JP2003086334A - Complex heater with vacuum multiple structured special carbon fiber - Google Patents

Complex heater with vacuum multiple structured special carbon fiber

Info

Publication number
JP2003086334A
JP2003086334A JP2001317470A JP2001317470A JP2003086334A JP 2003086334 A JP2003086334 A JP 2003086334A JP 2001317470 A JP2001317470 A JP 2001317470A JP 2001317470 A JP2001317470 A JP 2001317470A JP 2003086334 A JP2003086334 A JP 2003086334A
Authority
JP
Japan
Prior art keywords
heating element
carbon fiber
heat
carbon
fiber heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317470A
Other languages
Japanese (ja)
Inventor
Michihiko Hineno
道彦 日根野
Yuichi Sannomiya
裕一 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001317470A priority Critical patent/JP2003086334A/en
Publication of JP2003086334A publication Critical patent/JP2003086334A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a complex heater enabled to obtain high temperature within a short period by using a carbon fiber heating element, having far- infrared ray effect, negative ion effect, deodorizing effect, and sterilization effect, utilized as a heat source for household cooking and heating apparatus, industry, cooking, medical treatment, heat insulation of clothes, or the like. SOLUTION: Flat rod-shaped carbon fiber heating elements (101) as a first heating element, and a cylinder-shaped carbon fiber heating element (102) as a second heating element are inserted and mounted inside a heat-resistant quartz glass tube (103), and both ends of those carbon fiber heating elements (101, 102) as the first and the second heating elements are fixed to molybdenum electrodes (104), and heat is radiated from the carbon fiber heating element within a short time by supplying electric power (105).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、活性化炭素繊維の
特性である短時間に高温に過熱可能な特徴を利用した炭
素繊維発熱体及び炭素繊維発熱体の利用使用方法に関
し、より詳細には電気抵抗値を大きくして発熱し易くし
た活性炭素繊維を熱源として利用する活性炭素繊維発熱
体及び炭素繊維発熱体の利用方法と使用方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber heating element and a method of using and using the carbon fiber heating element, which utilizes the characteristic of activated carbon fiber that it can be heated to a high temperature in a short time. The present invention relates to an activated carbon fiber heating element that uses activated carbon fiber, which has a large electric resistance value and easily heats, as a heat source, and a method of using the carbon fiber heating element.

【0002】[0002]

【従来の技術】熱源として使用されている発熱体は大別
して電気ヒーターのように金属又は半導体の電気抵抗を
利用したものと、ガスの燃焼のように熱の放出を伴う化
学反応(発熱反応)を利用したものに分類できる。様々
な形態で種々の用途に利用されている何れの発熱体も現
代生活において欠くことがでいないものである。新しい
発熱体が開発される度に産業の発達や日常生活の利便性
の向上が図られている。一方、炭素繊維は、実質的に炭
素元素のみから成る繊維状の炭素素材であり、物質とし
ての炭素に由来する特性と、形態としての繊維に由来す
る特性を合わせて持つ特異な材質であることが知られて
いる。具体的には、耐熱性、科学的安定性、電気伝導
性、シュウ動特性、生体親和性等の炭素材料に固有の特
性を持っている。また、この炭素繊維に吸着性能を付与
したものが活性炭素繊維と呼ばれている。一般に炭素繊
維は、レーヨンやポリアクリロニトリル等の有機繊維又
は精製した石油ピッチを紡糸して作った繊維を原料繊維
として、この原料繊維を不活性気体中で熱処理し炭化さ
せて製造している。とくにポリアクリロニトリルで作っ
た炭素繊維は高弾性、高強度の特性があり、樹脂でえ固
めた複合材料は構造材料に利用されいる。例えば、釣り
竿等の日用品から航空機部品まで広い用途に用いられて
いる。これまで炭素繊維を用いた発熱体は発熱表面積が
大きく発熱効率が高いこと、軽量あり各種形状に形成で
きること等からその利便性の故に種々のものが開発され
ている。例えば実開平6−44090号広報に記載され
ている発熱体は、炭素繊維をほぼ平行に並べてその表面
に樹脂耐熱繊維を被覆すると共に、更に樹脂で被覆した
もので電器抵抗値が調整し易く電気消費量が少ないとし
て70℃程度に加熱しながら融雪する発熱装置に用いら
れている。あるいは、特開平10−55877号に記載
されている発明は、炭素繊維の表面にセラミックスを被
覆することにより強度の高いヒーターとし、その両端に
電極を設けて電気ヒーターとして用いたものである。
2. Description of the Related Art A heating element used as a heat source is roughly classified into one using electric resistance of a metal or semiconductor like an electric heater, and a chemical reaction (exothermic reaction) accompanied by release of heat like combustion of gas. Can be classified into those using. Any heating element used in various forms and for various purposes is indispensable in modern life. Every time a new heating element is developed, the industrial development and convenience of daily life are improved. On the other hand, carbon fiber is a fibrous carbon material that consists essentially of carbon elements, and is a unique material that has both the characteristics derived from carbon as a substance and the characteristics derived from fiber as a form. It has been known. Specifically, it has characteristics peculiar to carbon materials such as heat resistance, scientific stability, electrical conductivity, Shu dynamic characteristics, and biocompatibility. Moreover, what gave adsorption performance to this carbon fiber is called activated carbon fiber. Generally, carbon fibers are manufactured by using organic fibers such as rayon and polyacrylonitrile or fibers made by spinning refined petroleum pitch as raw material fibers, and heat-treating the raw material fibers in an inert gas for carbonization. In particular, carbon fibers made of polyacrylonitrile have high elasticity and high strength, and composite materials hardened with resin are used as structural materials. For example, it is used for a wide range of applications from daily goods such as fishing rods to aircraft parts. Up to now, various heating elements using carbon fibers have been developed due to their convenience because they have a large heating surface area, high heating efficiency, are lightweight, and can be formed into various shapes. For example, the heating element described in Japanese Utility Model Publication No. 6-44090 is arranged so that carbon fibers are arranged substantially parallel to each other, and the surface thereof is coated with a resin heat-resistant fiber, and further coated with a resin. It is used in a heat generating device that melts snow while heating to about 70 ° C because of low consumption. Alternatively, the invention described in JP-A-10-55877 is a heater having high strength by coating the surface of carbon fiber with ceramics, and electrodes are provided at both ends thereof to be used as an electric heater.

【0003】[0003]

【発明が解決しようとする課題】これらには下記の欠点
があった。 (イ)炭素繊維を発熱体として利用する従来の技術は、
比較的低温の発熱装置としての利用であるか、あるいは
高温発熱体として利用するには電力を多く消費するもの
でしかなかった。これまで、消費電力が少なくしかも通
電後短時間に高温が得られるような熱効率が高い炭素繊
維を利用した発熱装置は皆無であった。 (ロ)従来技術においては炭素繊維を使用し炭素繊維の
特性を利用した小電力で通電後短時間に高温が得られる
高効率発熱体及び使用方法を提供することにある。 (ハ)炭素繊維の作成目的が、炭素に由来する特性及び
繊維に由来する特性を持った材料を得ることを目的とし
ている為炭素の特性を利用した用途に使用されるかその
特性を利用した用途のみに使用され、一般に熱源として
使用されていない。 (ニ)一般に熱源として使用されていない炭素および繊
維の用途において発熱体として利用することはなかっ
た。 (ホ)通常の炭素繊維は電気抵抗値が小さいため発熱体
として利用するには不十分であった。 (ヘ)炭素繊維は理論的には炭素元素のみから成る繊維
状の炭素素材であるが、実際炭素繊維に通電した場合、
内包されている有害な一酸化炭素が放出されるため発熱
体として利用することが出来なかった。 (ト)これまでは十分な発熱を行うことが出来、種々の
用途に利用可能な発熱体を提供することが出来なかっ
た。
These have the following drawbacks. (B) The conventional technique of using carbon fiber as a heating element is
To use it as a heat generating device at a relatively low temperature or to use it as a high temperature heating element, it consumes a lot of electric power. Up to now, there has been no heat generating device using carbon fiber which has low thermal power consumption and high thermal efficiency that can obtain high temperature in a short time after energization. (B) In the prior art, it is an object of the present invention to provide a high-efficiency heating element which uses carbon fiber and can obtain a high temperature in a short time after energization with a small electric power utilizing the characteristics of the carbon fiber and a method of using the same. (C) Since the purpose of producing carbon fiber is to obtain a material having characteristics derived from carbon and characteristics derived from fiber, it is used for the purpose of utilizing the characteristics of carbon or the characteristics are utilized. It is used only for purposes and is not generally used as a heat source. (D) Carbon and fibers, which are not generally used as heat sources, were not used as heating elements. (E) Since ordinary carbon fiber has a small electric resistance value, it was insufficient to be used as a heating element. (F) Carbon fiber is theoretically a fibrous carbon material consisting of only carbon element, but when the carbon fiber is actually energized,
Since the harmful carbon monoxide contained therein was released, it could not be used as a heating element. (G) Until now, sufficient heat generation was possible, and it was not possible to provide a heating element that can be used for various purposes.

【0004】[0004]

【課題を解決するための手段】本発明は上記の欠点を改
善改良したものである。 (イ) 請求項1に係わる炭素繊維発熱体は、織物状の
原料繊維に真空高温焼成を施して1本1本の繊維にミク
ロ単位のポアを形成し、電気抵抗値を大きくした活性炭
素繊維からなるものである。 (ロ)また請求項2に係わる炭素繊維発熱体は、請求項
1記載の炭素繊維発熱体において前記織物状の原料繊維
がセルロース系、炭素微粉炭(木炭、竹炭、綿、油煙
等)又はフェノール系の有機繊維であるものである。 (ハ)また請求項3に係わる炭素繊維発熱体は前記真空
高温焼を1250℃程度で行うものである。 (ニ)また請求項4に係わる炭素繊維発熱体は請求項
1,2または3記載の炭素繊維発熱体において、前記活
性炭素繊維を不導電でかつ耐熱性の支持部材を用いて支
持したものである。 (ホ)また請求項5に係わる炭素繊維発熱体は請求項
1,2または3記載の炭素繊維係わる炭素繊維発熱体は
請求項1,2,または3記載の炭素繊維発熱体において
前記活性炭繊維を不電導でかつ耐熱性の繊維を用いて補
強したものである。 (ト)また請求項6に係わる炭素繊維発熱体の利用方法
は請求項1,2,3,4又は5記載の炭素繊維発熱体を
医療機器加熱用熱源として使用するものである。 (チ)また請求項7に係わる炭素繊維発熱体の利用方法
は請求項1,2,3,4又は5記載記載の炭素繊維発熱
体を家電製品の調理用熱源として使用するものである。 (リ)また請求項8に係わる炭素繊維発熱体の利用方法
は請求項1,2,3,4又は5記載の炭素繊維発熱体を
暖房機器の加熱熱源として使用するものである。 (ヌ)また請求項9に係わる炭素繊維発熱体の利用方法
は請求項1,2,3,4又は5記載の炭素繊維発熱体を
工業用機器の恒温用熱源又は動力用熱源として使用する
ものである。 本発明に係わる発熱体の特徴構成は外部電源と接続可能
な炭素繊維からなると共に非酸化状態に配置されている
第一発熱体とこの第一発熱体の外周に配置された線状ま
たは面状の第二発熱体とを備えるのとにある。この構成
によれば外部電源から第二発熱体に通電することによる
加熱に伴いこの第一発熱体からの赤外線、特に波長の長
い遠赤外線の放射が増大し、この第一発熱体の外周に配
置されている第二発熱体が加熱され速やかに赤熱状態に
変化するようになり第一第二発熱体による強い熱放射が
得られる。この現象自体についての完全な解明には未だ
至ってないが第一発熱体の炭素繊維から放射される長波
長赤外線による強い輻射熱が第二発熱体の加熱を促進す
ることによて第二発熱体を赤熱し、赤熱した第二発熱体
からも赤外線が放出され、両者の相互共振(共鳴)作用
により、短時間に高温が得られるに至るものと考えられ
る。しかも第二発熱体だけに通電するので電力消費が少
なく、それでいて第一発熱体との加熱と相まって短時間
に高温が得られるので熱効率の高い発熱装置を提供でき
る。前記炭素繊維がその表面に多数のミクロポアが形成
された長尺状の活性炭素繊維からなりその外周の前記第
二発熱体が耐熱石英ガラスであることが好ましい。この
構造によれば、発熱体としての炭素繊維に形成されてい
る多数のミクロポア表面からランダム方向に放射される
赤外線の相互作用、及び共振が増長されて、特に波長の
長い遠赤外線を多量かつ効率よく放射することができ
る。しかも炭素繊維からなる第一発熱体外周の第二発熱
体が耐熱石英ガラスでであるので、加熱に伴い赤熱状態
に成り易くこの状態から多量の長波赤外線が放出されて
短時間に高温が得られる。
The present invention is an improvement and improvement of the above-mentioned drawbacks. (B) The carbon fiber heating element according to claim 1 is an activated carbon fiber in which a woven material fiber is fired at a high temperature in a vacuum to form pores of a micro unit in each fiber to increase an electric resistance value. It consists of (B) The carbon fiber heating element according to claim 2 is the carbon fiber heating element according to claim 1, wherein the woven material fibers are cellulosic, carbon pulverized coal (charcoal, bamboo charcoal, cotton, oil smoke, etc.) or phenol. It is a type of organic fiber. (C) Further, the carbon fiber heating element according to claim 3 performs the vacuum high temperature firing at about 1250 ° C. (D) The carbon fiber heating element according to claim 4 is the carbon fiber heating element according to claim 1, 2 or 3 in which the activated carbon fibers are supported by a non-conductive and heat resistant support member. is there. (E) The carbon fiber heating element according to claim 5 is the carbon fiber heating element according to claim 1, 2 or 3, wherein the activated carbon fiber is the carbon fiber heating element according to claim 1, 2 or 3. It is reinforced with non-conductive and heat-resistant fibers. (G) The method of using the carbon fiber heating element according to claim 6 is to use the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 as a heat source for heating a medical device. (H) Further, in the method of using the carbon fiber heating element according to claim 7, the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 is used as a heat source for cooking electric home appliances. (I) The method of using the carbon fiber heating element according to claim 8 is to use the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 as a heating heat source for a heating device. (G) Further, a method of using the carbon fiber heating element according to claim 9 is to use the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 as a constant temperature heat source or a power source heat source for industrial equipment. Is. The characteristic structure of the heating element according to the present invention is that the first heating element is made of carbon fiber that can be connected to an external power source and is arranged in a non-oxidized state, and the linear or planar shape is arranged on the outer periphery of the first heating element. And a second heating element. According to this configuration, the infrared rays from the first heating element, especially the radiation of far infrared rays having a long wavelength, increases with the heating by energizing the second heating element from the external power source, and the infrared rays are arranged on the outer periphery of the first heating element. The second heating element being heated is rapidly heated to change to a red heat state, and strong heat radiation by the first and second heating elements is obtained. Although this phenomenon itself has not been completely clarified yet, the strong radiant heat generated by the long-wavelength infrared rays emitted from the carbon fiber of the first heating element promotes the heating of the second heating element, which causes the second heating element to be heated. It is considered that infrared rays are emitted from the second heating element which is red-heated and red-heated, and the mutual resonance (resonance) action between the two causes a high temperature to be obtained in a short time. Moreover, since electricity is supplied only to the second heating element, power consumption is low, and high temperature can be obtained in a short time in combination with heating with the first heating element, so that a heating device having high thermal efficiency can be provided. It is preferable that the carbon fiber is made of a long activated carbon fiber having a large number of micropores formed on the surface thereof, and the second heating element around the outer periphery is heat-resistant quartz glass. According to this structure, the interaction and resonance of infrared rays radiated in random directions from a large number of micropore surfaces formed on the carbon fiber as a heating element are enhanced, and particularly a large amount of far infrared rays having a long wavelength is efficiently generated. Can radiate well. Moreover, since the second heating element on the outer circumference of the first heating element made of carbon fiber is heat-resistant quartz glass, it easily becomes red heat state due to heating, and a large amount of long-wave infrared rays are emitted from this state, and a high temperature can be obtained in a short time. .

【0005】[0005]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0006】本発明の実施形態を図面を参照して詳細に
説明する。図1は、本実施形態に係わる発熱装置の概略
断面構造を示す。この発熱装置の構造は、表面にミクロ
ポアを多数有する活性炭素繊維を織り合わせて棒状に形
成した第一発熱体(101)を中心に配置すると共に、
この第一発熱体(101)を減圧された石英ガラス管
(103)内に収納して大気と遮断された非酸化状態に
構成してある。第一発熱体(101)はその両端にモリ
ブデン電極(104)が取り付けられていると共に、こ
のモリブデン電極(104)は外部AC電源(105)
と接続されて第一発熱体(101)に通電可能に接続さ
れている。石英ガラス管(103)は通電されて第一発
熱体(101)から発する赤外線を透過可能であり、内
部は減圧されていて非酸化状態が維持されている。従っ
て石英ガラス管(103)は赤外線透過可能な耐熱材料
を構成する。尚、第一発熱体、第二発熱体(102)が
赤熱して高温になるに従い、第一発熱体への入力電力を
下げて行くことにより、調節制御が可能になる。このよ
うな電力制御を自動的に行う制御手段を接続し所定の状
態を維持することも可能である。本実施形態に用いる、
表面ミクロポアを多数有する活性炭繊維は、例えばセル
ロース系、フェノール系、アラミド系等の繊維を原料繊
維とし、これを真空雰囲気下で1000℃以上、好まし
くは1250℃程度に加熱して製造する。このようにし
て製造された炭素繊維は、その表面に数μm〜1μm以
下の径で、かつ長さ数μm程度の多数のミクロポアが形
成されていて通電した場合には電気抵抗が大きくなり、
発熱体とし好ましい形態となる。上記発熱装置は、医療
機器加熱用熱源、暖房器具、調理用加熱器具、各種加熱
炉の熱源として使用することができ、これを使用すると
従来の同種器具、装置にくらべて短時間に高温を得るこ
とができ、著しく省エネルギーを達成することが出来
る。さらに本実施形態の炭素繊維発熱体は、1本1本の
繊維にミクロ単位のポアが形成せれているため、ポアの
部分で電気抵抗値が大きくなる。すなはち、ポア部分で
発熱し易くなっている。また、このようなポアが繊維中
に均一に散在するため炭素繊維発熱体の表面及び内部に
関係なく、むらなく一定した温度を保つことが出来る。
炭素繊維発熱体に電源(105)を接続し、電圧を印加
したところ電圧値に比例して温度を制御することができ
た。その温度の最大値は炭素繊維量(太さ)及び間隔を
変えることにより数度から千度以上まで調整することが
できた。また炭素繊維発熱体と電源及びサーモスッタト
を用いる事により温度を一定に保つことが出来る。また
織物状の炭素繊維(活性化炭素繊維)から成るため、形
状を自由に変更することが出来る。例えば、棒状、面
状、立体形状等に加工できるので様々な場所に設置可能
である。また炭素繊維であるため嵩張らずかつ軽量であ
る。また炭素繊維発熱体が活性化炭素繊維であるため吸
着、消臭、殺菌効果が認められた。さらに炭素繊維発熱
体を発熱させることのより下記の特徴が認められた。 (1)炭素を加熱した際に放出される遠赤外線による遠
赤外線効果がある。 (2)炭素を加熱した際に放出されるマイナスイオンに
よるマイナスイオン効果がある。 (3)素材が炭素繊維のため少ない消費電力で十分に発
熱した。 (4)電磁波の発生がなかった。すなわち、身体に影響
を与える心配がない。 (5)繊維状でかつ織物状で有るため、導電部(従来の
ヒーター線)の断線が起こりにくく、換言すれば断線す
る故障が少ない。 (6)導電性であって電磁波遮蔽性能を有しかつ金属と
同程度の電波反射性能を持つ。 (7)科学的に際めて安定でほとんどの酸、アルカリ及
び溶剤に侵される事はない。 ただし、一部の強酸性の酸には酸化によって劣化する。 (8)生体親和性に優れている。 上記のような効果及び特徴を有するため種種の用途に利
用可能である。具体的には健康器具、医療器具、保温用
ヒーター等に使用することができる。この場合は嵩張ら
ず、かつ軽で有ること。遠赤外線効果を有すること。マ
イナスイオン効果を有すること。科学的に安定で有るこ
と。消臭殺菌効果が有ること。任意の形状に加工できる
こと。生体親和性に優れていること。故障が少ない等々
から有用性大で有る。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic sectional structure of a heat generating device according to this embodiment. The structure of this heating device is such that the first heating element (101), which is formed by weaving activated carbon fibers having a large number of micropores on the surface and is formed into a rod shape, is arranged at the center,
The first heating element (101) is housed in a depressurized quartz glass tube (103) to be in a non-oxidized state that is shielded from the atmosphere. A molybdenum electrode (104) is attached to both ends of the first heating element (101), and the molybdenum electrode (104) is connected to an external AC power source (105).
Is connected to the first heating element (101) so as to be able to conduct electricity. The quartz glass tube (103) is energized to allow the infrared rays emitted from the first heating element (101) to pass therethrough, and the inside is depressurized to maintain the non-oxidized state. Therefore, the quartz glass tube (103) constitutes a heat resistant material capable of transmitting infrared rays. As the first heating element and the second heating element (102) become red hot and become high in temperature, the adjustment control becomes possible by lowering the input power to the first heating element. It is also possible to connect a control means for automatically performing such power control and maintain a predetermined state. Used in this embodiment,
Activated carbon fibers having a large number of surface micropores are produced, for example, by using cellulose-based, phenol-based, aramid-based fibers or the like as raw material fibers and heating the fibers at 1000 ° C. or higher, preferably about 1250 ° C. in a vacuum atmosphere. The carbon fiber produced in this manner has a large number of micropores having a diameter of several μm to 1 μm or less and a length of several μm formed on the surface thereof, and has a large electric resistance when energized,
It becomes a preferable form as a heating element. The heat generating device can be used as a heat source for heating medical equipment, a heating appliance, a heating appliance for cooking, and a heat source for various heating furnaces, and when this is used, a high temperature can be obtained in a shorter time than conventional similar appliances and devices. It is possible to achieve significant energy savings. Furthermore, in the carbon fiber heating element of the present embodiment, since the pores of the micro unit are formed in each fiber, the electric resistance value becomes large in the pore portion. That is, it is easy for the pores to generate heat. Further, since such pores are uniformly dispersed in the fiber, it is possible to maintain a constant temperature regardless of the surface and the inside of the carbon fiber heating element.
When a power source (105) was connected to the carbon fiber heating element and a voltage was applied, the temperature could be controlled in proportion to the voltage value. The maximum value of the temperature could be adjusted from several degrees to over 1,000 degrees by changing the carbon fiber amount (thickness) and the interval. Further, the temperature can be kept constant by using a carbon fiber heating element, a power source and a thermostat. Further, since it is made of woven carbon fiber (activated carbon fiber), the shape can be freely changed. For example, since it can be processed into a rod shape, a plane shape, a three-dimensional shape, etc., it can be installed in various places. Further, since it is a carbon fiber, it is not bulky and lightweight. In addition, since the carbon fiber heating element is activated carbon fiber, its adsorption, deodorization and sterilization effects were confirmed. Furthermore, the following characteristics were recognized by heating the carbon fiber heating element. (1) There is a far-infrared effect due to far-infrared rays emitted when carbon is heated. (2) There is a negative ion effect due to the negative ions released when carbon is heated. (3) Since the material is carbon fiber, it generated sufficient heat with low power consumption. (4) No electromagnetic wave was generated. That is, there is no fear of affecting the body. (5) Since it is fibrous and woven, breakage of the conductive portion (conventional heater wire) is unlikely to occur, in other words, there are few breakage failures. (6) It is electrically conductive, has electromagnetic wave shielding performance, and has a radio wave reflecting performance comparable to that of metal. (7) Scientifically stable and not susceptible to most acids, alkalis and solvents. However, some strongly acidic acids are deteriorated by oxidation. (8) It has excellent biocompatibility. Since it has the above effects and characteristics, it can be used for various purposes. Specifically, it can be used for health appliances, medical appliances, heaters for keeping heat, and the like. In this case, it should be light and not bulky. Have a far-infrared effect. Must have a negative ion effect. Be scientifically stable. It has a deodorizing and sterilizing effect. Can be processed into any shape. It has excellent biocompatibility. It is highly useful because it has few failures.

【実施例】以下、本発明の実施例について説明する。 (イ)炭素繊維発熱体である第一発熱体(101)を棒
状または面状に加工したものを設ける。 (ロ)炭素繊維発熱体である第二発熱体(102)を円
筒形に加工したものを設ける。 (ハ)炭素繊維発熱体である第一第二発熱体(101,
102)を挿入するための耐熱石英ガラス管(103)
を設ける。同耐熱石英ガラス管内部は真空状態で有る。 (ニ)炭素繊維発熱体の両端に電極であるモリブデン電
極(104)を設ける。 (ホ)炭素繊維発熱体(101,102)を発熱、加熱
する為に電源(105)を設ける。 本発明は以上のような構造でこれを使用する。これを従
来の家電電気ストーブに用いれば、電気ストーブの加熱
用ヒーター部であるヒーターに上記耐熱石英ガラス管
(103)の内部に挿入設置された炭素繊維発熱体であ
る第一第二発熱体(101,102)を設置し使用す
る。本発明装置における実証例は下記の通りである。同
炭素繊維発熱体を既存の電気ストーブのヒーター部に設
置し次ぎのような状態が確認できた。発熱体2本を直列
に接続した電気ストーブを室温10℃である6畳部屋
(天井高さ3.5m)の中央に配置し100VのAC電
源を用いて、2,5Aの電流を通電した。第1発熱体に
通電して数分後に第2発熱体が赤熱しはじめ800℃〜
900℃に達した。その結果約20分で室温が20℃に
達した。計測のため温度計を電気ストーブの側方1m離
れかつ畳上1mの位置に配置した。室内の温度バラツキ
は少なく略均等に20℃に達していた。市販の800W
電気ストーブを使用し同条件で室温を10℃から20℃
に昇温するために約40分を要した。
EXAMPLES Examples of the present invention will be described below. (B) A first heating element (101), which is a carbon fiber heating element, processed into a rod shape or a plane shape is provided. (B) A second heating element (102), which is a carbon fiber heating element, processed into a cylindrical shape is provided. (C) First and second heating elements (101, which are carbon fiber heating elements)
Heat-resistant quartz glass tube (103) for inserting 102)
To provide. The inside of the heat-resistant quartz glass tube is in a vacuum state. (D) Molybdenum electrodes (104) are provided on both ends of the carbon fiber heating element. (E) A power supply (105) is provided to heat and heat the carbon fiber heating elements (101, 102). The present invention uses the above structure. If this is used in a conventional home electric stove, the first and second heating elements, which are carbon fiber heating elements inserted and installed inside the heat-resistant quartz glass tube (103) in a heater that is a heater for heating the electric stove ( 101, 102) are installed and used. The proof example in the device of the present invention is as follows. By installing the same carbon fiber heating element in the heater part of the existing electric stove, the following state could be confirmed. An electric stove in which two heating elements were connected in series was placed in the center of a 6-tatami room (room height 3.5 m) having a room temperature of 10 ° C., and a current of 2.5 A was applied using an AC power supply of 100 V. A few minutes after the first heating element is energized, the second heating element begins to glow red 800 ° C ~
It reached 900 ° C. As a result, the room temperature reached 20 ° C. in about 20 minutes. For measurement, a thermometer was placed 1 m away from the electric stove and 1 m above the tatami mat. There was little temperature variation in the room, and the temperature reached approximately 20 ° C. Commercial 800W
Room temperature is 10 ℃ to 20 ℃ under the same conditions using an electric stove.
It took about 40 minutes to raise the temperature.

【0007】[0007]

【発明の効果】本発明の炭素繊維発熱体(請求項1〜請
求項5)は織物状の原料繊維に真空高温焼を施して1本
1本の繊維にミクロ単位のボアを形成し電気抵抗値を大
きくした活性化炭素繊維から成るため十分な発熱を行う
ことができ、種々の用途に利用可能な発熱体を提供する
ことができる。また本発明の炭素繊維は熱体の利用方法
(請求項6)は炭素繊維発熱体を医療機器加熱用熱源と
して利用するため同発熱体が嵩張ずかつ軽量であるこ
と、織物状でかつ任意の形状に容易いに加工出来ること
遠赤外線効果を有すること、マイナスイオン効果を有す
ること、電磁波を発生させないこと、科学的に安定であ
ること、故障の少ないこと、生体親和性に優れているこ
と、吸着、消臭、殺菌効果があることから有用性利便性
が大きい。また利用方法(請求項7)においては同発明
を家電製品の調理用熱源として利用するため、また利用
方法(請求項8)においては暖房器具の加熱用熱源とし
て利用するため、また利用方法(請求項9)においては
工業用機器の恒温用熱源又は動力源として利用するため
炭素繊維発熱体が嵩張ず、軽量であり織物状でかつ任意
の形状に安易に加工できること、科学的に安定であるこ
と、故障の少ないことから有用性利便性が大きい。 実証例 炭素繊維発熱体を耐熱性石英真空ガラス管に設置した装置を使用 発熱体直径 4cm 発熱体長さ 20cm 炭素繊維発熱体 15,5cmL×10,5cmW×0.3cmT 電 圧 V 電 流 A 使用電力表面温度 表面温度 A型 110V 24A 2640W 950℃ B型 70V 17A 1190W 950℃ 炭素繊維発熱体である第二発熱体(102)に通電をす
ると瞬時に赤熱し炭素繊維発熱体である第一発熱体(1
01)も同時に赤熱相互に共振し何倍もの遠赤外線及び
マイナスイオン効果を発揮する。この際炭素発熱体であ
る第一第二発熱体(101,102)が一重構造の時の
電力の半分以下で炭素繊維発熱体である第一発熱体(1
01)と炭素繊維発熱体である第二発熱体(102)の
複合体では同熱カロリーが得られる。省エネルギーでか
つ炭素繊維発熱体の負荷が軽く、従来のニクロム線やタ
ングステン線等に比べ劣化断線が少ない。真空状態での
炭素繊維発熱体であるため有害物質は一切発生しない。
従来の発熱体と比べ短時間で高温になる。
EFFECTS OF THE INVENTION The carbon fiber heating element of the present invention (claims 1 to 5) is obtained by subjecting a woven material fiber to vacuum high temperature firing to form a micro-unit bore in each fiber and thereby to obtain electric resistance. Since the activated carbon fiber having a large value is used, sufficient heat can be generated, and a heating element that can be used for various purposes can be provided. The method for utilizing a heating element of the carbon fiber of the present invention (Claim 6) uses the heating element of a carbon fiber as a heat source for heating a medical device, so that the heating element is not bulky and lightweight, and is woven and optional. Can be easily processed into the shape of, has a far-infrared effect, has a negative ion effect, does not generate electromagnetic waves, is scientifically stable, has few failures, has excellent biocompatibility, It is highly useful because of its adsorption, deodorization and bactericidal effects. Further, in the method of use (claim 7), the invention is used as a heat source for cooking home electric appliances, and in the method of use (claim 8) as a heat source for heating a heating appliance, and a method of use (claim) In the item 9), since the carbon fiber heating element is used as a constant temperature heat source or power source for industrial equipment, the carbon fiber heating element is not bulky, is lightweight, can be easily woven into any shape, and is scientifically stable. Therefore, it is highly useful and convenient because there are few failures. Demonstration example A device in which a carbon fiber heating element is installed in a heat-resistant quartz vacuum glass tube is used. Heating element diameter 4 cm Heating element length 20 cm Carbon fiber heating element 15.5 cm L x 10 5 cm W x 0.3 cm T Voltage V Current A Power used Surface temperature Surface temperature A type 110V 24A 2640W 950 ° C B type 70V 17A 1190W 950 ° C When the second heating element (102) which is a carbon fiber heating element is energized, it instantly becomes red and the first heating element which is a carbon fiber heating element ( 1
01) also resonates with each other at the same time and exerts far infrared and negative ion effects many times. At this time, the first and second heating elements (101, 102), which are carbon heating elements, are less than half of the electric power when the single structure is used, and the first heating elements (1
The same heat calories are obtained in the composite of 01) and the second heating element (102) which is a carbon fiber heating element. It is energy-saving, the load on the carbon fiber heating element is light, and there is less deterioration and disconnection than conventional nichrome or tungsten wires. Since it is a carbon fiber heating element in a vacuum, no harmful substances are generated.
It heats up in a short time compared to conventional heating elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態である第一発熱体の棒状及び
面状炭素繊維発熱体の略図である
FIG. 1 is a schematic view of rod-shaped and planar carbon fiber heating elements of a first heating element according to an embodiment of the present invention.

【図2】本発明の実施形態である第二発熱体の円筒形炭
素繊維発熱体の略図である。
FIG. 2 is a schematic view of a cylindrical carbon fiber heating element of a second heating element that is an embodiment of the present invention.

【図3】本発明の実施形態である第一発熱体の棒状及び
面状炭素繊維発熱体と第二発熱体である円筒形炭素繊維
発熱体複合体の略図である。
FIG. 3 is a schematic view of a rod-shaped or planar carbon fiber heating element of a first heating element and a cylindrical carbon fiber heating element composite of a second heating element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 第一発熱体 (棒状及び面状炭素繊維
発熱体) 102 第二発熱体 (円筒形炭素繊維発熱
体) 103 耐熱真空石英ガラス管 104 モリブデン電極 105 電源
101 first heating element (rod-shaped and planar carbon fiber heating element) 102 second heating element (cylindrical carbon fiber heating element) 103 heat-resistant vacuum quartz glass tube 104 molybdenum electrode 105 power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 9/16 521 D01F 9/16 521 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) D01F 9/16 521 D01F 9/16 521

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】織物状の原料繊維に真空高温焼を施して1
本1本の繊維にミクロ単位のポアを形成し、電気抵抗値
を大きくした活性化炭素繊維からなることを特徴とする
炭素繊維発熱体。
1. A woven material fiber is subjected to vacuum high temperature firing, and
A carbon fiber heating element, characterized in that it comprises activated carbon fibers having microscopic pores formed in one fiber to increase electric resistance.
【請求項2】請求項1記載の炭素繊維発熱体において前
記織物状がセルロース、炭素微粉炭(木炭、竹炭、綿、
油煙等)又はフェノール系の有機繊維であることを特徴
とする炭素繊維発熱体。
2. The carbon fiber heating element according to claim 1, wherein the woven material is cellulose, carbon pulverized coal (charcoal, bamboo charcoal, cotton,
A carbon fiber heating element characterized by being an organic smoke-based material such as oil smoke or the like.
【請求項3】請求項1又は請求項2記載の炭素繊維発熱
体において、前記真空高温焼を1250℃程度で行う事
を特徴とする炭素繊維発熱体。
3. The carbon fiber heating element according to claim 1 or 2, wherein the vacuum high temperature firing is performed at about 1250 ° C.
【請求項4】請求項1、2又は3記載の炭素繊維発熱体
において、前記活性炭素繊維を不電導でかつ耐熱性の支
持部材を用いて支持したことを特徴とする炭素繊維発熱
体。
4. The carbon fiber heating element according to claim 1, 2 or 3, wherein the activated carbon fibers are supported by a non-conductive and heat resistant supporting member.
【請求項5】請求項1、2又は3記載の炭素繊維発熱体
において前記活性炭素繊維を不電導かつ耐熱性の繊維を
用いて補強したことを特徴する炭素繊維発熱体。
5. The carbon fiber heating element according to claim 1, 2 or 3, wherein the activated carbon fiber is reinforced with a heat resistant fiber which is electrically guided.
【請求項6】請求項1,2,3,又は5記載の炭素繊維
発熱体を医療機器加熱用熱源として使用することを特徴
とす炭素繊維発熱体の利用方法。
6. A method of using a carbon fiber heating element, wherein the carbon fiber heating element according to claim 1, 2, 3, or 5 is used as a heat source for heating medical equipment.
【請求項7】請求項1,2,3,4又は5記載の炭素繊
維発熱体を家電製品の調理用熱源として使用することを
特徴とする炭素繊維発熱体の利用方法。
7. A method of using a carbon fiber heating element, wherein the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 is used as a heat source for cooking home electric appliances.
【請求項8】請求項1,2,3,4又は5記載の炭素繊
維発熱体を暖房機器の加熱用熱源として使用することを
特徴とする炭素繊維発熱体の利用方法。
8. A method of using a carbon fiber heating element, wherein the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 is used as a heat source for heating a heating device.
【請求項9】請求項1,2,3,4又は5記載の炭素繊
維発熱体を工業用の恒温用熱源又は動力用熱源として使
用することを特徴とする炭素繊維発熱体の利用方法。
9. A method of using a carbon fiber heating element, wherein the carbon fiber heating element according to claim 1, 2, 3, 4 or 5 is used as an industrial constant temperature heat source or a power source heat source.
【請求項10】特殊構造に加工された炭素繊維の束、
縄、織物や織物の巻物状態、不織布を絶縁管に封入され
た加熱体及び炭素繊維の束、縄、織物や織物の巻物状を
絶縁物質で埋め込まれた金属管や耐熱ケイ素ガラス管に
封入された加熱体。特殊構造に加工された炭素繊維の1
本1本を絶縁体で被覆された炭素繊維の束縄、織物や織
物の巻物状を金属管や耐熱ケイ素ガラス管に封入された
複合加熱体を特徴とする。
10. A bundle of carbon fibers processed into a special structure,
A rope, a woven fabric or a rolled state of a woven fabric, a heating body and a bundle of carbon fibers in which a non-woven fabric is enclosed in an insulating tube, a rope, a woven fabric or a rolled state of a woven fabric is enclosed in a metal tube or a heat-resistant silicon glass tube embedded with an insulating material. Heated body. 1 of carbon fiber processed into a special structure
The present invention is characterized by a bundle of carbon fibers coated with an insulator, a composite heating body in which a woven fabric or a roll of a woven fabric is enclosed in a metal tube or a heat-resistant silicon glass tube.
【請求項11】炭素繊維は炭素結合の状態によって電気
の伝わり方が異なる。電気伝導が良いグラファイトは三
配位結合である。ダイヤモンドの超絶縁物質は四配位結
合である。電気伝導度の制御は繊維構造の断面積を小さ
くしなければならない。小さい断面積に電流を多く流す
と熱が上がり断線する。炭化する原料繊維にあらかじめ
酸化、窒化、炭化、ホウ化物質粒子に変化する不純原子
粒子を混入した繊維とした後、高温高励起状態の高真空
中炭化し繊維の外形形態及び内部構造を特殊構造に加工
した炭素繊維を使用することとを特長とする加熱体。
11. The manner in which electricity is transmitted to carbon fibers differs depending on the state of carbon bonds. Graphite, which has good electrical conductivity, is a three-coordinate bond. The superinsulating material of diamond is a four-coordinate bond. Controlling the electrical conductivity should reduce the cross-sectional area of the fiber structure. If a large amount of current is applied to a small cross-sectional area, heat will rise and break the wire. The raw material fiber to be carbonized is made by mixing impure atomic particles that change into particles of oxidation, nitriding, carbonization, and boride substances in advance, and then carbonized in a high vacuum at high temperature and high excitation state. A heating element characterized by using carbon fiber processed into.
【請求項12】原料繊維が、セルロース系、フェノール
系又はアラミド系の有機繊維や自然界に存在する樹木な
ど天然繊維であることを特徴とする炭素繊維を加工した
加熱体。
12. A heating body obtained by processing carbon fibers, characterized in that the raw material fibers are natural fibers such as cellulose-based, phenol-based or aramid-based organic fibers and trees existing in the natural world.
【請求項13】絶縁管には遠赤外線を引き出すセラミッ
クスの他高分子物質を使用することとを特徴とする加熱
体。
13. A heating body, characterized in that a polymer material other than ceramics for drawing far infrared rays is used for the insulating tube.
【請求項14】真空管内に封印する時の炭素発熱体は再
度2〜3度焼き加工を施す。これは炭素繊維そのものに
不純物が少量でも残留すれば真空状態で高温にする為ガ
ス化となって真空管そのものに付着し劣化を防止する加
工方法である。
14. The carbon heating element used for sealing in a vacuum tube is again baked 2-3 times. This is a processing method in which even if a small amount of impurities remains in the carbon fiber itself, the temperature is raised to a high temperature in a vacuum state, gasification occurs, and it adheres to the vacuum tube itself and prevents deterioration.
【請求項15】外部電源と接続可能な炭素繊維からなる
と共に非酸化状態に配置されている第一発熱体(10
1)の外周に配置された線状又は面状の第二発熱体(1
02)とを備える発熱装置。
15. A first heating element (10) made of carbon fiber connectable to an external power source and arranged in a non-oxidized state.
1) A linear or planar second heating element (1
02).
【請求項16】前記炭素繊維が、その表面に多数のミク
ロポアが形成せれた長尺状の活性炭素繊維からなり、そ
の外周の前記第2発熱体は耐熱石英ガラスである請求項
15の発熱装置。
16. The heat generating device according to claim 15, wherein the carbon fiber is composed of a long activated carbon fiber having a large number of micropores formed on the surface thereof, and the second heating element on the outer periphery thereof is heat-resistant quartz glass. .
【請求項17】前記第2発熱(102)体が非酸化状態
に配置されている請求項15又は請求項16の発熱装
置。
17. The heat-generating device according to claim 15, wherein the second heat-generating body is arranged in a non-oxidized state.
【請求項18】前記非酸化状態が、遠赤外線を透過可能
な耐熱材料で密封された空間内に形成された減圧状態で
ある請求項15,16、17のいづれか1つの発熱装
置。
18. The heating device according to claim 15, wherein the non-oxidized state is a depressurized state formed in a space sealed with a heat resistant material capable of transmitting far infrared rays.
JP2001317470A 2001-09-07 2001-09-07 Complex heater with vacuum multiple structured special carbon fiber Pending JP2003086334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317470A JP2003086334A (en) 2001-09-07 2001-09-07 Complex heater with vacuum multiple structured special carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317470A JP2003086334A (en) 2001-09-07 2001-09-07 Complex heater with vacuum multiple structured special carbon fiber

Publications (1)

Publication Number Publication Date
JP2003086334A true JP2003086334A (en) 2003-03-20

Family

ID=19135338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317470A Pending JP2003086334A (en) 2001-09-07 2001-09-07 Complex heater with vacuum multiple structured special carbon fiber

Country Status (1)

Country Link
JP (1) JP2003086334A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724766B1 (en) 2005-08-05 2007-06-08 위성점 A vacuum type carbon fiber heater manufacturing method and its device, its heater
KR100822329B1 (en) 2005-05-06 2008-04-15 가부시키가이샤 리쥬 Sheet heater for sauna device and sauna device
CN101951704A (en) * 2010-07-22 2011-01-19 王明海 Infrared gilded lamp tube
WO2012133800A1 (en) * 2011-03-31 2012-10-04 京セラ株式会社 Ceramic heater
CN110284229A (en) * 2019-06-29 2019-09-27 沛县谦和纺织有限公司 A kind of production method of new chemical fiber blend yarn
JP2021532937A (en) * 2019-05-08 2021-12-02 ファウンデーション オブ スンシル ユニバーシティー インダストリー コーポレーション Cordless hair dryer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822329B1 (en) 2005-05-06 2008-04-15 가부시키가이샤 리쥬 Sheet heater for sauna device and sauna device
KR100724766B1 (en) 2005-08-05 2007-06-08 위성점 A vacuum type carbon fiber heater manufacturing method and its device, its heater
CN101951704A (en) * 2010-07-22 2011-01-19 王明海 Infrared gilded lamp tube
WO2012133800A1 (en) * 2011-03-31 2012-10-04 京セラ株式会社 Ceramic heater
JP5665973B2 (en) * 2011-03-31 2015-02-04 京セラ株式会社 Ceramic heater
US9668302B2 (en) 2011-03-31 2017-05-30 Kyocera Corporation Ceramic heater
JP2021532937A (en) * 2019-05-08 2021-12-02 ファウンデーション オブ スンシル ユニバーシティー インダストリー コーポレーション Cordless hair dryer
US11641918B2 (en) 2019-05-08 2023-05-09 Foundation Of Soongsil University-Industry Cooperation Cordless hair dryer
JP7292374B2 (en) 2019-05-08 2023-06-16 ファウンデーション オブ スンシル ユニバーシティー インダストリー コーオペレイション cordless hair dryer
CN110284229A (en) * 2019-06-29 2019-09-27 沛县谦和纺织有限公司 A kind of production method of new chemical fiber blend yarn

Similar Documents

Publication Publication Date Title
CN1458810A (en) High temperature for infrared radiation electric heater of carbon material and its preparing method
KR101028713B1 (en) Hair drier emitting far infrared radiation using carbon nano plane-shape heater
JP2003086334A (en) Complex heater with vacuum multiple structured special carbon fiber
KR20190057008A (en) Heating sheet with strong radiant heat using carbon fiber
CN101389163B (en) Large power carbon fiber electric heating tube for industrial use
CN201286177Y (en) Large power carbon fiber electric heating tube for industrial use
CN201869384U (en) Novel energy-saving porous ceramic electric-heating film heater
JP3319951B2 (en) Carbon fiber heating element and method of using carbon fiber heating element
KR100651665B1 (en) Device for coating carbon liquid on palne heater
CN111350097B (en) Preparation method of heating film
CN212678374U (en) Heating non-combustion device
CN104105230A (en) High-temperature carbon fiber heating cloth
RU2475571C1 (en) Method of producing carbon fibre material
KR20130086090A (en) Aramid Cotton Fever Fiber
CN100562195C (en) The preparation method of nano carbon fiber electric heating body
CN204629666U (en) For attemperator and the electric heating table of electric heating table
CN113056045B (en) Graphene heating mixture, heating element, heating tube and preparation process
KR200402037Y1 (en) Carbon fiber heating element
CN101925207B (en) Electrothermal element
GB2389504A (en) Electrical food warming apparatus
KR102437652B1 (en) Heating wire and heating element manufactured using the same
WO2017014714A1 (en) Infrared heating device
WO2018187281A1 (en) Heat treating furnace
KR100946915B1 (en) Activated carbon fiber heater
KR20050090344A (en) Carbon fiber heating element