JP2003086179A - Electrode material, its method of manufacture, and battery using the same - Google Patents

Electrode material, its method of manufacture, and battery using the same

Info

Publication number
JP2003086179A
JP2003086179A JP2001273327A JP2001273327A JP2003086179A JP 2003086179 A JP2003086179 A JP 2003086179A JP 2001273327 A JP2001273327 A JP 2001273327A JP 2001273327 A JP2001273327 A JP 2001273327A JP 2003086179 A JP2003086179 A JP 2003086179A
Authority
JP
Japan
Prior art keywords
electrode material
lithium
battery
sample
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001273327A
Other languages
Japanese (ja)
Other versions
JP3875053B2 (en
Inventor
So Arai
創 荒井
Masayuki Tsuda
昌幸 津田
Masahiko Hayashi
政彦 林
Keiichi Saito
景一 斉藤
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001273327A priority Critical patent/JP3875053B2/en
Publication of JP2003086179A publication Critical patent/JP2003086179A/en
Application granted granted Critical
Publication of JP3875053B2 publication Critical patent/JP3875053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material having a large discharge capacity as a manganese dioxide having a (2×2) tunnel structure, a method of manufacturing it, and a battery using it. SOLUTION: Sodium carbonate and β-manganese dioxide (mineral name: pyrolusite) are admixed and heat treated at 600 deg.C for ten hours in an atmosphere where oxygen partial pressure is 4 atmospheres, to obtain a sample (a) represented by the composition formula Na0.20 MnO2 and having a (2×2) tunnel structure. The sample (a) undergoes an ion-exchange process at 350 deg.C in mixed molten salts of lithium nitrate and lithium chloride to obtain a sample b represented by the composition formula Li0.10 Na0.10 MnO2 and having a (2×2) tunnel structure. The sample (a) or (b) is used to constitute a pellet of a positive-electrode mix. The pellet of the positive-electrode mix, a negative electrode of metal lithium, and an electrolyte with LiPF6 dissolved therein are combined to constitute the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電極材料、その製造
方法及びそれを用いた電池に関するものである。
TECHNICAL FIELD The present invention relates to an electrode material, a method for producing the same, and a battery using the same.

【0002】[0002]

【従来の技術】二酸化マンガン類と一般に称される化合
物は、マンガンの見かけ上の価数が3価から4価までの
酸化物を広く含んでおり、またマンガンと酸素以外に種
々のカチオンや水のような中性分子が構造中に存在する
ものも含んでおり、非常に広範囲の組成や構造を持つ化
合物が知られている。
2. Description of the Related Art Compounds generally referred to as manganese dioxides include a wide range of oxides having an apparent valence of manganese from 3 to 4 and, in addition to manganese and oxygen, various cations and water. Compounds having a very wide range of compositions and structures are known, including those in which a neutral molecule such as is present in the structure.

【0003】マンガンの酸化還元対が比較的高い電位を
持つことから、これら二酸化マンガン類は乾電池を始め
とする水溶液系の電池、並びにリチウムイオン電池を始
めとする非水溶液系の電池の正極材料として、研究・開
発されている。
Since the redox couple of manganese has a relatively high potential, these manganese dioxides are used as a positive electrode material for aqueous batteries such as dry batteries and non-aqueous batteries such as lithium ion batteries. , Researched and developed.

【0004】これらの二酸化マンガン類では、マンガン
の周りに6つの酸素が配位した八面体を形成単位とし
て、その八面体が面や稜や頂点を共有して連なった構造
をとる化合物が、多く知られている。その中には、(2
×2)トンネル構造を持つ化合物があり、図1に示すよ
うに、上記の形成単位が2つ連なった4つの辺で囲まれ
たトンネルを有している。なお、図1では、トンネル内
にカチオンAが含まれる場合を示している。
In many of these manganese dioxides, many compounds have an octahedron in which six oxygen atoms are coordinated around manganese as a forming unit, and the octahedron has a structure in which faces, edges and vertices are shared and connected. Are known. Among them, (2
X2) There is a compound having a tunnel structure, and as shown in FIG. 1, it has a tunnel surrounded by four sides in which the above-mentioned two forming units are connected. Note that FIG. 1 shows a case where the cation A + is contained in the tunnel.

【0005】これらの(2×2)トンネル構造を持つ化
合物は、トンネルをイオン移動パスとして利用できるた
め、電極材料として有望であり、実際にリチウム電池用
などの電極材料としての利用が提案されている。
These compounds having a (2 × 2) tunnel structure are promising as an electrode material because the tunnel can be used as an ion transfer path, and their use as an electrode material for lithium batteries has been proposed. There is.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらの(2
×2)トンネル構造を持つ化合物は、従来、水を用いる
湿式工程によって得られる含水化合物を用いて製造され
ているため、電極としての放電容量が小さいという欠点
があった。この原因は、製造工程中に(2×2)トンネ
ル中に入った水分子は非常に安定であり、この化合物に
脱水処理を施しても、完全には脱水できず、その残存水
分子あるいは残存プロトンが電極特性に悪影響を及ぼす
ためと考えられる。
However, these (2
X2) Since a compound having a tunnel structure has been conventionally produced using a hydrated compound obtained by a wet process using water, it has a drawback that the discharge capacity as an electrode is small. The reason for this is that the water molecules that entered the (2 × 2) tunnel during the manufacturing process are very stable, and even if this compound is dehydrated, it cannot be completely dehydrated, and the residual water molecules or residual water molecules remain. It is considered that protons adversely affect the electrode characteristics.

【0007】本発明は、上記のような現状の課題を解決
し、上述のような(2×2)トンネル構造を有する二酸
化マンガン類であって、大きな放電容量を有する電極材
料、その製造方法及びその電極材料を用いた電池を提供
することにある。
The present invention solves the above-mentioned problems of the present situation, and is an electrode material which is a manganese dioxide having a (2 × 2) tunnel structure as described above and which has a large discharge capacity, a manufacturing method thereof, and It is to provide a battery using the electrode material.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、請求項1に記載のように、組成式Na
MnO2+δで表され、(2×2)トンネル構造を有す
る電極材料であって、前記x及びδが不等式0<x≦
0.4及び−0.2≦δ≦0.2を満足することを特徴
とする電極材料を構成する。
In order to solve the above problems, the present invention provides a composition formula Na x as defined in claim 1.
An electrode material represented by MnO 2 + δ and having a (2 × 2) tunnel structure, in which x and δ are inequality 0 <x ≦
An electrode material is characterized by satisfying 0.4 and -0.2≤δ≤0.2.

【0009】また、本発明は、請求項2に記載のよう
に、請求項1記載の電極材料を、ナトリウム化合物及び
マンガン化合物を出発原料とし、水を用いない乾式工程
により製造することを特徴とする電極材料の製造方法を
構成する。
Further, according to the present invention, as described in claim 2, the electrode material according to claim 1 is produced by a dry process using a sodium compound and a manganese compound as starting materials and not using water. And a method for manufacturing an electrode material to be used.

【0010】また、本発明は、請求項3に記載のよう
に、組成式LiNaMnO2+δで表され、(2×
2)トンネル構造を有する電極材料であって、前記y、
z及びδが不等式0<y≦0.4、0≦z<0.4、y
+z≦0.4及び−0.2≦δ≦0.2を満足すること
を特徴とする電極材料を構成する。
Further, the present invention is represented by the composition formula Li y Na z MnO 2 + δ , and (2 ×
2) An electrode material having a tunnel structure, wherein the y,
z and δ are inequalities 0 <y ≦ 0.4, 0 ≦ z <0.4, y
An electrode material is characterized by satisfying + z ≦ 0.4 and −0.2 ≦ δ ≦ 0.2.

【0011】また、本発明は、請求項4に記載のよう
に、請求項1記載の電極材料に含有されるナトリウムの
一部又は全部を、イオン交換処理によって、リチウムに
置換することにより、請求項3記載の電極材料を得るこ
とを特徴とする電極材料の製造方法を構成する。
Further, according to the present invention, as described in claim 4, a part or all of sodium contained in the electrode material according to claim 1 is replaced with lithium by an ion exchange treatment. An electrode material manufacturing method is characterized in that the electrode material according to item 3 is obtained.

【0012】また、本発明は、請求項5に記載のよう
に、請求項4記載の電極材料の製造方法において、前記
イオン交換処理を、リチウム化合物を含有する溶融塩
中、又はリチウム化合物を溶解した有機溶剤中において
行うことを特徴とする電極材料の製造方法を構成する。
Further, according to the present invention, as in claim 5, in the method for producing an electrode material according to claim 4, the ion exchange treatment is carried out in a molten salt containing a lithium compound or by dissolving the lithium compound. The method for producing an electrode material is characterized in that the method is carried out in the above organic solvent.

【0013】また、本発明は、請求項6に記載のよう
に、正極、負極及び電解質物質を有する電池において、
前記正極は請求項1又は請求項3記載の電極材料を用い
て構成されることを特徴とする電池を構成する。
Further, the present invention provides a battery having a positive electrode, a negative electrode and an electrolyte substance as described in claim 6,
The positive electrode is configured by using the electrode material according to claim 1 or 3, thereby forming a battery.

【0014】また、本発明は、請求項7に記載のよう
に、請求項6記載の電池において、前記負極はリチウ
ム、ナトリウム、カリウム、マグネシウム、カルシウ
ム、ストロンチウム、アルミニウム、銅及び銀のうちの
何れかの元素を含む物質、又は、前記元素を可逆的に挿
入・脱離あるいは吸蔵・放出できる物質を含有し、前記
電解質物質は、前記元素のイオンの前記電解質物質中で
の移動を可能とする物質を含有することを特徴とする電
池を構成する。
According to a seventh aspect of the present invention, in the battery according to the sixth aspect, the negative electrode is any one of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper and silver. A substance containing the element, or a substance capable of reversibly inserting / desorbing or occluding / releasing the element, and the electrolyte substance enables migration of ions of the element in the electrolyte substance. A battery is characterized by containing a substance.

【0015】[0015]

【発明の実施の形態】かかる目的を達成するために本発
明に係る電極材料は、(2×2)トンネル構造を有す
る、組成式NaMnO2+δ(0<x≦0.4、−
0.2≦δ≦0.2)で表される化合物、また、(2×
2)トンネル構造を有する、組成式LiNaMnO
2+δ(0<y≦0.4、0≦z<0.4、y+z≦
0.4、−0.2≦δ≦0.2)で表される化合物であ
ることを特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve such an object, an electrode material according to the present invention has a composition formula of Na x MnO 2 + δ (0 <x ≦ 0.4, − having a (2 × 2) tunnel structure.
0.2 ≦ δ ≦ 0.2), or (2 ×
2) Compositional formula Li y Na z MnO having a tunnel structure
2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦
0.4, -0.2 ≤ δ ≤ 0.2).

【0016】また本発明に係る電極材料の製造方法とし
ては、ナトリウム化合物及びマンガン化合物を出発原料
とし、水を用いない乾式工程により前記組成式Na
nO 2+δ(0<x≦0.4、−0.2≦δ≦0.2)
で表される化合物を製造すること、前記組成式Na
nO2+δ(0<x≦0.4、−0.2≦δ≦0.2)
で表される化合物にイオン交換処理を施すことにより、
前記LiNaMnO2+δ(0<y≦0.4、0≦
z<0.4、y+z≦0.4、−0.2≦δ≦0.2)
で表される化合物を製造すること、及び、リチウム含有
化合物を含む溶融塩中、又はリチウム含有化合物を溶解
した有機溶剤中において、前記イオン交換処理を施すこ
とを特徴としている。
Further, as a method for producing an electrode material according to the present invention,
, Sodium compounds and manganese compounds as starting materials
And the composition formula Na by a dry process using no water.xM
nO 2 + δ(0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2)
The compound of formula NaxM
nO2 + δ(0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2)
By subjecting the compound represented by
The LiyNazMnO2 + δ(0 <y ≦ 0.4, 0 ≦
z <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2)
Producing a compound represented by, and containing lithium
In molten salt containing compound or dissolving lithium-containing compound
Do not perform the ion exchange treatment in the organic solvent
It is characterized by.

【0017】また、本発明に係る電池は、正極、負極及
び電解質物質を有しており、前記正極に前記本発明に係
る電極材料を含むことを特徴としており、また、前記負
極は、リチウム、ナトリウム、カリウム、マグネシウ
ム、カルシウム、ストロンチウム、アルミニウム、銅、
銀の何れかを含む物質又はこれらの元素を可逆的に挿入
・脱離あるいは吸蔵・放出できる物質を含み、前記電解
質物質は前記元素のイオンが前記正極及び前記負極と電
気化学反応をするための移動を行い得る物質を含むこと
を特徴としている。
The battery according to the present invention has a positive electrode, a negative electrode and an electrolyte substance, and the positive electrode contains the electrode material according to the present invention, and the negative electrode is lithium, Sodium, potassium, magnesium, calcium, strontium, aluminum, copper,
A substance containing any of silver or a substance capable of reversibly inserting / desorbing or occluding / releasing these elements, and the electrolyte substance is used for electrochemical reaction of ions of the element with the positive electrode and the negative electrode. It is characterized in that it contains a substance capable of moving.

【0018】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0019】本願発明者は、(2×2)トンネル構造を
有する二酸化マンガン類で、かつ放電容量の大きい電極
材料を鋭意探索した結果、前述の電極材料を用いること
により従来よりも電池の放電容量が大きくなることを見
出し、また前述の電極材料の製造方法が放電容量増大に
有効であることを見出し、さらにそれを用いた電池の放
電容量が大きくなることを確かめ、その認識の下に本発
明を完成した。
The inventor of the present application has made an earnest search for an electrode material of manganese dioxide having a (2 × 2) tunnel structure and having a large discharge capacity. It was found that the above-mentioned method for producing an electrode material is effective for increasing the discharge capacity, and it was confirmed that the discharge capacity of a battery using the same is increased. Was completed.

【0020】本発明に係る電極材料である、(2×2)
トンネル構造を有する、組成式Na MnO2+δ(0
<x≦0.4、−0.2≦δ≦0.2)で表される化合
物のトンネル内には、少量のマンガンを含む場合もある
が、多くの場合にナトリウムのみを含んでおり、水やプ
ロトンが存在していないのが特徴である。
The electrode material according to the present invention is (2 × 2)
Composition formula Na having a tunnel structure xMnO2 + δ(0
<X ≦ 0.4, −0.2 ≦ δ ≦ 0.2)
A small amount of manganese may be contained in the material tunnel.
However, it often contains only sodium,
The feature is that there is no roton.

【0021】また、本発明に係る電極材料である、(2
×2)トンネル構造を有する、組成式LiNaMn
2+δ(0<y≦0.4、0≦z<0.4、y+z≦
0.4、−0.2≦δ≦0.2)で表される化合物のト
ンネル内には、少量のマンガンを含む場合もあるが、多
くの場合にナトリウムとリチウムのみを含んでおり、水
やプロトンが存在していないのが特徴である。
The electrode material according to the present invention (2
X2) Compositional formula Li y Na z Mn having a tunnel structure
O 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦
0.4, -0.2 ≤ δ ≤ 0.2) may contain a small amount of manganese in the tunnel of the compound, but in many cases, it contains only sodium and lithium, It is characterized by the absence of or protons.

【0022】これらの化合物を電極材料に用いた場合、
電池特性に悪影響を及ぼす水分子やプロトンが存在しな
いため、大きな放電容量が得られるものと考えられる。
またナトリウム、リチウム以外のイオンや分子がトンネ
ル間に存在しないため、分子量が比較的小さく、重量あ
たりのエネルギー密度が大きくなるという利点もある。
また他の二酸化マンガン類に比べて密度(比重)が高い
ため、体積当たりのエネルギー密度も大きいという利点
がある。
When these compounds are used as electrode materials,
It is considered that a large discharge capacity can be obtained because there are no water molecules or protons that adversely affect the battery characteristics.
Further, since ions and molecules other than sodium and lithium do not exist between the tunnels, the molecular weight is relatively small and the energy density per weight is large.
Further, since it has a higher density (specific gravity) than other manganese dioxides, there is an advantage that the energy density per volume is also large.

【0023】本発明に係る前記組成式NaMnO
2+δ(0<x≦0.4、−0.2≦δ≦0.2)で表
される化合物である電極材料を製造する場合には、ナト
リウム化合物とマンガン化合物とを出発原料とし、これ
らの原料を混合して焼成するなどの、水を用いない乾式
工程により製造することができる。このような乾式工程
によりこの化合物を製造すれば、化合物中の(2×2)
トンネル内への水の混入を避けることができ、電池特性
に悪影響を及ぼす水分子やプロトンの混入を避けること
ができるという利点を有する。例えば、上記の化合物
は、炭酸ナトリウムとβ二酸化マンガン(鉱物名:パイ
ロルサイト)を混合して、酸素中で反応させることによ
り製造することができる。望ましくは酸素分圧が1気圧
を越える雰囲気で、400℃〜700℃の温度で、この
化合物を製造することが好ましい。
According to the present invention, the composition formula Na x MnO
When producing an electrode material which is a compound represented by 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2), a sodium compound and a manganese compound are used as starting materials, and It can be produced by a dry process that does not use water, such as mixing raw materials and firing. If this compound is prepared by such a dry process, (2 × 2)
This has the advantage that water can be prevented from entering the tunnel and water molecules and protons that adversely affect the battery characteristics can be avoided. For example, the above compound can be produced by mixing sodium carbonate and β-manganese dioxide (mineral name: pyrolsite) and reacting them in oxygen. It is preferable to produce this compound at a temperature of 400 ° C. to 700 ° C. in an atmosphere having an oxygen partial pressure of more than 1 atm.

【0024】また本発明に係る前記組成式LiNa
MnO2+δ(0<y≦0.4、0≦z<0.4、y+
z≦0.4、−0.2≦δ≦0.2)で表される化合物
である電極材料は、前記組成式NaMnO2+δ(0
<x≦0.4、−0.2≦δ≦0.2)で表される化合
物に、イオン交換処理を施すことにより、製造すること
ができる。すなわち、イオン交換処理により、前記組成
式NaMnO2+δ中のナトリウムが、部分的ないし
全てリチウムに置換され、前記組成式LiNaMn
2+δ(0<y≦0.4、0≦z<0.4、y+z≦
0.4、−0.2≦δ≦0.2)で表される化合物が得
られる。
The composition formula Li y Na z according to the present invention is also
MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y +
The electrode material which is a compound represented by z ≦ 0.4, −0.2 ≦ δ ≦ 0.2) has the composition formula Na x MnO 2 + δ (0
It can be produced by subjecting the compound represented by <x ≦ 0.4, −0.2 ≦ δ ≦ 0.2) to an ion exchange treatment. That is, by the ion exchange treatment, the sodium in the composition formula Na x MnO 2 + δ is partially or entirely replaced with lithium, and the composition formula Li y Na z Mn.
O 2 + δ (0 <y ≦ 0.4, 0 ≦ z <0.4, y + z ≦
0.4, −0.2 ≦ δ ≦ 0.2) is obtained.

【0025】この場合に、リチウム含有化合物を含む溶
融塩中、又はリチウム含有化合物を溶解した有機溶剤中
において、イオン交換処理を施すことが好適である。前
記電極材料が水を吸収しやすい特性を考えれば、これら
の非水環境中でイオン交換を行うことが望ましい。溶融
塩としては硝酸リチウム、塩化リチウム、臭化リチウ
ム、ヨウ化リチウムの何れか1種類以上を含む溶融塩を
用いることができる。また塩化リチウム、臭化リチウム
などのリチウム含有化合物を溶解した有機溶剤中でイオ
ン交換を行うこともできる。イオン交換においては、交
換できるイオン種が多量に存在するほどイオン交換速度
が高いので、リチウム化合物を直接溶融した溶融塩を用
いることが特に好ましい。また、高温で行うほど交換速
度が高いので、ナトリウムをできるだけ多くのリチウム
に短時間で交換するには、高温でイオン交換することが
好ましい。但し温度が必要以上に高いと、生成した化合
物が分解する可能性があるので、400℃以下の温度で
行うことが好ましい。溶融塩を用いる場合、反応温度は
溶融塩の融点以上の温度が必要であることは言うまでも
ない。有機溶剤中でイオン交換を行う場合は、イオン交
換速度を高めるため、有機溶剤の沸点付近で、溶剤を還
流させながら、イオン交換させることが好ましい。
In this case, it is preferable to perform the ion exchange treatment in a molten salt containing the lithium-containing compound or in an organic solvent in which the lithium-containing compound is dissolved. Considering the characteristic that the electrode material easily absorbs water, it is desirable to perform ion exchange in these non-aqueous environments. As the molten salt, a molten salt containing one or more of lithium nitrate, lithium chloride, lithium bromide and lithium iodide can be used. Ion exchange can also be performed in an organic solvent in which a lithium-containing compound such as lithium chloride or lithium bromide is dissolved. In ion exchange, it is particularly preferable to use a molten salt obtained by directly melting a lithium compound, because the ion exchange rate becomes higher as the amount of ion species that can be exchanged increases. Further, the higher the temperature, the higher the exchange rate. Therefore, in order to exchange sodium for as much lithium as possible in a short time, it is preferable to perform ion exchange at a high temperature. However, if the temperature is unnecessarily high, the produced compound may be decomposed. Therefore, it is preferable to perform the temperature at 400 ° C. or lower. Needless to say, when a molten salt is used, the reaction temperature needs to be at least the melting point of the molten salt. When performing ion exchange in an organic solvent, it is preferable to perform ion exchange while refluxing the solvent near the boiling point of the organic solvent in order to increase the ion exchange rate.

【0026】上記組成式中、x、y、z、δは、それぞ
れ0<x≦0.4、0<y≦0.4、0≦z<0.4、
y+z≦0.4、−0.2≦δ≦0.2を満たすもので
あるが、これらは合成条件により変化する。組成式Na
MnO2+δ(0<x≦0.4、−0.2≦δ≦0.
2)で表される化合物では、x=0.2付近において、
(2×2)トンネル構造を有する化合物が得られやすい
ので、x=0.2付近が好ましい。またイオン交換され
たLiNaMnO2+δ(0<y≦0.4、0≦z
<0.4、y+z≦0.4、−0.2≦δ≦0.2)で
表される化合物では、出発物質中のナトリウムが、リチ
ウムが入った量yだけ脱離する(x−y=zとなる)の
が通常であるが、反応条件によりマンガンの価数が変化
しうるため、出発物質のナトリウム量xと、生成物のナ
トリウム量yとリチウム量zとの和は、等しくない場合
もある。またイオン交換中に酸素の出入りが起こること
もあり、δ値が変化することもあり得る。
In the above composition formula, x, y, z and δ are respectively 0 <x ≦ 0.4, 0 <y ≦ 0.4, 0 ≦ z <0.4 and
Although y + z ≦ 0.4 and −0.2 ≦ δ ≦ 0.2 are satisfied, these change depending on the synthesis conditions. Composition formula Na
x MnO 2 + δ (0 <x ≦ 0.4, −0.2 ≦ δ ≦ 0.
In the compound represented by 2), in the vicinity of x = 0.2,
Since it is easy to obtain a compound having a (2 × 2) tunnel structure, x is preferably around 0.2. Also, ion-exchanged Li y Na z MnO 2 + δ (0 <y ≦ 0.4, 0 ≦ z
In the compounds represented by <0.4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2), sodium in the starting material is desorbed by the amount y containing lithium (xy). However, since the valence of manganese may change depending on the reaction conditions, the sum of the sodium amount x of the starting material, the sodium amount y of the product, and the lithium amount z is not equal. In some cases. In addition, oxygen may flow in and out during ion exchange, and the δ value may change.

【0027】本発明に係る電極材料を、リチウムイオン
が移動する電池に用いる際には、y値を大きくして、z
値を下げることが好ましい。(2×2)トンネル内に、
移動するイオン種であるリチウムイオンが多く存在する
ことにより、電極材料内のイオン拡散が容易になり、大
きな容量が得られるからである。
When the electrode material according to the present invention is used in a battery in which lithium ions move, the y value is increased and z is increased.
It is preferable to lower the value. In the (2 x 2) tunnel,
This is because the presence of many lithium ions, which are ionic species that move, facilitates ion diffusion in the electrode material and provides a large capacity.

【0028】本発明に係る電極材料を含む正極を形成す
るには、電極材料とポリテトラフルオロエチレンのごと
き結着剤粉末との混合物をステンレス等の支持体上に圧
着成形する。或いは、かかる活物質粉末に、導電性を付
与するため、アセチレンブラックのような導電性粉末を
混合し、さらに、これにポリテトラフルオロエチレンの
ような結着剤粉末を所要に応じて加え、この混合物を金
属容器に入れる、あるいはステンレス等の支持体上に圧
着成形する、あるいは有機溶剤等の溶媒中に分散してス
ラリー状にして金属基板上に塗布する、等の手段によっ
て正極を形成する。
To form a positive electrode containing the electrode material according to the present invention, a mixture of the electrode material and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as stainless steel. Alternatively, in order to impart conductivity to the active material powder, a conductive powder such as acetylene black is mixed, and further, a binder powder such as polytetrafluoroethylene is added to the powder, if necessary. The mixture is placed in a metal container, pressure-molded on a support such as stainless steel, or dispersed in a solvent such as an organic solvent to form a slurry, which is applied on a metal substrate to form a positive electrode.

【0029】本発明に係る電池は正極、負極及び電解質
物質を有し、その正極は本発明に係る電極材料を用いて
構成される。負極としては、例えば、リチウム、ナトリ
ウム、カリウム、マグネシウム、カルシウム、ストロン
チウム、アルミニウム、銅、銀の何れかを含む物質又は
その元素を可逆的に挿入・脱離あるいは吸蔵・放出でき
る物質を用いて構成され、電解質物質は、前記元素のイ
オンが前記正極及び前記負極と電気化学反応をするため
の移動を可能とする物質を含有し、この電池は、前記元
素のイオンが正極と負極の間を行き来することにより、
電池として機能する。
The battery according to the present invention has a positive electrode, a negative electrode and an electrolyte substance, and the positive electrode is formed by using the electrode material according to the present invention. As the negative electrode, for example, a substance containing any one of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, and silver or a substance capable of reversibly inserting / desorbing or occluding / releasing the element thereof is used. The electrolyte material contains a material that allows the ions of the element to move to cause an electrochemical reaction with the positive electrode and the negative electrode, and in this battery, the ions of the element move between the positive electrode and the negative electrode. By doing
Functions as a battery.

【0030】上記の負極としてリチウムを含む物質を用
いる場合には、そのような物質として、例えば、リチウ
ム金属、リチウム−アルミニウム合金、リチウム−炭素
化合物、リチウム含有窒化物など、従来公知の材料を用
いることができる。
When a substance containing lithium is used as the negative electrode, a conventionally known material such as lithium metal, lithium-aluminum alloy, lithium-carbon compound or lithium-containing nitride is used as the substance. be able to.

【0031】上記の電解質物質としては、例えば、メト
キシエタン、ジエトキシエタン、2−メチルテトラヒド
ロフラン、エチレンカーボネート、プロピレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、アセ
トニトリル、ブチロラクトン、ジメチルホルムアミド、
ジメチルカーボネート、ジエチルカーボネート、スルホ
ラン、エチルメチルカーボネート等の有機溶媒に、アル
カリ金属、アルカリ土類金属等の塩を溶解した非水電解
質溶媒、或いは固体電解質、高分子電解質、前記有機溶
媒を担持させた高分子電解質等が使用できる。
Examples of the above-mentioned electrolyte substance include methoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate, methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone, dimethylformamide,
Dimethyl carbonate, diethyl carbonate, sulfolane, an organic solvent such as ethylmethyl carbonate, a non-aqueous electrolyte solvent in which a salt of an alkali metal, an alkaline earth metal or the like is dissolved, or a solid electrolyte, a polymer electrolyte, the organic solvent was carried. A polymer electrolyte or the like can be used.

【0032】また前記電池の放電・充電を繰り返し行う
ことで、これを二次電池として用いることもできる。
By repeatedly discharging and charging the battery, it can be used as a secondary battery.

【0033】さらにセパレータ、電池ケース等の構造材
料等、他の要素についても従来公知の各種材料が使用で
き、特に制限はない。
Further, conventionally known various materials can be used for other elements such as a structural material such as a separator and a battery case, and there is no particular limitation.

【0034】[0034]

【実施例】以下実施例によって本発明を具体的に説明す
るが、本発明はこれらによりなんら制限されるものでは
ない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0035】[実施例1]図2は、本発明に係る製造方
法によって製造された(2×2)トンネル構造を有する
二酸化マンガンを正極活物質として用いる電池の一具体
例であるコイン型電池の断面図であり、図中、1は封口
板、2はガスケット、3は正極ケース、4は負極、5は
セパレータ、6は正極合剤ペレットを示す。
Example 1 FIG. 2 shows a coin-type battery which is a specific example of a battery using manganese dioxide having a (2 × 2) tunnel structure manufactured by the manufacturing method according to the present invention as a positive electrode active material. It is a sectional view, in which 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode material mixture pellet.

【0036】本実施例では、正極活物質として、次のよ
うにして製造した試料aを用いた。炭酸ナトリウムとβ
二酸化マンガン(鉱物名:パイロルサイト)を、モル比
で、Na:Mn=1:5の割合で混合して、酸素分圧が
4気圧の雰囲気中で、600℃、10時間熱処理するこ
とにより、組成Na0.20MnOを有する試料aを
得た。
In this example, the sample a manufactured as follows was used as the positive electrode active material. Sodium carbonate and β
By mixing manganese dioxide (mineral name: pyrolusite) in a molar ratio of Na: Mn = 1: 5, and heat treating at 600 ° C. for 10 hours in an atmosphere with an oxygen partial pressure of 4 atm. , A sample having the composition Na 0.20 MnO 2 was obtained.

【0037】このようにして製造した試料aを、粉末X
線回折測定法を用いて解析したところ、図3に示すよう
に、JCPDS(Joint Committee on Powder Diffract
ionStandards)のデータとよく一致し、(2×2)トン
ネル構造を有していることが分かった。すなわち、試料
aは、組成式NaMnO2+δ(ここに、0<x≦
0.4、−0.2≦δ≦0.2とする)で表され、(2
×2)トンネル構造を有する化合物であることを特徴と
する電極材料の1つである。この場合に、試料aの構造
は図1で示され、図中のAはNaに該当する。
The sample a produced in this way was powder X
As a result of analysis using the line diffraction measurement method, as shown in FIG. 3, JCPDS (Joint Committee on Powder Diffract
It was found to have a (2 × 2) tunnel structure in good agreement with the data of (ionStandards). That is, the sample a has a composition formula Na x MnO 2 + δ (where 0 <x ≦
0.4, −0.2 ≦ δ ≦ 0.2), and (2
X2) One of the electrode materials, which is a compound having a tunnel structure. In this case, the structure of the sample a is shown in FIG. 1, and A + in the figure corresponds to Na + .

【0038】この試料aを得る上記の工程は、水を用い
ない乾式工程である。
The above step of obtaining the sample a is a dry process using no water.

【0039】次に、この試料aを、硝酸リチウムと塩化
リチウムのモル比3:1混合溶融塩中でイオン交換処理
した。試料aの溶融塩中における量は、モル比で、溶融
塩中のLi:試料a中のNa=20:1とし、溶融塩の
温度は350℃とした。このイオン交換処理を3回行
い、得られた固体をメタノールで洗浄、乾燥して試料b
を得た。この試料bの化学組成を分析し、組成式とし
て、Li0.10Na0. 10MnOを得た。
Next, this sample a was subjected to ion exchange treatment in a molten salt of a mixture of lithium nitrate and lithium chloride in a molar ratio of 3: 1. The amount of the sample a in the molten salt was a molar ratio of Li in the molten salt: Na in the sample a = 20: 1, and the temperature of the molten salt was 350 ° C. This ion exchange treatment was performed 3 times, and the obtained solid was washed with methanol and dried to obtain sample b.
Got The chemical composition of this sample b was analyzed, and as a composition formula, Li 0.10 Na 0. 10 MnO 2 was obtained.

【0040】このようにして製造した試料bを、粉末X
線回折測定法を用いて解析したところ、図4に示すよう
に、イオン交換前の試料と同様なパターンを保っている
ことから、(2×2)トンネル構造を有していることが
分かった。すなわち、試料bは、組成式LiNa
nO2+δ(ここに、0<y≦0.4、0≦z<0.
4、y+z≦0.4、−0.2≦δ≦0.2とする)で
表され、(2×2)トンネル構造を有する化合物である
ことを特徴とする電極材料の1つである。この場合に、
試料bの構造は図1で示され、図中のAはLi又は
Naに該当する。
The sample b manufactured in this manner was used as powder X
As a result of analysis using a line diffraction measurement method, as shown in FIG. 4, it was found that the sample had a (2 × 2) tunnel structure because it had the same pattern as the sample before ion exchange. . That is, the sample b is a composition formula Li y Na z M.
nO 2 + δ (where 0 <y ≦ 0.4, 0 ≦ z <0.
4, y + z ≦ 0.4, −0.2 ≦ δ ≦ 0.2), and is a compound having a (2 × 2) tunnel structure. In this case,
The structure of the sample b is shown in FIG. 1, and A + in the figure corresponds to Li + or Na + .

【0041】この試料a又は試料bの粉末を導電剤(ア
セチレンブラック)及び結着剤(ポリテトラフルオロエ
チレン)と共に混合の上、ロール成形し、正極合剤ペレ
ット6(厚さ0.5mm、直径15mm)とした。
The powder of the sample a or the sample b was mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene) and roll-formed, and the positive electrode mixture pellets 6 (thickness 0.5 mm, diameter 15 mm).

【0042】次に、ステンレス製の封口板1上に金属リ
チウムの負極4を加圧配置したものをポリプロピレン製
ガスケット2の凹部に挿入し、負極4の上にポリプロピ
レン製で微孔性のセパレータ5、正極合剤ペレット6を
この順序に配置し、リチウムイオンが前記正極及び前記
負極と電気化学反応をするための移動を可能とする電解
質物質である電解液として、エチレンカーボネートとジ
メチルカーボネートの等容積混合溶媒にLiPFを溶
解させた1規定溶液を適量注入して含浸させた後に、ス
テンレス製の正極ケース3を被せてかしめることによ
り、厚さ2mm、直径23mmのコイン型電池(図2
に、上下を逆にして示す)を作製した。
Next, a metallic lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 is inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 is placed on the negative electrode 4. The positive electrode material mixture pellets 6 are arranged in this order, and as the electrolytic solution, which is an electrolyte substance that enables lithium ions to move for electrochemical reaction with the positive electrode and the negative electrode, an equal volume of ethylene carbonate and dimethyl carbonate is used. After injecting an appropriate amount of 1N solution in which LiPF 6 is dissolved in a mixed solvent to impregnate it, a positive electrode case 3 made of stainless steel is covered and caulked, so that a coin type battery having a thickness of 2 mm and a diameter of 23 mm (see
Is shown upside down).

【0043】このようにして製造した試料a又は試料b
を正極活物質とする電池を、0.1mA/cmの電流
密度で、4.5Vまで充電を行った後に2.0Vまで放
電を行った。すると、試料aでは160mAh/g、試
料bでは180mAh/gの容量を得ることができた。
従って、上記本発明に係る製造方法で製造された(2×
2)トンネル構造を有する電極材料を用いることによ
り、大きな放電容量を持つ電池を実現できることが判
る。
Sample a or sample b manufactured in this way
The battery using as a positive electrode active material was charged to 4.5 V and then discharged to 2.0 V at a current density of 0.1 mA / cm 2 . Then, it was possible to obtain a capacity of 160 mAh / g for sample a and a capacity of 180 mAh / g for sample b.
Therefore, it is manufactured by the manufacturing method according to the present invention (2 ×
2) It can be seen that a battery having a large discharge capacity can be realized by using an electrode material having a tunnel structure.

【0044】[比較例1]本比較例においては、従来の
湿式法に従い、次のようにして製造した試料cを用いる
他は、実施例1と同様にしてリチウム電池を作製した。
[Comparative Example 1] In this comparative example, a lithium battery was manufactured in the same manner as in Example 1 except that the sample c manufactured as follows was used according to the conventional wet method.

【0045】まず、希硫酸中に、硝酸マンガンと過マン
ガン酸ナトリウムをモル比1:1で混合し、100℃で
5時間反応させ、液中に生成する粉末を濾過によって液
から分離し、100℃で乾燥させて試料cを得た。
First, manganese nitrate and sodium permanganate were mixed in diluted sulfuric acid at a molar ratio of 1: 1 and reacted at 100 ° C. for 5 hours, and the powder produced in the solution was separated from the solution by filtration. A sample c was obtained by drying at 0 ° C.

【0046】このようにして製造した試料cを、粉末X
線回折測定法を用いて解析したところ、試料aと類似の
パターンが得られ、(2×2)トンネル構造を有してい
ることが分かった。
The sample c produced in this manner was used as powder X
An analysis using a line diffraction measurement method revealed that a pattern similar to that of the sample a was obtained and that it had a (2 × 2) tunnel structure.

【0047】このようにして製造した試料cを正極活物
質とする電池を実施例1と同様にして作成し、その電池
を0.1mA/cmの電流密度で4.5Vまで充電を
行った後に2.0Vまで放電しても120mAh/gの
容量しか得られなかった。この電池と比較すると、本発
明の実施例1で製造された試料を正極活物質として含む
電池は、より大きな放電容量を持つことが分かる。
A battery using the sample c thus produced as a positive electrode active material was prepared in the same manner as in Example 1, and the battery was charged to 4.5 V at a current density of 0.1 mA / cm 2 . Even after discharging to 2.0 V, only a capacity of 120 mAh / g was obtained. As compared with this battery, it can be seen that the battery including the sample manufactured in Example 1 of the present invention as the positive electrode active material has a larger discharge capacity.

【0048】本比較例における電池の容量が、上記実施
例1の電池の容量よりも小さい理由は、試料cの(2×
2)トンネル構造中に存在する水分子が電極特性に及ぼ
す悪影響にあると考えられる。
The reason why the capacity of the battery in this comparative example is smaller than that of the battery of Example 1 is that the value of (2 ×
2) It is considered that the water molecules present in the tunnel structure have an adverse effect on the electrode characteristics.

【0049】以上説明したように、本発明に係る(2×
2)トンネル構造を有する二酸化マンガン類電極材料の
製造方法、及びその方法により製造された(2×2)ト
ンネル構造を有する二酸化マンガン類電極材料を正極と
して含む電池によれば、大きな放電容量を持つ電池を実
現することができ、本発明は種々の電子機器の電源をは
じめ、様々な分野に利用できるという点を有する。
As described above, according to the present invention, (2 ×
2) A method for producing a manganese dioxide electrode material having a tunnel structure and a battery including the (2 × 2) tunnel structure manganese dioxide electrode material produced as a positive electrode have a large discharge capacity. A battery can be realized, and the present invention can be used in various fields including a power source for various electronic devices.

【0050】[0050]

【発明の効果】本発明の実施によって、(2×2)トン
ネル構造を有する二酸化マンガン類であって、大きな放
電容量を有する電極材料、その製造方法及びその電極材
料を用いた電池を提供することができる。
The present invention provides an electrode material which is a manganese dioxide having a (2 × 2) tunnel structure and has a large discharge capacity, a method for producing the same, and a battery using the electrode material. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電極材料の構造模式図である。FIG. 1 is a structural schematic view of an electrode material according to the present invention.

【図2】本発明の実施例1におけるコイン型電池の構成
例を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration example of a coin-type battery in Example 1 of the present invention.

【図3】粉末X線回折測定により同定した、本発明の実
施例1における試料aのX線回折パターン及びJCPD
Sによる(2×2)トンネル構造を有する二酸化マンガ
ンのピークデータを比較して示す図である。
FIG. 3 is an X-ray diffraction pattern and JCPD of the sample a in Example 1 of the present invention identified by powder X-ray diffraction measurement.
It is a figure which compares and shows the peak data of manganese dioxide which has a (2x2) tunnel structure by S.

【図4】粉末X線回折測定により同定した、本発明の実
施例1における試料bのX線回折パターンをイオン交換
前の試料aと比較して示す図である。
FIG. 4 is a diagram showing an X-ray diffraction pattern of a sample b in Example 1 of the present invention identified by powder X-ray diffraction measurement, in comparison with a sample a before ion exchange.

【符号の説明】[Explanation of symbols]

1…封口板、2…ガスケット、3…正極ケース、4…負
極、5…セパレータ、6…正極合剤ペレット。
1 ... Sealing plate, 2 ... Gasket, 3 ... Positive electrode case, 4 ... Negative electrode, 5 ... Separator, 6 ... Positive electrode mixture pellet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 政彦 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 斉藤 景一 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 4G048 AA04 AB01 AC06 AD03 AE05 5H029 AJ03 AK03 AL01 AL06 AL11 AL12 AM03 AM04 AM05 AM07 AM12 AM16 BJ03 BJ12 CJ15 CJ28 DJ17 HJ02 5H050 AA08 BA15 BA16 BA17 CA09 CB01 CB07 CB11 CB12 FA19 GA16 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masahiko Hayashi             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Keiichi Saito             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation (72) Inventor Youji Sakurai             2-3-1, Otemachi, Chiyoda-ku, Tokyo             Inside Telegraph and Telephone Corporation F-term (reference) 4G048 AA04 AB01 AC06 AD03 AE05                 5H029 AJ03 AK03 AL01 AL06 AL11                       AL12 AM03 AM04 AM05 AM07                       AM12 AM16 BJ03 BJ12 CJ15                       CJ28 DJ17 HJ02                 5H050 AA08 BA15 BA16 BA17 CA09                       CB01 CB07 CB11 CB12 FA19                       GA16 HA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】組成式NaMnO2+δで表され、(2
×2)トンネル構造を有する電極材料であって、前記x
及びδが不等式0<x≦0.4及び−0.2≦δ≦0.
2を満足することを特徴とする電極材料。
1. A composition formula represented by Na x MnO 2 + δ ,
X2) An electrode material having a tunnel structure, wherein x
And δ are inequalities 0 <x ≦ 0.4 and −0.2 ≦ δ ≦ 0.
An electrode material characterized by satisfying 2.
【請求項2】請求項1記載の電極材料を、ナトリウム化
合物及びマンガン化合物を出発原料とし、水を用いない
乾式工程により製造することを特徴とする電極材料の製
造方法。
2. A method for producing an electrode material, which comprises producing the electrode material according to claim 1 by a dry process using a sodium compound and a manganese compound as starting materials and not using water.
【請求項3】組成式LiNaMnO2+δで表さ
れ、(2×2)トンネル構造を有する電極材料であっ
て、前記y、z及びδが不等式0<y≦0.4、0≦z
<0.4、y+z≦0.4及び−0.2≦δ≦0.2を
満足することを特徴とする電極材料。
3. An electrode material having a composition formula of Li y Na z MnO 2 + δ and having a (2 × 2) tunnel structure, wherein the y, z and δ are inequalities 0 <y ≦ 0.4, 0 ≦. z
<0.4, y + z <0.4 and -0.2 <(delta) <0.2 are satisfy | filled, The electrode material characterized by the above-mentioned.
【請求項4】請求項1記載の電極材料に含有されるナト
リウムの一部又は全部を、イオン交換処理によって、リ
チウムに置換することにより、請求項3記載の電極材料
を得ることを特徴とする電極材料の製造方法。
4. The electrode material according to claim 3, wherein part or all of sodium contained in the electrode material according to claim 1 is replaced with lithium by an ion exchange treatment. Manufacturing method of electrode material.
【請求項5】請求項4記載の電極材料の製造方法におい
て、前記イオン交換処理を、リチウム化合物を含有する
溶融塩中、又はリチウム化合物を溶解した有機溶剤中に
おいて行うことを特徴とする電極材料の製造方法。
5. The method for producing an electrode material according to claim 4, wherein the ion exchange treatment is carried out in a molten salt containing a lithium compound or in an organic solvent in which the lithium compound is dissolved. Manufacturing method.
【請求項6】正極、負極及び電解質物質を有する電池に
おいて、前記正極は請求項1又は請求項3記載の電極材
料を用いて構成されることを特徴とする電池。
6. A battery having a positive electrode, a negative electrode and an electrolyte substance, wherein the positive electrode is formed by using the electrode material according to claim 1 or 3.
【請求項7】請求項6記載の電池において、前記負極は
リチウム、ナトリウム、カリウム、マグネシウム、カル
シウム、ストロンチウム、アルミニウム、銅及び銀のう
ちの何れかの元素を含む物質、又は、前記元素を可逆的
に挿入・脱離あるいは吸蔵・放出できる物質を含有し、
前記電解質物質は、前記元素のイオンの前記電解質物質
中での移動を可能とする物質を含有することを特徴とす
る電池。
7. The battery according to claim 6, wherein the negative electrode is a substance containing any element of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper and silver, or the element is reversible. Contains a substance that can be inserted and removed or occluded and released,
The battery according to claim 1, wherein the electrolyte substance contains a substance that enables migration of ions of the element in the electrolyte substance.
JP2001273327A 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME Expired - Fee Related JP3875053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273327A JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273327A JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Publications (2)

Publication Number Publication Date
JP2003086179A true JP2003086179A (en) 2003-03-20
JP3875053B2 JP3875053B2 (en) 2007-01-31

Family

ID=19098558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273327A Expired - Fee Related JP3875053B2 (en) 2001-09-10 2001-09-10 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME

Country Status (1)

Country Link
JP (1) JP3875053B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082719A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Positive electrode and nonaqueous electrolyte secondary battery
JP2006216508A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006216509A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Positive electrode and nonaqueous electrolyte secondary battery using the same
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
WO2009139157A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
WO2009126525A3 (en) * 2008-04-07 2010-01-21 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
US8137830B2 (en) 2011-07-19 2012-03-20 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
WO2012131499A2 (en) * 2011-03-28 2012-10-04 Nippon Chemi-Con Corporation Composite of manganese compound and carbon, manufacturing method therefor, and electrode and electrochemical element using composite
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
WO2013031507A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery
US8652672B2 (en) 2012-03-15 2014-02-18 Aquion Energy, Inc. Large format electrochemical energy storage device housing and module
US8945751B2 (en) 2011-07-19 2015-02-03 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
US8945756B2 (en) 2012-12-12 2015-02-03 Aquion Energy Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
US9356276B2 (en) 2011-03-01 2016-05-31 Aquion Energy Inc. Profile responsive electrode ensemble
US9413005B2 (en) 2007-09-07 2016-08-09 Sony Corporation Positive electrode active material, method for producing the same, and electrochemical device
CN109216039A (en) * 2018-10-15 2019-01-15 吉首大学 A kind of Na2Mn5O10The preparation method and application of nanometer rods
CN109346329A (en) * 2018-10-15 2019-02-15 吉首大学 A kind of water system sodium ion mixed capacitor and preparation method thereof
CN113036118A (en) * 2021-03-31 2021-06-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
KR20220048912A (en) * 2020-10-13 2022-04-20 한양대학교 산학협력단 Positive active material having tunnel structure for sodium secondary battery and the sodium secondary battery comprising the same
JP7363747B2 (en) 2020-11-13 2023-10-18 トヨタ自動車株式会社 Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100982595B1 (en) * 2005-02-07 2010-09-15 산요덴키가부시키가이샤 Positive electrode and nonaqueous electrolyte secondary battery
JP2006216508A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006216509A (en) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd Positive electrode and nonaqueous electrolyte secondary battery using the same
WO2006082719A1 (en) * 2005-02-07 2006-08-10 Sanyo Electric Co., Ltd. Positive electrode and nonaqueous electrolyte secondary battery
JP4739770B2 (en) * 2005-02-07 2011-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US8815449B2 (en) 2005-02-07 2014-08-26 Sanyo Electric Co., Ltd. Positive electrode and non-aqueous electrolyte secondary battery
JP4739769B2 (en) * 2005-02-07 2011-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5051770B2 (en) * 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
WO2007007581A1 (en) * 2005-07-08 2007-01-18 National Institute Of Advanced Industrial Science And Technology Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
JP2008226798A (en) * 2007-03-16 2008-09-25 National Institute Of Advanced Industrial & Technology Method of manufacturing single crystal manganate sodium (na0.44mno2) nanowire, and lithium ion electrochemical cell for high rate using it
US9413005B2 (en) 2007-09-07 2016-08-09 Sony Corporation Positive electrode active material, method for producing the same, and electrochemical device
US9660261B2 (en) 2007-09-07 2017-05-23 Sony Corporation Positive electrode active material, method for producing the same, and electrochemical device
WO2009126525A3 (en) * 2008-04-07 2010-01-21 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
US8741455B2 (en) 2008-04-07 2014-06-03 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
US9088046B2 (en) 2008-04-07 2015-07-21 Carnegie Mellon University Sodium based aqueous electrolyte electrochemical secondary energy storage device
AU2009233974B2 (en) * 2008-04-07 2013-10-17 Carnegie Mellon University Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
WO2009139157A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
US8318357B2 (en) 2008-05-15 2012-11-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9356276B2 (en) 2011-03-01 2016-05-31 Aquion Energy Inc. Profile responsive electrode ensemble
US8580422B2 (en) 2011-03-09 2013-11-12 Aquion Energy, Inc. Aqueous electrolyte energy storage device
US8298701B2 (en) 2011-03-09 2012-10-30 Aquion Energy Inc. Aqueous electrolyte energy storage device
US8962175B2 (en) 2011-03-09 2015-02-24 Aquion Energy Inc. Aqueous electrolyte energy storage device
US9960397B2 (en) 2011-03-09 2018-05-01 Aquion Energy, Inc. Aqueous electrolyte energy storage device
WO2012131499A2 (en) * 2011-03-28 2012-10-04 Nippon Chemi-Con Corporation Composite of manganese compound and carbon, manufacturing method therefor, and electrode and electrochemical element using composite
JP2014028707A (en) * 2011-03-28 2014-02-13 Tokyo Univ Of Agriculture & Technology Composite of a manganese compound and carbon, method for manufacturing the same, and electrode and electrochemical element using the composite
WO2012131499A3 (en) * 2011-03-28 2012-12-06 Nippon Chemi-Con Corporation Composite of manganese compound and carbon, manufacturing method therefor, and electrode and electrochemical element using composite
US10026562B2 (en) 2011-07-19 2018-07-17 Aquion Energy Inc. High voltage battery composed of anode limited electrochemical cells
US8137830B2 (en) 2011-07-19 2012-03-20 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
US8945751B2 (en) 2011-07-19 2015-02-03 Aquion Energy, Inc. High voltage battery composed of anode limited electrochemical cells
US9748601B2 (en) 2011-08-31 2017-08-29 Asahi Glass Company, Limited Method of manufacturing lithium ion conductive solid electrolyte and lithium-ion secondary battery
CN103765660A (en) * 2011-08-31 2014-04-30 旭硝子株式会社 Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery
JPWO2013031507A1 (en) * 2011-08-31 2015-03-23 旭硝子株式会社 Method for producing lithium ion conductive solid electrolyte and lithium ion secondary battery
WO2013031507A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery
US9331320B2 (en) 2012-03-15 2016-05-03 Aquion Energy Inc. Large format electrochemical energy storage device housing and module
US8652672B2 (en) 2012-03-15 2014-02-18 Aquion Energy, Inc. Large format electrochemical energy storage device housing and module
US9728775B2 (en) 2012-12-12 2017-08-08 Aquion Energy, Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
US8945756B2 (en) 2012-12-12 2015-02-03 Aquion Energy Inc. Composite anode structure for aqueous electrolyte energy storage and device containing same
CN109216039A (en) * 2018-10-15 2019-01-15 吉首大学 A kind of Na2Mn5O10The preparation method and application of nanometer rods
CN109346329A (en) * 2018-10-15 2019-02-15 吉首大学 A kind of water system sodium ion mixed capacitor and preparation method thereof
KR20220048912A (en) * 2020-10-13 2022-04-20 한양대학교 산학협력단 Positive active material having tunnel structure for sodium secondary battery and the sodium secondary battery comprising the same
KR102633443B1 (en) 2020-10-13 2024-02-06 한양대학교 산학협력단 Positive active material having tunnel structure for sodium secondary battery and the sodium secondary battery comprising the same
JP7363747B2 (en) 2020-11-13 2023-10-18 トヨタ自動車株式会社 Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery
CN113036118A (en) * 2021-03-31 2021-06-25 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof
CN113036118B (en) * 2021-03-31 2023-10-03 蜂巢能源科技有限公司 Positive electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3875053B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2003086179A (en) Electrode material, its method of manufacture, and battery using the same
JP3369206B2 (en) Chemical battery precursor, chemical battery, electrode for chemical battery, and method for producing them
JP3356295B2 (en) Manganese oxide compounds
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
JPH0837007A (en) Lithium-containing transition metal composite oxide, and its manufacture and use
KR20020007404A (en) Stabilized electrochemical cell active material
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JPH10158017A (en) Lithium-nickel-multiple oxide, its production and its use
US6699297B1 (en) Method for preparing lithium manganate and positive electrode for lithium secondary cell containing the same
JP3403569B2 (en) Lithium nickel composite oxide, its production method and its use
JPH06283207A (en) Nonaqueous electrolyte battery
JP3647758B2 (en) Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
JPH06119926A (en) Nonaqueous electrplyte battery
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
US6475672B1 (en) Lithium manganese oxide, and process for its production and secondary cell employing it
JP2001332256A (en) Material for electrode, its manufacturing method and cell therewith
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JP2005322551A (en) Layered oxide electrode material, its manufacturing method, and battery using it
JPH08287914A (en) Lithium battery
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JPH11139830A (en) Production of nickel oxide material and cell using the same nickel oxide material produced therewith
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP3403568B2 (en) Lithium nickel composite oxide, its production method and its use
JP2001302244A (en) Method of producing lithium manganese complex oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Ref document number: 3875053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees