JP2003080059A - Method and apparatus for treating material using reactive gas - Google Patents

Method and apparatus for treating material using reactive gas

Info

Publication number
JP2003080059A
JP2003080059A JP2001273255A JP2001273255A JP2003080059A JP 2003080059 A JP2003080059 A JP 2003080059A JP 2001273255 A JP2001273255 A JP 2001273255A JP 2001273255 A JP2001273255 A JP 2001273255A JP 2003080059 A JP2003080059 A JP 2003080059A
Authority
JP
Japan
Prior art keywords
reactive gas
voltage electrode
gas
low
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001273255A
Other languages
Japanese (ja)
Other versions
JP4904650B2 (en
Inventor
Kazunori Hake
一徳 吐合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001273255A priority Critical patent/JP4904650B2/en
Publication of JP2003080059A publication Critical patent/JP2003080059A/en
Application granted granted Critical
Publication of JP4904650B2 publication Critical patent/JP4904650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized material treating apparatus in which high energy efficiency is attained, stable discharge is obtained and the produced active oxygen species or radical species, or the like, having higher reactivity than that of ozone are effectively utilized. SOLUTION: The material treating apparatus using a reactive gas is provided with a gaseous starting material introducing part 16 provided in the prestage of a reactor 10 having a high voltage electrode 12 and a low voltage electrode 13 which are opposed to each other through a prescribed discharge space, a reactive gas take-out part 17 provided in the poststage of the reactor, a treating chamber 11 provided adjacently to the take-out part 17 and a power source for generating pulse high voltage. A material to be treated is treated by introducing the gaseous starting material so as to making the pressure in the discharge space higher than that in the take out part, applying pulse high voltage in this state to produce low temperature plasma, producing the reactive gas by the low temperature plasma and emitting the reactive gas 19 and discharge beam 20 into the treating chamber 11 to be in contact with the material to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理対象物を処
理する処理室と低温プラズマ生成部を隣接させ、圧力の
高い状態で低温プラズマを発生させることにより反応性
ガスおよび放電光を発生させこれを用いて上下水処理、
汚染水の無害化処理、有害物質処理等の処理を行う物質
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process chamber for processing an object to be processed and a low temperature plasma generating section which are adjacent to each other to generate a low temperature plasma under a high pressure to generate a reactive gas and discharge light. Using this, water and sewage treatment,
The present invention relates to a substance treatment device for decontaminating contaminated water and treating harmful substances.

【0002】[0002]

【従来の技術】従来、ガスの化学的処理、汚染水の無害
化処理、有害物質および有害廃棄物処理、表面処理を含
めた新材料開発、半導体製造プロセスにおけるレジスト
剥離や酸化膜形成などにおける反応処理および反応促進
手段として、放電プラズマ法の利用が行なわれている。
放電プラズマ法の特長として、処理後の二次生成物質、
特に有害物質を伴わないことが適用理由の一つとして挙
げられる。放電プラズマ法の利用は、放電から発生する
熱による熱プラズマ(例えばアーク放電)を利用する方
法と、高エネルギーの電子を生成し、放電による熱より
もむしろ電子と物質との衝突解離を利用する方法があ
る。特に後者は、電子温度(電子エネルギー)が高く、
ガス温度(中性粒子や各種イオンのエネルギー)の低
い、熱的非平衡放電プラズマ(以降、低温プラズマとす
る)と呼ばれ、コロナ放電やストリーマ放電、電子線照
射などにより生成される。放電プラズマ中に導入される
ガスの種類により対象分野が区別されるとともに、低温
で生じるガスのイオン化や各種ラジカルの発生によりガ
ス反応処理を促進する際の有力な手段となりうる。低温
プラズマを利用したものとしては、活性酸素種およびラ
ジカル種を発生させ利用する上下水や廃液の無害化処理
や工業的な酸化処理がある。活性酸素種の一つであるオ
ゾンは、他の活性酸素種に比べて寿命が長いことと、自
然界ではフッ素に次ぐ強酸化性を有することを特長とす
るため、様々な工業的酸化処理工程で用いられる。従来
の上下水処理の中では、例えば特開平5-319807号公報で
は液中オゾン発生器(以下、開示例1と呼ぶ)について
記載されている。図7は、反応性ガスを用いた処理装置
を示す断面図である。図において、12は高電圧電極、13
は低電圧電極、15は電源、18は原料ガス、30は被処理
水、31は中空糸膜である。以上の構成において、被処理
水30で満たされた水槽に高電圧電極12と低電圧電極13を
挿入し、前記高電圧電極と前記低電圧電極の間に中空糸
膜31を配置させ、前記中空糸膜へ原料ガス18を供給する
ことで微細気泡を発生させ、前期高電圧電極と前記低電
圧電極の間に直流、交流あるいはパルス状の高電圧を印
加することで前記微細気泡内に局部的なパルス放電を発
生させ、反応ガスであるオゾンを発生させる。上記のよ
うな構成では、発生している高密度のパルス放電に微細
気泡中の酸素が接触することにより効率よくオゾンを生
成することができるとともに、発生したオゾンは互いに
反応して元の酸素に戻ることなく直ちに液と接触するた
め水中の有機物質や悪臭成分を効率よく酸化分解するこ
とができるようになっている。同様に微細気泡内放電に
よる活性酸素種やラジカル種の生成方法として、特開200
1-9463号公報(以降、開示例2と呼ぶ)では被処理水槽
内の水に非接触状態で対向配置された電極に交流パルス
電圧を印加し、電位反転の際に誘起されて前記被処理水
槽内に発生する電場により水中放電を行なうことで活性
酸素種の生成を行っている。従来の放電プラズマによる
直接処理例としては、例えば特開2001-58184号公報(以
下、開示例3と呼ぶ)がある。図8は、他の反応性ガス
発生装置を示す断面図である。直流の電源15を用いて
アーク放電を発生させ、被処理水30を処理する。アー
ク放電中に水蒸気32を含んだガスを高速で噴射すること
でプラズマジェット33を形成し、プラズマジェット33に
よる高温(通常400〜1000℃)処理とOHラジカルによる
酸化分解処理を同時に進行させることで水中の有害物処
理を行っている。このように、放電プラズマ法を用いた
ガス発生装置およびそれを用いた処理方法は、前述の開
示例1〜3で示されるように活性酸素種およびラジカル種
を放電プラズマ法により生成し、また放電熱による高温
分解方法を併用させることで被処理対象物と反応処理を
行っている。
2. Description of the Related Art Conventionally, chemical treatment of gas, detoxification of contaminated water, treatment of harmful substances and hazardous wastes, development of new materials including surface treatment, reaction in resist stripping and oxide film formation in semiconductor manufacturing processes. The discharge plasma method is used as a treatment and reaction promoting means.
The features of the discharge plasma method are secondary products after treatment,
One of the reasons for application is that it is not accompanied by harmful substances. The use of the discharge plasma method uses a thermal plasma (for example, arc discharge) due to heat generated from the discharge, and uses a collision dissociation between an electron and a substance, rather than heat due to discharge, to generate high-energy electrons. There is a way. Especially the latter has a high electron temperature (electron energy),
It is called thermal non-equilibrium discharge plasma (hereinafter referred to as low-temperature plasma) that has a low gas temperature (energy of neutral particles and various ions), and is generated by corona discharge, streamer discharge, electron beam irradiation, and the like. The target field is distinguished by the type of gas introduced into the discharge plasma, and it can be an effective means for accelerating the gas reaction process by ionizing the gas generated at low temperature and generating various radicals. Examples of low-temperature plasma utilization include detoxification treatment of industrial wastewater and wastewater that generate and utilize active oxygen species and radical species, and industrial oxidation treatment. Ozone, which is one of the active oxygen species, has a longer life than other active oxygen species and has the strong oxidizing property next to fluorine in the natural world, so it can be used in various industrial oxidation treatment processes. Used. Among conventional water and sewage treatments, for example, Japanese Patent Application Laid-Open No. 5-319807 describes an in-liquid ozone generator (hereinafter referred to as Disclosure Example 1). FIG. 7 is a sectional view showing a processing apparatus using a reactive gas. In the figure, 12 is a high voltage electrode, 13
Is a low voltage electrode, 15 is a power source, 18 is a source gas, 30 is water to be treated, and 31 is a hollow fiber membrane. In the above configuration, the high-voltage electrode 12 and the low-voltage electrode 13 are inserted into the water tank filled with the water to be treated 30, the hollow fiber membrane 31 is arranged between the high-voltage electrode and the low-voltage electrode, and the hollow Fine gas bubbles are generated by supplying the raw material gas 18 to the thread film, and a high voltage of direct current, alternating current or pulse is applied between the high voltage electrode and the low voltage electrode in the previous period to locally generate fine air bubbles. Pulse discharge is generated, and ozone, which is a reaction gas, is generated. In the above configuration, ozone can be efficiently generated by contacting oxygen in the fine bubbles with the high-density pulse discharge that is being generated, and the generated ozone reacts with the original oxygen. Since it comes into direct contact with liquid without returning, it is possible to efficiently oxidize and decompose organic substances and malodorous components in water. Similarly, as a method for generating active oxygen species and radical species by discharge in fine bubbles, there is a method disclosed in
In Japanese Patent Laid-Open No. 1-9463 (hereinafter, referred to as Disclosure Example 2), an AC pulse voltage is applied to electrodes that are opposed to each other in a non-contact state with respect to water in a water tank to be treated, which is induced when potential is inverted and is treated as described above. Active oxygen species are generated by discharging in water by an electric field generated in a water tank. As an example of conventional direct processing using discharge plasma, there is, for example, Japanese Patent Application Laid-Open No. 2001-58184 (hereinafter referred to as disclosure example 3). FIG. 8 is a cross-sectional view showing another reactive gas generator. Arc discharge is generated using the direct current power supply 15 to treat the water 30 to be treated. By forming a plasma jet 33 by injecting a gas containing water vapor 32 at high speed during arc discharge, and by advancing the high temperature (usually 400 to 1000 ° C.) treatment by the plasma jet 33 and the oxidative decomposition treatment by OH radicals at the same time. Treatment of harmful substances in water. As described above, the gas generator using the discharge plasma method and the processing method using the same generate the active oxygen species and the radical species by the discharge plasma method as shown in the above-described disclosure examples 1 to 3, and also discharge. The high temperature decomposition method by heat is used together to perform the reaction treatment with the object to be treated.

【0003】[0003]

【発明が解決しようとする課題】ところが、前述の開示
例1では、電極が水に浸漬した状態では、生成される高酸
化性物質(オゾンやOHラジカル等)に常に曝されるた
め、電極表面が腐食される問題があり、装置の寿命の点
で問題がある。前述の開示例1および開示例2では、液体
は比誘電率の大きいキャパシタの役目を果たしてしまう
ため、電極間に投入したエネルギーの多くはジュール熱
となって液層の温度を上昇させるために使われ、分解処
理に寄与するエネルギー効率の低下を招いていた。処理
域を拡大するために電極間の距離を大きくすると、電源
の大容量化ならびに大型化が必要となる。また、微細気
泡内の放電であるため、処理規模が制限されることがあ
り、広域的な処理を行うことが難しかった。前述の開示
例3では、アーク放電によるプラズマジェットを使用す
るため、アーク放電による電極消耗が激しく、長期に渡
って安定した処理効率を得ることが難しかった。熱プラ
ズマを利用した高温処理を併用しているため、活性酸素
種やラジカル種等の反応性ガスの分解を招き、前記反応
性ガスの利用率の低下を招いていた。また、投入された
エネルギーの大半は熱として放出され、その多くは液層
の温度を上げるために使用されていた。そこで、本発明
は上記の点を考慮してなされたもので、小型でエネルギ
ー効率が高く、安定した放電が得られ、かつ、生成され
る活性酸素種やラジカル種等をオゾン処理以外の処理に
有効利用できる反応性ガスを用いた物質処理装置を提供
することを目的とする。
However, in the above-mentioned disclosure example 1, when the electrode is immersed in water, the electrode surface is constantly exposed to the highly oxidizable substance (such as ozone and OH radicals) generated. However, there is a problem in terms of the life of the device. In Disclosure Example 1 and Disclosure Example 2 described above, since the liquid plays the role of a capacitor having a large relative dielectric constant, most of the energy input between the electrodes becomes Joule heat and is used to raise the temperature of the liquid layer. That is, the energy efficiency that contributes to the decomposition process is lowered. When the distance between the electrodes is increased to expand the processing area, it is necessary to increase the capacity and size of the power supply. Further, since the discharge is in the fine bubbles, the treatment scale may be limited, and it is difficult to perform the treatment over a wide area. In the above-mentioned disclosure example 3, since the plasma jet by arc discharge is used, the electrode is consumed much by arc discharge, and it is difficult to obtain stable treatment efficiency for a long period of time. Since the high temperature treatment using the thermal plasma is also used, the reactive gas such as the active oxygen species and the radical species is decomposed and the utilization rate of the reactive gas is lowered. Most of the energy input is released as heat, and most of it was used to raise the temperature of the liquid layer. Therefore, the present invention has been made in consideration of the above points, and is small in size, high in energy efficiency, stable discharge is obtained, and generated active oxygen species and radical species are used for treatments other than ozone treatment. It is an object of the present invention to provide a substance processing apparatus that uses a reactive gas that can be effectively used.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明の反応性ガスを用いた物質処理装置は、つぎ
のように構成している。 (1) 高電圧電極と低電圧電極とを所定の放電空間を介
して対向させた反応器と、高電圧の電源とを備え、前記
放電空間に原料ガスを導入して前記高電圧電極に高電圧
を印加し、発生したプラズマにより前記原料ガスを反応
性ガスにし、この反応性ガスを被処理対象物に接触させ
て処理する反応性ガスを用いた物質処理装置において、
前記反応器の前段に設けた前記原料ガスの導入部と、前
記反応器の後段に設けた前記反応性ガスの取出部と、前
記取出部に隣接して設けた前記被処理対象物を処理する
処理室とを備え、前記放電空間の圧力が前記取出部の圧
力よりも高くなるように前記原料ガスを導入し、この状
態でパルス高電圧を印加して低温プラズマを発生させ、
前記反応性ガスと放電光とを前記取出部から前記処理室
に噴射する構成である。低温プラズマ部の圧力を取出部
後段の雰囲気圧力よりも高くすることにより、高密度の
反応性ガスを供給できるとともに、低温プラズマにより
発生する放電光を同時に被処理対象物に照射できるた
め、化学反応と光化学反応の複合した促進反応により効
率の良い処理が可能となる。また、処理室が反応性ガス
の取出部に隣接しているため、反応性ガスの被処理対象
物と接触するまでの時間を短くすることができ、寿命の
長い活性酸素種等を失活させることなく効率よく処理に
利用することができる。 (2)前記高電圧電極および前記低電圧電極の少なくと
も一方は、複数の孔を有するものである。また、前記複
数の孔を有する低電圧電極を、前記反応性ガスの取出部
近傍に設けている。複数の孔設けることにをにより、低
温プラズマより発する放電光を無理なく処理室へ導くこ
とができる。また、孔の大きさや単位面積当たりの数に
より低温プラズマを発生させる放電空間の圧力を調整す
ることができる。 (3)前記低電圧電極は、板状にして前記原料ガスの流
れ方向と直角に配置して、前記原料ガスが当たるように
し、かつ原料ガスの圧力に応じて可動する可動手段が付
設されている。取出部近傍に設けた電極を可動構造にす
ることにより、原料ガスの流れと逆向きに押さえつける
強度により生成される反応性ガスのガス密度を容易に調
整することができる。さらに、原料ガスの流れ方向に対
して、反応性ガスを放射状に供給することができる。ま
た、原料ガスの流れに異常が発生した場合の安全弁の役
目も果たすこともできる。 (4)前記反応性ガスの取出部に前記原料ガスの導入部
よりも小さい断面積を有するノズル部を設けて低電圧電
極とし、前記ノズル部の空間部に前記ノズル部内径より
小さい前記高電圧電極を設け、前記ノズル部と前記高電
圧電極との空隙から前記反応性ガスを前記取出部へ噴出
させる構造である。取出部をノズル形状とすることによ
り、放電空間は取出部後段の微小な圧力変動に影響され
ず安定した圧力を保持できる。また、反応性ガスを高速
噴出させるため、被処理対象物との高い溶解効率を得る
ことができるとともに、反応性ガスが指向性を有するた
め部分的な局所処理も可能となる。 (5)前記高電圧電極の先端部に空隙を介して第2の低
電圧電極を設け、さらに前記第2の低電圧電極の前記取
出部側に前記放電光の波長を選択する光透過窓を設けて
いる。反応性ガスの発生部と放電光の発生部を分離する
ことで、前記放電光を発生させるための低温プラズマ部
のガスを前記反応性ガスの発生に使用する原料ガスと異
なるガス種を導入することが可能となり、反応性ガスに
より誘起されるラジカル反応に加えて光化学反応を効果
的に利用することができる。光透過窓を設けることで、
放電光発生部への処理物質のリークを防ぐことができ、
前記放電光発生部のガス圧力を低く抑えた状態で使用す
ることができる。また、発生させる反応性ガスの種類に
より光透過の窓材質を変えることで有効に作用する波長
を選択して光化学反応に使用することができる。 (6)前記原料ガスは空気または酸素であり、前記反応
性ガスは酸素原子(O)や励起酸素分子(O2*)、オゾン
(O3)、ヒドロキシラジカル(OH)等の活性酸素種とラ
ジカル種としている。原料ガスおよび反応性ガスを特定
することにより、オゾンよりも反応性の高い活性酸素種
を有効に利用できる。
In order to solve the above problems, the substance treating apparatus using the reactive gas of the present invention is constructed as follows. (1) A reactor in which a high-voltage electrode and a low-voltage electrode are opposed to each other through a predetermined discharge space, and a high-voltage power source are provided, and a source gas is introduced into the discharge space to increase the high-voltage electrode. In the substance processing apparatus using a reactive gas, which applies a voltage and makes the raw material gas a reactive gas by the generated plasma, and brings the reactive gas into contact with an object to be processed,
Introducing the raw material gas provided in the preceding stage of the reactor, taking out the reactive gas provided in the latter stage of the reactor, and treating the object to be treated provided adjacent to the taking out unit A process chamber, the raw material gas is introduced so that the pressure of the discharge space is higher than the pressure of the extraction portion, and in this state, pulse high voltage is applied to generate low temperature plasma,
The reactive gas and the discharge light are ejected from the extraction section into the processing chamber. By making the pressure of the low temperature plasma part higher than the atmospheric pressure in the latter part of the extraction part, it is possible to supply a high density reactive gas and to simultaneously irradiate the object to be treated with the discharge light generated by the low temperature plasma. Efficient treatment is possible due to the combined accelerated reaction of photochemical reaction and Further, since the processing chamber is adjacent to the reactive gas extraction part, the time until the reactive gas comes into contact with the object to be processed can be shortened, and active oxygen species having a long life are deactivated. It can be efficiently used for processing. (2) At least one of the high-voltage electrode and the low-voltage electrode has a plurality of holes. Further, a low voltage electrode having the plurality of holes is provided in the vicinity of the reactive gas extraction portion. By providing a plurality of holes, discharge light emitted from low temperature plasma can be reasonably guided to the processing chamber. Further, the pressure of the discharge space for generating the low-temperature plasma can be adjusted by the size of the holes and the number per unit area. (3) The low-voltage electrode is formed in a plate shape and is disposed at a right angle to the flow direction of the raw material gas so that the raw material gas hits it, and a movable means is attached to move the low voltage electrode according to the pressure of the raw material gas. There is. By making the electrode provided in the vicinity of the extraction portion a movable structure, the gas density of the reactive gas generated by the strength of pressing in the opposite direction to the flow of the raw material gas can be easily adjusted. Furthermore, the reactive gas can be radially supplied in the flow direction of the source gas. Further, it can also serve as a safety valve when an abnormality occurs in the flow of the raw material gas. (4) A low voltage electrode is provided by providing a nozzle portion having a smaller cross-sectional area than the introduction portion of the raw material gas at the extraction portion of the reactive gas, and the high voltage smaller than the inner diameter of the nozzle portion in the space portion of the nozzle portion. An electrode is provided, and the reactive gas is ejected from the gap between the nozzle portion and the high voltage electrode to the extraction portion. By forming the ejection portion in the shape of a nozzle, the discharge space can maintain a stable pressure without being affected by minute pressure fluctuations in the subsequent stage of the ejection portion. Further, since the reactive gas is ejected at a high speed, a high dissolution efficiency with the object to be treated can be obtained, and since the reactive gas has directivity, partial local treatment is also possible. (5) A second low-voltage electrode is provided at the tip of the high-voltage electrode via an air gap, and a light transmission window for selecting the wavelength of the discharge light is provided on the extraction side of the second low-voltage electrode. It is provided. By separating the generation part of the reactive gas and the generation part of the discharge light, a gas species of the low temperature plasma part for generating the discharge light different from the raw material gas used for the generation of the reactive gas is introduced. This makes it possible to effectively utilize the photochemical reaction in addition to the radical reaction induced by the reactive gas. By providing a light transmission window,
It is possible to prevent the processing substance from leaking to the discharge light generation part,
It can be used in a state in which the gas pressure of the discharge light generating section is kept low. Also, by changing the material of the light-transmitting window depending on the type of the reactive gas to be generated, it is possible to select a wavelength that works effectively and use it for the photochemical reaction. (6) The source gas is air or oxygen, and the reactive gas is an active oxygen species such as oxygen atom (O), excited oxygen molecule (O 2 *), ozone (O 3 ), and hydroxy radical (OH). It is a radical species. By specifying the source gas and the reactive gas, active oxygen species having higher reactivity than ozone can be effectively used.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1から図6は本発明の反応性ガスを用
いた物質処理装置の断面図である。図において、共通す
る部分には同一符号を用いてあり、10は反応器、11は処
理室、12は高電圧電極、13は低電圧電極、13aは第1の
低電圧電極、13bは第2の低電圧電極、14aおよび14bは
誘電体、16はガスの導入部、17はガスの取出部、18は原
料ガス、19は生成された反応性ガス、20は発生した放電
光、21は低温プラズマ、21 aは第1の低温プラズマ、21
bは第2の低温プラズマ、24はノズル部、25は光透過
窓、26は放電光発生部である。次に、本装置の動作に
ついて図1を参照しながら説明する。被処理対象物の配
置されている処理室11よりも高い圧力下にて原料ガス18
を導入部16を介して反応器10内部へ導入すると、反応性
ガス19の取出部17と前記処理室との境界付近でガスの流
れが妨げられるため、前記反応器内部は前記処理室より
も高い圧力が発生する。この状態の下、前記取出部近傍
に配置された高電圧電極12と低電圧電極13の間に電源15
よりパルス高電圧を印加すると、ガス圧力の増加に伴い
中性粒子密度が増加することにより高気圧放電が形成さ
れ、高密度の低温プラズマ21が発生する。高密度の前記
低温プラズマにより活性酸素種やラジカル種を含んだ高
密度な前記反応性ガスが発生する。同時に、前記低電圧
電極をメッシュ状の電極構造にしているため、前記低温
プラズマにより発生する放電光20が前記反応性ガスと同
時に前記取出部より照射される。前記反応性ガスは前記
取出部付近と隣接する前記処理室の圧力差を利用して前
記処理室へ直ちに送り込まれ被処理対象物と接触し化学
反応処理が行われるとともに、放電光による光化学反応
処理が行なわれる。 (第1実施例)図1は、本発明の第1実施例を示す反応
性ガスを用いた物質処理装置の断面図である。反応性ガ
ス19の取出部17の近傍に高電圧電極12と低電圧電極13を
所定のギャップ長を介して対向配置している。低電圧電
極13の表面は、平滑面ではなく凹凸面としている。凹凸
面により、突起の先端部で強電界場を形成することがで
き、高エネルギーの電子を生成することができるととも
に、低温プラズマ21の発生部の圧力上昇に伴い高密度状
態での放電発生を比較的容易にすることができる。ま
た、低電圧電極を多数の孔を有する構造とすることで反
応性ガスとともに低温プラズマより発生する放電光20を
処理室11へ照射することができる。また、反応性ガスの
生成部と被処理対象物が配置された処理室を隣接するこ
とで、比較的寿命の長い活性酸素種ならびにラジカル種
を化学反応処理に有効に利用することが可能となる。ま
た、生成した反応性ガスの利用率を向上することができ
る。 (第2実施例)図2は、本発明の第2実施例を示す反応
性ガスを用いた物質処理装置の断面図である。反応器10
の内部に誘電体14aで被覆された多数の孔を有する高電
圧電極12と、誘電体14bで覆われた多数の孔を有する低
電圧電極13を対向配置し、取出部17の近傍に設けてい
る。両電極ともに多数の孔を有する構造としたことで、
無理なく反応性ガスと放電光を処理室へ導くことができ
る。孔の大きさ、形、単位面積当たりの数を調整するこ
とで低温プラズマが発生する放電空間内の圧力を調整す
ることができるため、複雑なノズル形状を必要としな
い。高電圧電極を平滑面ではなく凹凸面としたことによ
り突起の先端部で強電界場を形成することができ、高密
度状態での放電の発生を比較的容易にする効果がある。
また、両電極表面を誘電体で被覆したため、放電による
スパッタや反応性ガスと放電光による腐食を緩和するこ
とができるとともに、メンテナンス性も向上し、放電く
ずのないクリーンな反応性ガスを供給することができ
る。 (第3実施例)図3は、本発明の第3実施例を示す反応
性ガスを用いた物質処理装置の断面図、図4は要部の拡
大断面図である。反応器10内部の中心軸上に誘電体14a
で被覆された多数の孔を有する高電圧電極12を配置し、
誘電体14bで被覆された低電圧電極13をスプリング22で
高電圧電極12に平行に押さえつけられるように配置され
ている。低電圧電極13は可動することができるため、ス
プリング22の強度により生成される反応性ガス19のガス
密度を容易に調整することができるとともに、原料ガス
の流れ方向に対して放射状に反応性ガス19を供給するこ
とができる。また、反応性ガス19の圧力が低下した場合
には取出部17が閉じられるため安全弁としての役目も果
たすことができる。高電圧電極を平滑面ではなく凹凸面
としたことにより突起の先端部で強電界場を形成するこ
とができ、高密度状態での放電の発生を比較的容易にす
る効果がある。また、両電極を誘電体で被覆することに
より放電によるスパッタや反応性ガスによる電極表面の
劣化を抑制する効果がある。 (第4実施例)図5は、本発明の第4実施例を示す反応
性ガスを用いた物質処理装置の断面図、図6は、図5要
部の拡大断面図である。反応性ガス19の取出部17にノズ
ル部24を設け、ノズル部24の近傍に高電圧電極12と第1
の低電圧電極13aを所定のギャップ長を介して対向配置
し、ノズル部24の近傍の中心部近傍に高電圧電極12と第
2の低電圧電極13bを対向配置し、表面に光透過窓25を
設けている。高電圧電極12と第1の低電圧電極13aによ
り第1の低温プラズマ21aならびに第2の低温プラズマ2
1bを形成するためのガスを生成する反応性ガスの種類に
応じて変更することで、光化学反応に適した波長を有す
る放電光20を照射できるとともに、反応性ガス19による
化学反応と放電光20による光化学反応のバランスを容易
に調整することができる。また、取出部17をノズル構
造としたことでガスの流れにストレスを与えることなく
滑らかなガス流を得ることができ、反応性ガス19の安定
した供給を行うことができる。また、ノズル部17では
反応性ガス19が高速噴射すると同時に放電光20が照射さ
れるため、局部的な処理も行うことが可能となる。図1か
ら図6に示される反応性ガスを用いた物質処理装置は、
反応性ガス19による化学反応処理と放電光20による光化
学反応処理の併用による促進効果が現れる。例えば、原
料ガス18が酸素で被処理対象物またはその雰囲気が液層
もしくは水溶媒である場合は、反応性ガスであるオゾン
(O3)による酸化反応が発生すると同時に、放電光の紫
外成分により反応性の非常に高いOHラジカルが生成され
る。ここで、O*は励起酸素原子であり、O2 *は励起酸素
分子であり、オゾンと同じ活性酸素種の一つである。ま
た、OHラジカルを被処理対象物の近傍で発生させる構造
を有するため、オゾンによる効果とラジカル種による効
果を併用することができ、反応処理の促進効果が得られ
る。また、低温プラズマ21,21aにより発生する寿命の短
いラジカル種を含んだ反応性ガスは寿命が短いが、放電
光の照射により反応性ガスの失活を緩和することができ
る。高電圧電極12および低電圧電極13,13a,13bは、低温
プラズマ21,21a,21bの発生部において適度のギャップ長
で保持されかつ平行に配置されるものとし、誘電体14a
および14bは電極の腐食防止や放電の安定性向上等を目
的とする場合は、実施例の有無に関係なく使用してもよ
い。高電圧電極12および低電圧電極13,13a,13bの低温プ
ラズマ21,21a,21bの発生部の形状は、平面状、突起状お
よび孔を有する形状のいずれの組み合わせを行うことが
でき、突起形状は溝切り凹凸形状、らせん突起形状、同
心円突起形状、ワイヤ等の電極表面に凹凸形状を構成で
きるものを配置した形状、ワイヤおよびロッド形状、針
形状等であり、孔を有する形状はメッシュ形状やパンチ
メタル形状等であり、いずれの形状も不平等電界場を形
成できる構造であればよく、本発明の要旨を逸脱しない
範囲の形状であればその形状は問わない。高電圧電極12
および低電圧電極13に多数の孔を設ける場合は、原料ガ
ス18と接する導入部16側の電極の孔の大きさを、取出
部17に接する側の電極の孔の大きさよりも大きくする
か、または単位面積当たりの数を多くする。これによ
り、低温プラズマ21発生部の圧力を高くすることができ
るとともに、原料ガスと接する電極による圧力影響を少
なくすることができる。また、原料ガスの導入部16の入
口および取出部の数は1ヶ所である必要はなく、低温プ
ラズマ発生部において大気圧以上もしくは被処理対象物
の雰囲気圧力以上の圧力を形成できる構造であればその
形状は問わない。ノズル部24を用いる場合は、反応器10
の内部は導入部16から反応性ガス19の取出部17に向かい
原料ガス18の流れ方向に対して垂直方向の断面積が小さ
くなる構造、もしくは通気路全体が加圧される構造とし
てもよい。また、ノズル部24の有無によらず、導入部16
および取出部17の数は1ヶ所である必要はなく、低温プ
ラズマ21、21aの発生部において大気圧以上もしくは被
処理対象物の雰囲気圧力以上の圧力を形成できる構造で
あればその形状は問わない。生成される反応性ガス19の
性質により、高電圧電極12および低電圧電極13に冷却構
造を設けることで、低温プラズマ21、21a発生部および
被処理対象物との反応処理が行われるまでの部分で発生
する反応性ガスの熱的分解や、高密度状態の低温プラズ
マにより発生された反応性ガスの温度上昇に伴う爆発等
の抑制、および反応性ガスの生成効率の改善を行うこと
ができる。反応性ガス19の取出部17は、被処理対象物の
反応器10内部への逆流防止機構を備えた構造を付加して
もよい。高電圧電極12および低電圧電極13,13a,13bは絶
縁構造や反応器10の使用雰囲気、ならびに低温プラズマ2
1,21a,21bの特性により高電圧部と低電圧部を入れ替え
た構造としてもよい。前述の実施例4における低温プラ
ズマ21aおよび21bは別電源にて発生させることもでき、
低温プラズマ21bは原料ガス18と同一のガスを用いず必
要とする放電光20の波長によって異なるガスを選択して
もよい。また、光透過窓24の材質により発生する前記放
電光の波長を選択してもよく、ガス圧力を低くした状態
にしてもよい。図1〜図6の反応性ガスを用いた物質処
理装置に電源15より印加されるパルス高電圧は、いずれ
の場合も単極性または両極性のパルス高電圧を使用する
ことができる。原料ガス18は空気や酸素等の酸素を含有
した気体であればよく、効率よく活性酸素種やラジカル
種を生成させるためには酸素を使用するのが好ましい。
反応性の高いOHラジカルを処理反応に効率よく寄与させ
る目的で、原料ガス中に霧状の水(H2O)もしくは飽和
水蒸気に比例した水分を含ませてもよい。また、処理室
11を反応器10内に配置してもよく、被処理対象物を原料
ガスと同時に霧状にして反応器へ導入してもよい。な
お、本発明は前述の実施例に記載された活性酸素種、ラ
ジカル種を含めた反応性ガスの生成のみに限定されるも
のではなく、例えば排ガス(NO分解)やダイオキシン等
の有害物質処理に用いる反応器、半導体プロセスの酸化
処理工程、表面加工処理、食品加工や病院等で用いられ
る殺菌・滅菌処理等、その他本発明の要旨を逸脱しない
範囲のガス発生装置およびその発生方法の応用分野にも
適用され、また種々の変更を加え得ることはむろんであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 are cross-sectional views of a substance processing apparatus using a reactive gas according to the present invention. In the figure, the same reference numerals are used for common parts, 10 is a reactor, 11 is a processing chamber, 12 is a high voltage electrode, 13 is a low voltage electrode, 13a is a first low voltage electrode, and 13b is a second electrode. Low voltage electrodes, 14a and 14b are dielectrics, 16 is a gas inlet, 17 is a gas outlet, 18 is a source gas, 19 is a reactive gas generated, 20 is discharge light generated, 21 is low temperature Plasma, 21 a is the first low temperature plasma, 21 a
Reference numeral b is the second low temperature plasma, 24 is a nozzle portion, 25 is a light transmitting window, and 26 is a discharge light generating portion. Next, the operation of this device will be described with reference to FIG. Under the pressure higher than the processing chamber 11 in which the object to be processed is placed, the raw material gas 18
Is introduced into the reactor 10 through the introduction part 16, the flow of gas is blocked near the boundary between the take-out part 17 of the reactive gas 19 and the processing chamber, so that the inside of the reactor is more than the processing chamber. High pressure is generated. Under this condition, a power supply 15 is provided between the high voltage electrode 12 and the low voltage electrode 13 arranged near the extraction part.
When a higher pulse voltage is applied, the density of neutral particles increases as the gas pressure increases, so that a high-pressure discharge is formed and a high-temperature low-temperature plasma 21 is generated. The high-density low-temperature plasma generates the high-density reactive gas containing active oxygen species and radical species. At the same time, since the low-voltage electrode has a mesh-shaped electrode structure, the discharge light 20 generated by the low-temperature plasma is emitted from the extraction part at the same time as the reactive gas. The reactive gas is immediately sent to the processing chamber by utilizing the pressure difference between the processing chamber adjacent to the take-out portion and is immediately contacted with an object to be processed for chemical reaction processing, and photochemical reaction processing by discharge light. Is performed. (First Embodiment) FIG. 1 is a sectional view of a substance processing apparatus using a reactive gas according to a first embodiment of the present invention. A high-voltage electrode 12 and a low-voltage electrode 13 are arranged in the vicinity of the extraction portion 17 for the reactive gas 19 so as to face each other with a predetermined gap length. The surface of the low voltage electrode 13 is not a smooth surface but an uneven surface. Due to the uneven surface, a strong electric field can be formed at the tips of the protrusions, high-energy electrons can be generated, and discharge generation in a high-density state can be generated as the pressure of the low-temperature plasma 21 generation portion rises. Can be made relatively easy. Further, by forming the low-voltage electrode having a structure having a large number of holes, it is possible to irradiate the processing chamber 11 with the discharge light 20 generated from the low temperature plasma together with the reactive gas. Further, by adjoining the reactive gas generating part and the processing chamber in which the object to be processed is disposed, it becomes possible to effectively utilize the active oxygen species and radical species having a relatively long life in the chemical reaction treatment. . In addition, the utilization rate of the generated reactive gas can be improved. (Second Embodiment) FIG. 2 is a sectional view of a material processing apparatus using a reactive gas according to a second embodiment of the present invention. Reactor 10
A high-voltage electrode 12 having a large number of holes covered with a dielectric 14a and a low-voltage electrode 13 having a large number of holes covered with a dielectric 14b are arranged to face each other, and are provided in the vicinity of the extraction portion 17. There is. Since both electrodes have a structure with many holes,
It is possible to guide the reactive gas and the discharge light to the processing chamber without difficulty. Since the pressure in the discharge space where the low temperature plasma is generated can be adjusted by adjusting the size, shape, and number of holes per unit area, a complicated nozzle shape is not required. By forming the high-voltage electrode to have an uneven surface instead of a smooth surface, a strong electric field can be formed at the tips of the protrusions, which has the effect of making discharge generation in a high-density state relatively easy.
In addition, since the surfaces of both electrodes are covered with a dielectric, it is possible to mitigate sputtering due to discharge and reactive gas and corrosion due to discharge light, improve maintainability, and supply clean reactive gas with no discharge debris. be able to. (Third Embodiment) FIG. 3 is a sectional view of a substance processing apparatus using a reactive gas showing a third embodiment of the present invention, and FIG. 4 is an enlarged sectional view of an essential part. Dielectric 14a on the central axis inside the reactor 10
Disposing a high voltage electrode 12 having a large number of holes coated with
The low voltage electrode 13 covered with the dielectric 14b is arranged so as to be pressed by the spring 22 in parallel with the high voltage electrode 12. Since the low-voltage electrode 13 can be moved, the gas density of the reactive gas 19 generated by the strength of the spring 22 can be easily adjusted, and the reactive gas can be radially generated in the flow direction of the source gas. 19 can be supplied. Further, when the pressure of the reactive gas 19 decreases, the take-out portion 17 is closed, so that it can also serve as a safety valve. By forming the high-voltage electrode to have an uneven surface instead of a smooth surface, a strong electric field can be formed at the tips of the protrusions, which has the effect of making discharge generation in a high-density state relatively easy. Further, by covering both electrodes with a dielectric, there is an effect of suppressing the sputtering due to discharge and the deterioration of the electrode surface due to the reactive gas. (Fourth Embodiment) FIG. 5 is a cross-sectional view of a material processing apparatus using a reactive gas showing a fourth embodiment of the present invention, and FIG. 6 is an enlarged cross-sectional view of the main part of FIG. A nozzle portion 24 is provided at the take-out portion 17 of the reactive gas 19, and the high voltage electrode 12 and the first portion are provided near the nozzle portion 24.
Low-voltage electrodes 13a are arranged to face each other through a predetermined gap length, the high-voltage electrode 12 and the second low-voltage electrode 13b are arranged to face each other near the center of the nozzle portion 24, and the light transmission window 25 Is provided. The high-voltage electrode 12 and the first low-voltage electrode 13a allow the first low-temperature plasma 21a and the second low-temperature plasma 2
By changing according to the type of the reactive gas that generates the gas for forming 1b, it is possible to irradiate the discharge light 20 having a wavelength suitable for the photochemical reaction, and the chemical reaction by the reactive gas 19 and the discharge light 20. It is possible to easily adjust the balance of the photochemical reaction due to. Further, since the take-out portion 17 has a nozzle structure, a smooth gas flow can be obtained without giving stress to the gas flow, and the reactive gas 19 can be stably supplied. Further, since the reactive gas 19 is jetted at a high speed at the nozzle portion 17 and the discharge light 20 is irradiated at the same time, it is possible to perform local processing. The substance processing apparatus using the reactive gas shown in FIG. 1 to FIG.
An acceleration effect appears by the combined use of the chemical reaction treatment with the reactive gas 19 and the photochemical reaction treatment with the discharge light 20. For example, when the source gas 18 is oxygen and the object to be treated or its atmosphere is a liquid layer or a water solvent, an oxidation reaction due to ozone (O 3 ) which is a reactive gas occurs, and at the same time, due to the ultraviolet component of the discharge light. Very reactive OH radicals are generated. Here, O * is an excited oxygen atom and O 2 * is an excited oxygen molecule, which is one of the same active oxygen species as ozone. Further, since it has a structure in which OH radicals are generated in the vicinity of the object to be treated, the effect of ozone and the effect of radical species can be used together, and the effect of promoting the reaction treatment can be obtained. Further, the reactive gas containing the radical species having a short life generated by the low temperature plasmas 21 and 21a has a short life, but the deactivation of the reactive gas can be alleviated by the irradiation of the discharge light. The high-voltage electrode 12 and the low-voltage electrodes 13, 13a, 13b are held with an appropriate gap length in the generation part of the low-temperature plasma 21, 21a, 21b and are arranged in parallel, and the dielectric 14a
For the purpose of preventing corrosion of the electrodes and improving the stability of discharge, the electrodes 14b and 14b may be used regardless of the presence or absence of the embodiment. The shape of the low-temperature plasma 21, 21a, 21b generation portion of the high-voltage electrode 12 and the low-voltage electrode 13, 13a, 13b can be any combination of a flat shape, a protrusion shape and a shape having a hole. Is a groove-cutting irregular shape, a spiral protrusion shape, a concentric circular protrusion shape, a shape in which irregularities can be formed on the electrode surface such as a wire, a wire and rod shape, a needle shape, etc., and a shape having holes is a mesh shape or Any shape such as punch metal shape may be used as long as it can form an unequal electric field, and any shape may be used as long as it does not depart from the scope of the present invention. High voltage electrode 12
When a large number of holes are provided in the low-voltage electrode 13, the size of the hole of the electrode on the side of the introduction part 16 that contacts the source gas 18 is made larger than the size of the hole of the electrode on the side that contacts the extraction part 17, Alternatively, increase the number per unit area. This makes it possible to increase the pressure in the low temperature plasma 21 generating portion and reduce the influence of pressure by the electrode in contact with the raw material gas. Further, the number of inlets and outlets of the introduction part 16 of the source gas does not have to be one, as long as it is a structure capable of forming a pressure in the low-temperature plasma generation part that is equal to or higher than atmospheric pressure or equal to or higher than the atmospheric pressure of the object to be processed. The shape does not matter. When using the nozzle unit 24, the reactor 10
The inside may have a structure in which the cross-sectional area in the direction perpendicular to the flow direction of the raw material gas 18 decreases from the introduction part 16 to the extraction part 17 of the reactive gas 19, or the entire ventilation passage is pressurized. Further, regardless of the presence or absence of the nozzle portion 24, the introduction portion 16
Also, the number of extraction parts 17 does not have to be one, and the shape thereof does not matter as long as it is a structure capable of forming a pressure of atmospheric pressure or more or atmospheric pressure of the object to be processed in the generation part of the low temperature plasmas 21 and 21a. . Due to the nature of the reactive gas 19 generated, by providing a cooling structure to the high-voltage electrode 12 and the low-voltage electrode 13, the low-temperature plasma 21, 21a generation portion and the portion until the reaction processing with the object to be processed is performed. It is possible to suppress the thermal decomposition of the reactive gas generated in the above step, to suppress the explosion and the like due to the temperature rise of the reactive gas generated by the low-temperature plasma in the high density state, and to improve the generation efficiency of the reactive gas. The extraction part 17 of the reactive gas 19 may be added with a structure having a mechanism for preventing the back flow of the object to be processed into the reactor 10. The high-voltage electrode 12 and the low-voltage electrodes 13, 13a, and 13b are insulated structures, the atmosphere in which the reactor 10 is used, and the low-temperature plasma 2
Depending on the characteristics of 1, 21a and 21b, the high voltage part and the low voltage part may be replaced with each other. The low temperature plasmas 21a and 21b in the fourth embodiment described above can also be generated by separate power sources,
As the low temperature plasma 21b, the same gas as the raw material gas 18 may not be used and a different gas may be selected depending on the wavelength of the discharge light 20 required. The wavelength of the discharge light generated depending on the material of the light transmission window 24 may be selected, or the gas pressure may be lowered. As the pulse high voltage applied from the power source 15 to the material processing apparatus using the reactive gas shown in FIGS. 1 to 6, a unipolar or bipolar pulse high voltage can be used in any case. The raw material gas 18 may be a gas containing oxygen such as air or oxygen, and it is preferable to use oxygen in order to efficiently generate active oxygen species and radical species.
For the purpose of efficiently contributing highly reactive OH radicals to the treatment reaction, atomized water (H 2 O) or water in proportion to saturated steam may be contained in the raw material gas. Also, the processing room
11 may be arranged in the reactor 10, and the object to be treated may be atomized simultaneously with the raw material gas and introduced into the reactor. The present invention is not limited to the production of reactive gases including the active oxygen species and radical species described in the above-mentioned examples, and for example, in the treatment of harmful substances such as exhaust gas (NO decomposition) and dioxins. Reactor used, oxidation process of semiconductor process, surface treatment, sterilization / sterilization treatment used in food processing, hospitals, etc., and other application fields of gas generators and generation methods thereof within the scope of the present invention Is also applicable, and various changes can be made.

【0006】[0006]

【発明の効果】以上述べたように、本発明の反応性ガス
を用いた物質処理装置によれば、つぎの効果がある。 (1)放電空間の圧力が取出部の圧力よりも高くなるよう
に原料ガスを導入し、この状態でパルス高電圧を印加し
て低温プラズマを発生させ、反応性ガスと放電光とを処
理室に噴射させているので、高密度の反応性ガスを供給
できるとともに、低温プラズマにより発生する放電光を
同時に被処理対象物に照射できる。このため、化学反応
と光化学反応が複合した効率の良い処理ができる。ま
た、処理室が反応性ガスの取出部に隣接しているため、
反応性ガスの被処理対象物への到達時間を短縮でき、活
性酸素種等を効率よく利用できる。 (2)高電圧電極および低電圧電極の少なくとも一方
は、複数の孔を有し、反応性ガスの取出部近傍に設けて
いるので、低温プラズマより発する放電光を無理なく処
理室へ導くことができる。 (4)板形状の低電圧電極を原料ガスの流れ方向と直角
に配置して、原料ガスが当たるようにし、かつ原料ガス
の圧力に応じて可動する可動手段が付設されているの
で、反応性ガスのガス密度を調整することができる。 (5)反応性ガスの取出部にノズル部を設けて低電圧電
極とし、このノズル部の空間部に高電圧電極を設け、高
電圧電極の先端部に空隙を介して第2の低電圧電極を設
け、さらに第2の低電圧電極に放電光の波長を選択する
光透過窓を設けたので、放電光発生用のガスは、原料ガ
スと異なるガス種を導入することが可能となり、光化学
反応に必要な波長を選択して得ることができる。また光
透過窓材を使用することで波長の選択性を向上すること
ができる。 (6)原料ガスおよび反応性ガスを特定したので、オゾ
ンよりも反応性の高い活性酸素種を有効に利用できる。
As described above, the substance processing apparatus using the reactive gas of the present invention has the following effects. (1) The raw material gas is introduced so that the pressure of the discharge space becomes higher than the pressure of the extraction part, and in this state, pulse high voltage is applied to generate low temperature plasma, and the reactive gas and the discharge light are treated in the processing chamber. Since it is sprayed onto the substrate, it is possible to supply a high-density reactive gas and simultaneously irradiate the object to be treated with discharge light generated by low-temperature plasma. For this reason, it is possible to perform efficient processing in which a chemical reaction and a photochemical reaction are combined. In addition, since the processing chamber is adjacent to the reactive gas outlet,
The time required for the reactive gas to reach the object to be treated can be shortened, and active oxygen species and the like can be efficiently used. (2) Since at least one of the high-voltage electrode and the low-voltage electrode has a plurality of holes and is provided in the vicinity of the reactive gas extraction portion, it is possible to reasonably guide the discharge light emitted from the low-temperature plasma to the processing chamber. it can. (4) The plate-shaped low-voltage electrode is placed at right angles to the flow direction of the raw material gas so that the raw material gas hits it, and the movable means that moves according to the pressure of the raw material gas is attached, so that the reactivity is improved. The gas density of the gas can be adjusted. (5) A low voltage electrode is provided by providing a nozzle portion at the reactive gas extraction portion, a high voltage electrode is provided in the space of this nozzle portion, and a second low voltage electrode is provided at the tip of the high voltage electrode via a gap. Since a light transmission window for selecting the wavelength of the discharge light is provided in the second low-voltage electrode, it is possible to introduce a gas species different from the raw material gas into the gas for generating the discharge light. Can be obtained by selecting the required wavelength. Further, by using the light transmitting window material, the wavelength selectivity can be improved. (6) Since the raw material gas and the reactive gas are specified, the active oxygen species having higher reactivity than ozone can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す反応性ガスを用いた
物質処理装置の断面図である。
FIG. 1 is a sectional view of a substance processing apparatus using a reactive gas according to a first embodiment of the present invention.

【図2】本発明の第2実施例を示す反応性ガスを用いた
物質処理装置の断面図である。
FIG. 2 is a sectional view of a substance processing apparatus using a reactive gas according to a second embodiment of the present invention.

【図3】本発明の第3実施例を示す反応性ガスを用いた
物質処理装置の断面図である。
FIG. 3 is a cross-sectional view of a substance processing apparatus using a reactive gas according to a third embodiment of the present invention.

【図4】図3における要部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part in FIG.

【図5】本発明の第4実施例を示す反応性ガスを用いた
物質処理装置の断面図である。
FIG. 5 is a cross-sectional view of a substance processing apparatus using a reactive gas according to a fourth embodiment of the present invention.

【図6】図5における要部の拡大断面図である。6 is an enlarged cross-sectional view of a main part in FIG.

【図7】従来の反応性ガスを用いた処理装置を示す断面
図である。
FIG. 7 is a sectional view showing a conventional processing apparatus using a reactive gas.

【図8】従来の他の反応性ガス発生装置を示す断面図で
ある。
FIG. 8 is a cross-sectional view showing another conventional reactive gas generator.

【符号の説明】[Explanation of symbols]

10 反応器 11 処理室 12 高電圧電極 13 低電圧電極 14a, 14b 誘電体 15 電源 16 導入部 17 取出部 18 原料ガス 19 反応性ガス 20 放電光 21 低温プラズマ 22 スプリング 23 軸 24 ノズル部 25光透過窓 26 放電光発生部 30 被処理水 31 中空糸膜 32 水蒸気 33 プラズマジェット 10 reactor 11 Processing room 12 High voltage electrode 13 Low voltage electrode 14a, 14b Dielectric 15 power 16 Introduction 17 Extraction department 18 Raw material gas 19 Reactive gas 20 discharge light 21 low temperature plasma 22 spring 23 axes 24 nozzle 25 light transmitting window 26 Discharge light generator 30 Treated water 31 hollow fiber membrane 32 steam 33 Plasma Jet

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高電圧電極と低電圧電極とを所定の放電
空間を介して対向させて反応器を形成し、前記放電空間
に原料ガスを導入して前記高電圧電極に高電圧を印加
し、発生したプラズマにより前記原料ガスを反応性ガス
にし、この反応性ガスを被処理対象物に接触させて処理
する物質処理方法において、 前記反応器の前段に前記原料ガスの導入部を、後段に前
記反応性ガスの取出部を設け、前記取出部に隣接して前
記被処理対象物を処理する処理室を設け、前記放電空間
の圧力を前記取出部の圧力よりも高くなるように前記原
料ガスを導入し、この状態でパルス高電圧を印加して低
温プラズマを発生させ、前記反応性ガスと放電光とを前
記取出部から前記処理室に噴射することを特徴とする反
応性ガスを用いた物質処理方法。
1. A high-voltage electrode and a low-voltage electrode are opposed to each other via a predetermined discharge space to form a reactor, and a source gas is introduced into the discharge space to apply a high voltage to the high-voltage electrode. In the substance processing method of treating the raw material gas with the generated plasma as a reactive gas and bringing the reactive gas into contact with an object to be treated, an introduction part of the raw material gas is provided in a front stage of the reactor, in a rear stage. An outlet for the reactive gas is provided, a processing chamber for treating the object to be processed is provided adjacent to the outlet, and the source gas is adjusted so that the pressure in the discharge space is higher than the pressure in the outlet. In this state, a pulsed high voltage is applied to generate low temperature plasma, and the reactive gas and discharge light are jetted from the extraction section into the processing chamber. Material processing method.
【請求項2】 高電圧電極と低電圧電極とを所定の放電
空間を介して対向させた反応器と、高電圧の電源とを備
え、前記放電空間に原料ガスを導入して前記高電圧電極
に高電圧を印加し、発生したプラズマにより前記原料ガ
スを反応性ガスにし、この反応性ガスを被処理対象物に
接触させて処理する反応性ガスを用いた物質処理装置に
おいて、 前記反応器の前段に設けた前記原料ガスの導入部と、前
記反応器の後段に設けた前記反応性ガスの取出部と、前
記取出部に隣接して設けた前記被処理対象物を処理する
処理室とを備え、前記放電空間の圧力が前記取出部の圧
力よりも高くなるように前記原料ガスを導入し、この状
態でパルス高電圧を印加して低温プラズマを発生させ、
前記反応性ガスと放電光とを前記取出部から前記処理室
に噴射することを特徴とする反応性ガスを用いた物質処
理装置。
2. A high-voltage electrode is provided by introducing a source gas into the discharge space, comprising a reactor in which a high-voltage electrode and a low-voltage electrode are opposed to each other through a predetermined discharge space, and a high-voltage power source. A high voltage is applied to the raw material gas by the generated plasma to a reactive gas, the reactive gas is brought into contact with an object to be processed in a substance processing apparatus using a reactive gas, An inlet for the raw material gas provided in the preceding stage, an outlet for the reactive gas provided in the latter stage of the reactor, and a processing chamber for processing the object to be treated provided adjacent to the outlet. Provided, the raw material gas is introduced so that the pressure of the discharge space is higher than the pressure of the extraction portion, and in this state, pulse high voltage is applied to generate low temperature plasma,
A substance processing apparatus using a reactive gas, characterized in that the reactive gas and discharge light are injected from the extraction section into the processing chamber.
【請求項3】 前記高電圧電極および前記低電圧電極の
少なくとも一方は、複数の孔を有することを特徴とする
請求項2記載の反応性ガスを用いた物質処理装置。
3. The substance processing apparatus using a reactive gas according to claim 2, wherein at least one of the high voltage electrode and the low voltage electrode has a plurality of holes.
【請求項4】 前記複数の孔を有する低電圧電極を、前
記反応性ガスの取出部近傍に設けたことを特徴とする請
求項3記載の反応性ガスを用いた物質処理装置。
4. The substance treating apparatus using a reactive gas according to claim 3, wherein a low voltage electrode having the plurality of holes is provided in the vicinity of the reactive gas extraction portion.
【請求項5】 前記低電圧電極を板形状とし、前記原料
ガスの流れ方向と直角に配置して、前記原料ガスが当た
るようにし、かつ原料ガスの圧力に応じて可動する可動
手段が付設されていることを特徴とする請求項2または
3記載の反応性ガスを用いた物質処理装置。
5. The low-voltage electrode has a plate shape and is arranged at a right angle to the flow direction of the raw material gas so that the raw material gas can be contacted with the movable body and movable means can be attached according to the pressure of the raw material gas. 4. The substance processing apparatus using the reactive gas according to claim 2 or 3.
【請求項6】前記反応性ガスの取出部に前記原料ガスの
導入部よりも小さい断面積を有するノズル部を設けて低
電圧電極とし、前記ノズル部の空間部に前記ノズル部内
径より小さい前記高電圧電極を設け、前記ノズル部と前
記高電圧電極との空隙から前記反応性ガスを前記取出部
へ噴出させることを特徴とする請求項2、3および5の
いずれか1項に記載の反応性ガスを用いた物質処理装
置。
6. A low-voltage electrode is provided by providing a nozzle portion having a cross-sectional area smaller than that of the raw material gas introduction portion at the reactive gas extraction portion, and the space portion of the nozzle portion is smaller than the nozzle portion inner diameter. The reaction according to any one of claims 2, 3 and 5, wherein a high voltage electrode is provided, and the reactive gas is ejected from the gap between the nozzle portion and the high voltage electrode to the extraction portion. Material processing equipment using volatile gas.
【請求項7】前記高電圧電極の先端部に空隙を介して第
2の低電圧電極を設け、さらに前記第2の低電圧電極の
前記取出部側に前記放電光の波長を選択する光透過窓を
設けたことを特徴とする請求項6記載の反応性ガスを用
いた物質処理装置。
7. A second low-voltage electrode is provided at a tip end portion of the high-voltage electrode via an air gap, and light transmission for selecting a wavelength of the discharge light is provided on the extraction portion side of the second low-voltage electrode. 7. The substance processing apparatus using a reactive gas according to claim 6, wherein a window is provided.
【請求項8】 前記原料ガスは空気または酸素であり、
前記反応性ガスは酸素原子(O)や励起酸素分子(O
2*)、オゾン(O3)、ヒドロキシラジカル(OH)等の活
性酸素種とラジカル種であることを特徴とする請求項2
から5のいずれか1項に記載の反応性ガスを用いた物質
処理装置。
8. The source gas is air or oxygen,
The reactive gas is an oxygen atom (O) or an excited oxygen molecule (O).
2 *), ozone (O 3 ), hydroxy radical (OH) and other active oxygen species and radical species.
6. A substance processing apparatus using the reactive gas according to any one of 1 to 5.
JP2001273255A 2001-09-10 2001-09-10 Material processing equipment Expired - Fee Related JP4904650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273255A JP4904650B2 (en) 2001-09-10 2001-09-10 Material processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273255A JP4904650B2 (en) 2001-09-10 2001-09-10 Material processing equipment

Publications (2)

Publication Number Publication Date
JP2003080059A true JP2003080059A (en) 2003-03-18
JP4904650B2 JP4904650B2 (en) 2012-03-28

Family

ID=19098496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273255A Expired - Fee Related JP4904650B2 (en) 2001-09-10 2001-09-10 Material processing equipment

Country Status (1)

Country Link
JP (1) JP4904650B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296909A (en) * 2004-03-16 2005-10-27 Toshiba Corp Water treating system
JP2006187743A (en) * 2005-01-07 2006-07-20 Toshiba Corp Radical treatment apparatus
JP2007038110A (en) * 2005-08-02 2007-02-15 Toshiba Corp Free radical treatment apparatus
CN1330586C (en) * 2004-02-03 2007-08-08 株式会社东芝 Apparatus for decomposing organic matter with radical treatment method using electric discharge
EP1907596A1 (en) * 2005-07-26 2008-04-09 PSM Inc. Injection type plasma treatment apparatus and method
JP2013013874A (en) * 2011-07-06 2013-01-24 Nagoya City Plasma treatment device and treatment method
JP2019155294A (en) * 2018-03-14 2019-09-19 株式会社東芝 Water treatment device
CN110436686A (en) * 2019-09-18 2019-11-12 大连民族大学 A kind of water treatment facilities using liquid injection technology
CN114205984A (en) * 2021-11-24 2022-03-18 广州大学 Atmospheric pressure low temperature plasma jet processing device with adjustable mesh number of screen mesh electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240829A (en) * 1985-08-16 1987-02-21 Fujitsu Ltd Modem training signal detector
JPS62227089A (en) * 1986-03-27 1987-10-06 Anelva Corp Method and device for treating surface
JPH10199697A (en) * 1997-01-10 1998-07-31 Pearl Kogyo Kk Surface treatment device by atmospheric pressure plasma
JPH10211263A (en) * 1997-01-29 1998-08-11 Fujimori Kogyo Kk Portable type sterilizer
JP2001060499A (en) * 1999-08-23 2001-03-06 Pearl Kogyo Kk Swirl-type atmospheric pressure plasma treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240829A (en) * 1985-08-16 1987-02-21 Fujitsu Ltd Modem training signal detector
JPS62227089A (en) * 1986-03-27 1987-10-06 Anelva Corp Method and device for treating surface
JPH10199697A (en) * 1997-01-10 1998-07-31 Pearl Kogyo Kk Surface treatment device by atmospheric pressure plasma
JPH10211263A (en) * 1997-01-29 1998-08-11 Fujimori Kogyo Kk Portable type sterilizer
JP2001060499A (en) * 1999-08-23 2001-03-06 Pearl Kogyo Kk Swirl-type atmospheric pressure plasma treatment device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330586C (en) * 2004-02-03 2007-08-08 株式会社东芝 Apparatus for decomposing organic matter with radical treatment method using electric discharge
JP2005296909A (en) * 2004-03-16 2005-10-27 Toshiba Corp Water treating system
JP2006187743A (en) * 2005-01-07 2006-07-20 Toshiba Corp Radical treatment apparatus
EP1907596A1 (en) * 2005-07-26 2008-04-09 PSM Inc. Injection type plasma treatment apparatus and method
EP1907596A4 (en) * 2005-07-26 2009-09-16 Psm Inc Injection type plasma treatment apparatus and method
JP2007038110A (en) * 2005-08-02 2007-02-15 Toshiba Corp Free radical treatment apparatus
JP4709608B2 (en) * 2005-08-02 2011-06-22 株式会社東芝 Radical treatment equipment
JP2013013874A (en) * 2011-07-06 2013-01-24 Nagoya City Plasma treatment device and treatment method
JP2019155294A (en) * 2018-03-14 2019-09-19 株式会社東芝 Water treatment device
JP7086653B2 (en) 2018-03-14 2022-06-20 株式会社東芝 Water treatment equipment
CN110436686A (en) * 2019-09-18 2019-11-12 大连民族大学 A kind of water treatment facilities using liquid injection technology
CN114205984A (en) * 2021-11-24 2022-03-18 广州大学 Atmospheric pressure low temperature plasma jet processing device with adjustable mesh number of screen mesh electrodes

Also Published As

Publication number Publication date
JP4904650B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
US6238629B1 (en) Apparatus for plasma treatment of a gas
EP1177714B1 (en) Method and apparatuses for plasma treatment
US20050189278A1 (en) Apparatus for decomposing organic matter with radical treatment method using electric discharge
JP4322728B2 (en) Water treatment system
JP4378592B2 (en) Control method of discharge generator
JP2001507274A (en) Method and apparatus for treating aqueous solution
US20080056934A1 (en) Diffusive plasma air treatment and material processing
JP2012521240A (en) Improved air decontamination apparatus and method
JP2003080058A (en) Method for producing reactive gas and producing apparatus therefor
JPH07251026A (en) Method for destroying pollutant by using low energy electron beam
JP2003080059A (en) Method and apparatus for treating material using reactive gas
JP4407252B2 (en) Processing equipment
US20170182342A1 (en) Decontamination and sterilization device with flexible enclosing cover using plasma and reactive gas
JP2009505342A (en) Plasma generating apparatus and plasma generating method
US20080233003A1 (en) System and method for treating liquid using a corona discharge process in a low pressure environment
EP1497023B1 (en) Method for abatement of voc in exhaust gases by wet pulse corona discharge
EP3585136A1 (en) A method and device for generating low-temperature electrical water-based plasma at near-atmospheric pressures and its use
JP2005218890A (en) Radical processing system
KR101647480B1 (en) Atomospheric pressure plasma processing apparatus for removing high concentrated hydrogen peroxide
WO2013183300A1 (en) Apparatus and method for processing gas
KR20200011319A (en) Parallel dielectric barrier discharge plasma reactor for high efficiency of removal of gas type pollutant which can be adsorbed
KR20110012997A (en) High efficiency plasma reactor and volatile organic compounds removal system using it
JPH06100301A (en) Ozonizer
RU2219136C2 (en) Method and device for purification of liquid and gaseous mediums
EP3995156A1 (en) Method for producing a disinfecting solution and device for carrying out said method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees