JP2003088882A - Method for water treatment - Google Patents

Method for water treatment

Info

Publication number
JP2003088882A
JP2003088882A JP2001282109A JP2001282109A JP2003088882A JP 2003088882 A JP2003088882 A JP 2003088882A JP 2001282109 A JP2001282109 A JP 2001282109A JP 2001282109 A JP2001282109 A JP 2001282109A JP 2003088882 A JP2003088882 A JP 2003088882A
Authority
JP
Japan
Prior art keywords
water
treated water
fluorescence intensity
treated
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001282109A
Other languages
Japanese (ja)
Inventor
Seiichi Murayama
清一 村山
Masao Kaneko
政雄 金子
Setsuo Suzuki
節雄 鈴木
Norimitsu Abe
法光 阿部
Kenji Taguchi
健二 田口
Jiyusetsu Kudo
寿雪 工藤
Kikei Kubo
貴恵 久保
Takumi Hayashi
巧 林
Kyotaro Iyasu
巨太郎 居安
Akira Hiramoto
昭 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001282109A priority Critical patent/JP2003088882A/en
Publication of JP2003088882A publication Critical patent/JP2003088882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To decompose organic matters and to reduce the ability of production of trihalomethane while measuring the intensity of fluorescence and markers for water quality of ozone-treated water online, optimizing the injection amount of ozonized air online and suppressing the use amount of the ozonized air to be low. SOLUTION: The water used for coagulation sedimentation (water 2 for ozone treatment) discharged from the coagulation sedimentation process is introduced and while the water is reserved, the intensity of fluorescence and absorbance of the ozone-treated water 2 are measured. Ozonized air 3 is produced in an amount responding to the result of the measurement and injected into the water 2 for ozone treatment to carry out treatment of deodorization, decolorization disinfection, oxidation of iron, oxidation of manganese, decomposition of organic substance and reduction in the productivity of trihalomethane or the like. The water 2 treated with ozone is sent to the next process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浄水処理、下水処
理、産業排水処理、食品排水処理などの水処理設備で使
用される水処理方法に係わり、特に蛍光分析計により測
定した蛍光強度と、吸光度や水温などの他の水質指標と
を組み合わせて、オゾン注入量、粉末活性炭注入量など
を最適化する水処理方法に関する。
TECHNICAL FIELD The present invention relates to a water treatment method used in water treatment facilities such as water purification treatment, sewage treatment, industrial wastewater treatment, and food wastewater treatment, and in particular, fluorescence intensity measured by a fluorescence analyzer, The present invention relates to a water treatment method for optimizing an ozone injection amount, a powder activated carbon injection amount and the like in combination with other water quality indicators such as absorbance and water temperature.

【0002】[0002]

【従来の技術】浄水場では、地下水や表流水などを原水
として、着水井に導入するとともに、凝集剤を添加して
フロックを形成し、沈殿処理を実施した後、上澄液を砂
濾過に導いて懸濁物を除去し、最後に消毒用の塩素処理
を実施して需要家に供給するようにしている。
2. Description of the Related Art In a water purification plant, groundwater, surface water, etc. are used as raw water and introduced into a landing well, and flocculants are added by adding a coagulant to carry out precipitation treatment, and then the supernatant liquid is subjected to sand filtration. After that, the suspension is removed, and finally chlorine treatment for disinfection is carried out to supply it to customers.

【0003】この際、消毒用塩素処理の効果をより確実
にするために、凝集剤注入点前に塩素を注入する前塩素
処理、沈殿水に塩素を注入する中間塩素処理が行われ
る。
At this time, in order to ensure the effect of the chlorine treatment for disinfection, a pre-chlorine treatment of injecting chlorine before the coagulant injection point and an intermediate chlorine treatment of injecting chlorine into the precipitation water are performed.

【0004】前塩素処理は、原水中のアンモニア性窒素
や微生物の除去、鉄、マンガンの酸化除去のために有効
である。しかし、トリハロメタン生成能が多い原水に対
しては、前塩素注入により、トリハロメタン生成量が多
くなってしまう。したがって、トリハロメタン低減のた
めに中間塩素処理を採用している浄水場もある。
The pre-chlorination is effective for removing ammoniacal nitrogen and microorganisms in raw water and oxidizing and removing iron and manganese. However, the amount of trihalomethane produced will increase due to the pre-chlorine injection for raw water having a large trihalomethane production ability. Therefore, some water treatment plants have adopted intermediate chlorination to reduce trihalomethanes.

【0005】また、前塩素から中間塩素処理に切り替え
た場合や原水水質が悪化し、通常処理で処理しきれない
ときは、原水に粉末活性炭を投入し、溶解性物質を吸着
除去する。現在、活性炭の投入量は自動制御ではなく、
オペレータが勘と経験を頼りに投入量を決定している。
When the pre-chlorine is switched to the intermediate chlorine treatment or when the raw water quality is deteriorated and the normal treatment cannot be completed, powdered activated carbon is added to the raw water to adsorb and remove soluble substances. Currently, the amount of activated carbon input is not automatically controlled,
The operator decides the input amount based on intuition and experience.

【0006】また、高度浄水処理であるオゾン処理を導
入している浄水場では、オゾン化空気の注入率を一定と
する注入率一定制御、あるいは溶存オゾン濃度がある一
定の値になるような制御、溶存オゾン濃度一定制御を実
施している。これらは、処理水の水質を確認しながらの
フィードバック制御ではないため、常に少し多めのオゾ
ン化空気を注入するように運転している。
[0006] In a water treatment plant that has introduced an ozone treatment, which is an advanced water purification treatment, a constant injection rate control is performed to keep the ozonized air injection rate constant, or a control is performed so that the dissolved ozone concentration has a certain constant value. , The dissolved ozone concentration constant control is implemented. Since these are not feedback controls while confirming the quality of treated water, they are operated so that a little more ozonized air is always injected.

【0007】[0007]

【発明が解決しようとする課題】ところで、国内では、
水処理分野、特に浄水処理において、消毒処理、鉄除去
処理、マンガン除去処理などのために、塩素処理が広く
使用されている。原水にトリハロメタン前駆物質が混入
している場合、塩素処理によって、トリハロメタンが生
成する。トリハロメタンは発ガン性物質であるため、水
処理工程において、トリハロメタンの生成を抑制する必
要がある。
[Problems to be Solved by the Invention] By the way, in Japan,
In the water treatment field, particularly in water purification treatment, chlorine treatment is widely used for disinfection treatment, iron removal treatment, manganese removal treatment and the like. If the raw water is contaminated with trihalomethane precursors, the chlorination produces trihalomethanes. Since trihalomethane is a carcinogen, it is necessary to suppress the generation of trihalomethane in the water treatment process.

【0008】現在、トリハロメタンと、トリハロメタン
生成能を測定するとき、時間と費用とがかかるため、オ
ンラインで、モニタリングすることは不可能である。現
在、トリハロメタン前駆物質除去に効果のある処理方法
としては、オゾン処理、活性炭処理が代表的である。
[0008] At present, it is impossible to monitor trihalomethane online, because it is time consuming and expensive to measure trihalomethane production ability. Currently, ozone treatment and activated carbon treatment are typical treatment methods effective for removing the trihalomethane precursor.

【0009】そこで、トリハロメタン前駆物質濃度と相
関関係の強い測定方法により、オンライン計測し、オゾ
ン処理、活性炭処理、または他の水処理を最適に制御
し、トリハロメタン生成能を低減する必要がある。
Therefore, it is necessary to reduce the trihalomethane production ability by performing online measurement and optimally controlling the ozone treatment, activated carbon treatment, or other water treatment by a measuring method having a strong correlation with the trihalomethane precursor concentration.

【0010】この際、トリハロメタン生成能の低減に加
えて、他の溶解性有機物質の低減も同時に実現できるこ
とが望ましい。
At this time, it is desirable that, in addition to the reduction of trihalomethane production ability, reduction of other soluble organic substances can be realized at the same time.

【0011】本発明は上記の事情に鑑み、高い制御精度
でオゾン化空気の注入量、粉末活性炭の注入量、他の制
御量などを最適化して、オゾン化空気、粉末活性炭など
の使用量を低く抑えながら、トリハロメタン生成能、溶
解性有機物質などを低減することができる水処理方法を
提供することを目的としている。
In view of the above circumstances, the present invention optimizes the injection amount of ozonized air, the injection amount of powdered activated carbon, other control amounts, etc. with high control accuracy to reduce the use amount of ozonized air, powdered activated carbon or the like. It is an object of the present invention to provide a water treatment method capable of reducing trihalomethane-forming ability, soluble organic substances and the like while keeping the amount low.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、請求項1では、処理対象となる処理水の
水質指標を測定するとともに、この測定結果に基づき、
前記処理水に水質改善剤を注入して前記処理水の水質を
改善する水処理方法において、前記処理水の水質指標と
して、蛍光強度ととともに、吸光度または水温の少なく
ともいずれか一方を使用することを特徴としている。
In order to achieve the above-mentioned object, the present invention, in claim 1, measures the water quality index of the treated water to be treated, and based on this measurement result,
In a water treatment method of improving the water quality of the treated water by injecting a water quality improver into the treated water, as a water quality index of the treated water, along with fluorescence intensity, using at least one of the absorbance or water temperature, It has a feature.

【0013】請求項2では、請求項1に記載の水処理方
法において、前記処理水の蛍光強度を測定するときに
は、“340〜350nm”の波長範囲内にある特定波
長の励起光を使用するとともに、“420〜430n
m”の波長範囲内にある特定波長の蛍光強度を使用する
ことを特徴としている。
According to a second aspect of the present invention, in the water treatment method according to the first aspect, when measuring the fluorescence intensity of the treated water, an excitation light having a specific wavelength within a wavelength range of "340 to 350 nm" is used. , "420-430n
It is characterized by using the fluorescence intensity of a specific wavelength within the wavelength range of m ″.

【0014】請求項3では、請求項1に記載の水処理方
法において、前記処理水の蛍光強度に代えて、蛍光を発
する特定物質の蛍光強度を基準とした前記処理水の相対
蛍光強度を使用することを特徴としている。
According to a third aspect of the present invention, in the water treatment method according to the first aspect, the relative fluorescence intensity of the treated water based on the fluorescence intensity of a specific substance that emits fluorescence is used instead of the fluorescence intensity of the treated water. It is characterized by doing.

【0015】請求項4では、請求項1乃至3のいずれか
に記載の水処理方法において、前記処理水の吸光強度を
測定するときには、“250〜270nm”の波長範囲
内にある特定波長の吸光度、または“380〜400n
m”の波長範囲内にある特定波長の吸光度の少なくとも
いずれか一方を使用することを特徴としている。
According to a fourth aspect of the present invention, in the water treatment method according to any one of the first to third aspects, when measuring the absorption intensity of the treated water, the absorbance of a specific wavelength within the wavelength range of "250 to 270 nm" is measured. , Or "380-400n
It is characterized in that at least one of the absorbances of specific wavelengths within the wavelength range of m ″ is used.

【0016】請求項5では、請求項1乃至4のいずれか
に記載の水処理方法において、前記水質改善剤としてオ
ゾン化空気を使用することを特徴としている。
A fifth aspect of the present invention is characterized in that, in the water treatment method according to any one of the first to fourth aspects, ozonized air is used as the water quality improving agent.

【0017】請求項6では、請求項1乃至5のいずれか
に記載の水処理方法において、前記水質改善剤として粉
末活性炭を使用することを特徴としている。
A sixth aspect of the present invention is characterized in that, in the water treatment method according to any of the first to fifth aspects, powdered activated carbon is used as the water quality improving agent.

【0018】請求項7では、請求項1乃至6のいずれか
に記載の水処理方法において、前記処理水の蛍光強度を
測定するときには、前記処理水に含まれる懸濁成分を取
り除いた後、蛍光強度を測定することを特徴としてい
る。
According to a seventh aspect of the present invention, in the water treatment method according to any one of the first to sixth aspects, when the fluorescence intensity of the treated water is measured, after removing the suspended components contained in the treated water, the fluorescence is removed. It is characterized by measuring strength.

【0019】請求項8では、請求項1乃至7のいずれか
に記載の水処理方法において、前記処理水の吸光度を測
定するときには、前記処理水に含まれる懸濁成分を取り
除いた後、吸光度を測定することを特徴としている。
In the eighth aspect, in the water treatment method according to any one of the first to seventh aspects, when the absorbance of the treated water is measured, the absorbance is measured after removing suspended components contained in the treated water. It is characterized by measuring.

【0020】請求項9では、請求項7、8のいずれかに
記載の水処理方法において、前記処理水に含まれる粒径
“10μm”以下の懸濁成分を取り除くことを特徴とし
ている。
A ninth aspect of the present invention is the method for treating water according to any one of the seventh and eighth aspects, characterized in that suspended components having a particle size of “10 μm” or less contained in the treated water are removed.

【0021】請求項1によれば、処理対象となる処理水
の蛍光強度、吸光度、温度など、複数の水質指標をオン
ラインで測定するとともに、これらの各測定結果を組み
合わせて、高い制御精度で、オゾン化空気の注入量、粉
末活性炭の注入量、他の制御量などを最適化して、オゾ
ン化空気、粉末活性炭などの使用量を低く抑えながら、
トリハロメタン生成能、溶解性有機物質などを低減す
る。
According to the first aspect, a plurality of water quality indexes such as fluorescence intensity, absorbance, temperature, etc. of the treated water to be treated are measured online, and the respective measurement results are combined with high control accuracy. While optimizing the injection amount of ozonized air, the injection amount of powdered activated carbon, other control amount, etc., while keeping the usage amount of ozonized air, powdered activated carbon, etc. low,
To reduce trihalomethane production ability and soluble organic substances.

【0022】請求項2では、処理水の蛍光強度を測定す
るとき、“340〜350nm”の波長範囲内にある特
定波長の励起光を使用するとともに、“420〜430
nm”の波長範囲内にある特定波長の蛍光強度を使用す
ることにより、トリハロメタン生成能と相関関係が強い
波長“420〜430nm”の蛍光強度を使用して、処
理対象となる処理水の蛍光強度をオンラインで測定し、
高い制御精度で、オゾン化空気の注入量、粉末活性炭の
注入量、他の制御量などを最適化して、オゾン化空気、
粉末活性炭などの使用量を低く抑えながら、トリハロメ
タン生成能、溶解性有機物質などを低減する。
In the second aspect, when the fluorescence intensity of the treated water is measured, the excitation light having a specific wavelength within the wavelength range of "340 to 350 nm" is used, and "420 to 430".
By using the fluorescence intensity of the specific wavelength within the wavelength range of “nm”, the fluorescence intensity of the wavelength “420 to 430 nm”, which has a strong correlation with the trihalomethane generation ability, is used, and the fluorescence intensity of the treated water to be treated is used. Is measured online,
With high control accuracy, the ozonized air injection amount, powdered activated carbon injection amount, other control amounts, etc. are optimized to provide ozonized air,
While reducing the amount of powdered activated carbon used, the ability to generate trihalomethane and soluble organic substances are reduced.

【0023】請求項3によれば、処理水の蛍光強度に代
えて、蛍光を発する特定物質の蛍光強度を基準とした前
記処理水の相対蛍光強度を使用することにより、蛍光を
発する特定物質の蛍光強度を基準にして、処理対象とな
る処理水の相対蛍光強度をオンラインで計測し、これら
各蛍光強度の相対蛍光強度を使用し、蛍光分析計などの
機器特性の影響を受けることなく、高い制御精度で、オ
ゾン化空気の注入量、粉末活性炭の注入量、他の制御量
などを最適化して、オゾン化空気、粉末活性炭などの使
用量を低く抑えながら、トリハロメタン生成能、溶解性
有機物質などを低減する。
According to the third aspect, the relative fluorescence intensity of the treated water is used in place of the fluorescence intensity of the treated water, and the relative fluorescence intensity of the treated water is used as a reference. The relative fluorescence intensity of the treated water to be treated is measured online based on the fluorescence intensity, and the relative fluorescence intensity of each of these fluorescence intensities is used, which is high without being affected by the device characteristics such as the fluorescence analyzer. The control accuracy optimizes the injection amount of ozonized air, the injection amount of powdered activated carbon, and other control amounts to keep the amount of ozonized air and powdered activated carbon used low, while maintaining the trihalomethane generation ability and soluble organic substances. And so on.

【0024】請求項4によれば、処理水の吸光強度を測
定するとき、“250〜270nm”の波長範囲内にあ
る特定波長の吸光度、または“380〜400nm”の
波長範囲内にある特定波長の吸光度の少なくともいずれ
か一方を使用することにより、有機物濃度あるいは色相
と相関関係が強い波長“250〜270nm”の吸光度
または波長“380〜400nm”の吸光度を使用し
て、処理対象となる処理水の水質指標となる吸光度をオ
ンラインで測定し、高い制御精度で、オゾン化空気の注
入量、粉末活性炭の注入量、他の制御量などを最適化し
て、オゾン化空気、粉末活性炭などの使用量を低く抑え
ながら、トリハロメタン生成能、溶解性有機物質などを
低減する。
According to claim 4, when the absorption intensity of the treated water is measured, the absorbance of the specific wavelength within the wavelength range of "250 to 270 nm" or the specific wavelength within the wavelength range of "380 to 400 nm" By using at least one of the absorbances of the above, the absorbance of the wavelength "250 to 270 nm" or the absorbance of the wavelength "380 to 400 nm" having a strong correlation with the concentration of organic matter or the hue is used, and the treated water to be treated is treated. Absorbance, which is an index of water quality, is measured online, and with high control accuracy, the injection amount of ozonized air, the injection amount of powdered activated carbon, other control amounts, etc. are optimized, and the usage amount of ozonized air, powdered activated carbon, etc. The amount of trihalomethanes produced and the amount of soluble organic substances are reduced while keeping the value low.

【0025】請求項5によれば、水質改善剤として、オ
ゾン化空気を使用することにより、処理対象となる処理
水の蛍光強度、吸光度、温度など、複数の水質指標をオ
ンラインで測定するとともに、これらの各測定結果を組
み合わせて、高い制御精度で、オゾン化空気の注入量を
最適化して、オゾン化空気の使用量を低く抑えながら、
脱臭処理、脱色処理、消毒処理、鉄の酸化処理、マンガ
ンの酸化処理、有機物の分解処理、トリハロメタン生成
能の低減処理などを行わせる。
According to claim 5, by using ozonized air as the water quality improving agent, a plurality of water quality indicators such as fluorescence intensity, absorbance and temperature of the treated water to be treated can be measured online. Combining these measurement results, with high control accuracy, the injection amount of ozonized air is optimized, while the amount of ozonized air used is kept low,
Deodorization treatment, decolorization treatment, disinfection treatment, iron oxidation treatment, manganese oxidation treatment, organic substance decomposition treatment, trihalomethane generation ability reduction treatment, etc. are performed.

【0026】請求項6によれば、水質改善剤として、粉
末活性炭を使用することにより、処理対象となる処理水
の蛍光強度、吸光度、温度など、複数の水質指標をオン
ラインで測定するとともに、これらの各測定結果を組み
合わせて、高い制御精度で、粉末活性炭の注入量を最適
化して、粉末活性炭の使用量を低く抑えながら、溶解性
物質を吸着除去し、トリハロメタン生成能、溶解性有機
物質などを効率良く低減する。
According to the sixth aspect, by using the powdered activated carbon as the water quality improving agent, a plurality of water quality indicators such as fluorescence intensity, absorbance and temperature of the treated water to be treated are measured online, and By combining the results of each of the above, the injection amount of powdered activated carbon was optimized with high control accuracy, and the soluble substance was adsorbed and removed while the usage amount of powdered activated carbon was kept low, and the ability to generate trihalomethane, soluble organic substances, etc. Efficiently reduced.

【0027】請求項7によれば、処理水の蛍光強度を測
定するとき、前記処理水に含まれる懸濁成分を取り除い
た後、蛍光強度を測定することにより、処理対象となる
処理水の蛍光強度を測定するとき、処理水に含まれてい
る懸濁成分を除去して、蛍光強度測定に対する固形成分
の影響を取り除きながら、処理水の蛍光強度をオンライ
ンで測定し、高い制御精度で、オゾン化空気の注入量、
粉末活性炭の注入量、他の制御量などを最適化して、オ
ゾン化空気、粉末活性炭などの使用量を低く抑えなが
ら、トリハロメタン生成能、溶解性有機物質などを低減
する。
According to the seventh aspect, when the fluorescence intensity of the treated water is measured, the fluorescence intensity is measured after removing the suspended components contained in the treated water, whereby the fluorescence of the treated water to be treated is measured. When measuring the intensity, the suspended components contained in the treated water are removed, while the influence of the solid components on the fluorescence intensity measurement is removed, the fluorescence intensity of the treated water is measured online, and with high control accuracy, ozone Injection amount of air
By optimizing the injection amount of powdered activated carbon and other controlled amounts, the amount of ozonized air, activated carbon powder, etc. used can be kept low, while reducing trihalomethane generation ability and soluble organic substances.

【0028】請求項8によれば、処理水の吸光度を測定
するとき、前記処理水に含まれる懸濁成分を取り除いた
後、吸光度を測定することにより、処理対象となる処理
水の吸光度を測定するとき、処理水に含まれている懸濁
成分を除去して、吸光度測定に対する固形成分の影響を
取り除きながら、処理水の吸光度をオンラインで測定
し、高い制御精度で、オゾン化空気の注入量、粉末活性
炭の注入量、他の制御量などを最適化して、オゾン化空
気、粉末活性炭などの使用量を低く抑えながら、トリハ
ロメタン生成能、溶解性有機物質などを低減する。
According to claim 8, when the absorbance of the treated water is measured, the absorbance of the treated water to be treated is measured by removing the suspended components contained in the treated water and then measuring the absorbance. When removing the suspended components contained in the treated water, the absorbance of the treated water is measured online while removing the influence of solid components on the absorbance measurement, and the injection amount of ozonized air can be controlled with high control accuracy. By optimizing the injection amount of powdered activated carbon and other control amounts, the amount of trihalomethane generation, soluble organic substances, etc. can be reduced while keeping the amount of ozonized air, activated carbon powder, etc. low.

【0029】請求項9によれば、処理水に含まれる懸濁
成分を取り除くとき、粒径が“10μm”以下の懸濁成
分を取り除くことにより、処理対象となる処理水の蛍光
強度、吸光度を測定するとき、処理水に含まれている懸
濁成分のうち、粒径が“10μm”以下の懸濁成分を除
去して、蛍光強度測定、吸光度測定に対する固形成分の
影響を取り除きながら、処理水の吸光度をオンラインで
測定し、高い制御精度で、オゾン化空気の注入量、粉末
活性炭の注入量、他の制御量などを最適化して、オゾン
化空気、粉末活性炭などの使用量を低く抑えながら、ト
リハロメタン生成能、溶解性有機物質などを低減する。
According to the ninth aspect, when the suspended components contained in the treated water are removed, the suspended components having a particle size of “10 μm” or less are removed, so that the fluorescence intensity and the absorbance of the treated water to be treated are reduced. At the time of measurement, of the suspended components contained in the treated water, the suspended components having a particle size of “10 μm” or less are removed to remove the influence of the solid components on the fluorescence intensity measurement and the absorbance measurement while treating the treated water. Absorbance of ozonated air, powder activated carbon injection amount, other control amount, etc. are optimized with high control accuracy while keeping the usage amount of ozonized air, powdered activated carbon, etc. low. , Trihalomethane formation ability, soluble organic substances, etc. are reduced.

【0030】[0030]

【発明の実施の形態】《第1実施形態》図1は本発明方
法が適用された水処理システムの第1実施形態を示すブ
ロック図である。
BEST MODE FOR CARRYING OUT THE INVENTION << First Embodiment >> FIG. 1 is a block diagram showing a first embodiment of a water treatment system to which the method of the present invention is applied.

【0031】この図に示す水処理システム1aは、凝集
沈殿工程から排出されるオゾン処理水2を取り込んで貯
留しつつ、オゾン化空気3を注入してオゾン処理を行う
オゾン注入処理装置4と、このオゾン注入処理装置4に
貯留されているオゾン処理水2の蛍光強度、吸光度を測
定する水質測定装置5と、この水質測定装置5の測定結
果に応じた量のオゾン化空気3を生成してオゾン注入処
理装置4に供給するオゾン生成装置6とを備えている。
The water treatment system 1a shown in this figure takes in and stores the ozone-treated water 2 discharged from the coagulation-sedimentation process, and the ozone injection treatment device 4 for injecting the ozonized air 3 to perform the ozone treatment. By producing a water quality measuring device 5 for measuring the fluorescence intensity and absorbance of the ozone-treated water 2 stored in the ozone injecting treatment device 4 and an amount of ozonized air 3 according to the measurement result of the water quality measuring device 5. An ozone generation device 6 for supplying the ozone injection processing device 4 is provided.

【0032】オゾン注入処理装置4は、導入管7を介し
て凝集沈殿工程から排出される凝集沈殿処理水であるオ
ゾン処理水2を取り込み、これを貯留しつつオゾン処理
済みのオゾン処理水2を導出管8から排出して次の工程
に送るオゾン反応槽9を備えている。このオゾン反応槽
9は、オゾン生成装置6から供給されるオゾン化空気3
をオゾン処理水2中に散気する散気管10と、オゾン処
理水2を取り込んで水質測定装置5に供給する採水口1
1とを備えている。
The ozone injection treatment device 4 takes in the ozone-treated water 2 which is the coagulation-sedimentation-treated water discharged from the coagulation-sedimentation process through the introduction pipe 7, and stores the ozone-treated water 2 which has been subjected to the ozone treatment. An ozone reaction tank 9 is provided, which is discharged from the outlet pipe 8 and sent to the next step. The ozone reaction tank 9 is provided with the ozonized air 3 supplied from the ozone generator 6.
Air diffuser 10 for diffusing the ozone-treated water 2 into the ozone-treated water 2 and a water inlet 1 for taking in the ozone-treated water 2 and supplying it to the water quality measuring device 5.
1 and.

【0033】水質測定装置5は、蛍光分析計12と、吸
光度計13とを備えている。
The water quality measuring device 5 comprises a fluorescence analyzer 12 and an absorptiometer 13.

【0034】蛍光分析計12は、オゾン注入処理装置4
から供給されるオゾン処理水2を取り込みながら、トリ
ハロメタン生成能と関係が強い波長、例えば“345n
m”の波長を持つ励起光を生成して、これをオゾン処理
水2に照射しながら、このオゾン処理水2から発せられ
る各蛍光のうち、トリハロメタン生成能と関係が強い波
長、例えば“425nm”の波長を持つ蛍光を選択し
て、蛍光強度を測定し、蛍光強度検知信号を生成する。
The fluorescence analyzer 12 comprises an ozone injection processing device 4
While taking in the ozone-treated water 2 supplied from, a wavelength that has a strong relationship with the trihalomethane generation ability, for example, "345n".
While generating excitation light having a wavelength of m "and irradiating the same with the ozone-treated water 2, the wavelength of each fluorescence emitted from the ozone-treated water 2 is closely related to the trihalomethane-producing ability, for example," 425 nm ". The fluorescence having the wavelength of is selected, the fluorescence intensity is measured, and the fluorescence intensity detection signal is generated.

【0035】吸光度計13は、オゾン注入処理装置4か
ら供給されるオゾン処理水2を取り込みながら、予め設
定されている波長、例えば主に地質に由来するフミン酸
(植物などが微生物により分解されて生成される種々雑
多な有機化合物によって構成される高分子化合物の1つ
であり、樹木などのセルロースやリグニン酸が酸化され
る過程で生じる河川水着色の原因物質となる酸)などの
濃度(色度)を測定するのに最適な“390nm”の波
長光に対する、吸光度を測定して、吸光度検知信号を生
成する。
The absorptiometer 13 takes in the ozone-treated water 2 supplied from the ozone injecting treatment device 4 and, while taking in the ozone-treated water 2, the humic acid mainly derived from the geology (for example, plants are decomposed by microorganisms. It is one of the polymer compounds composed of various organic compounds that are produced, and the concentration (color that is the causative substance of river water coloring that occurs in the process of oxidizing cellulose and lignic acid in trees). The absorbance is measured for light having a wavelength of "390 nm", which is the most suitable for measuring the degree), and an absorbance detection signal is generated.

【0036】オゾン生成装置6は、オゾン注入率演算器
14と、オゾン発生器15とを備えている。
The ozone generator 6 comprises an ozone injection rate calculator 14 and an ozone generator 15.

【0037】オゾン注入率演算器14は、水質測定装置
5から出力される蛍光強度検知信号、吸光度検知信号を
取り込み、図2に示すように、蛍光強度検知信号で示さ
れる蛍光強度を目標トリハロメタン生成能に対応する目
標蛍光強度にするとともに、図3に示すように、吸光度
検知信号で示される色度(吸光度)を目標トリハロメタ
ン生成能に対応する目標吸光度にするのに必要なフィー
ドバック量(目標オゾン化空気注入率)を演算する。
The ozone injection rate calculator 14 takes in the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 5 and, as shown in FIG. 2, produces the target trihalomethane with the fluorescence intensity indicated by the fluorescence intensity detection signal. As shown in FIG. 3, the amount of feedback (target ozone) required to bring the chromaticity (absorbance) indicated by the absorbance detection signal to the target absorbance corresponding to the target trihalomethane-producing ability as well as the target fluorescence intensity corresponding to Calculated air injection rate).

【0038】オゾン発生器15は、オゾン注入率演算器
14から出力される目標オゾン化空気注入率に応じた量
のオゾン化空気3を生成する。
The ozone generator 15 generates the amount of ozonized air 3 according to the target ozonized air injection rate output from the ozone injection rate calculator 14.

【0039】次に第1の実施形態の動作を説明する。Next, the operation of the first embodiment will be described.

【0040】凝集沈殿工程から排出される凝集沈殿処理
水(オゾン処理水2)を取り込み、これを貯留し、また
オゾン処理水2の一部を水質測定装置5に供給し、オゾ
ン生成装置6から供給されるオゾン化空気3をオゾン処
理水2中に散気して、脱臭処理、脱色処理、消毒処理、
鉄の酸化処理、マンガンの酸化処理、有機物の分解処
理、トリハロメタン生成能の低減処理などを行い、オゾ
ン化処理済みのオゾン処理水2を次の工程に送る。
The coagulation-sedimentation-treated water (ozone-treated water 2) discharged from the coagulation-sedimentation step is taken in and stored, and a part of the ozone-treated water 2 is supplied to the water quality measuring device 5 to be supplied from the ozone generating device 6. The supplied ozonized air 3 is diffused into the ozone-treated water 2 to perform deodorization treatment, decolorization treatment, disinfection treatment,
The oxidation treatment of iron, the oxidation treatment of manganese, the decomposition treatment of organic substances, the reduction treatment of trihalomethane generation ability, etc. are performed, and the ozonized water 2 after the ozonization treatment is sent to the next step.

【0041】このとき、蛍光分析計12では、オゾン注
入処理装置4から供給されるオゾン処理水2に対して
“345nm”の波長を持つ励起光を照射しながら、こ
のオゾン処理水2から発せられる蛍光のうち、“425
nm”の波長を持つ蛍光の光強度(蛍光強度)を測定し
て、蛍光強度検知信号をオゾン生成装置6に供給する。
また、吸光度計13では、“390nm”の波長光に対
する吸光度を測定して、吸光度検知信号をオゾン生成装
置6に供給する。
At this time, in the fluorescence analyzer 12, the ozone-treated water 2 supplied from the ozone injection treatment device 4 is emitted from the ozone-treated water 2 while being irradiated with excitation light having a wavelength of "345 nm". Of the fluorescence, "425
The light intensity (fluorescence intensity) of fluorescence having a wavelength of "nm" is measured, and a fluorescence intensity detection signal is supplied to the ozone generator 6.
Further, the absorptiometer 13 measures the absorbance with respect to the light of the wavelength of “390 nm” and supplies the absorbance detection signal to the ozone generator 6.

【0042】オゾン生成装置6では、水質測定装置5か
ら出力される蛍光強度検知信号、吸光度検知信号に基づ
き、目標トリハロメタン生成能に対応する目標蛍光強
度、目標吸光度を演算した後、これら目標蛍光強度、目
標吸光度に対する目標オゾン化空気注入率を演算すると
ともに、この目標オゾン化空気注入率に応じた量のオゾ
ン化空気3を生成して、オゾン注入処理装置4に供給す
る。
In the ozone generator 6, the target fluorescence intensity and the target absorbance corresponding to the target trihalomethane-producing ability are calculated based on the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 5, and then these target fluorescence intensities are calculated. The target ozonized air injection rate for the target absorbance is calculated, and the amount of ozonized air 3 corresponding to the target ozonized air injection rate is generated and supplied to the ozone injection processing device 4.

【0043】このように、この第1実施形態では、凝集
沈殿工程から排出される凝集沈殿処理水であるオゾン処
理水2を取り込み、これを貯留する一方、オゾン処理水
2の蛍光強度、吸光度を測定し、この測定結果に応じた
量のオゾン化空気3を生成して、オゾン処理水2に注入
し、脱臭処理、脱色処理、消毒処理、鉄の酸化処理、マ
ンガンの酸化処理、有機物の分解処理、トリハロメタン
生成能の低減処理などを行わせるとともに、オゾン処理
済みのオゾン処理水2を次の工程に送出するようにして
いる。
As described above, in the first embodiment, the ozone-treated water 2 which is the coagulation-sedimentation-treated water discharged from the coagulation-sedimentation step is taken in and stored, while the fluorescence intensity and the absorbance of the ozone-treated water 2 are measured. The amount of ozonized air 3 is measured and injected into the ozone-treated water 2 for deodorization, decolorization, disinfection, iron oxidation, manganese oxidation, decomposition of organic matter. Treatment, reduction treatment of trihalomethane generation ability, and the like are performed, and the ozone-treated water 2 after ozone treatment is sent to the next step.

【0044】このため、オゾン処理水2の蛍光強度、水
質指標などをオンラインで測定することができるととも
に、オンラインでオゾン化空気3の注入量を最適化し
て、オゾン化空気3の使用量を低く抑えながら、脱臭処
理、脱色処理、消毒処理、鉄の酸化処理、マンガンの酸
化処理、有機物の分解処理、トリハロメタン生成能の低
減処理などを行わせることができる。
Therefore, the fluorescence intensity and water quality index of the ozone-treated water 2 can be measured online, and the injection amount of the ozonized air 3 can be optimized online to reduce the use amount of the ozonized air 3. While suppressing, deodorization treatment, decolorization treatment, disinfection treatment, iron oxidation treatment, manganese oxidation treatment, decomposition treatment of organic substances, reduction treatment of trihalomethane generation ability, etc. can be performed.

【0045】なお、この第1実施形態では、オゾン処理
水2の蛍光強度と、吸光度とを測定して、オゾン化空気
3の注入率を調整するようにしているが、オゾン処理水
2の蛍光強度とともに、他の水質指標、例えば温度など
を測定し、これらの各測定結果に応じてオゾン化空気3
の注入率を調整するようにしても良い。
In the first embodiment, the fluorescence intensity of the ozone-treated water 2 and the absorbance are measured to adjust the injection rate of the ozonized air 3, but the fluorescence of the ozone-treated water 2 is adjusted. Along with the strength, other water quality indicators, such as temperature, are measured, and the ozonized air 3 is measured according to these measurement results.
The injection rate may be adjusted.

【0046】また、この第1実施形態では、オゾン処理
水2に励起光を照射したとき、オゾン処理水2から出射
される蛍光のうち、特定の波長を持つ蛍光の強度を測定
し、この測定結果に応じた量のオゾン化空気3を生成し
て、オゾン処理水2中に散気するようにしているが、蛍
光を発する特定物質の蛍光強度を基準にし、測定処理で
得られた蛍光強度の大きさを数値化した相対蛍光強度を
使用して、オゾン処理水2をオゾン処理するようにして
も良い。
Further, in the first embodiment, when the ozone-treated water 2 is irradiated with the excitation light, the intensity of the fluorescence having a specific wavelength among the fluorescence emitted from the ozone-treated water 2 is measured, and this measurement is performed. Although the amount of ozonized air 3 according to the result is generated and diffused in the ozone-treated water 2, the fluorescence intensity obtained by the measurement process is based on the fluorescence intensity of the specific substance that emits fluorescence. The ozone-treated water 2 may be ozone-treated by using the relative fluorescence intensity obtained by digitizing the magnitude of the.

【0047】このように構成することにより、蛍光分析
計12の測定感度特性がばらつき、蛍光分生計12から
出力される蛍光強度検知信号の値がばらついても、基準
となる蛍光物質に対する蛍光強度の相対蛍光強度を使用
して、常に高い制御精度を確保することができる。
With this configuration, even if the measurement sensitivity characteristics of the fluorescence analyzer 12 vary and the value of the fluorescence intensity detection signal output from the fluorescence biometer 12 varies, the fluorescence intensity of the fluorescent substance serving as the reference is changed. Relative fluorescence intensity can be used to ensure always high control accuracy.

【0048】《第2実施形態》図4は本発明方法が適用
された水処理システムの第2実施形態を示すブロック図
である。なお、この図において、図1に対応する部分に
は、同じ符号が付してある。
<< Second Embodiment >> FIG. 4 is a block diagram showing a second embodiment of a water treatment system to which the method of the present invention is applied. In this figure, the parts corresponding to those in FIG. 1 are designated by the same reference numerals.

【0049】この図に示す水処理システム1bが図1に
示す水処理システム1aと異なる点は、導入管7に設け
られた分岐部16によって、凝集沈殿工程から排出され
る凝集沈殿処理水(オゾン処理水2)を分岐し、これを
水質測定装置17に導いて、蛍光強度、吸光度を測定す
るとともに、この測定動作によって得られた蛍光強度検
知信号、吸光度検知信号をオゾン生成装置18に供給し
て、オンラインでオゾン化空気3の注入量を最適化し
て、トリハロメタン生成能、溶解性有機物質などを低減
するようにしたことである。
The water treatment system 1b shown in this figure differs from the water treatment system 1a shown in FIG. 1 in that the branching portion 16 provided in the introduction pipe 7 discharges the coagulation-sedimentation-treated water (ozone) The treated water 2) is branched and guided to the water quality measuring device 17 to measure the fluorescence intensity and the absorbance, and the fluorescence intensity detection signal and the absorbance detection signal obtained by this measurement operation are supplied to the ozone generator 18. By optimizing the injection amount of the ozonized air 3 online, the trihalomethane-forming ability and the soluble organic substances are reduced.

【0050】水質測定装置17は、蛍光分析計19と、
吸光度計20とを備えている。蛍光分析計19は、導入
管7の分岐部16から供給される凝集沈殿処理水(オゾ
ン処理水2)を取り込みながら、トリハロメタン生成能
と関係が強い波長、例えば“345nm”の波長を持つ
励起光を生成して、これをオゾン処理水2に照射しなが
ら、このオゾン処理水2から発せられる各蛍光のうち、
トリハロメタン生成能と関係が強い波長、例えば“42
5nm”の波長を持つ蛍光を選択して、蛍光強度を測定
し、蛍光強度検知信号を生成する。
The water quality measuring device 17 comprises a fluorescence analyzer 19 and
And an absorptiometer 20. The fluorescence analyzer 19 takes in the coagulation-sedimentation-treated water (ozone-treated water 2) supplied from the branch portion 16 of the introduction pipe 7, and at the same time, has excitation light having a wavelength having a strong relationship with the trihalomethane-producing ability, for example, a wavelength of “345 nm”. Of the fluorescence emitted from the ozone-treated water 2 while irradiating the ozone-treated water 2 with
Wavelengths that have a strong relationship with trihalomethane production capacity, such as "42
Fluorescence having a wavelength of 5 nm "is selected, the fluorescence intensity is measured, and a fluorescence intensity detection signal is generated.

【0051】吸光度計20は、導入管7の分岐部16か
ら供給される凝集沈殿処理水(オゾン処理水2)を取り
込みながら、予め設定されている波長、例えば主に地質
に由来するフミン酸(植物などが微生物により分解され
て生成される種々雑多な有機化合物によって構成される
高分子化合物の1つであり、樹木などのセルロースやリ
グニン酸が酸化される過程で生じる河川水着色の原因物
質となる酸)などの濃度(色度)を測定するのに最適な
“390nm”の波長光に対する、吸光度を測定して、
吸光度検知信号を生成する。
The absorptiometer 20 takes in the coagulation-sedimentation-treated water (ozone-treated water 2) supplied from the branching portion 16 of the introduction pipe 7, while taking in a preset wavelength, for example, humic acid mainly derived from geology ( It is one of the polymer compounds composed of various organic compounds produced by the decomposition of plants by microorganisms, and it is a causative substance of river water coloring that occurs in the process of oxidation of cellulose and lignic acid such as trees. Acid, etc.) and the optimum wavelength (390 nm) for measuring the concentration (chromaticity)
Generate an absorbance detection signal.

【0052】オゾン生成装置18は、オゾン注入率演算
器21と、オゾン注入率演算器21から出力される目標
オゾン化空気注入率に応じた量のオゾン化空気3を生成
するオゾン発生器15とを備えている。
The ozone generator 18 includes an ozone injection rate calculator 21 and an ozone generator 15 for generating a quantity of ozonized air 3 corresponding to the target ozonized air injection rate output from the ozone injection rate calculator 21. Is equipped with.

【0053】オゾン注入率演算器21は、水質測定装置
17から出力される蛍光強度検知信号、吸光度検知信号
を取り込み、図5に示すように、蛍光強度検知信号で示
される蛍光強度を目標蛍光強度にするとともに、図6に
示すように、吸光度検知信号で示される吸光度(色度)
を目標吸光度にするのに必要なフィードフォワード量
(目標オゾン化空気注入率)を演算する。さらに水質測
定装置5から出力される蛍光強度検知信号、吸光度検知
信号を取り込み、図7に示すように、蛍光強度検知信号
で示される蛍光強度を目標トリハロメタン生成能に対応
する目標蛍光強度にするとともに、図8に示すように、
吸光度検知信号で示される色度(吸光度)を目標トリハ
ロメタン生成能に対応する目標吸光度にするのに必要な
フィードバック量(目標オゾン化空気注入率)を演算す
る。そして、これら各目標オゾン化空気注入率を組み合
わせて最適な目標オゾン化空気注入率を演算する。
The ozone injection rate calculator 21 takes in the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 17, and, as shown in FIG. 5, sets the fluorescence intensity indicated by the fluorescence intensity detection signal to the target fluorescence intensity. And the absorbance (chromaticity) indicated by the absorbance detection signal as shown in FIG.
The feed-forward amount (target ozonized air injection rate) required to obtain the target absorbance is calculated. Further, the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 5 are taken in, and as shown in FIG. 7, the fluorescence intensity indicated by the fluorescence intensity detection signal is set to the target fluorescence intensity corresponding to the target trihalomethane-producing ability. , As shown in FIG.
A feedback amount (target ozonized air injection rate) required to bring the chromaticity (absorbance) indicated by the absorbance detection signal to the target absorbance corresponding to the target trihalomethane production capacity is calculated. Then, an optimum target ozonized air injection rate is calculated by combining these target ozonized air injection rates.

【0054】次に第2実施形態の動作を説明する。Next, the operation of the second embodiment will be described.

【0055】水質測定装置17の蛍光分析計17では、
導入管7の分岐部16から供給される凝集沈殿処理水で
あるオゾン処理水2を取り込み、“345nm”の波長
を持つ励起光をオゾン処理水2に照射しながら、このオ
ゾン処理水2から発せられる蛍光のうち、“425n
m”の波長を持つ蛍光の光強度(蛍光強度)を測定し
て、蛍光強度検知信号をオゾン生成装置18に供給す
る。また、吸光度計13では、“390nm”の波長光
に対する、吸光度を測定して、吸光度検知信号をオゾン
生成装置18に供給する。
In the fluorescence analyzer 17 of the water quality measuring device 17,
The ozone-treated water 2 that is the coagulation-sedimentation-treated water supplied from the branch portion 16 of the introduction pipe 7 is taken in, and the ozone-treated water 2 is irradiated with excitation light having a wavelength of "345 nm" while being emitted from the ozone-treated water 2. Of the emitted fluorescence, "425n
The light intensity (fluorescence intensity) of the fluorescence having a wavelength of m "is measured, and the fluorescence intensity detection signal is supplied to the ozone generator 18. Further, the absorptiometer 13 measures the absorbance for the light of the wavelength of" 390 nm ". Then, the absorbance detection signal is supplied to the ozone generator 18.

【0056】オゾン生成装置18では、各水質測定装置
5、17から出力される各蛍光強度検知信号、各吸光度
検知信号に基づき、目標トリハロメタン生成能に対応す
る目標蛍光強度、目標吸光度を演算した後、これら目標
蛍光強度、目標吸光度に対する2つの目標オゾン化空気
注入率を演算し、これら各目標オゾン化空気注入率を組
み合わせて、最適な目標オゾン化空気注入率を演算する
とともに、この目標オゾン化空気注入率に応じた量のオ
ゾン化空気3を生成して、オゾン注入処理装置4に供給
する。
In the ozone generator 18, after calculating the target fluorescence intensity and the target absorbance corresponding to the target trihalomethane-producing ability, based on the respective fluorescence intensity detection signals and the respective absorbance detection signals output from the respective water quality measuring devices 5 and 17. , Two target ozonized air injection rates for these target fluorescence intensity and target absorbance are calculated, and these target ozonized air injection rates are combined to calculate an optimum target ozonized air injection rate, and at the same time, this target ozonization is performed. An amount of ozonized air 3 corresponding to the air injection rate is generated and supplied to the ozone injection processing device 4.

【0057】このように、第2実施形態では、凝集沈殿
工程から排出される凝集沈殿処理水(オゾン処理水2)
を取り込ませ、これを貯留しながら、オゾン処理水2の
蛍光強度、吸光度を測定し、この測定結果に応じた量の
オゾン化空気3を生成して、オゾン処理水2に注入し、
脱臭処理、脱色処理、消毒処理、鉄の酸化処理、マンガ
ンの酸化処理、有機物の分解処理、トリハロメタン生成
能の低減処理などを行わせるとともに、オゾン処理済み
のオゾン処理水2を次の工程に送出するようにしてい
る。
As described above, in the second embodiment, the coagulation-sedimentation-treated water (ozone-treated water 2) discharged from the coagulation-sedimentation step is carried out.
Is taken in, and while storing this, the fluorescence intensity and the absorbance of the ozone-treated water 2 are measured, and the amount of ozonized air 3 corresponding to the measurement result is generated and injected into the ozone-treated water 2.
Deodorization treatment, decolorization treatment, disinfection treatment, iron oxidation treatment, manganese oxidation treatment, organic matter decomposition treatment, trihalomethane generation ability reduction treatment, etc. are performed, and ozone-treated ozone-treated water 2 is sent to the next step. I am trying to do it.

【0058】このため、オゾン処理水2の蛍光強度、水
質指標などをオンラインで測定することができるととも
に、オンラインで、オゾン化空気3の注入量を最適化し
て、オゾン化空気3の使用量を低く抑えながら、脱臭処
理、脱色処理、消毒処理、鉄の酸化処理、マンガンの酸
化処理、有機物の分解処理、トリハロメタン生成能の低
減処理などを行わせることができる。
Therefore, the fluorescence intensity and the water quality index of the ozone-treated water 2 can be measured online, and the injection amount of the ozonized air 3 is optimized online to determine the amount of the ozonized air 3 used. It is possible to perform deodorizing treatment, decolorizing treatment, disinfecting treatment, iron oxidizing treatment, manganese oxidizing treatment, organic matter decomposing treatment, reduction treatment of trihalomethane, etc., while keeping it low.

【0059】また、第2実施形態では、凝集沈殿工程か
ら排出される凝集沈殿処理水(オゾン処理水2)を分岐
し、これを水質測定装置17に導いて、蛍光強度、吸光
度を測定するとともに、この測定動作によって得られた
蛍光強度検知信号、吸光度検知信号をオゾン生成装置1
8に供給して、フィードフォワード演算で、オゾン反応
槽9に供給されるオゾン化空気3の量を調節するように
しているので、凝集沈殿工程から排出される凝集沈殿処
理水(オゾン処理水2)の水質が変動しても、安定した
水質のオゾン処理水2を次工程に送出することができ
る。
In the second embodiment, the coagulation-sedimentation-treated water (ozone-treated water 2) discharged from the coagulation-sedimentation step is branched and guided to the water quality measuring device 17 to measure the fluorescence intensity and the absorbance. , The fluorescence intensity detection signal and the absorbance detection signal obtained by this measurement operation are used in the ozone generator 1
Since the amount of the ozonized air 3 supplied to the ozone reaction tank 9 is adjusted by the feed-forward calculation, the coagulation-sedimented water discharged from the coagulation-sedimentation step (the ozone-treated water 2 Even if the water quality of (1) changes, the ozone-treated water 2 having stable water quality can be sent to the next step.

【0060】なお、第2実施形態では、オゾン処理水2
の蛍光強度と、吸光度とを測定して、オゾン化空気3の
注入率を調整するようにしているが、オゾン処理水2の
蛍光強度とともに、他の水質指標、例えば温度などを測
定し、これらの各測定結果に応じてオゾン化空気3の注
入率を調整するようにしても良い。
In the second embodiment, the ozone treated water 2
Although the injection rate of the ozonized air 3 is adjusted by measuring the fluorescence intensity and the absorbance of the ozonized air 3, other water quality indicators, such as temperature, are measured along with the fluorescence intensity of the ozonized water 2. The injection rate of the ozonized air 3 may be adjusted according to each measurement result.

【0061】また、第2実施形態では、オゾン処理水2
に励起光を照射したとき、オゾン処理水2から出射され
る蛍光のうち、特定の波長を持つ蛍光の強度を測定し、
この測定結果に応じた量のオゾン化空気3を生成して、
オゾン処理水2中に散気するようにしているが、蛍光を
発する特定物質の蛍光強度を基準にし、測定処理で得ら
れた蛍光強度の大きさを数値化した相対蛍光強度を使用
して、オゾン処理水2をオゾン処理するようにしても良
い。
Further, in the second embodiment, the ozone-treated water 2
Of the fluorescence emitted from the ozone-treated water 2 when it is irradiated with excitation light, the intensity of the fluorescence having a specific wavelength is measured,
Generate a quantity of ozonized air 3 according to this measurement result,
Although air is diffused in the ozone-treated water 2, the relative fluorescence intensity obtained by digitizing the magnitude of the fluorescence intensity obtained by the measurement process is used as a reference, based on the fluorescence intensity of the specific substance that emits fluorescence. The ozone-treated water 2 may be ozone-treated.

【0062】このように構成することにより、蛍光分析
計12、19の測定感度特性がばらつき、蛍光分生計1
2、19から出力される各蛍光強度検知信号の値がばら
ついても、基準となる蛍光物質に対する蛍光強度の各相
対蛍光強度を使用して、常に高い制御精度を確保するこ
とができる。
With this configuration, the measurement sensitivity characteristics of the fluorescence analyzers 12 and 19 vary, and the fluorescence biometer 1
Even if the values of the respective fluorescence intensity detection signals output from Nos. 2 and 19 vary, it is possible to always ensure high control accuracy by using each relative fluorescence intensity of the fluorescence intensity with respect to the reference fluorescent substance.

【0063】《第3実施形態》図9は本発明方法が適用
された水処理システムの第3実施形態を示すブロック図
である。
<< Third Embodiment >> FIG. 9 is a block diagram showing a third embodiment of a water treatment system to which the method of the present invention is applied.

【0064】この図に示す水処理システム1cは、凝集
沈殿工程から排出され、導入管31に設けられた粉末活
性炭注入点32で、粉末活性炭33が注入された凝集沈
殿処理水(処理水34)を貯留しながら、粉末活性炭3
3に処理水34中の溶解性物質を吸着除去し、導出管3
5から次の工程に送る活性炭吸着処理装置36と、この
活性炭吸着処理装置36に貯留されている処理水34の
蛍光強度、吸光度を測定する水質測定装置37と、水質
測定装置37の測定結果に応じて粉末活性炭33を排出
して、活性炭吸着処理装置36に供給する粉末活性炭注
入装置38とを備えている。
In the water treatment system 1c shown in this figure, the coagulation-sedimentation-treated water (treated water 34) discharged from the coagulation-sedimentation step and having powdered activated carbon 33 injected at the powder activated carbon injection point 32 provided in the introduction pipe 31. Powder activated carbon 3 while storing
Soluble substances in the treated water 34 are adsorbed and removed to the discharge pipe 3
5 to the next step, the activated carbon adsorption treatment device 36, the water quality measuring device 37 for measuring the fluorescence intensity and the absorbance of the treated water 34 stored in the activated carbon adsorption treatment device 36, and the measurement result of the water quality measuring device 37. Accordingly, the powdery activated carbon 33 is discharged and the powdered activated carbon injection device 38 is supplied to the activated carbon adsorption treatment device 36.

【0065】活性炭吸着処理装置36は、凝集沈殿工程
から排出され、導入管31に設けられた粉末活性炭注入
点32で、粉末活性炭33が注入された凝集沈殿処理水
(処理水34)を取り込んで、貯留しながら、処理水3
4中に含まれる粉末活性炭33によって、処理水34中
の溶解性物質を吸着除去し、導出管35から排出して、
次の工程に送る着水井39と、着水井39内に配置さ
れ、処理水34を取り込んで、水質測定装置37に供給
する採水口40とを備えている。
The activated carbon adsorption treatment device 36 takes in the coagulated sediment treatment water (treated water 34) discharged from the coagulation sedimentation step, and the powder activated carbon 33 is injected at the powder activated carbon injection point 32 provided in the introduction pipe 31. , While storing, treated water 3
By the powdered activated carbon 33 contained in 4, the soluble substance in the treated water 34 is adsorbed and removed, and discharged from the outlet pipe 35,
It is equipped with a landing well 39 to be sent to the next step, and a water intake 40 arranged in the landing well 39 to take in the treated water 34 and supply it to the water quality measuring device 37.

【0066】水質測定装置37は、膜濾過器41と、蛍
光分析計42と、膜濾過器43と、吸光度計44とを備
えている。
The water quality measuring device 37 comprises a membrane filter 41, a fluorescence analyzer 42, a membrane filter 43, and an absorptiometer 44.

【0067】膜濾過器41は、活性炭吸着処理装置36
から供給される処理水34を取り込んで、予め設定され
ている粒径、例えば“10μm”より小さい粒径の懸濁
物質を除去する。
The membrane filter 41 is an activated carbon adsorption treatment device 36.
The treated water 34 supplied from the above is taken in to remove suspended substances having a particle size smaller than a preset particle size, for example, “10 μm”.

【0068】蛍光分析計42は、膜濾過器41から排出
される懸濁物質除去済みの処理水34を取り込みなが
ら、トリハロメタン生成能と関係が強い波長、例えば
“345nm”の波長を持つ励起光を生成して、これを
処理水34に照射しながら、この処理水34から発せら
れる各蛍光のうち、トリハロメタン生成能と関係が強い
波長、例えば“425nm”の波長を持つ蛍光を選択し
て、蛍光強度を測定し、蛍光強度検知信号を生成する。
The fluorescence analyzer 42 takes in the treated water 34 from which the suspended solids have been removed, which is discharged from the membrane filter 41, and emits excitation light having a wavelength having a strong relationship with the trihalomethane production ability, for example, a wavelength of "345 nm". While generating and irradiating the treated water 34 with the treated water 34, fluorescence having a wavelength having a strong relationship with the trihalomethane-producing ability, for example, fluorescence having a wavelength of “425 nm” is selected from among the fluorescence emitted from the treated water 34. The intensity is measured and a fluorescence intensity detection signal is generated.

【0069】膜濾過器43は、活性炭吸着処理装置36
から供給される処理水34を取り込んで、予め設定され
ている粒径、例えば“10μm”より小さい粒径の懸濁
物質を除去する。
The membrane filter 43 is the activated carbon adsorption treatment device 36.
The treated water 34 supplied from the above is taken in to remove suspended substances having a particle size smaller than a preset particle size, for example, “10 μm”.

【0070】粉末活性炭注入装置38は、活性炭注入率
演算器45と、活性炭注入率演算器45から出力される
目標粉末活性炭注入率に応じた量の粉末活性炭33を排
出する粉末活性炭注入器46とを備えている。
The powdered activated carbon injection device 38 includes an activated carbon injection rate calculator 45, and a powdered activated carbon injector 46 which discharges the powdered activated carbon 33 in an amount corresponding to the target powdered activated carbon injection rate output from the activated carbon injection rate calculator 45. Is equipped with.

【0071】活性炭注入率演算器45は、水質測定装置
37から出力される蛍光強度検知信号、吸光度検知信号
を取り込み、図10に示すように、蛍光強度検知信号で
示される蛍光強度を目標トリハロメタン生成能に対応す
る目標蛍光強度にするとともに、図11に示すように、
吸光度検知信号で示される吸光度を目標水中有機物濃度
に対応する目標吸光度にするのに必要なフィードバック
量(目標粉末活性炭注入率)を演算する。
The activated carbon injection rate calculator 45 takes in the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 37, and as shown in FIG. 10, produces the target trihalomethane with the fluorescence intensity indicated by the fluorescence intensity detection signal. As shown in FIG. 11, the target fluorescence intensity corresponding to the
A feedback amount (target powder activated carbon injection rate) required to bring the absorbance indicated by the absorbance detection signal to the target absorbance corresponding to the target organic matter concentration in water is calculated.

【0072】次に、第3実施形態の動作を説明する。Next, the operation of the third embodiment will be described.

【0073】凝集沈殿工程から排出され、導入管31に
設けられた粉末活性炭注入点32で、粉末活性炭33が
注入された凝集沈殿処理水(処理水34)を貯留しなが
ら、処理水34の一部を水質測定装置37に供給すると
ともに、処理水34の蛍光強度、吸光度を測定し、測定
結果に応じた量の粉末活性炭33を排出して、導入管3
1に設けられた粉末活性炭注入点32から、凝集沈殿処
理水(処理水34)に注入するとともに、貯留している
処理水34中に含まれる粉末活性炭33によって、処理
水34中の溶解性物質を吸着除去した後、導出管35か
ら排出して次の工程に送出する。
At the powder activated carbon injection point 32, which is discharged from the coagulation sedimentation step and is provided in the introduction pipe 31, the coagulation sediment treated water (treated water 34) in which the powder activated carbon 33 has been injected is stored, and one of the treated water 34 is stored. Part is supplied to the water quality measuring device 37, the fluorescence intensity and the absorbance of the treated water 34 are measured, and the activated carbon powder 33 in an amount corresponding to the measurement result is discharged, and the introduction pipe 3
1 is injected into the coagulation sedimentation treated water (treated water 34) from the powdered activated carbon injection point 32 provided in No. 1 and the soluble substance in the treated water 34 is treated by the powdered activated carbon 33 contained in the stored treated water 34. Is adsorbed and removed, and then discharged from the outlet pipe 35 and sent to the next step.

【0074】水質測定装置31では、活性炭吸着処理装
置36から供給される処理水34を取り込んで、懸濁物
質を除去した後、“345nm”の波長を持つ励起光を
処理水34に照射しながら、この処理水34から発せら
れる蛍光のうち、“425nm”の波長を持つ蛍光の光
強度(蛍光強度)を測定して、蛍光強度検知信号を粉末
活性炭注入装置38に供給するとともに、“260n
m”の波長光に対する、吸光度を測定して、吸光度検知
信号を粉末活性炭注入装置38に供給する。
In the water quality measuring device 31, the treated water 34 supplied from the activated carbon adsorption treatment device 36 is taken in to remove suspended substances, and then the treated water 34 is irradiated with excitation light having a wavelength of "345 nm". Of the fluorescence emitted from the treated water 34, the light intensity (fluorescence intensity) of fluorescence having a wavelength of “425 nm” is measured, and a fluorescence intensity detection signal is supplied to the powder activated carbon injection device 38, and “260n” is supplied.
Absorbance is measured for light having a wavelength of m ″, and an absorbance detection signal is supplied to the powdered activated carbon injection device 38.

【0075】粉末活性炭注入装置38では、水質測定装
置37から出力される蛍光強度検知信号、吸光度検知信
号に基づき、目標トリハロメタン生成能、目標水中有機
物濃度に対応する目標蛍光強度、目標吸光度を演算した
後、これら目標蛍光強度、目標吸光度に対応する目標粉
末活性炭注入率を演算するとともに、この目標粉末活性
炭注入率に応じた量の粉末活性炭33を排出して、導入
管31に設けられた粉末活性炭注入点32から、凝集沈
殿処理水(処理水34)に注入する。
In the powdered activated carbon injecting device 38, the target trihalomethane forming ability and the target fluorescence intensity and the target absorbance corresponding to the target organic matter concentration in the water were calculated based on the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 37. Then, the target powdered activated carbon injection rate corresponding to the target fluorescence intensity and the target absorbance is calculated, and the powdered activated carbon 33 in an amount corresponding to the target powdered activated carbon injection rate is discharged to provide the powdered activated carbon provided in the introduction pipe 31. From the injection point 32, the coagulation sedimentation treated water (treated water 34) is injected.

【0076】このように、第3実施形態では、凝集沈殿
工程から排出され、導入管31に設けられた粉末活性炭
注入点32で、粉末活性炭33が注入された凝集沈殿処
理水(処理水34)を貯留しながら、処理水34の蛍光
強度、吸光度を測定し、測定結果に応じた量の粉末活性
炭33を排出して、導入管31に設けられた粉末活性炭
注入点32から、凝集沈殿処理水(処理水34)に注入
するとともに、貯留している処理水34中に含まれる粉
末活性炭33によって、処理水34中の溶解性物質を吸
着除去し、次の工程に送出するようにしている。
As described above, in the third embodiment, the coagulation-sedimentation-treated water (processed water 34) discharged from the coagulation-sedimentation step and injected with the powdered activated carbon 33 at the powder activated carbon injection point 32 provided in the introduction pipe 31. While the water is stored, the fluorescence intensity and the absorbance of the treated water 34 are measured, the powdered activated carbon 33 in an amount corresponding to the measurement result is discharged, and the coagulation-sedimented treated water is discharged from the powdered activated carbon injection point 32 provided in the introduction pipe 31. While being injected into the (treated water 34), the powdered activated carbon 33 contained in the stored treated water 34 adsorbs and removes the soluble substance in the treated water 34 and sends it to the next step.

【0077】このため、処理水34の蛍光強度、水質指
標などをオンラインで測定することができるとともに、
オンラインで、粉末活性炭33の注入量を最適化して、
粉末活性炭33の使用量を最小限に抑えながら、トリハ
ロメタン生成能、溶解性有機物質などを効率良く低減す
ることができる。
Therefore, the fluorescence intensity of the treated water 34, the water quality index, etc. can be measured online, and
Optimize the injection amount of powdered activated carbon 33 online,
It is possible to efficiently reduce the amount of trihalomethane generation, soluble organic substances, etc. while minimizing the amount of the activated carbon powder 33 used.

【0078】なお、第3実施形態では、処理水34の蛍
光強度と、吸光度とを測定して、粉末活性炭33の注入
率を調整するようにしているが、処理水34の蛍光強度
とともに、他の水質指標、例えば温度などを測定し、こ
れらの各測定結果に応じて粉末活性炭33の注入率を調
整するようにしても良い。
In the third embodiment, the fluorescence intensity and the absorbance of the treated water 34 are measured to adjust the injection rate of the powdered activated carbon 33. The water quality index, such as temperature, may be measured, and the injection rate of the powdered activated carbon 33 may be adjusted according to the respective measurement results.

【0079】また、第3実施形態では、処理水34に励
起光を照射したとき、処理水34から出射される蛍光の
うち、特定の波長を持つ蛍光の強度を測定し、この測定
結果に応じた量の粉末活性炭33を排出して、処理水3
4に注入するようにしているが、蛍光を発する特定物質
の蛍光強度を基準にし、測定処理で得られた蛍光強度の
大きさを数値化した相対蛍光強度に応じた量の粉末活性
炭33を排出して、処理水34に注入するようにしても
良い。
In addition, in the third embodiment, when the treated water 34 is irradiated with the excitation light, the intensity of the fluorescence having a specific wavelength among the fluorescence emitted from the treated water 34 is measured, and the intensity of the fluorescence is measured according to the measurement result. A large amount of powdered activated carbon 33 is discharged, and treated water 3
4 is injected, but the amount of powdered activated carbon 33 corresponding to the relative fluorescence intensity obtained by digitizing the magnitude of the fluorescence intensity obtained by the measurement process is discharged based on the fluorescence intensity of the specific substance that emits fluorescence. Then, it may be injected into the treated water 34.

【0080】このように構成することにより、蛍光分析
計42の測定感度特性がばらつき、蛍光分生計42から
出力される蛍光強度検知信号の値がばらついても、基準
となる蛍光物質に対する蛍光強度の相対蛍光強度を使用
して、常に高い制御精度を確保することができる。
With such a configuration, even if the measurement sensitivity characteristics of the fluorescence analyzer 42 are varied and the value of the fluorescence intensity detection signal output from the fluorescence biometer 42 is varied, the fluorescence intensity of the reference fluorescent substance is Relative fluorescence intensity can be used to ensure always high control accuracy.

【0081】《第4実施形態》図12は本発明方法が適
用された水処理システムの第4実施形態を示すブロック
図である。なお、この図において、図9に対応する部分
には、同じ符号が付してある。
<< Fourth Embodiment >> FIG. 12 is a block diagram showing a fourth embodiment of a water treatment system to which the method of the present invention is applied. In this figure, parts corresponding to those in FIG. 9 are designated by the same reference numerals.

【0082】この図に示す水処理システム1dが図9に
示す水処理システム1cと異なる点は、導入管31に設
けられた分岐部47によって、凝集沈殿工程から排出さ
れる凝集沈殿処理水(処理水34)を分岐し、これを水
質測定装置48に導いて、蛍光強度、吸光度を測定する
とともに、この測定動作によって得られた蛍光強度検知
信号、吸光度検知信号を粉末活性炭注入装置49に供給
して、オンラインで、粉末活性炭33の注入量を最適化
して、トリハロメタン生成能、溶解性有機物質などを低
減するようにしたことである。
The water treatment system 1d shown in this figure is different from the water treatment system 1c shown in FIG. 9 in that the branching portion 47 provided in the introduction pipe 31 discharges the coagulation-sedimented water (treatment Water 34) is branched and guided to a water quality measuring device 48 to measure the fluorescence intensity and the absorbance, and the fluorescence intensity detection signal and the absorbance detection signal obtained by this measurement operation are supplied to the powdered activated carbon injection device 49. Then, the injection amount of the powdered activated carbon 33 is optimized online to reduce the trihalomethane generation ability, the soluble organic substance, and the like.

【0083】水質測定装置48は、膜濾過器50と、蛍
光分析計51と、膜濾過器52と、吸光度計53とを備
えている。
The water quality measuring device 48 comprises a membrane filter 50, a fluorescence analyzer 51, a membrane filter 52, and an absorptiometer 53.

【0084】膜濾過器50は、導入管31に設けられた
分岐部47から供給される凝集沈殿処理水(処理水3
4)を取り込んで、予め設定されている粒径、例えば
“10μm”より小さい粒径の懸濁物質を除去する。
The membrane filter 50 is provided with the coagulation-sedimentation-treated water (treated water 3
4) is taken in to remove suspended substances having a preset particle size, for example, a particle size smaller than “10 μm”.

【0085】蛍光分析計51は、膜濾過器50から排出
される懸濁物質除去済みの処理水34を取り込みなが
ら、トリハロメタン生成能と関係が強い波長、例えば
“345nm”の波長を持つ励起光を生成して、これを
処理水34に照射しながら、この処理水34から発せら
れる各蛍光のうち、トリハロメタン生成能と関係が強い
波長、例えば“425nm”の波長を持つ蛍光を選択し
て、蛍光強度を測定し、蛍光強度検知信号を生成する。
The fluorescence analyzer 51 takes in the treated water 34 from which the suspended solids have been removed, which is discharged from the membrane filter 50, and emits excitation light having a wavelength having a strong relationship with the trihalomethane production ability, for example, a wavelength of "345 nm". While generating and irradiating the treated water 34 with the treated water 34, fluorescence having a wavelength having a strong relationship with the trihalomethane-producing ability, for example, fluorescence having a wavelength of “425 nm” is selected from among the fluorescence emitted from the treated water 34. The intensity is measured and a fluorescence intensity detection signal is generated.

【0086】膜濾過器52は、導入管31に設けられた
分岐部47から供給される凝集沈殿処理水(処理水3
4)を取り込んで、予め設定されている粒径、例えば
“10μm”より小さい粒径の懸濁物質を除去する。
The membrane filter 52 is provided with the coagulation-sedimentation-treated water (treated water 3) supplied from the branch portion 47 provided in the introduction pipe 31.
4) is taken in to remove suspended substances having a preset particle size, for example, a particle size smaller than “10 μm”.

【0087】吸光度計53は、膜濾過器52から排出さ
れる懸濁物質除去済みの処理水34を取り込みながら、
予め設定されている波長、例えば水中有機物濃度(色
度)を測定するのに最適な“260nm”の波長光に対
する吸光度を測定して吸光度検知信号を生成する 粉末活性炭注入装置49は、活性炭注入率演算器54
と、活性炭注入率演算器54から出力される目標粉末活
性炭注入率に応じた量の粉末活性炭33を排出する粉末
活性炭注入器46とを備えている。
The absorbance meter 53 takes in the treated water 34 from which the suspended matter has been removed, which is discharged from the membrane filter 52,
A powder activated carbon injection device 49 that generates an absorbance detection signal by measuring the absorbance with respect to a preset wavelength, for example, a wavelength of “260 nm”, which is optimal for measuring the concentration of organic matter in water (chromaticity), is an activated carbon injection rate. Calculator 54
And a powdered activated carbon injector 46 that discharges the powdered activated carbon 33 in an amount corresponding to the target powdered activated carbon injection rate output from the activated carbon injection rate calculator 54.

【0088】活性炭注入率演算器54は、水質測定装置
48から出力される蛍光強度検知信号、吸光度検知信号
を取り込み、図13に示すように、蛍光強度検知信号で
示される蛍光強度を目標蛍光強度にするとともに、図1
4に示すように、吸光度検知信号で示される吸光度を目
標吸光度にするのに必要なフィードフォワード量(目標
粉末活性炭注入率)を演算する。さらに水質測定装置3
7から出力される蛍光強度検知信号、吸光度検知信号を
取り込み、図15に示すように、蛍光強度検知信号で示
される蛍光強度を目標トリハロメタン生成能に対応する
目標蛍光強度にするとともに、図16に示すように、吸
光度検知信号で示される吸光度を目標水中有機物濃度に
対応する目標吸光度にするのに必要なフィードバック量
(目標粉末活性炭注入率)を演算する。そして、これら
各目標粉末活性炭注入率を組み合わせて最適な目標粉末
活性炭注入率を演算する。
The activated carbon injection rate calculator 54 takes in the fluorescence intensity detection signal and the absorbance detection signal output from the water quality measuring device 48, and as shown in FIG. 13, sets the fluorescence intensity indicated by the fluorescence intensity detection signal to the target fluorescence intensity. In addition to Figure 1,
As shown in FIG. 4, the feedforward amount (target powder activated carbon injection rate) required to bring the absorbance indicated by the absorbance detection signal to the target absorbance is calculated. Further water quality measuring device 3
The fluorescence intensity detection signal and the absorbance detection signal output from No. 7 are taken in, and as shown in FIG. 15, the fluorescence intensity indicated by the fluorescence intensity detection signal is set to the target fluorescence intensity corresponding to the target trihalomethane-producing ability, and in FIG. As shown, the feedback amount (target powder activated carbon injection rate) required to bring the absorbance indicated by the absorbance detection signal to the target absorbance corresponding to the target organic matter concentration in water is calculated. Then, an optimum target powdered activated carbon injection rate is calculated by combining these target powdered activated carbon injection rates.

【0089】次に、第4実施形態の動作を説明する。Next, the operation of the fourth embodiment will be described.

【0090】水質測定装置48では、導入管31に設け
られた分岐部47から供給される凝集沈殿処理水(処理
水34)を取り込んで、懸濁物質を除去した後、“34
5nm”の波長を持つ励起光を処理水34に照射しなが
ら、この処理水34から発せられる蛍光のうち、“42
5nm”の波長を持つ蛍光の光強度(蛍光強度)を測定
して、蛍光強度検知信号を粉末活性炭注入装置49に供
給するとともに、“260nm”の波長光に対する、吸
光度を測定して、吸光度検知信号を粉末活性炭注入装置
49に供給する。
In the water quality measuring device 48, the coagulation-sedimentation-treated water (treated water 34) supplied from the branching portion 47 provided in the introduction pipe 31 is taken in to remove the suspended matter, and then the water content of "34"
While irradiating the treated water 34 with excitation light having a wavelength of 5 nm, “42% of the fluorescence emitted from the treated water 34
The light intensity (fluorescence intensity) of fluorescence having a wavelength of 5 nm "is measured, a fluorescence intensity detection signal is supplied to the powder activated carbon injection device 49, and the absorbance for the light having a wavelength of" 260 nm "is measured to detect the absorbance. The signal is supplied to the powdered activated carbon injector 49.

【0091】粉末活性炭注入装置49では、各水質測定
装置37、48から出力される各蛍光強度検知信号、各
吸光度検知信号に基づき、目標トリハロメタン生成能、
目標水中有機酸濃度に対応する目標蛍光強度、目標吸光
度にするのに必要な2つの目標粉末活性炭注入率を演算
し、これら各目標粉末活性炭注入率を組み合わせて、最
適な目標粉末活性炭注入率を演算するとともに、この目
標粉末活性炭注入率に応じた量の粉末活性炭33を排出
して、導入管31に設けられた粉末活性炭注入点32か
ら、凝集沈殿処理水(処理水34)に注入する。
In the powdered activated carbon injecting device 49, the target trihalomethane producing ability, based on the respective fluorescence intensity detecting signals and the respective absorbance detecting signals outputted from the respective water quality measuring devices 37 and 48,
The optimum target powder activated carbon injection rate is calculated by calculating the two target powder activated carbon injection rates required to achieve the target fluorescence intensity and target absorbance corresponding to the target organic acid concentration in water, and combining these target powder activated carbon injection rates. Along with the calculation, the powdered activated carbon 33 in an amount corresponding to the target powdered activated carbon injection rate is discharged, and is injected into the coagulated sediment treated water (treated water 34) from the powdered activated carbon injection point 32 provided in the introduction pipe 31.

【0092】このように、第4実施形態では、凝集沈殿
工程から排出され、導入管31に設けられた粉末活性炭
注入点32で、粉末活性炭33が注入された凝集沈殿処
理水(処理水34)を貯留しながら、処理水34の蛍光
強度、吸光度を測定し、測定結果に応じた量の粉末活性
炭33を排出して、導入管31に設けられた粉末活性炭
注入点32から、凝集沈殿処理水(処理水34)に注入
するとともに、貯留している処理水34中に含まれる粉
末活性炭33によって、処理水34中の溶解性物質を吸
着除去し、次の工程に送出するようにしている。
As described above, in the fourth embodiment, the coagulation-sedimentation-treated water (processed water 34) discharged from the coagulation-sedimentation step and injected with the powdered activated carbon 33 at the powdered activated-carbon injection point 32 provided in the introduction pipe 31. While the water is stored, the fluorescence intensity and the absorbance of the treated water 34 are measured, the powdered activated carbon 33 in an amount corresponding to the measurement result is discharged, and the coagulation-sedimented treated water is discharged from the powdered activated carbon injection point 32 provided in the introduction pipe 31. While being injected into the (treated water 34), the powdered activated carbon 33 contained in the stored treated water 34 adsorbs and removes the soluble substance in the treated water 34 and sends it to the next step.

【0093】このため、処理水34の蛍光強度、水質指
標などをオンラインで測定することができるとともに、
オンラインで、粉末活性炭33の注入量を最適化して、
粉末活性炭33の使用量を最小限に抑えながら、トリハ
ロメタン生成能、溶解性有機物質などを効率良く低減す
ることができる。
Therefore, the fluorescence intensity and the water quality index of the treated water 34 can be measured online, and
Optimize the injection amount of powdered activated carbon 33 online,
It is possible to efficiently reduce the amount of trihalomethane generation, soluble organic substances, etc. while minimizing the amount of the activated carbon powder 33 used.

【0094】また、第4実施形態では、凝集沈殿工程か
ら排出される凝集沈殿処理水(処理水34)を分岐し、
これを水質測定装置48に導いて、蛍光強度、吸光度を
測定するとともに、この測定動作によって得られた蛍光
強度検知信号、吸光度検知信号を活性炭注入装置49に
供給して、フィードフォワード演算で、導入管31に設
けられた粉末活性炭注入点32から、凝集沈殿処理水
(処理水34)に注入する粉末活性炭33の量を調節す
るようにしているので、凝集沈殿工程から排出される凝
集沈殿処理水(処理水34)の水質が変動しても、安定
した水質の処理水34を次工程に送出することができ
る。
Further, in the fourth embodiment, the coagulation-sedimentation treated water (treated water 34) discharged from the coagulation-sedimentation step is branched,
This is led to the water quality measuring device 48, and while measuring the fluorescence intensity and the absorbance, the fluorescence intensity detection signal and the absorbance detection signal obtained by this measurement operation are supplied to the activated carbon injection device 49, and are introduced by the feedforward calculation. Since the amount of the powdered activated carbon 33 to be injected into the coagulation-sedimentation-treated water (treatment water 34) is adjusted from the powdered activated carbon injection point 32 provided in the pipe 31, the coagulation-sedimentation treated water discharged from the coagulation-sedimentation process is adjusted. Even if the water quality of the (treated water 34) changes, the treated water 34 with stable water quality can be sent to the next step.

【0095】なお、第4実施形態では、処理水34の蛍
光強度と、吸光度とを測定して、粉末活性炭33の注入
率を調整するようにしているが、処理水34の蛍光強度
とともに、他の水質指標、例えば温度などを測定し、こ
れらの各測定結果に応じて粉末活性炭33の注入率を調
整するようにしても良い。
In the fourth embodiment, the fluorescence intensity of the treated water 34 and the absorbance are measured to adjust the injection rate of the powdered activated carbon 33. The water quality index, such as temperature, may be measured, and the injection rate of the powdered activated carbon 33 may be adjusted according to the respective measurement results.

【0096】また、第4実施形態では、処理水34に励
起光を照射したとき、処理水34から出射される蛍光の
うち、特定の波長を持つ蛍光の強度を測定し、この測定
結果に応じた量の粉末活性炭33を排出して、処理水3
4に注入するようにしているが、蛍光を発する特定物質
の蛍光強度を基準にし、測定処理で得られた蛍光強度の
大きさを数値化した相対蛍光強度に応じた量の粉末活性
炭33を排出して、処理水34に注入するようにしても
良い。
Further, in the fourth embodiment, when the treated water 34 is irradiated with the excitation light, the intensity of the fluorescence having a specific wavelength among the fluorescence emitted from the treated water 34 is measured, and the measured intensity is measured according to the measurement result. A large amount of powdered activated carbon 33 is discharged, and treated water 3
4 is injected, but the amount of powdered activated carbon 33 corresponding to the relative fluorescence intensity obtained by digitizing the magnitude of the fluorescence intensity obtained by the measurement process is discharged based on the fluorescence intensity of the specific substance that emits fluorescence. Then, it may be injected into the treated water 34.

【0097】このように構成することにより、蛍光分析
計42、51の測定感度特性がばらつき、蛍光分生計4
2、51から出力される蛍光強度検知信号の値がばらつ
いても、基準となる蛍光物質に対する蛍光強度の相対蛍
光強度を使用して、常に高い制御精度を確保することが
できる。
With this configuration, the measurement sensitivity characteristics of the fluorescence analyzers 42 and 51 vary, and the fluorescence biometer 4
Even if the values of the fluorescence intensity detection signals output from the circuits 2 and 51 vary, the relative fluorescence intensity of the fluorescence intensity with respect to the reference fluorescent substance can be used to always ensure high control accuracy.

【0098】[0098]

【発明の効果】以上説明したように本発明によれば、請
求項1の水処理システムでは、処理対象となる処理水の
蛍光強度、吸光度、温度など、複数の水質指標をオンラ
インで測定するとともに、これらの各測定結果を組み合
わせて、高い制御精度で、オゾン化空気の注入量、粉末
活性炭の注入量、他の制御量などを最適化して、オゾン
化空気、粉末活性炭などの使用量を低く抑えながら、ト
リハロメタン生成能、溶解性有機物質などを低減するこ
とができる。
As described above, according to the present invention, in the water treatment system of claim 1, a plurality of water quality indicators such as fluorescence intensity, absorbance and temperature of treated water to be treated are measured online. By combining these measurement results, with high control accuracy, the amount of ozonized air injected, the amount of powdered activated carbon injected, and other controlled amounts can be optimized to reduce the usage of ozonized air, powdered activated carbon, etc. While suppressing, it is possible to reduce the trihalomethane formation ability, the soluble organic substance, and the like.

【0099】請求項2の水処理システムでは、トリハロ
メタン生成能と相関関係が強い波長“420〜430n
m”の蛍光強度を使用して、処理対象となる処理水の蛍
光強度をオンラインで測定し、高い制御精度で、オゾン
化空気の注入量、粉末活性炭の注入量、他の制御量など
を最適化して、オゾン化空気、粉末活性炭などの使用量
を低く抑えながら、トリハロメタン生成能、溶解性有機
物質などを低減することができる。
In the water treatment system according to the second aspect of the present invention, the wavelength "420 to 430n, which has a strong correlation with the trihalomethane-producing ability, is used.
The fluorescence intensity of m ”is used to measure the fluorescence intensity of the treated water to be treated online, and the injection amount of ozonized air, the injection amount of powdered activated carbon, and other control amounts are optimized with high control accuracy. It is possible to reduce the amount of trihalomethane production, soluble organic substances, etc. while suppressing the use of ozonized air, powdered activated carbon, etc.

【0100】請求項3の水処理システムでは、蛍光を発
する特定物質の蛍光強度を基準にして、処理対象となる
処理水の相対蛍光強度をオンラインで計測し、これら各
蛍光強度の相対蛍光強度を使用し、蛍光分析計などの機
器特性の影響を受けることなく、高い制御精度で、オゾ
ン化空気の注入量、粉末活性炭の注入量、他の制御量な
どを最適化して、オゾン化空気、粉末活性炭などの使用
量を低く抑えながら、トリハロメタン生成能、溶解性有
機物質などを低減することができる。
In the water treatment system of claim 3, the relative fluorescence intensity of the treated water to be treated is measured online with reference to the fluorescence intensity of the specific substance that emits fluorescence, and the relative fluorescence intensity of each of these fluorescence intensities is calculated. Use it and optimize the injection amount of ozonized air, the injection amount of powdered activated carbon, other control amount, etc. with high control accuracy without being affected by the characteristics of equipment such as a fluorescence analyzer. It is possible to reduce the amount of trihalomethane production, soluble organic substances, etc. while suppressing the amount of activated carbon to be used.

【0101】請求項4の水処理システムでは、有機物濃
度あるいは色相と相関関係が強い波長“250〜270
nm”の吸光度または波長“380〜400nm”の吸
光度を使用して、処理対象となる処理水の水質指標とな
る吸光度をオンラインで測定し、高い制御精度で、オゾ
ン化空気の注入量、粉末活性炭の注入量、他の制御量な
どを最適化して、オゾン化空気、粉末活性炭などの使用
量を低く抑えながら、トリハロメタン生成能、溶解性有
機物質などを低減することができる。
In the water treatment system according to claim 4, wavelengths "250 to 270" having a strong correlation with the organic matter concentration or the hue.
nm absorbance or wavelength "380-400 nm" absorbance is used to measure online the absorbance that is the water quality index of the treated water to be treated, and with high control accuracy, the injection amount of ozonized air and powdered activated carbon The amount of trihalomethane generation, soluble organic substances, etc. can be reduced while optimizing the injection amount and other control amount of the compound, while keeping the amount of ozonized air, powdered activated carbon, etc. used low.

【0102】請求項5の水処理システムでは、処理対象
となる処理水の蛍光強度、吸光度、温度など、複数の水
質指標をオンラインで測定するとともに、これらの各測
定結果を組み合わせて、高い制御精度で、オゾン化空気
の注入量を最適化して、オゾン化空気の使用量を低く抑
えながら、脱臭処理、脱色処理、消毒処理、鉄の酸化処
理、マンガンの酸化処理、有機物の分解処理、トリハロ
メタン生成能の低減処理などを行わせることができる。
In the water treatment system according to the fifth aspect, a plurality of water quality indicators such as fluorescence intensity, absorbance and temperature of the treated water to be treated are measured online, and the results of these measurements are combined to obtain high control accuracy. By optimizing the injection amount of ozonized air, the deodorization process, decolorization process, disinfection process, iron oxidation process, manganese oxidation process, organic substance decomposition process, and trihalomethane generation are performed while optimizing the injection amount of ozonized air. Noh reduction processing can be performed.

【0103】請求項6の水処理システムでは、処理対象
となる処理水の蛍光強度、吸光度、温度など、複数の水
質指標をオンラインで測定するとともに、これらの各測
定結果を組み合わせて、高い制御精度で、粉末活性炭の
注入量を最適化して、粉末活性炭の使用量を低く抑えな
がら、溶解性物質を吸着除去し、トリハロメタン生成
能、溶解性有機物質などを効率良く低減することができ
る。
In the water treatment system according to the sixth aspect, a plurality of water quality indicators such as fluorescence intensity, absorbance and temperature of the treated water to be treated are measured online, and the results of these measurements are combined to obtain high control accuracy. Thus, it is possible to optimize the injection amount of the powdered activated carbon and suppress the amount of the powdered activated carbon to be used while adsorbing and removing the soluble substance, and efficiently reducing the trihalomethane-forming ability and the soluble organic substance.

【0104】請求項7の水処理システムでは、処理対象
となる処理水の蛍光強度を測定するとき、処理水に含ま
れている懸濁成分を除去して、蛍光強度測定に対する固
形成分の影響を取り除きながら、処理水の蛍光強度をオ
ンラインで測定し、高い制御精度で、オゾン化空気の注
入量、粉末活性炭の注入量、他の制御量などを最適化し
て、オゾン化空気、粉末活性炭などの使用量を低く抑え
ながら、トリハロメタン生成能、溶解性有機物質などを
低減することができる。
In the water treatment system according to claim 7, when the fluorescence intensity of the treated water to be treated is measured, the suspended components contained in the treated water are removed, and the influence of the solid component on the fluorescence intensity measurement is influenced. While removing it, measure the fluorescence intensity of the treated water online, and with high control accuracy, optimize the injection amount of ozonized air, the injection amount of powdered activated carbon, other control amounts, etc. It is possible to reduce the trihalomethane-forming ability, soluble organic substances, etc. while suppressing the amount used.

【0105】請求項8の水処理システムでは、処理対象
となる処理水の吸光度を測定するとき、処理水に含まれ
ている懸濁成分を除去して、吸光度測定に対する固形成
分の影響を取り除きながら、処理水の吸光度をオンライ
ンで測定し、高い制御精度で、オゾン化空気の注入量、
粉末活性炭の注入量、他の制御量などを最適化して、オ
ゾン化空気、粉末活性炭などの使用量を低く抑えなが
ら、トリハロメタン生成能、溶解性有機物質などを低減
することができる。
In the water treatment system according to claim 8, when the absorbance of the treated water to be treated is measured, the suspended components contained in the treated water are removed to remove the influence of the solid components on the absorbance measurement. , The absorbance of treated water is measured online, and the injection amount of ozonized air can be controlled with high control accuracy.
It is possible to optimize the injection amount of powdered activated carbon, other control amounts, and the like to reduce the amounts of trihalomethane generation, soluble organic substances, and the like while suppressing the use amounts of ozonized air, powdered activated carbon, and the like.

【0106】請求項9の水処理システムでは、処理対象
となる処理水の蛍光強度、吸光度を測定するとき、処理
水に含まれている懸濁成分のうち、粒径が“10μm”
以下の懸濁成分を除去して、蛍光強度測定、吸光度測定
に対する固形成分の影響を取り除きながら、処理水の吸
光度をオンラインで測定し、高い制御精度で、オゾン化
空気の注入量、粉末活性炭の注入量、他の制御量などを
最適化して、オゾン化空気、粉末活性炭などの使用量を
低く抑えながら、トリハロメタン生成能、溶解性有機物
質などを低減することができる。
In the water treatment system of claim 9, when the fluorescence intensity and the absorbance of the treated water to be treated are measured, the particle diameter of the suspended components contained in the treated water is “10 μm”.
The following suspension components are removed, while the fluorescence intensity measurement and the influence of solid components on the absorbance measurement are removed, the absorbance of the treated water is measured online, and with high control accuracy, the injection amount of ozonized air and the powdered activated carbon By optimizing the injection amount and other control amounts, it is possible to reduce the amount of trihalomethane generation, soluble organic substances, etc. while keeping the amount of ozonized air, powdered activated carbon, etc. used low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法が適用された水処理システムの第1
実施形態を示すブロック図である。
FIG. 1 is a first water treatment system to which the method of the present invention is applied.
It is a block diagram showing an embodiment.

【図2】図1に示す水処理システムで処理されるオゾン
処理水の蛍光強度とトリハロメタン生成能との関係例を
示すグラフである。
FIG. 2 is a graph showing an example of the relationship between the fluorescence intensity of ozone-treated water treated with the water treatment system shown in FIG. 1 and the trihalomethane-producing ability.

【図3】図1に示す水処理システムで処理されるオゾン
処理水の吸光度とトリハロメタン生成能との関係例を示
すグラフである。
FIG. 3 is a graph showing an example of the relationship between the absorbance of ozone-treated water treated with the water treatment system shown in FIG. 1 and the trihalomethane generation ability.

【図4】本発明方法が適用された水処理システムの第2
実施形態を示すブロック図である。
FIG. 4 is a second water treatment system to which the method of the present invention is applied.
It is a block diagram showing an embodiment.

【図5】図4に示す水処理システムで処理されるオゾン
処理水の蛍光強度とオゾン注入率との関係例を示すグラ
フである。
5 is a graph showing an example of the relationship between the fluorescence intensity of ozone-treated water treated by the water treatment system shown in FIG. 4 and the ozone injection rate.

【図6】図4に示す水処理システムで処理されるオゾン
処理水の吸光度とオゾン注入率との関係例を示すグラフ
である。
6 is a graph showing an example of the relationship between the absorbance of ozone-treated water treated by the water treatment system shown in FIG. 4 and the ozone injection rate.

【図7】図4に示す水処理システムで処理されるオゾン
処理水の蛍光強度とトリハロメタン生成能との関係例を
示すグラフである。
FIG. 7 is a graph showing an example of the relationship between the fluorescence intensity of ozone-treated water treated with the water treatment system shown in FIG. 4 and the trihalomethane-producing ability.

【図8】図4に示す水処理システムで処理されるオゾン
処理水の吸光度とトリハロメタン生成能との関係例を示
すグラフである。
FIG. 8 is a graph showing an example of the relationship between the absorbance of ozone-treated water treated with the water treatment system shown in FIG. 4 and the trihalomethane generation ability.

【図9】本発明方法が適用された水処理システムの第3
実施形態を示すブロック図である。
FIG. 9 is a third water treatment system to which the method of the present invention is applied.
It is a block diagram showing an embodiment.

【図10】図9に示す水処理システムで処理される処理
水の蛍光強度とトリハロメタン生成能との関係例を示す
グラフである。
10 is a graph showing an example of the relationship between the fluorescence intensity of treated water treated with the water treatment system shown in FIG. 9 and the trihalomethane production ability.

【図11】図9に示す水処理システムで処理される処理
水の吸光度と水中有機物濃度との関係例を示すグラフで
ある。
FIG. 11 is a graph showing an example of the relationship between the absorbance of treated water treated in the water treatment system shown in FIG. 9 and the concentration of organic matter in water.

【図12】本発明方法が適用された水処理システムの第
4実施形態を示すブロック図である。
FIG. 12 is a block diagram showing a fourth embodiment of a water treatment system to which the method of the present invention is applied.

【図13】図12に示す水処理システムで処理される処
理水の蛍光強度と粉末活性炭注入率との関係例を示すグ
ラフである。
FIG. 13 is a graph showing an example of the relationship between the fluorescence intensity of treated water treated with the water treatment system shown in FIG. 12 and the powder activated carbon injection rate.

【図14】図12に示す水処理システムで処理される処
理水の吸光度と粉末活性炭注入率との関係例を示すグラ
フである。
FIG. 14 is a graph showing an example of the relationship between the absorbance of treated water treated with the water treatment system shown in FIG. 12 and the powder activated carbon injection rate.

【図15】図12に示す水処理システムで処理される処
理水の蛍光強度とトリハロメタン生成能との関係例を示
すグラフである。
15 is a graph showing an example of the relationship between the fluorescence intensity of the treated water treated with the water treatment system shown in FIG. 12 and the trihalomethane production ability.

【図16】図12に示す水処理システムで処理される処
理水の吸光度と水中有機物濃度との関係例を示すグラフ
である。
16 is a graph showing an example of the relationship between the absorbance of treated water treated in the water treatment system shown in FIG. 12 and the concentration of organic matter in water.

【符号の説明】[Explanation of symbols]

1a〜1d:水処理システム 2:オゾン処理水 3:オゾン化空気 4:オゾン注入処理装置 5、17、37、48:水質測定装置 6、18:オゾン生成装置 7、31:導入管 8、35:導出管 9:オゾン反応槽 10:散気管 11:採水口 12、19、42、51:蛍光分析計 13、20、44、53:吸光度計 14:オゾン注入率演算器 15:オゾン発生器 16、47:分岐部 21:オゾン注入率演算器 32:粉末活性炭注入点 34:処理水 36:活性炭吸着処理装置 38:粉末活性炭注入装置 39:着水井 40:採水口 41、43、50、52:膜濾過器 45:活性炭注入率演算器 46:粉末活性炭注入器 49:粉末活性炭注入装置 54:活性炭注入率演算器 1a-1d: Water treatment system 2: Ozone treated water 3: Ozonized air 4: Ozone injection processing device 5, 17, 37, 48: Water quality measuring device 6, 18: Ozone generator 7, 31: Introduction tube 8, 35: Outlet pipe 9: Ozone reaction tank 10: Air diffuser 11: Water sampling port 12, 19, 42, 51: Fluorescence analyzer 13, 20, 44, 53: Absorbance meter 14: Ozone injection rate calculator 15: Ozone generator 16, 47: Branching part 21: Ozone injection rate calculator 32: Powder activated carbon injection point 34: Treated water 36: Activated carbon adsorption treatment device 38: Powder activated carbon injection device 39: Landing well 40: Water sampling port 41, 43, 50, 52: Membrane filter 45: Activated carbon injection rate calculator 46: Powder activated carbon injector 49: Powder activated carbon injection device 54: Activated carbon injection rate calculator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/64 G01N 21/64 Z 33/18 33/18 Z (72)発明者 鈴木 節雄 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 阿部 法光 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 田口 健二 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 工藤 寿雪 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 久保 貴恵 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 林 巧 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 居安 巨太郎 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 平本 昭 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 2G043 BA09 CA03 DA01 DA05 EA01 KA02 KA03 KA05 2G059 AA05 BB04 BB06 DD12 EE01 HH02 HH03 HH06 MM01 4D024 AA01 AA04 AA10 AB11 BA02 BB01 DA01 DA03 DA04 4D050 AA03 AA13 AA15 AB19 BB02 BD03 BD08 CA16 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 21/64 G01N 21/64 Z 33/18 33/18 Z (72) Inventor Setsuo Suzuki 1 Address: Toshiba Fuchu Works (72) Inventor, Norimitsu Abe, No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Works: (72) Inventor Kenji Taguchi 1-1-1, Shibaura, Minato-ku, Tokyo Toshiba Corporation In the headquarters office (72) Inventor Toshiyuki Kudo 1 Toshiba Town, Fuchu-shi, Tokyo Inside Toshiba Fuchu Works (72) Inventor Takae Kubo 1-1-1 Shibaura, Minato-ku, Tokyo Inside the Toshiba headquarters office ( 72) Inventor Takumi Hayashi 1st Toshiba Town, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Works, Inc. (72) Inventor Kotaro Iyasu 1st Toshiba-cho, Fuchu City, Tokyo Inside the Fuchu Works, Toshiba (72) Inventor Hiramoto Akira No. 1, Toshiba-cho, Fuchu-shi, Tokyo F-term in Toshiba Fuchu Works (reference) 2 G043 BA09 CA03 DA01 DA05 EA01 KA02 KA03 KA05 2G059 AA05 BB04 BB06 DD12 EE01 HH02 HH03 HH06 MM01 4D024 AA01 AA04 AA10 AB11 BA02 BB01 DA01 DA03 DA04 4D050 AA03 AA13 AA15 AB19 CA16 BB02 BD03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 処理対象となる処理水の水質指標を測定
するとともに、この測定結果に基づき、前記処理水に水
質改善剤を注入して前記処理水の水質を改善する水処理
方法において、 前記処理水の水質指標として、蛍光強度ととともに、吸
光度または水温の少なくともいずれか一方を使用する、 ことをとくちょうとする水処理方法。
1. A water treatment method for measuring a water quality index of treated water to be treated and improving the water quality of the treated water by injecting a water quality improving agent into the treated water based on the measurement result. A water treatment method which uses at least one of absorbance and water temperature together with fluorescence intensity as a water quality indicator of treated water.
【請求項2】 請求項1に記載の水処理方法において、 前記処理水の蛍光強度を測定するときには、“340〜
350nm”の波長範囲内にある特定波長の励起光を使
用するとともに、“420〜430nm”の波長範囲内
にある特定波長の蛍光強度を使用する、 ことを特徴とする水処理方法。
2. The water treatment method according to claim 1, wherein when measuring the fluorescence intensity of the treated water, “340 to 340” is used.
A method for treating water, characterized by using excitation light of a specific wavelength within a wavelength range of 350 nm "and using fluorescence intensity of a specific wavelength within a wavelength range of" 420 to 430 nm ".
【請求項3】 請求項1に記載の水処理方法において、 前記処理水の蛍光強度に代えて、蛍光を発する特定物質
の蛍光強度を基準とした前記処理水の相対蛍光強度を使
用する、 ことを特徴とする水処理方法。
3. The water treatment method according to claim 1, wherein the relative fluorescence intensity of the treated water based on the fluorescence intensity of a specific substance that emits fluorescence is used instead of the fluorescence intensity of the treated water. A water treatment method characterized by:
【請求項4】 請求項1乃至3のいずれかに記載の水処
理方法において、 前記処理水の吸光強度を測定するときには、“250〜
270nm”の波長範囲内にある特定波長の吸光度、ま
たは“380〜400nm”の波長範囲内にある特定波
長の吸光度の少なくともいずれか一方を使用する、 ことを特徴とする水処理方法。
4. The water treatment method according to claim 1, wherein when measuring the absorption intensity of the treated water, “250 to
At least one of the absorbance at a specific wavelength within the wavelength range of 270 nm "and the absorbance at a specific wavelength within the wavelength range of" 380 to 400 nm "is used.
【請求項5】 請求項1乃至4のいずれかに記載の水処
理方法において、 前記水質改善剤としてオゾン化空気を使用する、 ことを特徴とする水処理方法。
5. The water treatment method according to any one of claims 1 to 4, wherein ozonized air is used as the water quality improving agent.
【請求項6】 請求項1乃至5のいずれかに記載の水処
理方法において、 前記水質改善剤として粉末活性炭を使用する、 ことを特徴とする水処理方法。
6. The water treatment method according to any one of claims 1 to 5, wherein powdered activated carbon is used as the water quality improving agent.
【請求項7】 請求項1乃至6のいずれかに記載の水処
理方法において、 前記処理水の蛍光強度を測定するときには、前記処理水
に含まれる懸濁成分を取り除いた後、蛍光強度を測定す
る、 ことを特徴とする水処理方法。
7. The water treatment method according to claim 1, wherein when the fluorescence intensity of the treated water is measured, the fluorescence intensity is measured after removing suspended components contained in the treated water. A water treatment method characterized by:
【請求項8】 請求項1乃至7のいずれかに記載の水処
理方法において、 前記処理水の吸光度を測定するときには、前記処理水に
含まれる懸濁成分を取り除いた後、吸光度を測定する、 ことを特徴とする水処理方法。
8. The water treatment method according to claim 1, wherein when the absorbance of the treated water is measured, the absorbance is measured after removing suspended components contained in the treated water. A water treatment method characterized by the above.
【請求項9】 請求項7、8のいずれかに記載の水処理
方法において、 前記処理水に含まれる粒径“10μm”以下の懸濁成分
を取り除く、 ことを特徴とする水処理方法。
9. The water treatment method according to claim 7, wherein suspended components having a particle size of “10 μm” or less contained in the treated water are removed.
JP2001282109A 2001-09-17 2001-09-17 Method for water treatment Pending JP2003088882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001282109A JP2003088882A (en) 2001-09-17 2001-09-17 Method for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001282109A JP2003088882A (en) 2001-09-17 2001-09-17 Method for water treatment

Publications (1)

Publication Number Publication Date
JP2003088882A true JP2003088882A (en) 2003-03-25

Family

ID=19105806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001282109A Pending JP2003088882A (en) 2001-09-17 2001-09-17 Method for water treatment

Country Status (1)

Country Link
JP (1) JP2003088882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324124A (en) * 2004-05-14 2005-11-24 Toshiba Corp Ozone gas injection control system
JP2009236832A (en) * 2008-03-28 2009-10-15 Jfe Engineering Corp Monitoring method and device for dissolved pollutant
JP2009236831A (en) * 2008-03-28 2009-10-15 Jfe Engineering Corp Monitoring method and device for dissolved pollutant
CN107148567A (en) * 2014-10-29 2017-09-08 堀场仪器株式会社 Water process parameter is determined based on absorbance and fluorescence

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324124A (en) * 2004-05-14 2005-11-24 Toshiba Corp Ozone gas injection control system
JP4509644B2 (en) * 2004-05-14 2010-07-21 株式会社東芝 Ozone gas injection control system
JP2009236832A (en) * 2008-03-28 2009-10-15 Jfe Engineering Corp Monitoring method and device for dissolved pollutant
JP2009236831A (en) * 2008-03-28 2009-10-15 Jfe Engineering Corp Monitoring method and device for dissolved pollutant
CN107148567A (en) * 2014-10-29 2017-09-08 堀场仪器株式会社 Water process parameter is determined based on absorbance and fluorescence
JP2017538112A (en) * 2014-10-29 2017-12-21 ホリバ インスツルメンツ インコーポレイテッドHoriba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
US10996168B2 (en) 2014-10-29 2021-05-04 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence
US11874226B2 (en) 2014-10-29 2024-01-16 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorescence

Similar Documents

Publication Publication Date Title
Zhou et al. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon
JP2002166265A (en) Water treatment control system using fluorometric analyzer
JP2007000767A (en) Method and apparatus for treating water
JP2005305328A (en) Water treatment controlling system
JP2003088882A (en) Method for water treatment
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JPH07124593A (en) Highly advanced water purifying treatment method
JP4334404B2 (en) Water treatment method and water treatment system
JP4660211B2 (en) Water treatment control system and water treatment control method
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
JP4509644B2 (en) Ozone gas injection control system
JP2007319816A (en) Water treatment apparatus and water treatment method
JP3889294B2 (en) Water treatment system using a fluorescence analyzer
KR101910483B1 (en) Advanced water purification system using ultraviolet and activated carbon and advanced water purification method for using the same
JP4688069B2 (en) Method and apparatus for decomposing 1,4-dioxane
JP2003047980A (en) Wastewater treatment method and its apparatus
JP4331048B2 (en) Ozone water treatment control system
JP2001083095A (en) Water quality measuring device
JP3666255B2 (en) Water treatment operation control method by ozone and ultraviolet rays
Oh et al. Optimization and control of ozonation plant using raw water characterization method
JP7454303B1 (en) Water purification system, water purification method, and fulvic acid decomposition treatment method
JPH07167850A (en) Measuring device of absorbance of ultraviolet rays of ozone treatment liquid
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
JP2000061481A (en) Control method for ozone injection
Yaoa et al. Pretreatment of preserved fruits wastewater by a novel Fe (III)-catalyzed oxidation coupled with calcium oxide precipitation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915