JP2003115559A - Printed wiring board and manufacturing method thereof - Google Patents

Printed wiring board and manufacturing method thereof

Info

Publication number
JP2003115559A
JP2003115559A JP2001343886A JP2001343886A JP2003115559A JP 2003115559 A JP2003115559 A JP 2003115559A JP 2001343886 A JP2001343886 A JP 2001343886A JP 2001343886 A JP2001343886 A JP 2001343886A JP 2003115559 A JP2003115559 A JP 2003115559A
Authority
JP
Japan
Prior art keywords
inner layer
point
height
end point
layer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001343886A
Other languages
Japanese (ja)
Inventor
Takatsugu Komatsu
隆次 小松
Sukeyuki Kiuchi
資之 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Micron Co Ltd
Original Assignee
Nihon Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micron Co Ltd filed Critical Nihon Micron Co Ltd
Priority to JP2001343886A priority Critical patent/JP2003115559A/en
Publication of JP2003115559A publication Critical patent/JP2003115559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board where yields in inner-layer shaving machining are improved for increasing productivity by inner-layer shaving flat machining, and a step shape is formed among the arbitrary layers in an internal layer at low costs. SOLUTION: Heights at starting and ending points on an internal layer circuit surface to be shaved are measured, and the height of cutting blade is controlled according to a ratio distribution calculation value in the difference between the starting and ending points. Additionally, heights at least at a plurality of points between shaving machining starting and ending points at each side on each surface of the internal layer circuit to be shaved are measured in advance, and the height of the cutting tool is continuously controlled by the ratio distribution calculation value in the difference of the height of each adjacent point from the starting point to the ending point. As a result, internal layer shaving flat machining is achieved, where the internal layer shaving flat machining prevents excessive and insufficient cutting due to an inclination in the height direction of the internal layer circuit surface or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内層削り出し加工によ
り内層の任意の各層間に段差形状を形成したプリント配
線基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board in which a step shape is formed between arbitrary layers of an inner layer by carving out the inner layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】キャビティ部を凹形状にした多層の電子
部品用パッケージ等のように、内層の任意の各層間に段
差形状を有するプリント配線基板は、通常、端子部等の
内層回路、ダイパット部など所要の個所にあらかじめ窓
を明けた後、接着剤やローフロープリプレグ等を用いて
積層し、その後に表層に所要の回路を形成する製法が採
られている。これに比して、内層削り出し加工方法は、
一般に、プリプレグ、内層及び外層を一体積層した後
に、内層削り出し加工によって内層の所要回路を露出さ
せるので、プリプレグの滲み出しがなく、回路間の絶縁
の信頼性が高く、また密封性に優れた特徴により耐吸湿
性や耐透湿性の信頼性が向上する。このときの内層削り
出し加工方法は、削り出す内層回路面の1点を検出して
内層回路の高さ位置を測定し、この高さを基に切削刃を
制御することによって内層の所要回路を露出させる方法
が一般的である。
2. Description of the Related Art A printed wiring board having a step shape between arbitrary layers of an inner layer such as a multi-layer electronic component package having a concave cavity is usually used for an inner layer circuit such as a terminal section and a die pad section. For example, after a window is opened in a required place in advance, it is laminated with an adhesive or low-flow prepreg, and then a required circuit is formed on a surface layer. In comparison, the inner layer shaving method is
Generally, after the prepreg, the inner layer and the outer layer are integrally laminated, the inner layer is carved out to expose the required circuit in the inner layer, so that the prepreg does not seep out, the insulation between the circuits is highly reliable, and the sealing property is excellent. Depending on the characteristics, the reliability of moisture absorption resistance and moisture permeability resistance is improved. The inner layer cutting method at this time is to detect one point on the inner layer circuit surface to be cut out, measure the height position of the inner layer circuit, and control the cutting blade based on this height to determine the required inner layer circuit. The method of exposing is common.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
内層削り出し加工方法においては、内層回路面の高さ方
向の位置にバラツキがあるため、露出されるべき内層回
路面の位置を電気的接触または非接触方法によって検出
する必要があるが、電気的接触または非接触方法ともに
1点を測定し、切削刃と削り出す内層回路面との距離を
推定して制御するのでは、内層回路の傾き等の積層状態
によって、切削過多または切削不足の部分を生じること
がある。また、内層銅箔に相応の厚みのあるものを用い
て、ある程度銅箔を削り込むようにすれば、切削過多ま
たは切削不足を防止することは可能であるが、銅箔を厚
くした場合、エッチングファクターを考慮すると微細な
回路を形成することが難しくなる。このように、従来の
内層削り出し加工方法では、今後の市場ニーズ動向であ
る、微細回路が必要な小型電子部品用の高機能プリント
配線基板の需要を満足することができない。本発明はこ
のような問題点を鑑みてなされ、削り出す内層回路各面
の各辺の始点と終点の高さの位置をあらかじめ測定し
て、始点及び終点の高さの差の比例配分計算値によって
切削刃の高さを制御することにより、また、前期削り出
す内層回路各面の各辺の削り出し加工始点及び終点の間
の1点以上の複数点の高さ位置をあらかじめ測定して、
始点から終点に至り隣接する各点の高さの差の比例配分
計算値によって、連続して切削刃の高さを制御すること
により、内層削り出し加工方法における内層回路面の高
さ方向の傾き等に起因する切削過多及び切削不足を防止
する。その結果、内層削り出し加工の歩留まりを改善
し、内層の任意の各層間に段差形状を形成したプリント
配線基板の生産性を向上させてコストを低減することを
目的としている。
However, in the above-described inner layer shaving method, since the position of the inner layer circuit surface in the height direction varies, the position of the inner layer circuit surface to be exposed may be electrically contacted or contacted. It is necessary to detect by the non-contact method, but if one point is measured by both the electrical contact method and the non-contact method and the distance between the cutting blade and the inner layer circuit surface to be cut is estimated and controlled, the inclination of the inner layer circuit, etc. Depending on the layered state of, the excessive cutting or undercutting may occur. In addition, it is possible to prevent over-cutting or under-cutting by using a copper foil with a suitable thickness for the inner layer copper and cutting the copper foil to some extent, but when thickening the copper foil, etching Considering the factor, it becomes difficult to form a fine circuit. As described above, the conventional inner layer shaving method cannot satisfy the demand for high-performance printed wiring boards for small electronic components that require fine circuits, which is a trend of market needs in the future. The present invention has been made in view of such a problem, and the position of the height of the starting point and the ending point of each side of each surface of the inner layer circuit to be cut is measured in advance, and the proportional distribution calculation value of the difference in height between the starting point and the ending point is calculated. By controlling the height of the cutting edge by, the height position of one or more points between the start point and the end point of the carving process on each side of each surface of the inner layer circuit to be carved in the previous period is measured in advance,
Inclination in the height direction of the inner layer circuit surface in the inner layer carving method by continuously controlling the height of the cutting edge by the proportional distribution calculation value of the height difference between the adjacent points from the start point to the end point Prevents excessive cutting and insufficient cutting due to factors such as As a result, it is an object to improve the yield of the inner layer shaving process, improve the productivity of the printed wiring board in which the step shape is formed between arbitrary layers of the inner layer, and reduce the cost.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は次の構成を備える。すなわち、削り出す内
層回路各面の各辺の始点と終点の高さの位置をあらかじ
め測定し、始点及び終点の高さの差の比例配分計算値に
よって切削刃の高さを制御することを特徴とする。ま
た、前期削り出す内層回路各面の各辺の削り出し加工始
点及び終点の間の1点以上の複数点の高さ位置をあらか
じめ測定して、始点から終点に至り隣接する各点の高さ
の差の比例配分計算値によって、連続して切削刃の高さ
を制御することを特徴とする。
In order to achieve the above object, the present invention has the following constitution. That is, the height position of the starting point and the end point of each side of each surface of the inner layer circuit to be cut out is measured in advance, and the height of the cutting blade is controlled by the proportional distribution calculation value of the difference in height between the starting point and the end point. And Also, the height positions of one or more points between the start point and the end point of each side of each surface of the inner layer circuit to be cut out in the previous period are measured in advance, and the height of each adjacent point from the start point to the end point is measured. It is characterized in that the height of the cutting edge is continuously controlled by the proportional distribution calculated value of the difference.

【0005】[0005]

【作用】本発明によれば、削り出す内層回路各面の各辺
の始点と終点の高さの位置をあらかじめ測定し、始点及
び終点の高さの差の比例配分計算値によって切削刃の高
さを制御することにより、また、前期削り出す内層回路
各面の各辺の削り出し加工始点及び終点の間の1点以上
の複数点の高さ位置をあらかじめ測定して、始点から終
点に至り隣接する各点の高さの差の比例配分計算値によ
って、連続して切削刃の高さを制御することにより、内
層回路削り出し加工方法における内層回路面の高さ方向
の傾き等に起因する切削過多及び切削不足を防止する。
その結果、内層削り出し加工の歩留まりを改善し、内層
の任意の各層間に段差形状を形成したプリント配線基板
の生産性を向上させてコストを低減することができる。
According to the present invention, the positions of the heights of the starting point and the end point of each side of each surface of the inner layer circuit to be cut out are measured in advance, and the height of the cutting edge is calculated by the proportional distribution calculation value of the difference between the heights of the starting point and the end point. By controlling the height, the height position of one or more points between the start point and the end point of the shaving process on each side of each surface of the inner layer circuit to be cut in the previous period is measured in advance, and the height from the start point to the end point is reached. By controlling the height of the cutting edge continuously by the proportional distribution calculation value of the height difference between adjacent points, it is caused by the inclination in the height direction of the inner layer circuit surface in the inner layer circuit shaving method. Prevents overcutting and undercutting.
As a result, it is possible to improve the yield of the inner layer shaving process, improve the productivity of the printed wiring board in which a step shape is formed between arbitrary layers of the inner layer, and reduce the cost.

【0006】[0006]

【実施例】以下、本発明に係る実施例について添付図面
とともに説明する。尚、図は状態を示す主要な一部分で
ある。また、図では内層回路を明記しているが、実際に
は内層削り出し加工前は、内層回路は見えない状態であ
る。図1は、削り出す内層回路面10の上面方向から見
た図である。始点20と終点30は削り出し加工の始点
と終点であり、測定点であることを意味する。始点20
と終点30の距離は、プリント配線基板に収容する電子
部品の寸法に依存するが、2〜40mm程度である。こ
のとき、削り出す内層回路が微細かつ短くて測定点を設
けることが困難な場合には、該内層回路の前記始点20
及び前記終点30の直近に各々の測定点を設ければよ
い。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The figure is a main part showing the state. Further, although the inner layer circuit is clearly shown in the figure, the inner layer circuit is actually invisible before the inner layer shaving process. FIG. 1 is a view seen from the upper surface direction of the inner layer circuit surface 10 to be cut out. The start point 20 and the end point 30 are the start point and the end point of the carving process, which means that they are measurement points. Starting point 20
The distance between the end point 30 and the end point 30 depends on the size of the electronic component housed in the printed wiring board, but is about 2 to 40 mm. At this time, when the inner layer circuit to be cut out is minute and short and it is difficult to provide a measurement point, the starting point 20 of the inner layer circuit is cut.
Also, each measurement point may be provided in the immediate vicinity of the end point 30.

【0007】図2は、本発明に係る比例配分計算の説明
図である。前記始点20と前記終点30及び加工基準平
面40を仮想線で結線した状態を断面方向から示してい
る。前記始点20と前記終点30の高さの差は、検出し
た結果0〜20μmである。前記始点20と終点30の
高さの差は、前記加工基準面40に投影された前記始点
20と前記終点30の距離で比例配分して計算すること
ができる。切削刃50が加工面の前記始点20から前記
終点30まて移動して加工するときに、該切削刃50の
移動に伴って前記比例配分した計算値によって、前記切
削刃50の高さ制御して内層削り出し加工を行うことが
できる。前記切削刃50の高さ方向の制御は0.1μm
単位で行うことができる。
FIG. 2 is an explanatory diagram of the proportional distribution calculation according to the present invention. The state in which the starting point 20, the ending point 30, and the processing reference plane 40 are connected by an imaginary line is shown from the cross-sectional direction. The difference in height between the start point 20 and the end point 30 is 0 to 20 μm as a result of detection. The height difference between the start point 20 and the end point 30 can be calculated by proportionally distributing the distance between the start point 20 and the end point 30 projected on the processing reference plane 40. When the cutting blade 50 moves from the start point 20 to the end point 30 of the processing surface for processing, the height of the cutting blade 50 is controlled by the proportionally calculated value according to the movement of the cutting blade 50. The inner layer can be carved out. The control of the cutting blade 50 in the height direction is 0.1 μm
It can be done in units.

【0008】図3は、前記始点20と前記終点30の間
に、測定点である中点25を設けた状態を示している。
前記始点20と前記中点25及び前記終点30の高さを
検出して、前記始点20と前記中点25の高さの差を、
前記加工基準面40に投影される前記始点20と前記中
点25の距離で比例配分計算する。また、前記中点25
と前記終点30の高さの差を、前記加工基準面40に投
影される前記中点25と前記終点30の距離で比例配分
する。前記切削刃50が加工面の前記始点20から前記
中点25まて移動して加工するときの高さは、前記始点
20と前記中点25の高さの差の比例配分計算値によっ
て制御し、また前記中点25から前記終点30まて移動
して加工するときの高さは、前記中点25と前記終点3
0の高さの差の比例配分計算値によって制御して内層削
り出し加工を行う。このとき、内層回路面の測定点A乃
至測定点Dは下方に位置するダイ領域160を削り出し
加工するときに切削削除されるので、測定点A乃至測定
点Dが電子部品用パッケージの機能に影響することはな
い。前記中点25を設けることは、加工距離が長い場
合、あるいは内層回路面の傾き等の積層状態が悪い場合
に有効である。また、中点のみではなく、加工面の始点
から終点の間に6〜16点等の複数の測定点を設けて各
々の高さを検出し、隣接する各測定点の高さの差の比例
配分計算値によって制御すれば、さらに内層削り出し加
工の精度を向上することも可能である。
FIG. 3 shows a state in which a midpoint 25 as a measuring point is provided between the starting point 20 and the ending point 30.
The heights of the start point 20, the midpoint 25, and the end point 30 are detected, and the difference in height between the start point 20 and the midpoint 25 is calculated as
Proportional distribution is calculated by the distance between the starting point 20 and the midpoint 25 projected on the processing reference plane 40. Also, the midpoint 25
And the height difference between the end point 30 and the height difference between the midpoint 25 and the end point 30 projected on the processing reference plane 40 are proportionally distributed. The height when the cutting blade 50 moves from the starting point 20 of the processing surface to the midpoint 25 for processing is controlled by a proportional distribution calculation value of the difference in height between the starting point 20 and the midpoint 25. The height when moving from the midpoint 25 to the end point 30 for machining is the midpoint 25 and the end point 3
The inner layer shaving is performed by controlling the proportional distribution calculated value of the height difference of 0. At this time, since the measurement points A to D on the inner layer circuit surface are cut and removed when the die region 160 located below is cut and machined, the measurement points A to D have the function of the electronic component package. It has no effect. Providing the middle point 25 is effective when the processing distance is long or when the laminated state such as the inclination of the inner layer circuit surface is bad. Moreover, not only the midpoint but also multiple measurement points such as 6 to 16 points are provided between the start point and the end point of the machined surface to detect the height of each, and the proportional difference in height between adjacent measurement points. It is possible to further improve the precision of the inner layer shaving by controlling the distribution calculation value.

【0009】図4は、一般的な電子部品用パッケージで
ある加工対象の内層回路が矩形形状の4辺方向に有する
ものに本発明を適用した例を示す図である。まず、測定
点A乃至測定点Dの4点の高さを検出する。前記測定点
Aを始点とし前記測定点Bを終点とする加工面を削り出
し加工する場合は、前記測定点Aと前記測定点Bの高さ
の差を比例配分計算し、その計算値によって切削刃の高
さを制御して削り出し加工する。同様にして、前記測定
点Bを始点とし測定点Cを終点とする加工面、前記測定
点Cを始点とし測定点Dを終点とする加工面及び前記測
定点Dを始点とし前記測定点Aを終点とする加工面の順
に、各々の加工面について、各々の始点と終点の高さの
差を比例配分計算し、各々の計算値によって、各々の加
工面を加工するときの切削刃の高さを制御して削り出し
加工を行う。このとき、図3に示したように、各々の始
点と終点の間に中点を設ける方法、あるいは、各々の始
点と終点の間に複数の測定点を設ける方法を適用するこ
とも可能であり、この場合はより高精度の削り出し加工
を可能にするので有効である。
FIG. 4 is a diagram showing an example in which the present invention is applied to an inner layer circuit to be processed, which is a general electronic component package, having four sides in a rectangular shape. First, the heights of four measurement points A to D are detected. When machining a machined surface having the measurement point A as the start point and the measurement point B as the end point, the difference in height between the measurement point A and the measurement point B is proportionally calculated, and cutting is performed according to the calculated value. Controls the height of the blade to cut out. Similarly, a machined surface having the measurement point B as the starting point and the measurement point C as the end point, a machining surface having the measurement point C as the starting point and the measurement point D as the end point, and the measurement point A as the starting point and the measurement point A as the starting point. The difference in height between the start point and the end point is proportionally calculated for each machined surface in the order of the machined surface as the end point, and the height of the cutting edge when machining each machined surface is calculated according to each calculated value. Is controlled to perform shaving. At this time, as shown in FIG. 3, it is also possible to apply a method of providing a middle point between each start point and an end point, or a method of providing a plurality of measurement points between each start point and an end point. In this case, it is effective because it enables more accurate carving.

【0010】図5は、図4に示した一般的な電子部品用
パッケージの他の例であり、層が異なる内層回路を削り
出して多段構造を形成した例を示す図である。この場合
は、各層の内層回路に対して前記図4に示す方法により
切削刃の高さを制御して削り出し加工を行うことができ
る。すなわち、まず、図5(a)に素召すように、上方
に位置する内層回路面の測定点A乃至測定点Dの4点の
高さを検出する。前記測定点Aを始点とし前記測定点B
を終点とする加工面を削り出し加工する場合は、前記測
定点Aと前記測定点Bの高さの差を比例配分計算し、そ
の計算値によって切削刃の高さを制御して削り出し加工
する。同様にして、前記測定点Bを始点とし測定点Cを
終点とする加工面、前記測定点Cを始点とし測定点Dを
終点とする加工面及び前記測定点Dを始点とし前記測定
点Aを終点とする加工面の順に、各々の測定点の高さの
差を比例配分計算し、その計算値によって切削刃の高さ
を制御して削り出し加工を行う。次に、図5(b)に示
すように、下方に位置する内層回路面の測定点A1乃至
測定点D1の4点の高さを検出する。前記測定点A1を
始点とし前記測定点B1を終点とする加工面を削り出し
加工する場合は、前記測定点A1と前記測定点B1の高
さの差を比例配分計算し、その計算値によって切削刃の
高さを制御して削り出し加工する。同様にして前記測定
点B1を始点とし測定点C1を終点とする加工面、前記
測定点C1を始点とし測定点D1を終点とする加工面及
び前記測定点D1を始点とし前記測定点A1を終点とす
る加工面の順に、各々の測定点の高さの差を比例配分計
算し、その計算値によって切削刃の高さを制御して削り
出し加工を行う。このとき、上方に位置する内層回路面
の測定点A乃至測定点Dは、下方に位置する内層回路面
を削り出し加工するときに切削削除されるので、その痕
跡が残ることがない。図6は、最下方に位置するダイ領
域160を削り出し加工して、段差形状が完成した状態
を示す。このとき、下方に位置する内層回路面の測定点
A1乃至測定点D1は、前期ダイ領域160を削り出し
加工するときに切削削除されるので、その痕跡が残るこ
とはない。したがって、測定点A乃至測定点D及び測定
点A1乃至測定点D1が電子部品用パッケージの機能に
影響することはない。多段構造の場合は、従来の方法で
は各段の歩留まりが累積して影響するので全体としての
歩留まりが低下して高コストとなってしまうが、本発明
により、各段の内層回路を平坦に削り出して各段の歩留
まりを改善し、生産性を向上して高品質のもとに低コス
トで多段構造を提供することができる。こうして、内層
回路面10の高さ方向の状態に対して、高精度の内層削
り出し加工が可能となり、歩留まりを改善し、内層の任
意の各層間に段差形状を形成したプリント配線基板の生
産性を向上させてコストを低減することができる。尚、
高精度かつ高速の測定装置と高速の数値演算装置を用い
ればさらに効果的である。
FIG. 5 is another example of the general electronic component package shown in FIG. 4, showing an example in which inner layer circuits having different layers are cut out to form a multistage structure. In this case, the inner layer circuit of each layer can be machined by controlling the height of the cutting blade by the method shown in FIG. That is, first, as shown in FIG. 5A, the heights of four measurement points A to D on the inner layer circuit surface located above are detected. Starting from the measurement point A, the measurement point B
When cutting out the machined surface whose end point is, the difference between the heights of the measurement point A and the measurement point B is proportionally calculated, and the height of the cutting blade is controlled by the calculated value to perform the machining operation. To do. Similarly, a machined surface having the measurement point B as the starting point and the measurement point C as the end point, a machining surface having the measurement point C as the starting point and the measurement point D as the end point, and the measurement point A as the starting point and the measurement point A as the starting point. The height difference of each measurement point is proportionally calculated in the order of the end surface to be machined, and the height of the cutting blade is controlled by the calculated value to perform the carving process. Next, as shown in FIG. 5B, the heights of four measurement points A1 to D1 on the inner layer circuit surface located below are detected. When machining a machined surface having the measurement point A1 as the start point and the measurement point B1 as the end point, the difference in height between the measurement point A1 and the measurement point B1 is proportionally calculated, and cutting is performed according to the calculated value. Controls the height of the blade to cut out. Similarly, a machining surface having the measurement point B1 as the starting point and the measurement point C1 as the end point, a machining surface having the measurement point C1 as the starting point and the measurement point D1 as the end point, and the measurement point D1 as the starting point and the measurement point A1 as the end point. The height difference of each measurement point is proportionally calculated in the order of the machining surface to be cut, and the height of the cutting blade is controlled by the calculated value to perform the carving process. At this time, the measurement points A to D on the inner layer circuit surface located on the upper side are cut and removed when the inner layer circuit surface located on the lower side is carved out, so that no trace thereof remains. FIG. 6 shows a state in which the die region 160 located at the lowermost part is carved out and the step shape is completed. At this time, the measurement points A1 to D1 on the inner layer circuit surface located below are cut and removed when the die region 160 is carved out in the previous period, so that no trace thereof remains. Therefore, the measurement points A to D and the measurement points A1 to D1 do not affect the function of the electronic component package. In the case of a multi-stage structure, since the yield of each stage is accumulated and affected by the conventional method, the overall yield is lowered and the cost becomes high.However, according to the present invention, the inner layer circuit of each stage is flattened. Therefore, the yield of each stage can be improved, the productivity can be improved, and a multistage structure can be provided with high quality and low cost. Thus, the inner layer circuit surface 10 can be machined with high precision in the height direction, the yield is improved, and the productivity of the printed wiring board in which a step shape is formed between arbitrary inner layers Can be improved and the cost can be reduced. still,
It is more effective if a high-precision and high-speed measuring device and a high-speed numerical operation device are used.

【0011】[0011]

【発明の効果】本発明によれば、削り出す内層回路面の
始点と終点の高さの位置をあらかじめ測定し、始点及び
終点の高さの差の比例配分計算値によって切削刃の高さ
を制御することにより、また、前期削り出す内層回路各
面の各辺の削り出し加工始点及び終点の間の1点以上の
複数点の高さ位置をあらかじめ測定して、始点から終点
に至り隣接する各点の高さの差の比例配分計算値によっ
て、連続して切削刃の高さを制御することにより、内層
削り出し加工方法における内層回路面の高さ方向の傾き
等に起因する切削過多及び切削不足を防止する。その結
果、内層削り出し加工の歩留まりを改善し、内層の任意
の各層間に段差形状を形成したプリント配線基板の生産
性を向上させてコストを低減することができる。
According to the present invention, the positions of the heights of the starting point and the end point of the inner layer circuit surface to be machined are measured in advance, and the height of the cutting edge is determined by the proportional distribution calculation value of the difference between the heights of the starting point and the end point. By controlling, the height positions of one or more points between the start point and the end point of each side of each surface of the inner layer circuit to be cut out in the previous period are measured in advance, and the height positions are adjacent from the start point to the end point. By controlling the height of the cutting edge continuously by the proportional distribution calculation value of the height difference of each point, there is excess cutting due to the inclination in the height direction of the inner layer circuit surface in the inner layer carving method and the like. Prevent insufficient cutting. As a result, it is possible to improve the yield of the inner layer shaving process, improve the productivity of the printed wiring board in which a step shape is formed between arbitrary layers of the inner layer, and reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】内層回路及び測定点である始点と終点を示す
図。
FIG. 1 is a diagram showing an inner layer circuit and start and end points which are measurement points.

【図2】本発明に係る比例配分計算の説明図。FIG. 2 is an explanatory diagram of proportional distribution calculation according to the present invention.

【図3】中点を設けた比例配分計算の説明図。FIG. 3 is an explanatory diagram of proportional distribution calculation with a middle point.

【図4】本発明を一般的な電子部品用パッケージに適用
した例を示す図。
FIG. 4 is a diagram showing an example in which the present invention is applied to a general electronic component package.

【図5】電子部品用パッケージに本発明の多段形状加工
を施す状態を示す図。
FIG. 5 is a diagram showing a state in which the multistage shape processing of the present invention is applied to an electronic component package.

【図6】ダイ領域を加工して本発明の多段形状加工を完
成した状態を示す図。
FIG. 6 is a diagram showing a state in which the die region is processed to complete the multi-step shape processing of the present invention.

【符号の説明】[Explanation of symbols]

10 内層回路面 20 始点 25 中点 30 終点 40 加工基準平面 50 切削刃 60 始点から終点に至る比例配分した高さ 70 始点から中点に至る比例配分した高さ 75 中点から終点に至る比例配分した高さ 80 測定点A 90 測定点B 100 測定点C 110 測定点D 120 測定点A1 130 測定点B1 140 測定点C1 150 測定点D1 160 ダイ領域 10 Inner layer circuit side 20 starting point 25 midpoint 30 end point 40 Processing reference plane 50 cutting blades 60 Height proportionally distributed from the start point to the end point 70 Height proportionally distributed from the starting point to the midpoint 75 Proportional height from the midpoint to the end point 80 Measurement point A 90 Measurement point B 100 measurement point C 110 measurement point D 120 measurement points A1 130 measurement point B1 140 measurement point C1 150 measurement points D1 160 die area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内層削り出し加工により内層の任意の各層
間に段差形状を形成したプリント配線基板において、削
り出す内層回路各面の各辺の削り出し加工始点及び終点
の高さ位置をあらかじめ測定して、始点と終点の高さの
差の比例配分計算値によって切削刃の高さを制御する内
層削り出し平坦加工によって、内層の任意の各層間に段
差形状を形成することを特徴とするプリント配線基板。
1. In a printed wiring board in which a step shape is formed between arbitrary layers of an inner layer by carving the inner layer, the height position of the carving process starting point and the end point of each side of each surface of the inner layer circuit to be carved is measured in advance. Then, the print is characterized by forming a stepped shape between any layers of the inner layer by the inner layer cut-out flattening in which the height of the cutting blade is controlled by the proportional distribution calculation value of the height difference between the start point and the end point. Wiring board.
【請求項2】内層削り出し加工により内層の任意の各層
間に段差形状を形成したプリント配線基板の製造方法に
おいて、削り出す内層回路各面の各辺の削り出し加工始
点及び終点の高さ位置をあらかじめ測定して、始点と終
点の高さの差の比例配分計算値によって切削刃の高さを
制御する内層削り出し平坦加工によって、内層の任意の
各層間に段差形状を形成することを特徴とするプリント
配線基板の製造方法。
2. In a method for manufacturing a printed wiring board in which a step shape is formed between arbitrary layers of an inner layer by carving the inner layer, a height position of a carving process start point and an end point of each side of each surface of the inner layer circuit to be carved. Is measured in advance, and the step shape is formed between any layers of the inner layer by the inner layer cut-out flattening in which the height of the cutting edge is controlled by the proportional distribution calculation value of the height difference between the start point and the end point. And a method for manufacturing a printed wiring board.
【請求項3】前期削り出す内層回路各面の各辺の削り出
し加工始点及び終点の間の1点以上の複数点の高さ位置
をあらかじめ測定して、始点から終点に至り隣接する各
点の高さの差の比例配分計算値によって、連続して切削
刃の高さを制御することを特徴とする請求項2記載のプ
リント配線基板の製造方法。
3. The height positions of one or more points between the starting point and the end point of the machining on each side of each surface of the inner layer circuit to be carved in the previous period are measured in advance, and the adjacent points from the starting point to the end point are adjoined. The method for manufacturing a printed wiring board according to claim 2, wherein the height of the cutting edge is continuously controlled by a proportional distribution calculated value of the height difference.
JP2001343886A 2001-10-04 2001-10-04 Printed wiring board and manufacturing method thereof Pending JP2003115559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343886A JP2003115559A (en) 2001-10-04 2001-10-04 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343886A JP2003115559A (en) 2001-10-04 2001-10-04 Printed wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003115559A true JP2003115559A (en) 2003-04-18

Family

ID=19157492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343886A Pending JP2003115559A (en) 2001-10-04 2001-10-04 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003115559A (en)

Similar Documents

Publication Publication Date Title
CN101605433B (en) Method for processing buried resistor in printed circuit board
JP2006173146A (en) Multilayer circuit board and method for manufacturing the same
KR20080086404A (en) Recess formation method, recess formation device, and formation material for recess
CN105723815B (en) Printed circuit board with at least one embedded precision resistor
US20090289342A1 (en) Semiconductor Device and Semiconductor Device Manufacturing Method
CN105472864B (en) Printed circuit board and its manufacturing method with degradation wiring pattern
WO2004001774A1 (en) Chip resistor having low resistance and its producing method
CN112616265A (en) Printed circuit board and manufacturing method thereof
JP2003115559A (en) Printed wiring board and manufacturing method thereof
KR101695310B1 (en) Conductor grid for electronic housings and manufacturing method
US6295631B1 (en) Method for determining the compensation value of the width of a wire by measuring the resistance of the wire
JP4117390B2 (en) Manufacturing method of multilayer printed wiring board with cavity
CN113597124A (en) Hyperfine FPC circuit manufacturing process suitable for thick copper
JP2749685B2 (en) Circuit board manufacturing method
CN114945248B (en) Processing technology of precise circuit board
JPS63245995A (en) Method of forming intermediate layer terminal of multilayer printed interconnection board
JP3425251B2 (en) Apparatus and method for cutting out inner layer circuit for electronic component package
KR970006526B1 (en) Manufacture of laminated board
JP2005209672A (en) Substrate with built-in capacitor and its manufacturing method
JPH08162733A (en) Printed board and cutting method therefor
CN114765930A (en) Processing method of vacuum cavity and circuit board
JPS5831422Y2 (en) Semiconductor device assembly board
US20030002263A1 (en) HDI circuit board and method of production of an HDI circuit board
JPH07122830A (en) Multilayer printed wiring board
JP3077776B2 (en) Mechanism for detecting through hole position in manufacturing printed wiring board, printed wiring board, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017