JP2003094448A - Manufacturing method for frp hollow structure - Google Patents

Manufacturing method for frp hollow structure

Info

Publication number
JP2003094448A
JP2003094448A JP2001291038A JP2001291038A JP2003094448A JP 2003094448 A JP2003094448 A JP 2003094448A JP 2001291038 A JP2001291038 A JP 2001291038A JP 2001291038 A JP2001291038 A JP 2001291038A JP 2003094448 A JP2003094448 A JP 2003094448A
Authority
JP
Japan
Prior art keywords
core
hollow structure
resin
frp
frp hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291038A
Other languages
Japanese (ja)
Inventor
Shunei Sekido
俊英 関戸
Akihiko Kitano
彰彦 北野
Yasuhiro Tsuchiya
泰広 土屋
Yuichi Takano
雄一 高野
Hiroyuki Koyama
広幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toyota Motor Corp
Original Assignee
Toray Industries Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toyota Motor Corp filed Critical Toray Industries Inc
Priority to JP2001291038A priority Critical patent/JP2003094448A/en
Publication of JP2003094448A publication Critical patent/JP2003094448A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily mold an FRP hollow structure of a complicated shape. SOLUTION: After arranging a reinforcing fiber base material on the outer periphery of a hollow core comprising an elastic material, the core is fitted in a die. Then, a resin is poured in, and the reinforcing fiber base material is impregnated with the resin. After the resin is hardened, the pressure in the core is reduced, an the core is shrink-deformed. The shrink-deformed core is taken out from a molded FRP hollow structure for this manufacturing method for the FRP hollow structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、FRP中空構造体
の製造方法に関し、とくに中空の中子と金型を用いて成
形するFRP中空構造体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an FRP hollow structure, and more particularly to a method for manufacturing an FRP hollow structure molded by using a hollow core and a mold.

【0002】[0002]

【従来の技術】従来から、中空の中子、たとえば伸縮自
在なゴムチューブを中子として用い、その外周に強化繊
維基材を配置した後金型内にセットし、ゴムチューブ内
を加圧した状態で強化繊維基材に樹脂を含浸させる、い
わゆる内圧成形と呼ばれる成形法が知られている。
2. Description of the Related Art Conventionally, a hollow core, for example, a stretchable rubber tube is used as a core, a reinforcing fiber base material is arranged on the outer periphery of the core, and the core is set in a mold and the inside of the rubber tube is pressurized. A molding method known as internal pressure molding is known in which a reinforcing fiber base material is impregnated with a resin in this state.

【0003】このような成形法では、通常、ゴム製のチ
ューブ状中子を用いるため、剛性が低いことから、大き
いものや複雑な形状を有する構造体の成形に対応するこ
とは困難である。また、比較的大型のFRP中空構造体
を成形する場合にも、伸縮自在な中子の取り扱いが難し
く、所定の成形が困難である。さらに、成形に使用した
中子は、そのまま成形体内に残されるのが通常であり、
成形後に中子を取り出すのは困難である。特に、成形体
が大型のもの、剛性が高いもの、複雑な形状のもの、さ
らにアンダーカット形状を有するものの場合は、一層困
難である。
In such a molding method, a rubber-made tubular core is usually used, and the rigidity is low, so that it is difficult to cope with the molding of a large structure or a structure having a complicated shape. Also, when molding a relatively large FRP hollow structure, it is difficult to handle the expandable core, and it is difficult to perform a predetermined molding. Furthermore, the core used for molding is usually left as it is in the molded body,
It is difficult to remove the core after molding. In particular, it is more difficult when the molded product is large, has high rigidity, has a complicated shape, or has an undercut shape.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、複雑
な形状の部位を有するFRP中空構造体であっても、ま
た、さらに比較的大型のFRP中空構造体であっても、
容易にかつ安価に成形可能な、しかも、同じ中子を用い
て複数回成形すること、つまり量産が可能な、FRP中
空構造体の製造方法を提供することにある。
The problem to be solved by the present invention is whether it is an FRP hollow structure having a complex-shaped portion or a relatively large FRP hollow structure.
An object of the present invention is to provide a method for manufacturing an FRP hollow structure which can be easily and inexpensively molded, and can be molded a plurality of times using the same core, that is, can be mass-produced.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るFRP中空構造体の製造方法は、弾性
材料からなる中空の中子の外周に強化繊維基材を配置し
た後中子を金型内に装着し、樹脂を注入して強化繊維基
材に含浸させ、樹脂を硬化させた後、中子内を減圧して
中子を収縮変形させ、収縮変形した中子を成形したFR
P中空構造体内から取り出すことを特徴とする方法から
なる。
In order to solve the above-mentioned problems, a method for producing an FRP hollow structure according to the present invention is a method in which a reinforcing fiber base material is placed on the outer periphery of a hollow core made of an elastic material. Insert the core into the mold, inject the resin to impregnate the reinforcing fiber base, cure the resin, and then depressurize the core to shrink and deform the core, and mold the shrink-deformed core. FR
The method is characterized by taking out from the P hollow structure.

【0006】上記FRP中空構造体の製造方法において
は、樹脂を硬化させた後、成形したFRP中空構造体と
ともに中子を加熱炉内に入れ、加熱によりFRP中空構
造体のアフターキュアを行うとともに、加熱により軟化
した中子内を減圧して中子を収縮変形させ、収縮変形し
た中子を成形したFRP中空構造体内から取り出すよう
にすることもできる。
In the method for manufacturing the FRP hollow structure described above, after the resin is cured, the core is placed in a heating furnace together with the molded FRP hollow structure, and after-curing the FRP hollow structure by heating, It is also possible to decompress the inside of the core that has been softened by heating so that the core is contracted and deformed, and the contracted and deformed core is taken out from the molded FRP hollow structure.

【0007】使用する中空の中子としては、ゴム製のも
のを用いることも可能であるが、好ましくは、熱可塑性
樹脂からなるものが望ましい。熱可塑性樹脂としては、
たとえばポリエチレンを用いることができる。このよう
な材質の中空中子を、ブロー成形または回転成形により
作製することができる。樹脂のブロー成形または回転成
形であるから、中子成形用の型さえ作製できれば、複雑
な形状を有する中子であっても容易に作製することがで
きる。
The hollow core to be used may be made of rubber, but is preferably made of a thermoplastic resin. As a thermoplastic resin,
For example, polyethylene can be used. The hollow core made of such a material can be produced by blow molding or rotational molding. Since it is blow molding or rotational molding of resin, even a core having a complicated shape can be easily manufactured as long as a mold for core molding can be manufactured.

【0008】また、本発明に係る方法においては、樹脂
注入前に、中子内を加圧することにより、または/およ
び、金型のキャビティ内を減圧することにより、中子を
キャビティ内面方向に膨張させるようにしてもよい。こ
のようにすれば、中子の外周に配置された強化繊維基材
をキャビティ内面に沿うように押し付けることができ、
その状態で樹脂が含浸されるので、より正確に目標とす
る形状への成形が可能になるとともに、成形品の表面品
位の向上が可能になる。
In the method according to the present invention, the core is expanded toward the inner surface of the cavity by pressurizing the inside of the core or / and depressurizing the inside of the cavity of the mold before injecting the resin. You may allow it. By doing this, the reinforcing fiber base material arranged on the outer periphery of the core can be pressed along the inner surface of the cavity,
Since the resin is impregnated in this state, it is possible to more accurately form the target shape and improve the surface quality of the formed product.

【0009】さらに本発明に係る方法に用いる中空中子
は、くり返し使用することが可能である。すなわち、収
縮変形した中子を成形したFRP中空構造体内から取り
出した後、該中子の内部を加圧して、特に、加熱により
軟化した該中子の内部を加圧して中子の形状を初期形状
に復元し、次のFRP中空構造体の成形に用いることが
可能である。くり返し使用回数は中子の初期形状への復
元状態にもよるが、少なくとも数回可能であり、比較的
大型のFRP中空構造体を成形する場合のコストメリッ
トは極めて大きい。
Further, the hollow core used in the method according to the present invention can be repeatedly used. That is, after the contracted and deformed core is taken out from the molded FRP hollow structure, the inside of the core is pressurized, particularly the inside of the core softened by heating is pressurized to initialize the shape of the core. It is possible to restore the shape and use it for the next molding of the FRP hollow structure. The number of times of repeated use depends on the restored state of the core to the initial shape, but it can be repeated at least several times, and the cost merit in molding a relatively large FRP hollow structure is extremely large.

【0010】上記のような本発明に係るFRP中空構造
体の製造方法においては、弾性材料からなる中空の中子
が予め成形されて準備され、その中子の外周に強化繊維
基材が配置され、金型内に装着した後樹脂が注入、含浸
されるので、複雑な形状を有するFRP中空構造体であ
っても比較的容易に成形することが可能になる。また、
中子を伸縮自在なゴムではなく、弾性変形は可能である
が自身の形態保持性を有する弾性材料から作製すること
により、成形時の取扱いも容易になり、比較的大型のF
RP中空構造体であっても容易に成形できるようにな
る。
In the method for manufacturing an FRP hollow structure according to the present invention as described above, a hollow core made of an elastic material is preliminarily molded and prepared, and a reinforcing fiber base material is arranged on the outer periphery of the core. Since the resin is injected and impregnated after the FRP hollow structure having a complicated shape is mounted in the mold, it is possible to relatively easily mold the FRP hollow structure. Also,
By making the core from an elastic material that is elastically deformable but has its own shape-retaining property instead of elastic rubber, handling during molding becomes easy, and a relatively large F
Even an RP hollow structure can be easily molded.

【0011】この中空中子は、FRP中空構造体の成形
後に、内部減圧により収縮変形され、成形したFRP中
空構造体内から取り出される。したって、成形後のFR
P中空構造体内に中子が残ることも回避できる。なお、
減圧の際の中子と、成形したFRP中空構造体とが剥離
しやすいように、適宜離型剤や離型シートを配しておい
てもよい。取り出された中子は、その内部を加圧するこ
とにより初期形状に復元可能であり、少なくとも数回の
成形にくり返し使用することができる。したがって、製
品1個当たりの中子作製費用が大幅に低減され、FRP
中空構造体の量産を安価に行うことが可能となる。
After molding the FRP hollow structure, the hollow core is contracted and deformed by internal decompression, and taken out from the molded FRP hollow structure. Therefore, FR after molding
It is also possible to avoid the core remaining in the P hollow structure. In addition,
A mold release agent or a mold release sheet may be appropriately arranged so that the core and the molded FRP hollow structure during pressure reduction can be easily separated from each other. The core taken out can be restored to the initial shape by pressurizing the inside, and can be repeatedly used for molding at least several times. Therefore, the core manufacturing cost per product is significantly reduced, and the FRP
It becomes possible to mass-produce the hollow structure at low cost.

【0012】[0012]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照して説明する。図1ないし図6は、
本発明の一実施態様に係るFRP中空構造体の製造方法
を示しており、とくに小型飛行機の胴体を成形する場合
の例を示している。ただし本発明は、これに限らずあら
ゆるFRP中空構造体の成形に適用可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. 1 to 6 are
1 shows a method for manufacturing an FRP hollow structure according to an embodiment of the present invention, and particularly shows an example of forming a fuselage of a small airplane. However, the present invention is not limited to this, and is applicable to molding of any FRP hollow structure.

【0013】まず、図1に示すような中空の中子1が準
備される。中子1は、弾性材料、とくに熱可塑性樹脂か
らなり、本実施態様では、ポリエチレンを用いてブロー
成形により作製されている。中空中子の成形としては、
回転する型内に樹脂パウダーを投入し、型の内面に沿う
ように樹脂パウダーを分散させて溶融成形する、いわゆ
る回転成形も可能である。中空中子1の肉厚は、たとえ
ば2〜5mm程度とされる。中子1の外面には、FRP
中空構造体のフレーム部成形用の溝2が形成されるとと
もに、後述の樹脂注入時に樹脂を良好に拡散させるため
の樹脂の流路となる樹脂溝3が形成される。
First, a hollow core 1 as shown in FIG. 1 is prepared. The core 1 is made of an elastic material, particularly a thermoplastic resin, and is made by blow molding using polyethylene in this embodiment. For molding the hollow core,
It is also possible to perform so-called rotational molding, in which resin powder is charged into a rotating mold, and the resin powder is dispersed along the inner surface of the mold and melt-molded. The wall thickness of the hollow core 1 is, for example, about 2 to 5 mm. On the outer surface of the core 1, FRP
The groove 2 for molding the frame portion of the hollow structure is formed, and the resin groove 3 which serves as a resin flow path for favorably diffusing the resin at the time of resin injection described later is formed.

【0014】上記中空中子1の外周に、たとえば図2に
示すように強化繊維基材4が配置される。強化繊維基材
4は、成形しようとするFRP中空構造体の部位に応じ
て、各々分割したプリフォームの形態に予め作成してお
くことができ、それを中子1の外周に装着していくよう
にすればレイアップが容易になる。強化繊維基材4のプ
リフォームの形態としても、FRP中空構造体の部位に
応じて、たとえばフレーム部や外皮部等に応じて、複数
枚の強化繊維基材のみを積層したものや、強化繊維基材
間に芯材を介在させたもの等に形成できる。芯材として
は、軽量な発泡体(たとえば発泡ウレタン)やハニカム
構造体を用いることが好ましい。
On the outer periphery of the hollow core 1, a reinforcing fiber base material 4 is arranged, for example, as shown in FIG. The reinforcing fiber base material 4 can be prepared in advance in the form of divided preforms according to the part of the FRP hollow structure to be molded, and it is mounted on the outer periphery of the core 1. This will make layup easier. Also in the form of the preform of the reinforcing fiber base material 4, depending on the part of the FRP hollow structure, for example, the frame part, the outer skin part, or the like, only a plurality of reinforcing fiber base materials are laminated, or the reinforcing fiber base material. It can be formed to have a core material interposed between base materials. It is preferable to use a lightweight foam (for example, urethane foam) or a honeycomb structure as the core material.

【0015】強化繊維基材4に使用する強化繊維として
は、特に限定されず、炭素繊維やガラス繊維、アラミド
繊維、さらにはそれらのハイブリッド形態等を用いるこ
とができ、用途、要求特性に応じて適宜選択すればよ
い。
The reinforcing fibers used for the reinforcing fiber base material 4 are not particularly limited, and carbon fibers, glass fibers, aramid fibers, and hybrid forms thereof can be used, depending on the application and required characteristics. It may be selected appropriately.

【0016】外周に強化繊維基材4が配置された中子1
は、図3に示すような金型5内に装着される。金型5
は、本実施態様では型5a、5bの分割型からなり、こ
れらを閉じることにより内部に所定形状のキャビティ6
が形成される。このとき、キャビティ6の内面に必要に
応じてゲルコート7を施しておいてもよい。
A core 1 having a reinforcing fiber base material 4 arranged on the outer periphery thereof.
Is mounted in a mold 5 as shown in FIG. Mold 5
In the present embodiment, the mold is composed of molds 5a and 5b, and by closing them, the cavity 6 having a predetermined shape is formed inside.
Is formed. At this time, a gel coat 7 may be applied to the inner surface of the cavity 6 if necessary.

【0017】強化繊維基材4を配した中子1を金型5内
に装着したときには、たとえば図4に示すような状態と
なる。すなわち、中子1の外周には、積層構造の強化繊
維基材4や、芯材8を有するサンドイッチ構造部等が配
置され、キャビティ6内に装着される。このとき、図4
に示すように強化繊維基材4とキャビティ6の内面との
間に隙間が形成される場合には、金型5のキャビティ6
内を真空引きによって減圧することにより、または/お
よび、中子1内を加圧することにより、中子1をキャビ
ティ6の内面方向に膨張させ、該内面に押し付けて隙間
を無くすることができる。上記のような中子1の膨張に
よって、強化繊維基材4は周方向に緩みの無い真直した
状態に形成され、本来の高い力学特性を発揮できる。
When the core 1 on which the reinforcing fiber base material 4 is arranged is mounted in the mold 5, for example, the state shown in FIG. 4 is obtained. That is, the reinforcing fiber base material 4 having a laminated structure, the sandwich structure portion having the core material 8, and the like are arranged on the outer periphery of the core 1, and are mounted in the cavity 6. At this time,
When a gap is formed between the reinforcing fiber substrate 4 and the inner surface of the cavity 6 as shown in FIG.
By depressurizing the inside by vacuuming and / or pressurizing the inside of the core 1, the core 1 can be expanded toward the inner surface of the cavity 6 and pressed against the inner surface to eliminate the gap. By the expansion of the core 1 as described above, the reinforcing fiber base material 4 is formed in a straight state with no looseness in the circumferential direction, and the original high mechanical characteristics can be exhibited.

【0018】その状態にて、金型を所定温度(たとえば
70℃程度)に加熱しつつ、図5に示すように樹脂タン
ク9から樹脂10をキャビティ6内に注入する。樹脂注
入にはポンプを用いることもできるが、真空引きライン
11によってキャビティ6内を減圧しつつ注入すること
により、樹脂を自然にキャビティ6内に導入することが
可能である。注入された樹脂10は、前述の樹脂溝3や
強化繊維基材4中を流れ、強化繊維基材4内に速やかに
含浸されていく。注入樹脂としては、熱硬化性樹脂、た
とえばエポキシ樹脂や不飽和ポリエステル樹脂、ビスマ
レイミド樹脂、熱硬化型ポリイミド樹脂、フェノール樹
脂等を用いる。
In this state, while heating the mold to a predetermined temperature (for example, about 70 ° C.), the resin 10 is injected into the cavity 6 from the resin tank 9 as shown in FIG. Although a pump can be used for injecting the resin, the resin can be naturally introduced into the cavity 6 by injecting the resin while depressurizing the inside of the cavity 6 with the vacuum line 11. The injected resin 10 flows through the resin groove 3 and the reinforcing fiber base material 4 described above, and is quickly impregnated into the reinforcing fiber base material 4. As the injection resin, a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a bismaleimide resin, a thermosetting polyimide resin, or a phenol resin is used.

【0019】樹脂注入後、金型5を前記所定の温度に加
熱したまま所定時間保持すると、たとえば約40分程度
で樹脂がゲル化を開始し、約2時間程度で樹脂が硬化す
る。
After the resin is injected, if the mold 5 is heated to the predetermined temperature and kept for a predetermined time, the resin starts to gel in about 40 minutes, and the resin is hardened in about 2 hours.

【0020】樹脂硬化後に、成形されたFRP中空構造
体を中子1とともに金型5から脱型する。しかる後、必
要に応じて加熱炉に入れ、約120℃程度に加熱してア
フターキュアを行う。但しこの強制的なアフターキュア
は、場合によっては不要であり、単に放置するだけのア
フターキュアとすることも可能である。高温でのアフタ
ーキュアを行うと、成形されたFRP中空構造体の内部
に残っている中子1を軟化させることができるので、次
の中子取り出しが容易になる。
After the resin is cured, the molded FRP hollow structure is removed from the mold 5 together with the core 1. After that, if necessary, it is put in a heating furnace and heated to about 120 ° C. to perform after-curing. However, this compulsory after-cure is unnecessary in some cases, and it is also possible to simply leave the after-cure. When the after-curing is performed at a high temperature, the core 1 remaining inside the molded FRP hollow structure can be softened, which facilitates the next core removal.

【0021】上記アフターキュアを行ないながら、中子
1内を吸引により減圧して、図6に示すように中子1を
収縮変形させ、収縮変形した中子21を成形したFRP
中空構造体22から取り出す。とくに前述の如く120
℃程度でアフターキュアを行いながら中子1内の減圧を
行うと、中子1が軟化しているので容易に収縮変形し、
かつ、収縮変形した中子21も柔軟性を有するので、一
層容易にFRP中空構造体22から取り出すことができ
る。
While performing the above-mentioned after-curing, the inside of the core 1 is decompressed by suction to shrink and deform the core 1 as shown in FIG. 6 to form the shrink-deformed core 21.
The hollow structure 22 is taken out. Especially as mentioned above, 120
When the core 1 is depressurized while performing after-curing at about ℃, the core 1 is softened and easily contracts and deforms,
Moreover, since the core 21 that has been contracted and deformed is also flexible, it can be taken out from the FRP hollow structure 22 more easily.

【0022】上記のようなFRP中空構造体22の成形
においては、所定形状の中空中子1が予め作製されてい
るので、複雑な形状の部位を有する構造体であっても容
易に成形することができる。また、樹脂製の中子1は、
常温では比較的高い剛性を有しているので、強化繊維基
材4のレイアップから金型5内への装着までの取扱いは
容易であり、比較的大型の構造体を成形する場合にも、
成形作業は極めて容易に行われる。
In forming the FRP hollow structure 22 as described above, the hollow core 1 having a predetermined shape is prepared in advance, so that even a structure having a complex-shaped portion can be easily formed. You can Also, the resin core 1 is
Since it has a relatively high rigidity at room temperature, it is easy to handle from the lay-up of the reinforcing fiber base material 4 to the mounting in the mold 5, and even when molding a relatively large structure,
The molding operation is extremely easy.

【0023】また、FRP中空構造体22の成形後に
は、高温により軟化状態にある中子1を内部減圧により
容易に収縮変形させることができ、収縮変形した中子2
1の取り出しも極めて容易に行われる。
After the FRP hollow structure 22 is molded, the core 1 in a softened state due to high temperature can be easily contracted and deformed by internal decompression, and the contracted and deformed core 2 is obtained.
The removal of 1 is also very easy.

【0024】取り出された収縮変形した中子21は、風
船がしぼんだのと同じような状態にあるので、その内部
を加圧することにより初期形状(図1に示した形状)に
復元することが可能であり、それによって繰り返し同じ
成形に利用できる。この初期形状への復元作業は、収縮
変形した中子を加熱しながら行うと一層効果的である。
中子1の形状維持状況にもよるが、少なくとも、数回程
度は十分にくり返し使用できる。
The extracted contracted and deformed core 21 is in a state similar to that of a balloon that has been deflated, so that it is possible to restore the initial shape (the shape shown in FIG. 1) by pressurizing the inside. Yes, so that it can be used repeatedly for the same molding. It is more effective to perform the restoration work to the initial shape while heating the shrinkage-deformed core.
Although it depends on the shape maintenance state of the core 1, it can be used repeatedly enough at least several times.

【0025】さらに、図4に示したように、中子1をキ
ャビティ6の内面方向に膨張させた後樹脂注入するよう
にすれば、キャビティ6の内面に沿ったより正確な形状
への成形が可能になるとともに、成形品の表面もより滑
らかなものとなり、表面品位の向上をはかることができ
る。
Further, as shown in FIG. 4, if the core 1 is expanded toward the inner surface of the cavity 6 and then the resin is injected, a more accurate shape can be formed along the inner surface of the cavity 6. In addition, the surface of the molded product becomes smoother and the surface quality can be improved.

【0026】[0026]

【発明の効果】以上説明したように、本発明のFRP中
空構造体の製造方法によれば、複雑な形状の部位を有す
るFRP中空構造体、比較的大型のFRP中空構造体を
容易にかつ精度よく目標とする形状に一体成形できるよ
うになる。また、一連の成形の作業性が良く、しかも、
中子をくり返し使用可能であることから、所望のFRP
中空構造体を安価に製造することができる。
As described above, according to the method for manufacturing an FRP hollow structure of the present invention, an FRP hollow structure having a complex-shaped portion and a relatively large FRP hollow structure can be easily and accurately manufactured. It becomes possible to integrally mold to a target shape well. Also, the workability of a series of molding is good, and moreover,
Since the core can be used repeatedly, the desired FRP
The hollow structure can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様に係るFRP中空構造体の
製造方法に用いる中子の斜視図である。
FIG. 1 is a perspective view of a core used in a method for manufacturing an FRP hollow structure according to an embodiment of the present invention.

【図2】中子に強化繊維基材をレイアップする様子を示
す斜視図である。
FIG. 2 is a perspective view showing a state in which a reinforcing fiber base material is laid up on a core.

【図3】金型の分解斜視図である。FIG. 3 is an exploded perspective view of a mold.

【図4】金型内に中子と強化繊維基材を装着した状態を
示す概略縦断面図である。
FIG. 4 is a schematic vertical sectional view showing a state in which a core and a reinforcing fiber base material are mounted in a mold.

【図5】樹脂注入の様子を示す透視斜視図である。FIG. 5 is a perspective view showing a state of resin injection.

【図6】中子取り出しの様子を示す斜視図である。FIG. 6 is a perspective view showing how the core is taken out.

【符号の説明】[Explanation of symbols]

1 中空中子 2 フレーム成形用溝 3 樹脂溝 4 強化繊維基材 5、5a、5b 金型 6 キャビティ 7 ゲルコート 8 芯材 9 樹脂タンク 10 樹脂 11 真空引きライン 21 収縮変形した中子 22 FRP中空構造体 1 hollow core 2 Frame forming groove 3 resin groove 4 Reinforcing fiber base material 5, 5a, 5b mold 6 cavities 7 gel coat 8 core material 9 Resin tank 10 resin 11 Vacuum line 21 Shrinkage-deformed core 22 FRP hollow structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北野 彰彦 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内 (72)発明者 土屋 泰広 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 高野 雄一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 小山 広幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4F202 AA36 AD16 AG07 AJ03 CA01 CB01 CK42 CK82 CM30 CM90 4F204 AA36 AA37 AA39 AA40 AA41 AD16 AG07 AJ03 AJ11 EA03 EA04 EB01 EB11 EF05 EF27 EK13 EK17 EK24 EK25    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Kitano             1515 Tsutsui, Oita, Matsumae-cho, Iyo-gun, Ehime             Les Ehime Factory (72) Inventor Yasuhiro Tsuchiya             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Yuichi Takano             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Hiroyuki Koyama             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F-term (reference) 4F202 AA36 AD16 AG07 AJ03 CA01                       CB01 CK42 CK82 CM30 CM90                 4F204 AA36 AA37 AA39 AA40 AA41                       AD16 AG07 AJ03 AJ11 EA03                       EA04 EB01 EB11 EF05 EF27                       EK13 EK17 EK24 EK25

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弾性材料からなる中空の中子の外周に強
化繊維基材を配置した後中子を金型内に装着し、樹脂を
注入して強化繊維基材に含浸させ、樹脂を硬化させた
後、中子内を減圧して中子を収縮変形させ、収縮変形し
た中子を成形したFRP中空構造体内から取り出すこと
を特徴とする、FRP中空構造体の製造方法。
1. A hollow core made of an elastic material is provided with a reinforcing fiber base on the outer periphery thereof, and then the core is mounted in a mold and resin is injected to impregnate the reinforcing fiber base to cure the resin. After that, the pressure inside the core is reduced to cause the core to contract and deform, and the contracted and deformed core is taken out from the molded FRP hollow structure.
【請求項2】 樹脂を硬化させた後、成形したFRP中
空構造体とともに中子を加熱炉内に入れ、加熱によりF
RP中空構造体のアフターキュアを行うとともに、加熱
により軟化した中子内を減圧して中子を収縮変形させ、
収縮変形した中子を成形したFRP中空構造体内から取
り出す、請求項1のFRP中空構造体の製造方法。
2. After curing the resin, the core is put into a heating furnace together with the molded FRP hollow structure, and the core is heated by heating.
After curing the RP hollow structure, decompress the inside of the core softened by heating to shrink and deform the core,
The method for producing an FRP hollow structure according to claim 1, wherein the shrink-deformed core is taken out from the molded FRP hollow structure.
【請求項3】 中空の中子が熱可塑性樹脂からなる、請
求項1または2のFRP中空構造体の製造方法。
3. The method for producing an FRP hollow structure according to claim 1, wherein the hollow core is made of a thermoplastic resin.
【請求項4】 中子を、ブロー成形または回転成形によ
り作製する、請求項1〜3のいずれかに記載のFRP中
空構造体の製造方法。
4. The method for producing an FRP hollow structure according to claim 1, wherein the core is produced by blow molding or rotational molding.
【請求項5】 樹脂注入前に、中子内を加圧することに
より、または/および、金型のキャビティ内を減圧する
ことにより、中子をキャビティ内面方向に膨張させる、
請求項1〜4のいずれかに記載のFRP中空構造体の製
造方法。
5. The core is expanded toward the inner surface of the cavity by pressurizing the inside of the core or / and depressurizing the inside of the cavity of the mold before injecting the resin.
The method for manufacturing the FRP hollow structure according to claim 1.
【請求項6】 収縮変形した中子を成形したFRP中空
構造体内から取り出した後、該中子の内部を加圧して中
子の形状を初期形状に復元し、次のFRP中空構造体の
成形に用いる、請求項1〜5のいずれかに記載のFRP
中空構造体の製造方法。
6. After the contracted and deformed core is taken out from the molded FRP hollow structure, the inside of the core is pressed to restore the shape of the core to the initial shape, and the next molding of the FRP hollow structure is performed. The FRP according to any one of claims 1 to 5, which is used for
Hollow structure manufacturing method.
【請求項7】 FRP中空構造体内から中子を取り出し
た後、該中子を加熱により軟化させた状態で該中子の内
部を加圧して中子の形状を初期形状に復元し、次のFR
P中空構造体の成形に用いる、請求項6のFRP中空構
造体の製造方法。
7. After taking out the core from the FRP hollow structure, the inside of the core is pressurized while the core is softened by heating to restore the shape of the core to the initial shape. FR
The method for producing an FRP hollow structure according to claim 6, which is used for molding a P hollow structure.
JP2001291038A 2001-09-25 2001-09-25 Manufacturing method for frp hollow structure Pending JP2003094448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291038A JP2003094448A (en) 2001-09-25 2001-09-25 Manufacturing method for frp hollow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291038A JP2003094448A (en) 2001-09-25 2001-09-25 Manufacturing method for frp hollow structure

Publications (1)

Publication Number Publication Date
JP2003094448A true JP2003094448A (en) 2003-04-03

Family

ID=19113245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291038A Pending JP2003094448A (en) 2001-09-25 2001-09-25 Manufacturing method for frp hollow structure

Country Status (1)

Country Link
JP (1) JP2003094448A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159457A (en) * 2004-12-03 2006-06-22 Toray Ind Inc Molding method of frp hollow structure
JP2007083410A (en) * 2005-09-20 2007-04-05 Toyo Tire & Rubber Co Ltd Method for forming reinforcing cord layer and rubber cylindrical body with metal fittings
JP2008213389A (en) * 2007-03-07 2008-09-18 Toyota Industries Corp Manufacturing method of fiber-reinforced plastic and core for shaping fiber-reinforced plastic
JP2008540166A (en) * 2005-05-03 2008-11-20 ストーク・エスペー・エアロスペース・ベー・ヴェー Method for producing a hollow fiber reinforced structural member
JP2009143178A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Method for molding fiber-reinforced resin hollow component
JP2010528896A (en) * 2007-06-05 2010-08-26 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Method for manufacturing hollow structural parts made of fiber reinforced plastic
US8808480B2 (en) 2007-08-01 2014-08-19 Toyota Jidosha Kabushiki Kaisha Flanged fiber-reinforced resin hollow part and method of molding the same
WO2020174696A1 (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing tube body used in power transmission shaft
JP2022520697A (en) * 2018-12-11 2022-04-01 ゼネラル・エレクトリック・カンパニイ Methods for manufacturing girder beams for hollow composite structures, especially wind turbine rotor blades, and related mandrel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123575A (en) * 1974-08-21 1976-02-25 Fujikura Rubber Works Ltd
JPS5949931A (en) * 1982-09-16 1984-03-22 Isao Nakasaki Forming process for hollow vessel made of frp
JPS60232918A (en) * 1984-05-04 1985-11-19 Nitto Boseki Co Ltd Manufacture of glass fiber-reinforced plastic pipe joint
JPH01184124A (en) * 1988-01-20 1989-07-21 Nissan Motor Co Ltd Preparation of fiber reinforced resin hollow body
JPH02122920A (en) * 1988-10-14 1990-05-10 Budd Co:The One-piece molded compound part and manufacture thereof
JPH04232713A (en) * 1990-07-02 1992-08-21 Hudson Prod Corp Manufacture of fan blade
JPH0839580A (en) * 1994-07-29 1996-02-13 Sekisui Chem Co Ltd Manufacture of resin tube joint
JP2000141380A (en) * 1998-11-17 2000-05-23 Bridgestone Corp Material for rubber product vulcanizing mold, rubber product vulcanizing mold, manufacture of rubber product vulcanizing mold, and vulcanizing molding method for rubber product
JP2001150465A (en) * 1999-11-30 2001-06-05 Toyota Motor Corp Method for manufacturing hollow molding and device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123575A (en) * 1974-08-21 1976-02-25 Fujikura Rubber Works Ltd
JPS5949931A (en) * 1982-09-16 1984-03-22 Isao Nakasaki Forming process for hollow vessel made of frp
JPS60232918A (en) * 1984-05-04 1985-11-19 Nitto Boseki Co Ltd Manufacture of glass fiber-reinforced plastic pipe joint
JPH01184124A (en) * 1988-01-20 1989-07-21 Nissan Motor Co Ltd Preparation of fiber reinforced resin hollow body
JPH02122920A (en) * 1988-10-14 1990-05-10 Budd Co:The One-piece molded compound part and manufacture thereof
JPH04232713A (en) * 1990-07-02 1992-08-21 Hudson Prod Corp Manufacture of fan blade
JPH0839580A (en) * 1994-07-29 1996-02-13 Sekisui Chem Co Ltd Manufacture of resin tube joint
JP2000141380A (en) * 1998-11-17 2000-05-23 Bridgestone Corp Material for rubber product vulcanizing mold, rubber product vulcanizing mold, manufacture of rubber product vulcanizing mold, and vulcanizing molding method for rubber product
JP2001150465A (en) * 1999-11-30 2001-06-05 Toyota Motor Corp Method for manufacturing hollow molding and device therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006159457A (en) * 2004-12-03 2006-06-22 Toray Ind Inc Molding method of frp hollow structure
JP4706244B2 (en) * 2004-12-03 2011-06-22 東レ株式会社 FRP hollow structure molding method
US8940378B2 (en) 2005-05-03 2015-01-27 Fokker Landing Gear B.V. Method for the manufacturing of a hollow fiber reinforced structural member
JP2008540166A (en) * 2005-05-03 2008-11-20 ストーク・エスペー・エアロスペース・ベー・ヴェー Method for producing a hollow fiber reinforced structural member
JP2013014875A (en) * 2005-05-03 2013-01-24 Fokker Landing Gear B V Method for manufacturing hollow fiber reinforced structural member
JP2007083410A (en) * 2005-09-20 2007-04-05 Toyo Tire & Rubber Co Ltd Method for forming reinforcing cord layer and rubber cylindrical body with metal fittings
JP2008213389A (en) * 2007-03-07 2008-09-18 Toyota Industries Corp Manufacturing method of fiber-reinforced plastic and core for shaping fiber-reinforced plastic
JP2010528896A (en) * 2007-06-05 2010-08-26 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Method for manufacturing hollow structural parts made of fiber reinforced plastic
US8808480B2 (en) 2007-08-01 2014-08-19 Toyota Jidosha Kabushiki Kaisha Flanged fiber-reinforced resin hollow part and method of molding the same
JP2009143178A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Method for molding fiber-reinforced resin hollow component
US8932421B2 (en) 2007-12-17 2015-01-13 Toyota Jidosha Kabushiki Kaisha Method of molding fiber-reinforced plastic hollow part
JP2022520697A (en) * 2018-12-11 2022-04-01 ゼネラル・エレクトリック・カンパニイ Methods for manufacturing girder beams for hollow composite structures, especially wind turbine rotor blades, and related mandrel
JP7282889B2 (en) 2018-12-11 2023-05-29 ゼネラル・エレクトリック・カンパニイ Method for manufacturing hollow composite structures, particularly spar beams for wind turbine rotor blades, and associated mandrels
US11878444B2 (en) 2018-12-11 2024-01-23 Ge Infrastructure Technology Llc Method for manufacturing a hollow composite structure, particularly a spar beam for a wind turbine rotor blade, and an associated mandrel
WO2020174696A1 (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing tube body used in power transmission shaft
JP2020138345A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing tube body used for power transmission shaft
CN112638630A (en) * 2019-02-27 2021-04-09 日立安斯泰莫株式会社 Method for manufacturing pipe body for transmission shaft

Similar Documents

Publication Publication Date Title
US8632330B2 (en) Tools for manufacturing composite parts and methods for using such tools
US9238335B2 (en) Mandrel for autoclave curing applications
CN109910208A (en) A kind of core model and preparation method thereof and composite material shape tube forming method
US20130127092A1 (en) Moulded multilayer plastics component with continuously reinforced fibre plies and process for producing this component
JP2014504218A5 (en)
JP2005534533A5 (en)
JP2009542483A (en) Manufacturing method of composite parts
WO2018133177A1 (en) Application of hsm process in wing moulding and method for moulding wing
JP2014502223A5 (en)
JP2003094448A (en) Manufacturing method for frp hollow structure
US20090218713A1 (en) Vacuum heat-set of net shape latex vacuum bags
JP5519149B2 (en) Apparatus for injecting resin into at least one fiber layer of a fiber reinforced product to be manufactured
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
US4202856A (en) Graphite-epoxy molding method
US20050206043A1 (en) Methods for forming fiber reinforced composite parts having one or more selectively positioned core, structural insert, or veneer pieces integrally associated therewith
JP2008238566A (en) Method of manufacturing fiber-reinforced resin structure and fiber-reinforced resin structure
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
JP2954266B2 (en) Manufacturing method of hollow body made of fiber reinforced thermosetting resin
JP2007062150A5 (en)
KR100222276B1 (en) Manufacturing method of composite pressure container
JPH04308735A (en) Production of compressed molded product having foamed layer
JPS62135349A (en) Manufacture of fiber reinforced plastic
JPS6046988B2 (en) Racket frame manufacturing method
GB2575265A (en) A process of manufacturing a carbon fibre reinforced polymer element, a process of manufacturing a carbon fibre reinforced polymer laminated preform, a carbon
JPH11188738A (en) Production of mold for trial article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108