JP2003083751A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JP2003083751A
JP2003083751A JP2001278747A JP2001278747A JP2003083751A JP 2003083751 A JP2003083751 A JP 2003083751A JP 2001278747 A JP2001278747 A JP 2001278747A JP 2001278747 A JP2001278747 A JP 2001278747A JP 2003083751 A JP2003083751 A JP 2003083751A
Authority
JP
Japan
Prior art keywords
plate
angular velocity
piezoelectric element
detection
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001278747A
Other languages
Japanese (ja)
Inventor
Yoshiro Tomikawa
義朗 富川
Kenji Sato
健二 佐藤
Atsushi Ono
淳 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001278747A priority Critical patent/JP2003083751A/en
Publication of JP2003083751A publication Critical patent/JP2003083751A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excellent angular velocity sensor dispensing with the fine adjustment of resonance frequency in two directions performed heretofore by a vibration gyroscopic sensor and capable of being decreased in cost. SOLUTION: The angular velocity sensor is equipped with a vibrator having a rectangular short strip-shaped plate 4 and the load masses fixed to both ends of the plate, the driving piezoelectric element 2 and detection piezoelectric element 3 arranged on the surface of the plate, a drive source 6 for supplying a drive signal to the driving piezoelectric element to generate bending vibration in the plate, and a phase comparator 7 for detecting the phase difference between the detection signal outputted by detecting the bending vibration by the detection piezoelectric element and the drive signal to output a phase detection signal. The rotary direction and angular velocity of the rotary motion in the short strip and short side direction of the plate of the vibrator are detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧電素子を用いた
角速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor using a piezoelectric element.

【0002】[0002]

【従来の技術】ビデオカメラやカーナビゲーションシス
テムには振動ジャイロセンサと呼ばれる角速度センサが
搭載されている。例えばビデオカメラには手振れ防止用
の検出センサとして、或いはカーナビゲーションシステ
ムには車の進行方向の検出センサとして欠かせないもの
となっている。振動ジャイロセンサとは振動している物
体に回転運動が加わると振動方向と垂直な方向にコリオ
リ力と呼ばれる力が働く力学現象を応用した角速度セン
サであって、前記コリオリ力を電気信号に変換し出力す
るようにしたものである。
2. Description of the Related Art An angular velocity sensor called a vibration gyro sensor is mounted on a video camera or a car navigation system. For example, it is essential for a video camera as a detection sensor for preventing camera shake, or for a car navigation system as a detection sensor for the traveling direction of the vehicle. A vibrating gyro sensor is an angular velocity sensor that applies a mechanical phenomenon in which a force called Coriolis force acts in a direction perpendicular to the vibration direction when a rotating motion is applied to a vibrating object, and converts the Coriolis force into an electric signal. It is designed to be output.

【0003】図9は従来の振動ジャイロセンサの構成を
示したものである。図9に示すように、従来の振動ジャ
イロセンサは四角柱状の振動子1の一側面に駆動用圧電
素子2を貼り付け、前記一側面と直交する他方の一側面
に検出用圧電素子3を貼り付けた構造となっている。前
記駆動用圧電素子2に駆動信号(正弦波)を印加すると
駆動用圧電素子2は駆動信号に従い圧電現象を起こし振
動子1にX方向の振動を励起する。一方、この状態では
振動子1の振動方向が主にX方向のみであり、また検出
用圧電素子3は主にy方向の振動のみを検出するように
なっているため、検出用圧電素子3はほとんど圧電現象
を起こさず検出電圧は出力されない。
FIG. 9 shows the structure of a conventional vibration gyro sensor. As shown in FIG. 9, in a conventional vibration gyro sensor, a driving piezoelectric element 2 is attached to one side surface of a rectangular prism-shaped vibrator 1, and a detection piezoelectric element 3 is attached to the other side surface orthogonal to the one side surface. It has a structure attached. When a driving signal (sine wave) is applied to the driving piezoelectric element 2, the driving piezoelectric element 2 causes a piezoelectric phenomenon according to the driving signal to excite the vibrator 1 in the X direction. On the other hand, in this state, the vibration direction of the vibrator 1 is mainly only in the X direction, and the detection piezoelectric element 3 mainly detects only the vibration in the y direction. Almost no piezoelectric phenomenon occurs and no detection voltage is output.

【0004】ここで、振動ジャイロセンサ全体をZ軸中
心に回転させたとする。このとき振動ジャイロセンサ全
体にはY方向にコリオリ力Fyと呼ばれる力が働くこと
が知られている。振動ジャイロセンサに働くコリオリ力
Fyは次式で与えられる。 Fy=2mΩzVx (1) ここで、mはジャイロセンサの等価質量、Ωzはジャイ
ロセンサのZ軸に対する回転角速度、Vxは振動子1の
X方向の振動速度であり、コリオリ力Fyの働く方向は
振動方向(X方向)と垂直なY方向となる。
Here, it is assumed that the entire vibration gyro sensor is rotated around the Z axis. At this time, it is known that a force called Coriolis force Fy acts in the Y direction on the entire vibration gyro sensor. The Coriolis force Fy acting on the vibration gyro sensor is given by the following equation. Fy = 2mΩzVx (1) where m is the equivalent mass of the gyro sensor, Ωz is the angular velocity of rotation of the gyro sensor with respect to the Z axis, Vx is the vibration speed of the vibrator 1 in the X direction, and the Coriolis force Fy acts in the vibration direction. The Y direction is perpendicular to the direction (X direction).

【0005】従って、前記コリオリ力Fyが作用する結
果、振動子1にはy方向への振動成分が生じることにな
るので、これを検出用圧電素子3が検出して振動子1の
振動に応じて検出電圧を出力するようになっている。こ
こで、振動ジャイロセンサに働くコリオリ力Fyと検出
電圧Vyの時間的変化について図10を使って説明す
る。まず、駆動用圧電素子2に加える駆動信号波形を図
10(a)とする。このとき、X方向の圧電振動によっ
て生じる振動子1の振動速度Vxは図10(a)に示す
ように駆動信号に対して位相が90°遅れたものとな
る。これは駆動信号の電圧値に比例して振動子1がX方
向に変位し、変位量がピーク(駆動電圧値がピーク)と
なったときに振動速度Vxがゼロになるからである。
Therefore, as a result of the Coriolis force Fy acting, a vibration component in the y direction is generated in the vibrator 1, and the detecting piezoelectric element 3 detects this and responds to the vibration of the vibrator 1. To output the detection voltage. Here, temporal changes in the Coriolis force Fy acting on the vibration gyro sensor and the detection voltage Vy will be described with reference to FIG. First, the drive signal waveform applied to the drive piezoelectric element 2 is shown in FIG. At this time, the vibration speed Vx of the vibrator 1 generated by the piezoelectric vibration in the X direction is delayed by 90 ° in phase with respect to the drive signal as shown in FIG. This is because the vibrator 1 is displaced in the X direction in proportion to the voltage value of the drive signal, and the vibration speed Vx becomes zero when the displacement amount reaches the peak (the drive voltage value reaches the peak).

【0006】また、Y方向に生じるコリオリ力Fyの大
きさは振動速度Vxと角速度Ωzの大きさに比例し、コ
リオリ力Fyの強度変化は振動速度Vxの周期(振動周
波数)に一致する。よって、検出電圧Vyはコリオリ力
Fyに比例するためFy、Vy、Vxの位相及び周波数
は全て一致し図10(b)に示す様になる。ここで、角
速度Ωzが負、すなわち振動ジャイロセンサのZ軸に対
する回転方向が逆になるとコリオリ力Fyも逆向きとな
るので、検出電圧Vyもこれに応じて極性が反転する。
Further, the magnitude of the Coriolis force Fy generated in the Y direction is proportional to the magnitude of the vibration velocity Vx and the angular velocity Ωz, and the strength change of the Coriolis force Fy matches the cycle (vibration frequency) of the vibration velocity Vx. Therefore, since the detected voltage Vy is proportional to the Coriolis force Fy, the phases and frequencies of Fy, Vy, and Vx are all the same, as shown in FIG. Here, when the angular velocity Ωz is negative, that is, when the rotation direction of the vibration gyro sensor with respect to the Z axis is reversed, the Coriolis force Fy is also reversed, and the polarity of the detection voltage Vy is also inverted accordingly.

【0007】従って、駆動信号波形との位相差(極性)
を比較すると同時に、検出電圧Vyの絶対値(ピーク
値)を測定すればZ軸に対する回転方向、及び角速度の
大きさを検出することが可能となる。なお、本従来例に
おいてはZ軸に対する回転のみを検出するものとして説
明したが、X軸或いはY軸に対する回転をも同時に検出
したい場合は更に振動ジャイロセンサを2ヶ併用し、そ
れぞれの回転軸をX軸方向或いはY軸方向にセッティン
グすればよいので原理的には何ら違いはない。
Therefore, the phase difference (polarity) from the drive signal waveform
When the absolute value (peak value) of the detection voltage Vy is measured at the same time with the comparison of the above, it becomes possible to detect the rotation direction with respect to the Z axis and the magnitude of the angular velocity. In the conventional example, only the rotation about the Z axis is detected, but if it is desired to detect the rotation about the X axis or the Y axis at the same time, two vibration gyro sensors are additionally used and each rotation axis is used. In principle, there is no difference because it can be set in the X-axis direction or the Y-axis direction.

【0008】[0008]

【発明が解決しようとする課題】ところが、従来の振動
ジャイロセンサには以下のような問題点があった。すな
わち、駆動用圧電素子2で与えたX方向の圧電振動をY
方向の振動成分として検出用圧電素子3で効率良く検出
するためには振動子1のX方向の共振周波数fxとY方
向の共振周波数fyを極力近づけることが望ましい。こ
れは駆動波形の周波数に対してX方向に効率的に振動さ
せるためであり、且つコリオリ力によって生じたY方向
の振動を最も効率的に検出し、検出電圧を大きくするた
めである。
However, the conventional vibration gyro sensor has the following problems. That is, the piezoelectric vibration in the X direction given by the driving piezoelectric element 2 is converted into Y
In order to efficiently detect the directional vibration component by the detection piezoelectric element 3, it is desirable that the X-direction resonance frequency fx and the Y-direction resonance frequency fy of the vibrator 1 be as close as possible. This is to efficiently vibrate in the X direction with respect to the frequency of the drive waveform, and to most efficiently detect the vibration in the Y direction caused by the Coriolis force and increase the detection voltage.

【0009】ところが、実際にはコリオリ力Fyが働ら
かないときにもX方向の振動のごく一部がY方向への微
少な漏れ成分として伝わっており、Y方向の共振周波数
fyをX方向の共振周波数fxに全く同一にしてしまう
と却って前記漏れ成分を拾いやすくする要因になってし
まう。従って、通常は共振周波数fxとfyを適度に離
すようにしている。
However, even when the Coriolis force Fy does not actually work, a small part of the vibration in the X direction is transmitted as a minute leak component in the Y direction, and the resonance frequency fy in the Y direction is in the X direction. If the resonance frequency is exactly the same as the resonance frequency fx, it becomes a factor that makes it easier to pick up the leakage component. Therefore, normally, the resonance frequencies fx and fy are appropriately separated.

【0010】しかしながら、fxとfyの周波数調整は
非常に微妙且つ煩雑であり、量産時にはコストアップの
大きな要因となり問題となっていた。更に、fxとfy
の差がばらつくと検出感度に直接影響するため、検出特
性のばらつきを抑える上でも大変問題があった。本発明
は上述したような従来の問題点を解決するためになされ
たものであって、調整が容易でコスト低減できる角速度
センサを提供することを目的とする。
However, the frequency adjustment of fx and fy is very delicate and complicated, and has been a problem as a major factor of cost increase during mass production. Furthermore, fx and fy
If there is a variation in the difference between the two, it directly affects the detection sensitivity, which is very problematic in suppressing the variation in the detection characteristics. The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide an angular velocity sensor that can be easily adjusted and reduced in cost.

【0011】[0011]

【課題を解決しようとする手段】本発明に係る角速度セ
ンサの請求項1記載の発明は、長方形短冊状のプレート
板と該プレート板の両端に固定された負荷質量とを有す
る振動子と、前記プレート板表面に配置した駆動用圧電
素子及び検出用圧電素子と、前記駆動用圧電素子に駆動
信号を供給して前記プレート板に屈曲振動を生起させる
駆動源と、前記検出用圧電素子が前記屈曲振動を検出出
力した検出信号と前記駆動信号の位相差とを検出し位相
検出信号を出力する位相比較器とを備えたものであっ
て、前記振動子の前記プレート板の短冊短辺方向を軸と
する回転運動の回転方向及び角速度を検出したものであ
る。
The invention according to claim 1 of an angular velocity sensor according to the present invention is a vibrator having a rectangular strip plate plate and load masses fixed to both ends of the plate plate, A driving piezoelectric element and a detecting piezoelectric element arranged on the surface of the plate plate, a driving source that supplies a driving signal to the driving piezoelectric element to cause bending vibration in the plate plate, and the detecting piezoelectric element bends. A phase detector which detects a vibration and outputs a phase detection signal by detecting a phase difference between the detection signal and the drive signal and outputs a phase detection signal. The rotation direction and the angular velocity of the rotation movement are detected.

【0012】本発明に係る角速度センサの請求項2記載
の発明は請求項1において、前記プレート板を短冊状の
圧電基板とすると共に該圧電基板表面に電極を形成し、
駆動用圧電素子と検出用圧電素子とプレート板とを一体
的に構成したものである。
According to the invention of claim 2 of the angular velocity sensor of the present invention, in claim 1, the plate plate is a strip-shaped piezoelectric substrate, and electrodes are formed on the surface of the piezoelectric substrate.
The driving piezoelectric element, the detecting piezoelectric element, and the plate plate are integrally configured.

【0013】本発明に係る角速度センサの請求項3記載
の発明は、長方形短冊状のプレート板と前記プレート板
の両端に固定された負荷質量とを有する振動子と、前記
プレート板表面に配置した検出用圧電素子と、前記プレ
ート板を支持すると共に該プレート板を介して短冊短辺
方向に回転させる回転駆動源とを備えた角速度センサで
あって、前記検出用圧電素子から出力される電気信号に
基づき前記振動子の回転面に平行な軸に対する回転運動
の角速度を検出したものである。
According to the invention of claim 3 of the angular velocity sensor of the present invention, a vibrator having a rectangular strip-shaped plate plate and load masses fixed to both ends of the plate plate and a vibrator disposed on the surface of the plate plate. An angular velocity sensor comprising: a detection piezoelectric element; and a rotary drive source that supports the plate plate and rotates in the direction of the strip short side through the plate plate, the electrical signal output from the detection piezoelectric element. Based on the above, the angular velocity of the rotational motion with respect to the axis parallel to the rotation surface of the vibrator is detected.

【0014】[0014]

【発明の実施の形態】以下図示した実施の形態例に基づ
いて本発明を詳細に説明する。図1は本発明に係わる角
速度センサの第1の実施例のブロック図を示したもので
ある。図1に示すように、角速度センサはステンレス等
の金属プレート板4の両端に負荷質量5a、5bを取り
付け振動子を構成する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on the illustrated embodiments. FIG. 1 is a block diagram of a first embodiment of an angular velocity sensor according to the present invention. As shown in FIG. 1, in the angular velocity sensor, load masses 5a and 5b are attached to both ends of a metal plate plate 4 such as stainless steel to form a vibrator.

【0015】金属プレート板4の中心近辺には振動子に
屈曲振動を与える駆動用圧電素子2と、前記屈曲振動を
検出し検出電圧を出力する検出用圧電素子3とがそれぞ
れ配置されている。また、駆動用圧電素子2には駆動源
6から駆動信号(正弦波)が加えられ、更に検出用圧電
素子3から出力した検出電圧は前記駆動信号と共に位相
比較器7に供給され、前記位相比較器7はこれら駆動信
号と検出電圧の位相を比較し角速度検出信号として出力
するようになっている。
Near the center of the metal plate plate 4, there are arranged a driving piezoelectric element 2 for applying a bending vibration to the vibrator, and a detecting piezoelectric element 3 for detecting the bending vibration and outputting a detection voltage. Further, a drive signal (sine wave) is applied from the drive source 6 to the drive piezoelectric element 2, and the detection voltage output from the detection piezoelectric element 3 is supplied to the phase comparator 7 together with the drive signal to perform the phase comparison. The device 7 compares the phases of these drive signals and the detected voltage and outputs them as an angular velocity detection signal.

【0016】以下図1に示した角速度センサについてそ
の動作を説明する。まず、振動子全体が回転していない
状態を考える。駆動源6から所定周波数の正弦波を駆動
信号として印加すると、駆動用圧電素子2は図1のY方
向に伸縮するいわゆる長さ方向縦振動を起こす。これに
応じて金属プレート板4の駆動用圧電素子2を貼り付け
た面が伸縮しようとするが、反対側の面には駆動用圧電
素子2がないため、金属プレート板4は図2(a)と
(b)の状態を繰り返す、いわゆる屈曲振動と呼ばれる
現象が発生する。
The operation of the angular velocity sensor shown in FIG. 1 will be described below. First, consider a state where the entire vibrator is not rotating. When a sine wave having a predetermined frequency is applied as a drive signal from the drive source 6, the drive piezoelectric element 2 causes so-called longitudinal vibration which expands and contracts in the Y direction of FIG. In response to this, the surface of the metal plate plate 4 to which the driving piezoelectric element 2 is attached tends to expand and contract, but since the driving piezoelectric element 2 is not present on the opposite surface, the metal plate plate 4 is shown in FIG. ) And (b) are repeated, a phenomenon called so-called bending vibration occurs.

【0017】従って、金属プレート板4の先端に取り付
けてある負荷質量5a、5bは図1においてX軸方向に
ほぼ直線的に振動するようになる。ここで負荷質量5a
と5bは互いに金属プレート板4によってつながってお
り、振動中に互いにバランスをとろうとするので瞬時瞬
時の動く方向は互いに逆向きとなる。すなわち図2
(c)に示すように振動子の中心点に点対称な振動とな
る。この状態で駆動用圧電素子2に印加される駆動信号
と検出用圧電素子3に誘起された検出電圧の位相関係は
図3のように同相である。
Therefore, the load masses 5a and 5b attached to the tip of the metal plate plate 4 vibrate substantially linearly in the X-axis direction in FIG. Here load mass 5a
And 5b are connected to each other by the metal plate plate 4, and try to balance each other during vibration, so that the instantaneous and instantaneous directions of movement are opposite to each other. That is, FIG.
As shown in (c), the vibration is point-symmetric with respect to the center point of the vibrator. In this state, the drive signal applied to the drive piezoelectric element 2 and the detection voltage induced in the detection piezoelectric element 3 have the same phase relationship as shown in FIG.

【0018】次に、図1のZ軸を中心に振動子全体を回
転させる場合を考える。このとき回転角速度をΩzとす
ると振動子全体(主に負荷質量5a、5b)にコリオリ
力FyがY方向にそれぞれ働き金属プレート4を伸び縮
みさせる力として作用する。従って、コリオリ力Fyに
相当する電圧(以下、コリオリ電圧という)が検出用圧
電素子3に新たに発生し重畳されるため、検出電圧は図
3に示すように検出電圧(回転なし)と前記コリオリ電
圧とを合成したものとなり図4に示す関係となる。
Next, consider the case where the entire vibrator is rotated around the Z axis in FIG. At this time, when the rotational angular velocity is Ωz, the Coriolis force Fy acts on the whole vibrator (mainly the load masses 5a and 5b) in the Y direction and acts as a force to expand and contract the metal plate 4. Therefore, a voltage corresponding to the Coriolis force Fy (hereinafter, referred to as Coriolis voltage) is newly generated and superimposed on the detection piezoelectric element 3, and the detection voltage is the detection voltage (without rotation) and the Coriolis voltage as shown in FIG. This is a combination of the voltage and the relationship shown in FIG.

【0019】ここで、コリオリ電圧は検出電圧(回転な
し)或いは駆動信号に対して位相が常に90°遅れた状
態となっている。これは従来例でも説明したように図1
0に示した位相関係と同様の現象である。ゆえに、コリ
オリ電圧と検出電圧(回転なし)を合成した結果、検出
電圧(回転あり)の信号波形は図4に示すように検出電
圧(回転なし)または駆動信号と比較して位相差θを生
じるようになる。
Here, the phase of the Coriolis voltage is always 90 ° behind the detection voltage (no rotation) or the drive signal. This is as shown in FIG.
This is a phenomenon similar to the phase relationship shown in 0. Therefore, as a result of combining the Coriolis voltage and the detection voltage (without rotation), the signal waveform of the detection voltage (with rotation) causes a phase difference θ as compared with the detection voltage (without rotation) or the drive signal as shown in FIG. Like

【0020】また、振動子の回転角速度Ωzを大きくし
ていくと、これに比例してコリオリ力Fyが大きくなる
のでコリオリ電圧Vyも大きくなる。従って、図4にお
いて検出電圧(回転あり)と駆動信号との位相差θがΩ
zに比例して大きくなっていく領域が存在する。よっ
て、図1において検出電圧(回転あり)と駆動信号との
位相差を位相比較器7が検出し位相差に比例した電圧、
或いは位相差に相当するデジタル信号として出力するの
で角速度Ωzを検出することが可能となる。
When the rotational angular velocity Ωz of the vibrator is increased, the Coriolis force Fy increases in proportion to this, and the Coriolis voltage Vy also increases. Therefore, in FIG. 4, the phase difference θ between the detected voltage (with rotation) and the drive signal is Ω.
There is a region that grows in proportion to z. Therefore, in FIG. 1, the phase comparator 7 detects the phase difference between the detected voltage (with rotation) and the drive signal, and the voltage proportional to the phase difference,
Alternatively, since the digital signal corresponding to the phase difference is output, the angular velocity Ωz can be detected.

【0021】図5に試作した角速度センサの角速度Ωz
に対する位相差の実測値を示す。図5からわかるよう
に、−0.1≦Ωz≦0.1(rad/s)という実用
に最も供せられるであろう範囲内において角速度Ωzに
比例した位相差θの変化として検出できることが判っ
た。また、検出電圧(回転無)=Asinωt、コリオ
リ電圧Vy=Bcosωtとすると、検出電圧(回転
有)及び位相差θは理論的に以下の式として導き出さ
れ、位相差θの実測値は理論式通りに逆正接関数(ta
−1)にほぼ近い特性が得られることが判った。 検出電圧(回転有)=検出電圧(回転無)+コリオリ電圧 =Asinωt+Bcosωt =(A+B1/2sin(ωt+θ)・・・(2 ) θ=tan−1(B/A)・・・・・・・・ (3)
FIG. 5 shows the angular velocity Ωz of the prototype angular velocity sensor.
The measured value of the phase difference with respect to is shown. As can be seen from FIG. 5, it can be seen that a change in the phase difference θ proportional to the angular velocity Ωz can be detected within the range of −0.1 ≦ Ωz ≦ 0.1 (rad / s) that is most suitable for practical use. It was Further, assuming that the detected voltage (without rotation) = Asinωt and the Coriolis voltage Vy = Bcosωt, the detected voltage (with rotation) and the phase difference θ are theoretically derived as the following formulas, and the measured value of the phase difference θ is the theoretical formula. To the arctangent function (ta
It has been found that the characteristics close to n −1 ) can be obtained. Detection voltage (with rotation) = Detection voltage (without rotation) + Coriolis voltage = Asin ωt + B cosωt = (A 2 + B 2 ) 1/2 sin (ωt + θ) (2) θ = tan −1 (B / A) ... (3)

【0022】更に、本実施例は従来例と異なりY方向の
みの振動を検出するので振動子の共振周波数は一方向の
み調整すれば良く、またXYの2方向の共振周波数を微
妙に調整することも不要となるので調整工数を低減でき
コスト低減が可能となる。なお、本実施例において金属
プレート板を長方形短冊状の圧電基板に代え、この表面
に電極を形成してもよい。このようにすると駆動用圧電
素子と検出用圧電素子と金属プレート板とを一体化でき
るので構造を簡単化できるであろう。或いは、強度を高
めるため金属板等をコア材にし両面或いは片面に圧電基
板を積層形成させその表面に電極を形成するといった構
造でもよいであろう。
Further, in the present embodiment, unlike the conventional example, vibration in only the Y direction is detected, so that the resonance frequency of the vibrator only needs to be adjusted in one direction, and the resonance frequencies in the two directions of XY can be finely adjusted. Since it is not necessary, the adjustment man-hours can be reduced and the cost can be reduced. In this embodiment, the metal plate plate may be replaced with a rectangular strip-shaped piezoelectric substrate, and electrodes may be formed on the surface of the piezoelectric substrate. In this case, the driving piezoelectric element, the detecting piezoelectric element, and the metal plate plate can be integrated, so that the structure can be simplified. Alternatively, a structure in which a metal plate or the like is used as a core material and piezoelectric substrates are laminated on both surfaces or one surface and electrodes are formed on the surface thereof may be used in order to enhance strength.

【0023】次に、本発明に係わる角速度センサの第2
の実施例について説明する。図6は本発明に係わる角速
度センサの第2の実施例の構成を示したものである。図
6に示すように、角速度センサは一対の金属プレート板
4a及び4bと、前記金属プレート板4a及び4bの先
端に固定した負荷質量5a及び5bと、前記金属プレー
ト板4a及び4bの他端近辺にそれぞれ配置した検出用
圧電素子3a及び3bと、前記検出用圧電素子3a及び
3bから引き出されたリード電極8a及び8bと、前記
金属プレート板4a及び4bを負荷質量5a及び5bと
共にX軸を中心に回転させる回転駆動源9とを備えてい
る。なお、金属プレート板を一枚にしてその両端に負荷
質量5a、5bを固定した構造としてもよい。また、負
荷質量を一つにしてもよいが回転時のバランスを考慮す
ると負荷質量を2つとした方が好ましい。
Next, the second angular velocity sensor according to the present invention will be described.
An example will be described. FIG. 6 shows the configuration of the second embodiment of the angular velocity sensor according to the present invention. As shown in FIG. 6, the angular velocity sensor includes a pair of metal plate plates 4a and 4b, load masses 5a and 5b fixed to the tips of the metal plate plates 4a and 4b, and the other ends of the metal plate plates 4a and 4b. The piezoelectric elements 3a and 3b for detection, the lead electrodes 8a and 8b drawn from the piezoelectric elements 3a and 3b for detection, and the metal plate plates 4a and 4b together with the load masses 5a and 5b about the X axis. And a rotary drive source 9 for rotating the same. It should be noted that the structure may be such that one metal plate plate is provided and the load masses 5a and 5b are fixed to both ends thereof. Further, the load mass may be one, but it is preferable to use two load masses in consideration of the balance during rotation.

【0024】以下図6に示した角速度センサの第2の実
施例についてその動作を説明する。まず、回転駆動源9
で金属プレート板4a、4bを介し負荷質量5a、5b
をX軸を中心に回転させる。負荷質量5a、5bは一定
の角速度Ωxで回転し続けるものとする。このとき検出
用圧電素子3a、3bは圧電現象を生じないためリード
電極8a、8bからは検出電圧は出力されない。
The operation of the second embodiment of the angular velocity sensor shown in FIG. 6 will be described below. First, the rotary drive source 9
Load mass 5a, 5b through metal plate plates 4a, 4b
Is rotated about the X axis. It is assumed that the load masses 5a and 5b continue to rotate at a constant angular velocity Ωx. At this time, the piezoelectric elements 3a and 3b for detection do not generate a piezoelectric phenomenon, so that the detection voltage is not output from the lead electrodes 8a and 8b.

【0025】次に、図6のZ軸を中心に振動子全体に角
速度Ωzの回転が加わる場合を考える。このとき主に振
動子の負荷質量5a、5bにはX軸方向にコリオリ力F
xが働くため、負荷質量5aと金属プレート板4a、及
び負荷質量5bと金属プレート板4bはそれぞれX軸方
向に以下の理由で屈曲振動を開始する。
Next, let us consider a case where the rotation of the whole vibrator about the Z axis in FIG. 6 is applied at the angular velocity Ωz. At this time, the Coriolis force F is mainly applied to the load masses 5a and 5b of the vibrator in the X-axis direction.
Since x acts, the load mass 5a and the metal plate plate 4a, and the load mass 5b and the metal plate plate 4b start bending vibration in the X-axis direction for the following reasons.

【0026】すなわち、負荷質量5a、5bに働くコリ
オリ力Fxは振動子のZ軸に対する角速度Ωzと負荷質
量5a、5bのY軸に対する回転速度V(=RΩx、R
は負荷質量5a、5bの回転半径)に比例する。ただ
し、負荷質量5a、5bはX軸に対して一定速度Vで回
転しているので、前記VにはY軸方向の速度成分Vyと
Z軸方向の速度成分Vzが含まれている。そして、前記
速度成分Vy、Vzはそれぞれ−VからVまでの値を正
弦波的に変化する。
That is, the Coriolis force Fx acting on the load masses 5a and 5b is the angular velocity Ωz of the oscillator with respect to the Z axis and the rotational speed V (= RΩx, R of the load masses 5a and 5b with respect to the Y axis).
Is proportional to the radius of gyration of the load mass 5a, 5b). However, since the load masses 5a and 5b rotate at a constant speed V with respect to the X axis, the V includes a speed component Vy in the Y axis direction and a speed component Vz in the Z axis direction. The velocity components Vy and Vz change sinusoidally in the values from -V to V, respectively.

【0027】ところが、コリオリ力Fxは回転軸(Z
軸)に垂直な物体運動(Y軸方向)に対してのみ生じる
ことが知られている。負荷質量5a、5bには速度成分
Vyの大きさにのみ比例したコリオリ力FxがX軸方向
に働き、Z軸方向の速度成分Vzは前記コリオリ力Fx
には関係しない。従って、負荷質量5a、5bに働くコ
リオリ力Fxの大きさは速度成分Vyの大きさにのみ従
い変化する。すなわち、負荷質量5a、5bの位置が図
6の状態のときコリオリ力Fxは最大となり、負荷質量
5a、5bがこれより更に90°回転した位置において
コリオリ力Fxがゼロとなる。
However, the Coriolis force Fx is
It is known to occur only for an object movement (Y-axis direction) perpendicular to the (axis). The Coriolis force Fx proportional to only the magnitude of the velocity component Vy acts on the load masses 5a and 5b in the X-axis direction, and the velocity component Vz in the Z-axis direction is the Coriolis force Fx.
It has nothing to do with Therefore, the magnitude of the Coriolis force Fx acting on the load masses 5a and 5b changes only according to the magnitude of the velocity component Vy. That is, the Coriolis force Fx becomes maximum when the positions of the load masses 5a and 5b are in the state of FIG. 6, and the Coriolis force Fx becomes zero at the position where the load masses 5a and 5b are rotated further 90 °.

【0028】従って、負荷質量5a、5bはその位置に
よってコリオリ力の大きさが変化すると共にX軸に対す
る回転の半周期毎にコリオリ力の働く方向が反転するの
で、負荷質量5a、5bのX軸方向の動きに伴い金属プ
レート板4a、4bの先端がしなり、振動子全体はX方
向に屈曲振動を継続することになる。ここで、振動子を
効果的にX方向へ屈曲振動させるために回転駆動源9の
回転周期(周波数)を振動子のX方向の共振周波数に極
力一致させることが好ましい。
Therefore, the magnitudes of the Coriolis forces of the load masses 5a and 5b change depending on the positions thereof, and the direction in which the Coriolis force acts is reversed every half cycle of rotation with respect to the X axis, so that the X axis of the load masses 5a and 5b. With the movement in the direction, the tips of the metal plate plates 4a and 4b bend, and the entire vibrator continues bending vibration in the X direction. Here, in order to effectively cause the vibrator to flexurally vibrate in the X direction, it is preferable to match the rotation cycle (frequency) of the rotary drive source 9 to the resonance frequency of the vibrator in the X direction as much as possible.

【0029】そして、金属プレート板4a、4bがX方
向にしなった結果、これが歪みとして検出用圧電素子3
a、3bに伝わるので、検出用圧電素子3a、3bは圧
電現象を起こし検出電圧1、2としてリード電極8a、
8bからそれぞれ出力する。
Then, as a result of the metal plate plates 4a and 4b being bent in the X direction, this is a distortion and the piezoelectric element 3 for detection is detected.
a, 3b, the piezoelectric elements 3a, 3b for detection cause a piezoelectric phenomenon, and the lead electrodes 8a,
Output from 8b.

【0030】ここで、検出電圧1、2の波形を図7に図
示する。図7において検出電圧1と2の極性が逆になっ
ていることに注意されたい。これは負荷質量5a、5b
に働くコリオリ力が互いに逆向きで大きさが等しく、屈
曲振動中は負荷質量5a、5bの動きが互いに逆向きに
なるからである。すなわち、検出用圧電素子3aが縮む
方向に歪んだときは検出用圧電素3は伸びる方向に歪
み、逆に検出用圧電素子3aが伸びる方向に歪んだとき
は検出用圧電素3は縮む方向に歪むため、検出電圧は位
相が180°異なり振幅が等しい波形となる。
The waveforms of the detection voltages 1 and 2 are shown in FIG. Note that the polarities of the detection voltages 1 and 2 are reversed in FIG. This is the load mass 5a, 5b
This is because the Coriolis forces that act on each other are in opposite directions and have the same magnitude, and the motions of the load masses 5a and 5b are opposite to each other during bending vibration. That is, when the detecting piezoelectric element 3a is distorted in the contracting direction, the detecting piezoelectric element 3 is distorted in the expanding direction, and conversely, when the detecting piezoelectric element 3a is distorted in the expanding direction, the detecting piezoelectric element 3 is contracted. Because of the distortion, the detected voltage has a phase difference of 180 ° and a waveform with the same amplitude.

【0031】よって、検出電圧1または検出電圧2のい
ずれか一方、或いは両者の差電圧を取り出せばZ軸に対
する回転角速度Ωzに比例した検出電圧を交流信号とし
て取り出すことが可能となる。図8に試作した角速度セ
ンサの角速度Ωzと検出電圧1,2の実測値を示す。図
8に示した実測値から−0.5≦Ωz≦0.5(rad
/s)という広い範囲内に渡り角速度Ωzに比例した検
出電圧を取り出せることが判った。
Therefore, if either the detected voltage 1 or the detected voltage 2 or the difference voltage between them is taken out, the detected voltage proportional to the rotational angular velocity Ωz with respect to the Z axis can be taken out as an AC signal. FIG. 8 shows the measured values of the angular velocity Ωz and the detected voltages 1 and 2 of the prototype angular velocity sensor. From the measured values shown in FIG. 8, -0.5 ≦ Ωz ≦ 0.5 (rad
It has been found that the detection voltage proportional to the angular velocity Ωz can be taken out within a wide range of / s).

【0032】なお、本実施例はZ軸に対する回転を検出
するためにはX軸に対して負荷質量5a、5bを予め回
転しなければならず回転用駆動源を必要とするが、駆動
用圧電素子を不要とし検出用圧電素子のみを1枚ないし
2枚備えるだけでよい。更に第1の実施例と同様に一方
向(X方向)のみの屈曲振動を検出すればよいので、従
来例で実施していたような2つの共振周波数の調整を不
要とすることができ、量産時にはコスト低減する上で多
大な利点をもたらすであろう。
In the present embodiment, in order to detect the rotation about the Z axis, the load masses 5a and 5b must be rotated about the X axis in advance and a rotation driving source is required. No element is required, and only one or two detection piezoelectric elements may be provided. Further, since bending vibration in only one direction (X direction) needs to be detected as in the first embodiment, it is possible to eliminate the need for adjusting the two resonance frequencies, which was performed in the conventional example. Sometimes it will bring great advantages in reducing costs.

【0033】[0033]

【発明の効果】本発明は以上説明したように、コリオリ
力を応用した振動ジャイロ方式の角速度センサであっ
て、一方向の屈曲振動を圧電素子で検出しこれを検出電
圧として取り出すようにしたので、従来振動ジャイロセ
ンサにて実施していた2方向の共振周波数の微妙な調整
を不要とし、コストを低減できる優れた角速度センサを
提供する上で著効を奏す。
As described above, the present invention is a vibrating gyro-type angular velocity sensor to which Coriolis force is applied, and bending vibration in one direction is detected by a piezoelectric element, and this is taken out as a detection voltage. The present invention is notable for providing an excellent angular velocity sensor that can reduce costs by eliminating the need for delicate adjustment of resonance frequencies in two directions, which was conventionally performed by a vibration gyro sensor.

【0034】[0034]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる角速度センサの第1の実施例を
示すブロック図。
FIG. 1 is a block diagram showing a first embodiment of an angular velocity sensor according to the present invention.

【図2】振動子の屈曲振動の様子を示した図。FIG. 2 is a diagram showing a state of bending vibration of a vibrator.

【図3】本発明に係わる角速度センサの第1の実施例の
検出電圧波形を示した図。
FIG. 3 is a diagram showing a detected voltage waveform of the first embodiment of the angular velocity sensor according to the invention.

【図4】本発明に係わる角速度センサの第1の実施例の
検出電圧波形を示した図。
FIG. 4 is a diagram showing a detected voltage waveform of the first embodiment of the angular velocity sensor according to the invention.

【図5】本発明に係わる角速度センサの第1の実施例の
実測値を示した図。
FIG. 5 is a diagram showing measured values of the first embodiment of the angular velocity sensor according to the invention.

【図6】本発明に係わる角速度センサの第2の実施例を
示すブロック図。
FIG. 6 is a block diagram showing a second embodiment of the angular velocity sensor according to the invention.

【図7】本発明に係わる角速度センサの第2の実施例の
検出電圧波形を示した図。
FIG. 7 is a diagram showing a detected voltage waveform of a second embodiment of the angular velocity sensor according to the invention.

【図8】本発明に係わる角速度センサの第2の実施例の
実測値を示した図。
FIG. 8 is a diagram showing measured values of an angular velocity sensor according to a second embodiment of the present invention.

【図9】従来の振動ジャイロセンサの実施例を示した
図。
FIG. 9 is a diagram showing an example of a conventional vibration gyro sensor.

【図10】従来の振動ジャイロセンサの検出電圧波形を
示した図。
FIG. 10 is a diagram showing a detected voltage waveform of a conventional vibration gyro sensor.

【0035】[0035]

【符号の説明】[Explanation of symbols]

1・・・振動子 2・・・駆動用圧電素子 3、3a、3b・・・検出用圧電素子 4、4a、4b・・・金属プレート板 5、5a、5b・・・負荷質量 6・・・駆動源 7・・・位相比較器 8a、8b・・・リード電極 9・・・回転駆動源 1 ... Transducer 2 Piezoelectric element for driving 3, 3a, 3b ... Detection piezoelectric element 4, 4a, 4b ... Metal plate plate 5, 5a, 5b ... Load mass 6 ... Drive source 7 ... Phase comparator 8a, 8b ... Lead electrodes 9 ... Rotation drive source

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】長方形短冊状のプレート板と該プレート板
の両端に固定された負荷質量とを有する振動子と、前記
プレート板表面に配置した駆動用圧電素子及び検出用圧
電素子と、前記駆動用圧電素子に駆動信号を供給して前
記プレート板に屈曲振動を生起させる駆動源と、前記検
出用圧電素子が前記屈曲振動を検出出力した検出信号と
前記駆動信号の位相差とを検出し位相検出信号を出力す
る位相比較器とを備えたものであって、前記振動子の前
記プレート板の短冊短辺方向を軸とする回転運動の回転
方向及び角速度を検出したことを特徴とする角速度セン
サ。
1. A vibrator having a rectangular strip plate plate and load masses fixed to both ends of the plate plate, a driving piezoelectric element and a detecting piezoelectric element arranged on the surface of the plate plate, and the driving unit. A drive source that supplies a driving signal to the piezoelectric element for generating flexural vibration in the plate plate, and a phase difference between the detection signal that the piezoelectric element for detection detects and outputs the flexural vibration and the phase of the drive signal An angular velocity sensor, comprising: a phase comparator that outputs a detection signal, wherein a rotational direction and an angular velocity of rotational motion about the strip short side direction of the plate plate of the vibrator are detected. .
【請求項2】前記プレート板を短冊状の圧電基板とする
と共に該圧電基板表面に電極を形成し、駆動用圧電素子
と検出用圧電素子とプレート板とを一体的に構成したこ
を特徴とする請求項1記載の角速度センサ。
2. A plate-shaped piezoelectric substrate is used as the plate plate, electrodes are formed on the surface of the piezoelectric substrate, and the driving piezoelectric element, the detection piezoelectric element, and the plate plate are integrally configured. The angular velocity sensor according to claim 1.
【請求項3】長方形短冊状のプレート板と前記プレート
板の両端に固定された負荷質量とを有する振動子と、前
記プレート板表面に配置した検出用圧電素子と、前記プ
レート板を支持すると共に該プレート板を介して短冊短
辺方向に回転させる回転駆動源とを備えた角速度センサ
であって、前記検出用圧電素子から出力される電気信号
に基づき前記振動子の回転面に平行な軸に対する回転運
動の角速度を検出したことを特徴とする角速度センサ。
3. A vibrator having a rectangular strip plate plate and load masses fixed to both ends of the plate plate, a detecting piezoelectric element arranged on the surface of the plate plate, and supporting the plate plate. An angular velocity sensor having a rotary drive source for rotating in the direction of the strip short side through the plate plate, wherein an angular velocity sensor for an axis parallel to the rotation surface of the vibrator based on an electric signal output from the piezoelectric element for detection. An angular velocity sensor characterized by detecting the angular velocity of rotational movement.
JP2001278747A 2001-09-13 2001-09-13 Angular velocity sensor Withdrawn JP2003083751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278747A JP2003083751A (en) 2001-09-13 2001-09-13 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278747A JP2003083751A (en) 2001-09-13 2001-09-13 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2003083751A true JP2003083751A (en) 2003-03-19

Family

ID=19103065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278747A Withdrawn JP2003083751A (en) 2001-09-13 2001-09-13 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2003083751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112790A (en) * 2008-11-05 2010-05-20 Denso Corp Angular velocity detection method for vibration type angular velocity sensor
CN102088549A (en) * 2010-11-29 2011-06-08 中国科学院西安光学精密机械研究所 Rotation-eliminated image pick-up method
JP2014517256A (en) * 2011-03-15 2014-07-17 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Microelectromechanical system device comprising a metal proof mass and piezoelectric components

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPS61193019A (en) * 1985-02-22 1986-08-27 Yazaki Corp Oscillating gyro
JPH0238862A (en) * 1988-07-27 1990-02-08 Japan Aviation Electron Ind Ltd Angular speed meter
JPH085382A (en) * 1994-06-23 1996-01-12 Nippondenso Co Ltd Angular-velocity sensor
JPH08128833A (en) * 1994-10-28 1996-05-21 Yoshiro Tomikawa Vibration-type gyroscope
JPH08152328A (en) * 1995-07-04 1996-06-11 Nippondenso Co Ltd Angular speed sensor and its using method
WO1998019134A1 (en) * 1996-10-29 1998-05-07 Mitsui Chemicals, Inc. Vibration gyroscope
JPH10260043A (en) * 1997-03-17 1998-09-29 Toyota Motor Corp Angular velocity detecting device
JP2000136933A (en) * 1998-10-30 2000-05-16 Mitsui Chemicals Inc Vibration gyro element and vibration gyro sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPS61193019A (en) * 1985-02-22 1986-08-27 Yazaki Corp Oscillating gyro
JPH0238862A (en) * 1988-07-27 1990-02-08 Japan Aviation Electron Ind Ltd Angular speed meter
JPH085382A (en) * 1994-06-23 1996-01-12 Nippondenso Co Ltd Angular-velocity sensor
JPH08128833A (en) * 1994-10-28 1996-05-21 Yoshiro Tomikawa Vibration-type gyroscope
JPH08152328A (en) * 1995-07-04 1996-06-11 Nippondenso Co Ltd Angular speed sensor and its using method
WO1998019134A1 (en) * 1996-10-29 1998-05-07 Mitsui Chemicals, Inc. Vibration gyroscope
JPH10260043A (en) * 1997-03-17 1998-09-29 Toyota Motor Corp Angular velocity detecting device
JP2000136933A (en) * 1998-10-30 2000-05-16 Mitsui Chemicals Inc Vibration gyro element and vibration gyro sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112790A (en) * 2008-11-05 2010-05-20 Denso Corp Angular velocity detection method for vibration type angular velocity sensor
JP4645725B2 (en) * 2008-11-05 2011-03-09 株式会社デンソー Angular velocity detection method of vibration type angular velocity sensor
US8196467B2 (en) 2008-11-05 2012-06-12 Denso Corporation Angular velocity detecting method
CN102088549A (en) * 2010-11-29 2011-06-08 中国科学院西安光学精密机械研究所 Rotation-eliminated image pick-up method
JP2014517256A (en) * 2011-03-15 2014-07-17 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド Microelectromechanical system device comprising a metal proof mass and piezoelectric components
US9000656B2 (en) 2011-03-15 2015-04-07 Qualcomm Mems Technologies, Inc. Microelectromechanical system device including a metal proof mass and a piezoelectric component
JP2016138890A (en) * 2011-03-15 2016-08-04 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッドQUALCOMM MEMS Technologies, Inc. Microelectromechanical system device including metal proof mass and piezoelectric component

Similar Documents

Publication Publication Date Title
JP6190866B2 (en) MEMS gyro with quadrature reduction spring
US7004024B1 (en) Horizontal and tuning fork vibratory microgyroscope
US6860151B2 (en) Methods and systems for controlling movement within MEMS structures
JP3307906B2 (en) Micro gyroscope
JPH05312579A (en) Gyrocompass
JP2005241500A (en) Angular velocity sensor
JP3332460B2 (en) Angular velocity detection method and vibration gyro
JPH02129514A (en) Angular velocity sensor
JPH11344342A (en) Vibration gyro
JPH02218914A (en) Vibrating gyroscope
JP2003083751A (en) Angular velocity sensor
JP2006010408A (en) Vibratory gyro
JPH08327362A (en) Vibration type gyro scope
JP2869514B2 (en) 1-axis angular velocity / acceleration sensor
JPH09105637A (en) Vibrating gyro
JP2008175679A (en) Vibration gyro
JP2005098892A (en) Angular velocity sensor
JP3419999B2 (en) Angular velocity sensor
JP2007178300A (en) Tuning-fork type vibrator
JP2004301575A (en) Angular velocity sensor
Park et al. Laterally self-oscillated and force-balanced microvibratory gyroscope packaged in a vacuum package with a conditioning ASIC
JP2000213940A (en) Piezoelectric gyroscope, driving method and detecting method for piezoelectric gyroscope, and evaluating method for mechanical connection of piezoelectric gyroscope
JP3561135B2 (en) Angular velocity sensor
CN116499444A (en) Hemispherical resonant gyro mode switching method based on vibration mode active precession
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110725