリッド自動車、電気自動車等の外部から充電可能なバッテリBATが搭載される。また、車両1には、車両側漏電検出回路10が搭載される。   FIG. 1 shows a block diagram of the charger 2 according to the first embodiment. FIG. 1 shows the vehicle 1 to which the charger 2 supplies power. For example, the vehicle 1 is mounted with a battery BAT that can be charged from the outside, such as a hybrid car and an electric car. Further, the vehicle-side leakage detection circuit 10 is mounted on the vehicle 1.

車両側漏電検出回路10は、交流信号生成回路11、バッファ12、バッファ13、車両側漏電判定回路14、結合容量C、負荷抵抗RLを有する。交流信号生成回路11は、漏電を検出するための交流信号を出力する。バッファ12は、交流信号生成回路11が出力した交流信号を増幅して負極配線WLに出力する。結合容量Cは、バッファ12の出力信号の直流成分と、負極配線WLの直流成分とを分離しながら交流信号を負極配線WLに通過させる。負荷抵抗RLは、負極配線WLと接地端子との間に接続される。この負荷抵抗RLと結合容量Cにより、負極配線WLに伝達される電圧信号に交流信号が重畳される。   The vehicle-side electrical leakage detection circuit 10 includes an AC signal generation circuit 11, a buffer 12, a buffer 13, a vehicle-side electrical leakage determination circuit 14, a coupling capacitance C, and a load resistance RL. The AC signal generation circuit 11 outputs an AC signal for detecting a short circuit. The buffer 12 amplifies the alternating current signal output from the alternating current signal generation circuit 11 and outputs the amplified signal to the negative electrode wiring WL. The coupling capacitance C allows an alternating current signal to pass through the negative electrode wiring WL while separating the direct current component of the output signal of the buffer 12 and the direct current component of the negative electrode wiring WL. The load resistor RL is connected between the negative electrode wire WL and the ground terminal. An AC signal is superimposed on the voltage signal transmitted to the negative electrode wiring WL by the load resistance RL and the coupling capacitance C.

バッファ13は、負極配線WL上の交流信号を車両側漏電判定回路14に伝達する。車両側漏電判定回路14は、交流信号生成回路11が出力する交流信号とバッファ13を介して与えられる負極配線WL上の交流信号の振幅を比較して、漏電が発生しているか否かを判定する。車両側漏電判定回路14は、例えば、交流信号生成回路11が出力する交流信号よりも負極配線WL上の交流信号の振幅が所定値以上小さければ漏電が発生していると判断する。車両側漏電判定回路14は、漏電が発生していると判断した場合車両側漏電検出信号DETaをディスイネーブル状態(例えば、ロウレベル)からイネーブル状態(例えば、ハイレベル)に切り替える。   The buffer 13 transmits the alternating current signal on the negative electrode wire WL to the vehicle side leakage determination circuit 14. Vehicle-side electrical leakage determination circuit 14 compares the amplitude of the alternating current signal output from alternating current signal generation circuit 11 with the alternating current signal on negative electrode wire WL applied via buffer 13 to determine whether or not an electrical leakage occurs. Do. For example, if the amplitude of the AC signal on the negative electrode wiring WL is smaller than the AC signal output from the AC signal generation circuit 11 by a predetermined value or more, the vehicle-side electric leakage judgment circuit 14 judges that electric leakage occurs. The vehicle-side electrical leakage determination circuit 14 switches the vehicle-side electrical leakage detection signal DETa from the disenable state (e.g., low level) to the enabled state (e.g., high level) when it is determined that an electrical leakage occurs.

充電器2は、例えば、ケーブルとケーブルの一端に設けられたコネクタにより車両1と接続される。そして、充電器2は、車両1のバッテリBATに電力を供給してバッテリBATを充電する。   The charger 2 is connected to the vehicle 1 by, for example, a cable and a connector provided at one end of the cable. Then, the charger 2 supplies power to the battery BAT of the vehicle 1 to charge the battery BAT.

充電器2は、バッテリBATに供給する電力を出力する電源PWRを有する。電源PWRの正極端子には正極配線WHが接続される。電源PWRの負極端子には負極配線WLが接続される。充電器2は、正極配線WH及び負極配線WLによりバッテリBATに電圧信号を伝達する。また、充電器2には、充電器側漏電検出回路20が設けられる。   The charger 2 has a power supply PWR that outputs power to be supplied to the battery BAT. The positive electrode wiring WH is connected to the positive electrode terminal of the power supply PWR. The negative electrode wire WL is connected to the negative electrode terminal of the power supply PWR. The charger 2 transmits a voltage signal to the battery BAT by the positive electrode wire WH and the negative electrode wire WL. Further, the charger 2 is provided with a charger side leakage detection circuit 20.

充電器側漏電検出回路20は、交流信号検出回路21、漏電判定回路(例えば、充電器側漏電判定回路22)、第1の抵抗(例えば、抵抗R1)、第2の抵抗(例えば、抵抗R2)、第1のスイッチ(例えば、スイッチSW1)、第2のスイッチ(例えば、スイッチSW2)を有する。   The charger-side leakage detection circuit 20 includes an AC signal detection circuit 21, a leakage determination circuit (for example, charger-side leakage determination circuit 22), a first resistor (for example, a resistor R1), and a second resistor (for example, a resistor R2). ), A first switch (for example, switch SW1), and a second switch (for example, switch SW2).

抵抗R1は、正極配線WHに一端が接続される。スイッチSW1は、抵抗R1の他端と接地端子との間に接続される。抵抗R2は、負極配線WLに一端が接続されるスイッチSW2は、抵抗R2の他端と接地端子との間に接続される。充電器側漏電判定回路22は、抵抗R1の一端と抵抗R2の一端との間の電圧差が予め設定した範囲を外れたことに応じて漏電検出信号(例えば、充電器側漏電検出信号DETb)をイネーブル状態とする。   One end of the resistor R1 is connected to the positive electrode wiring WH. The switch SW1 is connected between the other end of the resistor R1 and the ground terminal. The switch SW2 whose one end is connected to the negative electrode wiring WL is connected between the other end of the resistor R2 and the ground terminal. The charger-side leakage determination circuit 22 detects a leakage detection signal (eg, charger-side leakage detection signal DETb) in response to a voltage difference between one end of the resistor R1 and one end of the resistor R2 being out of a preset range. To the enabled state.

交流信号検出回路21は、正極配線WHと負極配線WLを伝達する電圧信号の少なくとも一方に対して交流信号が重畳されたことを検出した場合にスイッチSW1及びスイッチSW2をオフさせる。図1に示す例では、交流信号検出回路21は、正極配線WHを伝達する電圧信号に重畳された交流信号を検出する。ここで、充電器2の第2の例のブロック図を図2に示す。図2に示す第2の例では、交流信号検出回路21が負極配線WLに伝達する電圧信号に重畳された交流信号を検出する例である。交流信号検出回路21は、正極配線WHと負極配線WLを伝達する電圧信号の少なくとも一方に重畳された交流信号を検出するものであり、正極配線WHと負極配線WLの両方から交流信号を検出しても良い。   The AC signal detection circuit 21 turns off the switch SW1 and the switch SW2 when detecting that the AC signal is superimposed on at least one of the voltage signals transmitted through the positive electrode wiring WH and the negative electrode wiring WL. In the example shown in FIG. 1, the AC signal detection circuit 21 detects an AC signal superimposed on a voltage signal transmitted through the positive electrode wiring WH. Here, a block diagram of a second example of the charger 2 is shown in FIG. The second example shown in FIG. 2 is an example in which the AC signal detection circuit 21 detects an AC signal superimposed on a voltage signal transmitted to the negative electrode wiring WL. The AC signal detection circuit 21 detects an AC signal superimposed on at least one of the voltage signals transmitted through the positive electrode wiring WH and the negative electrode wiring WL, and detects an AC signal from both the positive electrode wiring WH and the negative electrode wiring WL. It is good.

ここで、交流信号検出回路21の回路構成について説明する。そこで、交流信号検出回路21の回路の一例を図3に示す。図3に示す交流信号検出回路21は、図1の交流信号検出回路21である。図3に示す例では、交流信号検出回路21は、抵抗R3、平滑容量C3、定電圧回路31、コンパレータ32を有する。   Here, the circuit configuration of the AC signal detection circuit 21 will be described. Therefore, an example of the circuit of the AC signal detection circuit 21 is shown in FIG. The AC signal detection circuit 21 shown in FIG. 3 is the AC signal detection circuit 21 of FIG. In the example shown in FIG. 3, the AC signal detection circuit 21 includes a resistor R3, a smoothing capacitor C3, a constant voltage circuit 31, and a comparator 32.

抵抗R3は、正極配線WHとコンパレータ32の正転入力端子との間に接続される。平滑容量C3は、抵抗R3とコンパレータ32の正転入力端子とを接続する配線と接地端子との間に接続される。抵抗R3と平滑容量C3は平滑回路を構成し、正極配線WHを介して入力される交流信号を平滑して直流の交流検出信号Vsを生成する。定電圧回路31は、予め電圧値が設定された基準電圧Vrefを生成する。コンパレータ32がスイッチSW1、SW2に出力する信号は交流検出信号Sig_DETである。コンパレータ32は、交流検出信号Vsの電圧レベルが基準電圧Vrefを下回っている期間は交流検出信号Sig_DETをイネーブル状態(例えば、ハイレベル)としてスイッチSW1、SW2をオンさせる。一方、コンパレータ32は、交流検出信号Vsの電圧レベルが基準電圧Vrefを超えたことに応じて交流検出信号をディスイネーブル状態(例えば、ロウレベル)としてスイッチSW1、SW2をオフさせる。   The resistor R3 is connected between the positive electrode wiring WH and the non-inverting input terminal of the comparator 32. The smoothing capacitor C3 is connected between the wiring connecting the resistor R3 and the non-inverting input terminal of the comparator 32 and the ground terminal. The resistor R3 and the smoothing capacitor C3 constitute a smoothing circuit, and smooth the alternating current signal input through the positive electrode wiring WH to generate a direct current alternating current detection signal Vs. The constant voltage circuit 31 generates a reference voltage Vref in which a voltage value is set in advance. A signal that the comparator 32 outputs to the switches SW1 and SW2 is an alternating current detection signal Sig_DET. The comparator 32 turns on the switches SW1 and SW2 with the AC detection signal Sig_DET enabled (for example, high level) while the voltage level of the AC detection signal Vs is lower than the reference voltage Vref. On the other hand, in response to the voltage level of the AC detection signal Vs exceeding the reference voltage Vref, the comparator 32 disenables the AC detection signal (for example, low level) to turn off the switches SW1 and SW2.

続いて、実施の形態1にかかる車両1及び充電器2の動作について説明する。図1及び図2に示す例では、車両1が車両側漏電検出回路10を有している。そのため、車両1は、交流信号生成回路11により交流信号を生成し、正極配線WH及び負極配線WLに交流信号を出力する。そして、車両1では、交流信号生成回路11が出力した交流信号と負極配線WLから取得した交流信号とについて、車両側漏電判定回路14が振幅を比較して漏電検出を行う。   Subsequently, operations of the vehicle 1 and the charger 2 according to the first embodiment will be described. In the example shown in FIG. 1 and FIG. 2, the vehicle 1 has a vehicle-side leakage detection circuit 10. Therefore, the vehicle 1 generates an alternating current signal by the alternating current signal generation circuit 11, and outputs the alternating current signal to the positive electrode wiring WH and the negative electrode wiring WL. Then, in the vehicle 1, the vehicle-side electrical leakage determination circuit 14 compares the amplitudes of the alternating current signal output from the alternating current signal generation circuit 11 and the alternating current signal acquired from the negative electrode wiring WL to perform electrical leakage detection.

このとき、車両1に充電器2が接続されると、充電器2では、充電器2内の正極配線WH及び負極配線WLに交流信号生成回路11が生成した交流信号が伝搬する。そして、充電器2では、交流信号検出回路21が正極配線WHに伝搬された交流信号を検出してスイッチSW1、SW2をオフする。これにより、負荷抵抗RLと抵抗R2とが並列接続されることはないため、車両側漏電検出回路10が漏電を誤検出することはない。   At this time, when the charger 2 is connected to the vehicle 1, in the charger 2, the alternating current signal generated by the alternating current signal generation circuit 11 is propagated to the positive electrode wiring WH and the negative electrode wiring WL in the charger 2. Then, in the charger 2, the AC signal detection circuit 21 detects the AC signal propagated to the positive electrode wiring WH, and turns off the switches SW1 and SW2. As a result, the load resistor RL and the resistor R2 are not connected in parallel, and therefore the vehicle-side leak detection circuit 10 does not erroneously detect a leak.

ここで、別の例として車両に車両側漏電検出回路10が設けられていない場合の充電器2の動作について説明する。そこで、図4に車両側漏電検出回路がない場合の実施の形態1にかかる充電器の動作を説明する充電器のブロック図を示す。図4に示す例では、車両側漏電検出回路10を有していない車両の符号を100とした。この車両100に充電器2が接続された場合、正極配線WH及び負極配線WLに交流信号は伝搬されない。そのため、交流信号検出回路21において交流信号は検出されないため、交流信号検出回路21は、スイッチSW1、SW2をオンのまま維持する。これにより、図4に示す例では、充電器2の充電器側漏電判定回路22による漏電検出が行われる。   Here, as another example, the operation of the charger 2 in the case where the vehicle-side electrical leakage detection circuit 10 is not provided in the vehicle will be described. Therefore, FIG. 4 shows a block diagram of a charger for explaining the operation of the charger according to the first embodiment when there is no vehicle-side leak detection circuit. In the example shown in FIG. 4, the code of a vehicle not having the vehicle-side leakage detection circuit 10 is 100. When the charger 2 is connected to the vehicle 100, an alternating current signal is not propagated to the positive electrode wiring WH and the negative electrode wiring WL. Therefore, since the AC signal detection circuit 21 does not detect an AC signal, the AC signal detection circuit 21 keeps the switches SW1 and SW2 ON. As a result, in the example shown in FIG. 4, the detection of leakage by the charger-side leakage determination circuit 22 of the charger 2 is performed.

上記説明より、実施の形態1にかかる充電器2では、車両側に漏電検出回路があるか否かを交流信号検出回路21が正極配線WH又は負極配線WLに伝搬する交流信号があるか否かにより検出する。そして、車両側に車両側漏電検出回路10がある場合、充電器2は、充電器側漏電検出回路20内の抵抗R1、R2を接地端子から切り離すことで、正極配線WH及び負極配線WLから抵抗R1、R2を介して接地端子(又はシャシー)に電流が漏れることを防止し、車両側漏電検出回路10が漏電を誤検出することを防止することができる。   From the above description, in the battery charger 2 according to the first embodiment, whether the AC signal detection circuit 21 propagates to the positive electrode wiring WH or the negative electrode wiring WL whether or not there is a leakage detection circuit on the vehicle side To detect. When the vehicle-side leakage detection circuit 10 is on the vehicle side, the charger 2 separates the resistors R1 and R2 in the charger-side leakage detection circuit 20 from the ground terminal, thereby providing resistance from the positive electrode wire WH and the negative electrode wire WL. It is possible to prevent the current from leaking to the ground terminal (or the chassis) via R1 and R2, and to prevent the vehicle-side leak detection circuit 10 from erroneously detecting a leak.

一方、実施の形態1にかかる充電器2では、車両側に車両側漏電検出回路10が設けられていない場合であっても充電器側漏電判定回路22、抵抗R1、R2により漏電検出を行うことが可能になる。   On the other hand, in the charger 2 according to the first embodiment, even if the vehicle-side leakage detection circuit 10 is not provided on the vehicle side, the leakage detection is performed by the charger-side leakage determination circuit 22 and the resistors R1 and R2. Becomes possible.

近年、漏電検出精度の向上が求められており、抵抗R1、R2として高い抵抗値の抵抗を利用した場合であっても、抵抗R1、R2を介して流れる小さな電流を漏電として車両側漏電検出回路10が誤検出してしまうことがあり、実施の形態2にかかる充電器2による漏電の誤検出防止対策の効果は大きい。   In recent years, there has been a demand for improvement in leakage detection accuracy, and even when using resistors of high resistance value as the resistors R1 and R2, a small current flowing through the resistors R1 and R2 is regarded as a leakage and the vehicle side leakage detection circuit 10 may be erroneously detected, and the effect of the measure for preventing erroneous detection of an electrical leakage by the charger 2 according to the second embodiment is large.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the scope of the present invention.

1 車両
2 充電器
10 車両側漏電検出回路
11 交流信号生成回路
12、13 バッファ
14 車両側漏電判定回路
20 充電器側漏電検出回路
21 交流信号検出回路
22 充電器側漏電判定回路
31 定電圧回路
32 コンパレータ
BAT バッテリ
RL 負荷抵抗
C 結合容量
R1〜R3 抵抗
C3 平滑容量
SW1 スイッチ
SW2 スイッチ
WH 正極配線
WL 負極配線
PWR 電源
DETa 車両側漏電検出信号
DETb 充電器側漏電検出信号
DESCRIPTION OF SYMBOLS 1 vehicle 2 charger 10 vehicle side leak detection circuit 11 AC signal generation circuit 12, 13 buffer 14 vehicle side leak determination circuit 20 charger side leak detection circuit 21 AC signal detection circuit 22 charger side leak determination circuit 31 constant voltage circuit 32 Comparator BAT Battery RL Load resistance C Coupling capacity R1 to R3 Resistance C3 Smoothing capacity SW1 Switch SW2 Switch WH Positive wire WL Negative wire PWR Power supply DETa Vehicle side leakage detection signal DETb Charger side leakage detection signal

Claims (3)

二次電池に電力を供給する電源と、
前記電源の正極に接続される正極配線と、
前記電源の負極に接続される負極配線と、
前記正極配線に一端が接続される第1の抵抗と、
前記第1の抵抗の他端と接地端子との間に接続される第1のスイッチと、
前記負極配線に一端が接続される第2の抵抗と、
前記第2の抵抗の他端と接地端子との間に接続される第2のスイッチと、
前記第1の抵抗の一端と前記第2の抵抗の一端との間の電圧差が予め設定した範囲を外れたことに応じて漏電検出信号をイネーブル状態とする漏電判定回路と、
前記正極配線と前記負極配線を伝達する電圧信号の少なくとも一方に対して交流信号が重畳されたことを検出した場合に前記第1のスイッチ及び前記第2のスイッチをオフさせる交流信号検出回路と、
を有する充電器。
A power supply that supplies power to the secondary battery,
A positive electrode wire connected to the positive electrode of the power supply;
A negative electrode wire connected to the negative electrode of the power supply;
A first resistor whose one end is connected to the positive electrode wire;
A first switch connected between the other end of the first resistor and the ground terminal;
A second resistor whose one end is connected to the negative electrode wire;
A second switch connected between the other end of the second resistor and the ground terminal;
An electrical leakage determination circuit that enables an electrical leakage detection signal in response to a voltage difference between one end of the first resistor and one end of the second resistor being out of a preset range;
An alternating current signal detection circuit that turns off the first switch and the second switch when it is detected that an alternating current signal is superimposed on at least one of the positive electrode wire and the negative electrode wire.
With a charger.
前記交流信号検出回路は、前記交流信号を平滑化した交流検出信号の電圧レベルが予め電圧値が設定された定電圧回路が出力する基準電圧を下回っている期間は前記第1のスイッチ及び前記第2のスイッチをオンさせ、前記交流検出信号の電圧レベルが前記基準電圧を超えたことに応じて前記第1のスイッチ及び前記第2のスイッチをオフさせる請求項1に記載の充電器。   The alternating current signal detection circuit is configured such that a voltage level of an alternating current detection signal obtained by smoothing the alternating current signal is lower than a reference voltage output by a constant voltage circuit in which a voltage value is set in advance. The charger according to claim 1, wherein the second switch is turned on, and the first switch and the second switch are turned off in response to the voltage level of the alternating current detection signal exceeding the reference voltage. 前記二次電池には、前記第1のスイッチ及び前記第2のスイッチがオンしたときに前記第1の抵抗及び前記第2の抵抗と並列に接続される負荷抵抗が設けられる請求項1又は2に記載の充電器。   The secondary battery is provided with a load resistance connected in parallel with the first resistance and the second resistance when the first switch and the second switch are turned on. The charger described in.
JP2017173893A 2017-09-11 2017-09-11 Charger Pending JP2019049473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173893A JP2019049473A (en) 2017-09-11 2017-09-11 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173893A JP2019049473A (en) 2017-09-11 2017-09-11 Charger

Publications (1)

Publication Number Publication Date
JP2019049473A true JP2019049473A (en) 2019-03-28

Family

ID=65905584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173893A Pending JP2019049473A (en) 2017-09-11 2017-09-11 Charger

Country Status (1)

Country Link
JP (1) JP2019049473A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239773A (en) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The Charger, electric vehicle and method for detecting ground fault-short circuit in charging system
JP2011047849A (en) * 2009-08-28 2011-03-10 Panasonic Corp Power supply device
JP2011155829A (en) * 2009-12-28 2011-08-11 Sanyo Electric Co Ltd Battery system and electric vehicle including the same
JP2013207961A (en) * 2012-03-29 2013-10-07 Panasonic Corp Relay welding diagnostic device
JP2015050795A (en) * 2013-08-30 2015-03-16 株式会社豊田自動織機 Power supply stand, power converter, and discharge system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239773A (en) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The Charger, electric vehicle and method for detecting ground fault-short circuit in charging system
JP2011047849A (en) * 2009-08-28 2011-03-10 Panasonic Corp Power supply device
JP2011155829A (en) * 2009-12-28 2011-08-11 Sanyo Electric Co Ltd Battery system and electric vehicle including the same
JP2013207961A (en) * 2012-03-29 2013-10-07 Panasonic Corp Relay welding diagnostic device
JP2015050795A (en) * 2013-08-30 2015-03-16 株式会社豊田自動織機 Power supply stand, power converter, and discharge system

Similar Documents

Publication Publication Date Title
CN110034593B (en) Charging management device
US10144298B2 (en) Power supply device of vehicle
CN103858297B (en) Electric vehicles charge and discharge device
US10189367B2 (en) Electric vehicle quick charge control apparatus
JP5972972B2 (en) DC power supply equipment
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
US10222423B2 (en) Electrical storage system
US20120299599A1 (en) Electric leakage sensing apparatus
JP6394631B2 (en) Power supply
WO2002082107A1 (en) Circuit for detecting leak from power supply
CN108725351B (en) Fault diagnosis system for vehicle relay
KR20150052139A (en) Device for detecting and measuring an insulation fault
US10205315B2 (en) Fault detection system
JP5443094B2 (en) Electric vehicle quick charger charging cable insulation test equipment
KR20210002971A (en) Device for ground fault detection of electric car charger and method for the same
US10286803B2 (en) Charging and discharging system for an electric vehicle
CN106299180A (en) Electric tool and the combination of battery bag
EP3570057B1 (en) Relay-welding detection device
CN102859374B (en) The onboard power system of vehicle and the opertaing device of onboard power system
JPWO2017159053A1 (en) Anomaly detection device
KR20190013651A (en) Battery cell management system
JP2019049473A (en) Charger
CN213122226U (en) Detection circuit of wireless earphone charging box, charging box and wireless earphone
US20230152359A1 (en) Electricity leakage detection device and vehicle power supply system
JP5867769B1 (en) Power supply device, electronic device, and electronic device system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928