JP2003077527A - Method of manufacturing alkaline storage battery - Google Patents

Method of manufacturing alkaline storage battery

Info

Publication number
JP2003077527A
JP2003077527A JP2002105725A JP2002105725A JP2003077527A JP 2003077527 A JP2003077527 A JP 2003077527A JP 2002105725 A JP2002105725 A JP 2002105725A JP 2002105725 A JP2002105725 A JP 2002105725A JP 2003077527 A JP2003077527 A JP 2003077527A
Authority
JP
Japan
Prior art keywords
storage battery
battery
manufacturing
charging
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002105725A
Other languages
Japanese (ja)
Inventor
Junji Adachi
淳史 足立
Masato Onishi
正人 大西
Yukihiro Takeda
幸大 武田
Haruyoshi Yamashita
晴義 山下
Yasuhiro Takahashi
泰博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP2002105725A priority Critical patent/JP2003077527A/en
Publication of JP2003077527A publication Critical patent/JP2003077527A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an alkaline storage battery allowing precise short-time detection of the alkaline storage battery likely to produce slight short-circuit. SOLUTION: The method comprises (I) the step of using a positive electrode plate 12 containing cobalt having a less than trivalent number, a negative electrode plate 13 and a separator 14 to form an electrode group 20 and filling the electrode group 20 and an electrolyte 14 in a battery jar 11 to assemble the battery, (II) the step of charging the battery under the conditions that the cobalt changes into cobalt oxyhydroxide, (III) the step of discharging the battery, after overcharged, until it becomes a predetermined charged condition, (IV) the step of aging the battery for a certain period while keeping it at a preset temperature, and (V) the step of repeating the charge/discharge of the battery several times to activate the battery, in sequence.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an alkaline storage battery.

【0002】[0002]

【従来の技術】ハイブリッド自動車や電気自動車では、
モータの動力源として、ニッケル水素電池等のアルカリ
蓄電池が使用されている。これらのアルカリ蓄電池で
は、通常、電池を組み立てたのち、電池内のコバルト化
合物を酸化するコバルト充電、初期充放電、および活性
化充放電を行う。このような工程を経て蓄電池が製造さ
れる。
2. Description of the Related Art In hybrid vehicles and electric vehicles,
An alkaline storage battery such as a nickel hydrogen battery is used as a power source of a motor. In these alkaline storage batteries, normally, after assembling the battery, cobalt charging for oxidizing a cobalt compound in the battery, initial charge / discharge, and activation charge / discharge are performed. A storage battery is manufactured through these steps.

【0003】アルカリ蓄電池では、電池の内部に不純物
である金属(たとえば銅、鉛、銀、錫、鉄など)が過剰
に存在すると、この不純物金属が電解液中に溶解したの
ち析出して正極と負極とを微小なパスで短絡させる可能
性がある。このため、製造されたアルカリ蓄電池は、製
品として出荷される前に、微小短絡が発生していないか
どうかの検査が行われることが一般的である。
In an alkaline storage battery, when an impurity metal (eg, copper, lead, silver, tin, iron, etc.) is excessively present inside the battery, the impurity metal is dissolved in an electrolytic solution and then deposited to form a positive electrode. There is a possibility of short-circuiting with the negative electrode with a minute path. For this reason, the manufactured alkaline storage battery is generally inspected before the product is shipped for a micro short circuit.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、微小短
絡が発生していないかどうかを検査するためには、精度
が高い検査方法が必要であるとともに、検査に長時間が
必要となっている。
However, in order to inspect whether or not a minute short circuit has occurred, a highly accurate inspection method is required and a long time is required for the inspection.

【0005】このような状況に鑑み、本発明は、微小短
絡が発生する可能性があるアルカリ蓄電池を精度よく短
期間に検出できるアルカリ蓄電池の製造方法を提供する
ことを目的とする。
In view of such circumstances, it is an object of the present invention to provide a method of manufacturing an alkaline storage battery which can accurately detect an alkaline storage battery in which a micro short circuit may occur in a short period of time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、アルカリ蓄電池を製造するための本発明の第1の方
法は、(I)価数が3価未満のコバルトを含む正極板と
負極板とセパレータとを用いて電極群を形成し、前記電
極群と電解液とを電槽に封入して蓄電池を組み立てる工
程と、(II)前記蓄電池を、前記コバルトがオキシ水酸
化コバルトに変化する条件で充電する工程と、(III)
前記蓄電池を過充電したのちに、所定の充電状態になる
まで放電する工程と、(IV)前記蓄電池を所定の期間、
所定の温度に維持してエージングする工程と、(V)前
記蓄電池の充放電を複数回繰り返して前記蓄電池を活性
化する工程とをこの順序で含む。
In order to achieve the above object, a first method of the present invention for producing an alkaline storage battery comprises: (I) a positive electrode plate containing cobalt having a valence of less than 3 and a negative electrode. A step of forming an electrode group using a plate and a separator, and assembling a storage battery by enclosing the electrode group and an electrolytic solution in a battery case, and (II) the storage battery, the cobalt changes into cobalt oxyhydroxide. The step of charging under the conditions, (III)
After overcharging the storage battery, discharging the storage battery to a predetermined charge state, (IV) the storage battery for a predetermined period,
This step includes, in this order, a step of aging while maintaining a predetermined temperature, and a step of (V) repeating charging and discharging of the storage battery a plurality of times to activate the storage battery.

【0007】また、アルカリ蓄電池を製造するための本
発明の第2の方法は、(i)価数が3価未満のコバルト
を含む正極板と負極板とセパレータとを用いて電極群を
形成し、前記電極群と電解液とを電槽に封入して蓄電池
を組み立てる工程と、(ii)前記蓄電池を、前記コバル
トがオキシ水酸化コバルトに変化する条件で充電する工
程と、(iii)前記蓄電池を過充電したのちに、所定の
充電状態になるまで放電する工程と、(iv)前記蓄電池
の充放電を複数回繰り返して前記蓄電池を活性化する工
程と、(v)前記蓄電池が一定の範囲内の電流値で放電
する状態で前記蓄電池を所定の期間、所定の温度に維持
してエージングする工程とをこの順序で含む。
A second method of the present invention for producing an alkaline storage battery is to form an electrode group by using (i) a positive electrode plate containing cobalt having a valence of less than 3 and a negative electrode plate and a separator. A step of assembling the storage battery by enclosing the electrode group and the electrolytic solution in a battery case, (ii) charging the storage battery under the condition that the cobalt changes into cobalt oxyhydroxide, and (iii) the storage battery After overcharging, the battery is discharged to a predetermined charge state, (iv) the charging and discharging of the storage battery are repeated a plurality of times to activate the storage battery, and (v) the storage battery has a constant range. The step of aging the storage battery at a predetermined temperature for a predetermined period in a state of being discharged at a current value within is included in this order.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。なお、以下の実施形態では角形のニッケル・水素
蓄電池について説明するが、本発明はこれに限定されな
い。本発明は、電池の形状には限定されず、円筒形電池
および角形電池のいずれにも適用することができる。ま
た、本発明はニッケル・カドミウム蓄電池にも適用でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In addition, in the following embodiments, a prismatic nickel-hydrogen storage battery will be described, but the present invention is not limited to this. The present invention is not limited to the shape of the battery, and can be applied to both cylindrical batteries and prismatic batteries. The present invention can also be applied to nickel-cadmium storage batteries.

【0009】(実施形態1)実施形態1では、アルカリ
蓄電池を製造するための本発明の第1の方法を説明す
る。実施形態1では、第1の方法の一例として、ニッケ
ル・水素蓄電池の製造方法を説明する。実施形態1の方
法で製造されるニッケル・水素蓄電池10の一部分解斜
視図を図1に示す。
(Embodiment 1) In Embodiment 1, a first method of the present invention for manufacturing an alkaline storage battery will be described. In the first embodiment, as an example of the first method, a method for manufacturing a nickel-hydrogen storage battery will be described. A partially exploded perspective view of the nickel-hydrogen storage battery 10 manufactured by the method of Embodiment 1 is shown in FIG.

【0010】ニッケル・水素蓄電池10は、隔壁11b
によって複数のセル11aに分割された電槽11を含
む。各セル11aには、複数の正極板12と複数の負極
板13とセパレータ14と電解液(図示せず)とが配置
されている。各セル11a内に収容された各正極板12
および各負極板13は、セパレータ14を挟んで交互に
積層されている。正極板12、負極板13およびセパレ
ータ20は、電極群を構成する。正極板12および負極
板13は、各セル11a内に注入された電解液に接触し
ている。
The nickel-hydrogen storage battery 10 has a partition wall 11b.
The battery case 11 is divided into a plurality of cells 11a. A plurality of positive electrode plates 12, a plurality of negative electrode plates 13, a separator 14, and an electrolytic solution (not shown) are arranged in each cell 11a. Each positive electrode plate 12 housed in each cell 11a
The negative electrode plates 13 are alternately stacked with the separator 14 sandwiched therebetween. The positive electrode plate 12, the negative electrode plate 13, and the separator 20 form an electrode group. The positive electrode plate 12 and the negative electrode plate 13 are in contact with the electrolytic solution injected into each cell 11a.

【0011】全ての正極板12は1枚の集電板15に接
続されており、全ての負極板13は1枚の集電板16に
接続されている。集電板15および16は、電極群20
を挟んで対向している。
All the positive electrode plates 12 are connected to one current collecting plate 15, and all the negative electrode plates 13 are connected to one current collecting plate 16. The current collector plates 15 and 16 are the electrode group 20.
They are facing each other across.

【0012】ニッケル・水素蓄電池10の各部材には、
一般的なものを用いることができる。正極板12には、
たとえば、発泡ニッケルとその発泡ニッケルに充填され
た合剤とを含む正極板を用いることができる。合剤は、
水酸化ニッケルを主成分とする活物質と、価数が3価未
満のコバルトとを含む。価数が3価未満のコバルトとし
ては、金属コバルトや、Co(OH)2中のコバルトが
挙げられる。
Each member of the nickel-hydrogen storage battery 10 includes
A general one can be used. The positive electrode plate 12 includes
For example, a positive electrode plate including nickel foam and a mixture filled in the nickel foam can be used. The mixture is
An active material containing nickel hydroxide as a main component and cobalt having a valence of less than 3 are included. Examples of cobalt having a valence of less than 3 include metallic cobalt and cobalt in Co (OH) 2 .

【0013】負極板13には、たとえば、アルミニウ
ム、コバルトおよびマンガンを含む水素吸蔵合金を用い
ることができる。セパレータ14には、たとえば、スル
ホン化されたポリプロピレンセパレータを用いることが
できる。電解液には、水酸化カリウムを主な溶質とする
アルカリ水溶液を用いることができる。
For the negative electrode plate 13, for example, a hydrogen storage alloy containing aluminum, cobalt and manganese can be used. As the separator 14, for example, a sulfonated polypropylene separator can be used. As the electrolytic solution, an alkaline aqueous solution containing potassium hydroxide as a main solute can be used.

【0014】実施形態1の製造方法では、まず、正極板
12と負極板13とセパレータ14とを用いて電極群2
0を形成し、電極群20と電解液とを電槽11に封入し
て蓄電池を組み立てる(工程(I))。このようにし
て、定格容量がたとえば6.5(Ah)の蓄電池を組み
立てる。
In the manufacturing method of the first embodiment, first, the electrode group 2 is formed by using the positive electrode plate 12, the negative electrode plate 13 and the separator 14.
0 is formed, the electrode group 20 and the electrolytic solution are sealed in the battery case 11, and a storage battery is assembled (step (I)). In this way, a storage battery having a rated capacity of 6.5 (Ah) is assembled.

【0015】次に、組み立てた蓄電池を、正極板12中
のコバルトまたはコバルト化合物がオキシ水酸化コバル
トに変化する条件で充電する(工程(II))。工程(I
I)は、コバルト充電工程と呼ばれる場合がある。工程
(II)では、電池の定格容量をX(Ah)としたとき
に、0.1X(A)〜1.0(A)の範囲内の電流値
(たとえば0.075X(A))で充電を行う。なお、
本明細書において、「定格容量X」(Ah)とは、25
℃においてC/3(mA)の電流値で予想される容量の
110%まで充電したのち、25℃においてC/3(m
A)の電流値で電池電圧が1.0Vになるまで放電した
ときの放電容量である(ただし、ここでのCは予想され
る1時間率)。以下では、1時間率1C(A)=X
(A)として記載する場合がある。工程(II)の充電の
際には、コバルトを反応させるのと同時に、負極板13
を還元して、放電リザーブを形成する。
Next, the assembled storage battery is charged under the condition that the cobalt or cobalt compound in the positive electrode plate 12 is changed to cobalt oxyhydroxide (step (II)). Process (I
I) is sometimes called the cobalt charging process. In the step (II), when the rated capacity of the battery is X (Ah), the battery is charged at a current value within the range of 0.1X (A) to 1.0 (A) (for example, 0.075X (A)). I do. In addition,
In this specification, "rated capacity X" (Ah) is 25
After charging to 110% of the capacity expected at a current value of C / 3 (mA) at ℃, C / 3 (m
It is the discharge capacity when discharging until the battery voltage reaches 1.0 V with the current value of A) (where C is the expected one-hour rate). In the following, 1 hour rate 1C (A) = X
It may be described as (A). During the charging in the step (II), at the same time as reacting cobalt, the negative electrode plate 13
Are reduced to form a discharge reserve.

【0016】次に、工程(II)を経た蓄電池を、初期充
放電する。具体的には、蓄電池を過充電したのちに、所
定の充電状態になるまで放電する。たとえば、0.2C
〜1Cの範囲内の電流値でSOC(充電状態)=110
%になるまで充電したのちに、0.5Cの電流値でSO
Cが10%以下になるように放電する。ここで、SOC
(State Of Charge)とは、定格容量に
対する充電量の割合である。工程(III)の充電によっ
て、正極板12に含まれる水酸化ニッケルが酸化されて
オキシ水酸化ニッケルとなる。このオキシ水酸化ニッケ
ルは、工程(III)の放電によって、再び水酸化ニッケ
ルに還元される。この初期充放電によって、ニッケル水
素蓄電池の活性が高められる。
Next, the storage battery that has undergone the step (II) is initially charged and discharged. Specifically, the storage battery is overcharged and then discharged until a predetermined charge state is reached. For example, 0.2C
SOC (state of charge) = 110 at a current value within the range of 1C
After being charged up to%, SO at a current value of 0.5C
Discharge so that C is 10% or less. Where SOC
(State Of Charge) is the ratio of the charge amount to the rated capacity. By the charging in the step (III), nickel hydroxide contained in the positive electrode plate 12 is oxidized to become nickel oxyhydroxide. This nickel oxyhydroxide is reduced to nickel hydroxide again by the discharge in step (III). This initial charging / discharging enhances the activity of the nickel-hydrogen storage battery.

【0017】これまでの工程は、通常のニッケル水素蓄
電池の製造方法と同様である。従来のニッケル水素蓄電
池の製造方法では、初期充放電(工程(III))ののち
に、活性化のための充放電サイクル(以下、「活性サイ
クル」という場合がある)を実施する。これに対して、
実施形態1の方法では、初期充放電の次に、活性サイク
ルを実施することなく、高温状態でのエージングを実施
する。すなわち、工程(III)を経た蓄電池を、一定の
期間一定の温度に維持してエージングする(工程(I
V))。このエージングは、45℃〜50℃程度の温度
で、ニッケル・水素蓄電池を1〜2週間にわたって放置
することにより実施される。
The steps up to this point are the same as those of a conventional method for manufacturing a nickel-metal hydride storage battery. In the conventional method for manufacturing a nickel-hydrogen storage battery, after the initial charge / discharge (step (III)), a charge / discharge cycle for activation (hereinafter, also referred to as “active cycle”) is performed. On the contrary,
In the method of Embodiment 1, after the initial charge / discharge, aging is performed in a high temperature state without performing an activation cycle. That is, the storage battery that has undergone the step (III) is aged while being kept at a constant temperature for a certain period of time (step (I
V)). This aging is carried out by leaving the nickel-hydrogen storage battery at a temperature of about 45 ° C. to 50 ° C. for 1 to 2 weeks.

【0018】次に、エージングが終了した蓄電池につい
て、充放電を複数回繰り返す活性サイクルを行う(工程
(V))。たとえば、0.2C〜5Cの範囲内の電流値
で、SOCが60%〜90%の範囲内になるまで充電し
たのち、電池電圧が0.70V〜1.05V程度になる
まで放電する充放電を複数回(数十サイクル)繰り返
す。この活性サイクルによって蓄電池が活性化される。
このようにして、ニッケル・水素蓄電池を製造できる。
Next, the storage battery which has been aged is subjected to an activation cycle in which charging and discharging are repeated a plurality of times (step (V)). For example, at a current value within the range of 0.2C to 5C, charging is performed until the SOC falls within the range of 60% to 90%, and then discharged until the battery voltage reaches about 0.70V to 1.05V. Is repeated multiple times (tens of cycles). The storage battery is activated by this activation cycle.
In this way, a nickel-hydrogen storage battery can be manufactured.

【0019】実施形態1の製造方法では、活性サイクル
の前にエージングを行っており、正極と負極とが微小短
絡する可能性がある電池はこのエージング中に短絡す
る。このため、実施形態1の製造方法によれば、活性サ
イクル中またはその後の検査において、微小短絡が発生
する可能性がある電池を容易に検出できる。
In the manufacturing method of the first embodiment, the aging is performed before the activation cycle, and the battery in which the positive electrode and the negative electrode may be slightly short-circuited is short-circuited during the aging. Therefore, according to the manufacturing method of the first embodiment, it is possible to easily detect a battery in which a minute short circuit may occur during inspection during or after the activation cycle.

【0020】実施形態1の製造方法では、工程(II)の
際に、正極板12とセパレータ14とが密着するように
電槽11を機械的に加圧することが好ましい。このよう
に電槽11を加圧することによって、正極板12および
負極板13と電解液とが良好に接触するため、微小短絡
が発生しているかどうかを精度よく検査できる。なお、
電槽11の加圧は、工程(II)に限らず、工程(II
I)、工程(IV)および工程(V)のいずれかにおいて
行ってもよい。また、電槽11に圧力を加える方法は、
通常の製造方法にも適用することができる。
In the manufacturing method of the first embodiment, it is preferable to mechanically pressurize the battery case 11 so that the positive electrode plate 12 and the separator 14 come into close contact with each other during the step (II). By pressurizing the battery case 11 in this manner, the positive electrode plate 12 and the negative electrode plate 13 are brought into good contact with the electrolytic solution, so that it is possible to accurately inspect whether a micro short circuit has occurred. In addition,
Pressurization of the battery case 11 is not limited to the step (II), but the step (II
It may be carried out in any of I), step (IV) and step (V). In addition, the method of applying pressure to the battery case 11 is as follows.
It can also be applied to ordinary manufacturing methods.

【0021】また、実施形態1の製造方法では、工程
(I)において設計値よりも多くなるように電解液を電
槽11に封入し、工程(V)が終了したのちに電解液の
量が設計値になるように電槽11から電解液の一部を抜
き取ることが好ましい。多量の電解液を注入した状態で
工程(II)〜工程(V)を実施することによって、微小
短絡の発生が促進される。そして、微小短絡が発生しな
いと判定されたニッケル・水素蓄電池は、各セル11a
内の電解液が適切な所定量になるように調整された後
に、製品として出荷される。なお、電槽11の各セル1
1aに多量の電解液を注入して、微小短絡の発生を促進
させる方法は、通常の製造方法にも適用することができ
る。
In the manufacturing method of the first embodiment, the electrolytic solution is sealed in the battery case 11 so that the amount of the electrolytic solution becomes larger than the design value in the step (I), and the amount of the electrolytic solution is reduced after the step (V) is completed. It is preferable to remove a part of the electrolytic solution from the battery case 11 so as to obtain the designed value. By carrying out the steps (II) to (V) in a state where a large amount of electrolytic solution is injected, the occurrence of micro short circuits is promoted. Then, the nickel-hydrogen storage battery determined not to cause the micro short-circuit is
The electrolytic solution inside is adjusted so as to have an appropriate predetermined amount, and then shipped as a product. In addition, each cell 1 of the battery case 11
The method of injecting a large amount of electrolytic solution into 1a to promote the occurrence of a micro short circuit can be applied to a normal manufacturing method.

【0022】また、実施形態1の製造方法では、工程
(II)において、0.01C〜0.07Cの範囲内の電
流値で充電を行ってもよい。たとえば、通常の0.07
5Cの5分の1程度である0.015C程度の電流値で
充電を行ってもよい。この場合には、通常の充電時間で
ある2時間よりも十分に長い10時間程度で充電を行
う。低い電流値で工程(II)を行うことによって、微小
短絡の発生が促進される。なお、低い電流値で工程(I
I)のコバルト充電を行う方法は、通常の製造方法にも
適用することができる。
In the manufacturing method of the first embodiment, charging may be performed at a current value within the range of 0.01C to 0.07C in the step (II). For example, normal 0.07
Charging may be performed at a current value of about 0.015C, which is about one fifth of 5C. In this case, charging is performed for about 10 hours, which is sufficiently longer than the normal charging time of 2 hours. By performing the step (II) at a low current value, the occurrence of micro short circuits is promoted. The process (I
The method of carrying out cobalt charging in I) can be applied to a usual manufacturing method.

【0023】(実施形態2)実施形態2では、アルカリ
蓄電池を製造するための本発明の第2の方法を説明す
る。実施形態2では、第2の方法の一例として、実施形
態1で説明したニッケル・水素蓄電池10を製造する方
法を説明する。
(Second Embodiment) In a second embodiment, a second method of the present invention for manufacturing an alkaline storage battery will be described. In the second embodiment, as an example of the second method, a method of manufacturing the nickel-hydrogen storage battery 10 described in the first embodiment will be described.

【0024】実施形態2の製造方法では、まず、価数が
3価未満のコバルトを含む正極板12と負極板13とセ
パレータ14とを用いて電極群20を形成し、この電極
群20と電解液とを電槽11に封入して蓄電池を組み立
てる(工程(i))。
In the manufacturing method of the second embodiment, first, the electrode group 20 is formed by using the positive electrode plate 12, the negative electrode plate 13, and the separator 14 which contain cobalt having a valence of less than 3, and the electrode group 20 and the electrolysis. The liquid is sealed in the battery case 11 to assemble the storage battery (step (i)).

【0025】次に、組み立てた蓄電池を、正極板12中
のコバルトがオキシ水酸化コバルトに変化する条件で充
電する(工程(ii))。
Next, the assembled storage battery is charged under the condition that the cobalt in the positive electrode plate 12 is changed to cobalt oxyhydroxide (step (ii)).

【0026】次に、工程(ii)を経た蓄電池を過充電し
たのちに、所定の充電状態になるまで放電する(工程
(iii))。これら工程(i)、(ii)および(iii)
は、それぞれ、実施形態1で説明した工程(I)、(I
I)および(III)と同様であるため、重複する説明は省
略する。
Next, the storage battery that has undergone the step (ii) is overcharged and then discharged until it reaches a predetermined charge state (step (iii)). These steps (i), (ii) and (iii)
Are the steps (I) and (I
Since it is the same as I) and (III), duplicate description will be omitted.

【0027】次に、工程(iii)を経た蓄電池の充放電
を複数回繰り返して蓄電池を活性化する(工程(i
v))。この工程は、実施形態1で説明した工程(V)
と同様であるため、重複する説明は省略する。
Next, charging and discharging of the storage battery that has undergone step (iii) is repeated a plurality of times to activate the storage battery (step (i
v)). This step is the step (V) described in the first embodiment.
Since it is the same as the above, duplicate description will be omitted.

【0028】次に、工程(iv)を経た蓄電池を、蓄電池
が一定の範囲内の電流値で放電する状態で所定の期間、
所定の温度に維持してエージングする(工程(v))。
エージング時の放電レート(放電時の電流値)は、大き
い方がよいが、エージング終了時点で微小短絡が発生し
たかどうかを判断できる程度に電池電圧が維持されるよ
うな放電レートであることが好ましい。具体的には、エ
ージング終了時のSOCが20%〜50%の範囲内(好
ましくは30%程度)になるように放電時の電流値を調
整する。一定の範囲内の電流値で放電させるには、蓄電
池に定抵抗を接続する方法を用いることができる。エー
ジングの時間は、たとえば1週間〜2週間程度である。
エージング時の温度は、一般的な条件よりも高いことが
好ましく、具体的には55℃〜65℃の範囲内であるこ
とが好ましい。このようにして、ニッケル・水素蓄電池
を製造できる。
Next, the storage battery that has undergone the step (iv) is discharged for a predetermined period while the storage battery discharges at a current value within a certain range.
Aging is performed while maintaining a predetermined temperature (step (v)).
The discharge rate during aging (current value during discharge) should be as high as possible, but the discharge rate should be such that the battery voltage is maintained to such an extent that it is possible to determine whether or not a minute short circuit has occurred at the end of aging. preferable. Specifically, the current value during discharge is adjusted so that the SOC at the end of aging is within the range of 20% to 50% (preferably about 30%). In order to discharge at a current value within a certain range, a method of connecting a constant resistance to a storage battery can be used. The aging time is, for example, about 1 week to 2 weeks.
The temperature at the time of aging is preferably higher than general conditions, and specifically, it is preferably in the range of 55 ° C to 65 ° C. In this way, a nickel-hydrogen storage battery can be manufactured.

【0029】実施形態2の製造方法では、電流を流しな
がらエージングを行うため、電池内に混入した銅、なま
り、銀、錫、鉄などの不純物の溶解および析出を促進で
きる。このため、実施形態2の製造方法によれば、微小
短絡が発生する可能性がある電池を、精度良く短期間に
検出できる。
In the manufacturing method of the second embodiment, since aging is carried out while passing a current, it is possible to promote the dissolution and precipitation of impurities such as copper, blister, silver, tin and iron mixed in the battery. Therefore, according to the manufacturing method of the second embodiment, it is possible to accurately detect a battery in which a minute short circuit may occur in a short period of time.

【0030】上記実施形態2の製造方法は、工程(ii)
と工程(iii)との間に、蓄電池をパルス充放電する工
程をさらに含むことが好ましい。パルス充放電は、充電
と放電とを短時間に交互に繰り返す方法である。1回の
充電と放電とは、それぞれ、5秒〜20秒の範囲内であ
る。この充放電をたとえば、100回〜300回繰り返
す。パルス充放電の回数と電池内に析出した銅の量との
関係を評価した一例の結果を図2に示す。この実験で
は、1.2Vの電池が6個直列に接続された図1のニッ
ケル・水素蓄電池(定格容量:6.5Ah)を用いた。
そして、約4.9A(0.75C)の電流値で15秒間
充電を行い、約4.9A(0.75C)の電流値で15
秒間放電を行う充放電を200回繰り返した。パルス電
圧は、1.0V〜1.3Vの範囲内とした。図2から明
らかなように、パルス充放電によって、電解液への銅の
溶解および析出を促進させることができる。このため、
パルス充放電によって、微小短絡が生じる可能性がある
蓄電池の検査を精度よく短期間に行うことが可能にな
る。
The manufacturing method according to the second embodiment includes the step (ii)
It is preferable that a step of pulse charging / discharging the storage battery is further included between and the step (iii). Pulse charging / discharging is a method of alternately repeating charging and discharging in a short time. One charge and discharge are each within a range of 5 seconds to 20 seconds. This charging / discharging is repeated 100 to 300 times, for example. FIG. 2 shows the result of an example in which the relationship between the number of times of pulse charge / discharge and the amount of copper deposited in the battery was evaluated. In this experiment, the nickel-hydrogen storage battery (rated capacity: 6.5 Ah) of FIG. 1 in which six 1.2 V batteries were connected in series was used.
Then, the battery is charged at a current value of about 4.9A (0.75C) for 15 seconds and then charged at a current value of about 4.9A (0.75C) for 15 seconds.
The charging / discharging for discharging for 2 seconds was repeated 200 times. The pulse voltage was in the range of 1.0V to 1.3V. As is clear from FIG. 2, the pulse charge / discharge can accelerate the dissolution and deposition of copper in the electrolytic solution. For this reason,
The pulse charging / discharging makes it possible to accurately inspect a storage battery in which a short circuit may occur in a short period of time.

【0031】[0031]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明する。この実施例では、実施形態2の製造方法でニ
ッケル・水素蓄電池を製造した一例について説明する。
まず、1.2Vの電池が6個直列に接続された図1のニ
ッケル・水素蓄電池(定格容量:6.5Ah)を組み立
てた。
EXAMPLES The present invention will be described in more detail with reference to examples. In this example, an example of manufacturing a nickel-hydrogen storage battery by the manufacturing method of the second embodiment will be described.
First, the nickel-hydrogen storage battery (rated capacity: 6.5 Ah) of FIG. 1 in which six 1.2 V batteries were connected in series was assembled.

【0032】この蓄電池について、工程(ii)〜(v)
を行った。工程(v)のエージングは、以下の4種類の
条件で行った。(1)50℃でエージング。(2)1k
Ωの抵抗を蓄電池に接続した状態で50℃でエージン
グ。(3)60℃でエージング。(4)1kΩの抵抗を
接続した状態で60℃でエージング。これらの4つの条
件でエージングをした蓄電池について、電池電圧の変化
を測定し、エージングの日数と微小短絡の発生件数との
関係を評価した。評価結果を図3に示す。
Regarding this storage battery, steps (ii) to (v)
I went. Aging in step (v) was performed under the following four conditions. (1) Aging at 50 ° C. (2) 1k
Aging at 50 ° C with a resistance of Ω connected to the storage battery. (3) Aging at 60 ° C. (4) Aging at 60 ° C with a 1 kΩ resistor connected. With respect to the storage batteries aged under these four conditions, changes in the battery voltage were measured, and the relationship between the number of days of aging and the number of occurrence of micro short circuits was evaluated. The evaluation result is shown in FIG.

【0033】図3から明らかなように、高温でエージン
グすることによって、微小短絡の発生が早まるととも
に、微小短絡の発生日のピークが鋭くなる。また、抵抗
を接続してエージングすることによっても、同様に、微
小短絡の発生が早まるとともに、微小短絡の発生日のピ
ークが鋭くなる。抵抗を接続してエージングした場合に
は、ピークが特に鋭くなる。このように、蓄電池に抵抗
を接続した状態で高温でエージングすることによって、
微小短絡が発生する可能性がある電池を短期間に精度よ
く検出できる。
As is clear from FIG. 3, aging at a high temperature accelerates the occurrence of micro shorts and sharpens the peak on the day on which micro shorts occur. Also, by connecting a resistor and performing aging, similarly, the occurrence of a micro short circuit is accelerated and the peak of the day on which the micro short circuit occurs is sharpened. When a resistor is connected and aged, the peak becomes particularly sharp. In this way, by aging at high temperature with the resistor connected to the storage battery,
It is possible to accurately detect a battery in which a short circuit may occur in a short period of time.

【0034】以上、本発明の実施の形態について例を挙
げて説明したが、本発明は、上記実施の形態に限定され
ず本発明の技術的思想に基づき他の実施形態に適用する
ことができる。
Although the embodiments of the present invention have been described above with reference to examples, the present invention is not limited to the above embodiments and can be applied to other embodiments based on the technical idea of the present invention. .

【0035】[0035]

【発明の効果】以上説明したように、本発明のアルカリ
蓄電池の製造方法によれば、微小短絡の発生が促進され
るために、製造工程において、微小短絡を容易に発生さ
せることができる。従って、微小短絡が発生するおそれ
のあるアルカリ蓄電池を、製造工程において容易に検出
することができる。この製造方法は、電池内に混入した
導電性不純物金属によって微小な短絡が発生するおそれ
のあるアルカリ蓄電池に有効であり、特に、電気自動車
やハイブリッド電気自動車などの電源に用いられるアル
カリ蓄電池の製造方法として好適である。
As described above, according to the method of manufacturing an alkaline storage battery of the present invention, the occurrence of a micro short circuit is promoted, so that a micro short circuit can be easily generated in the manufacturing process. Therefore, it is possible to easily detect an alkaline storage battery in which a micro short circuit may occur in the manufacturing process. This manufacturing method is effective for an alkaline storage battery in which a minute short circuit may occur due to a conductive impurity metal mixed in the battery, and in particular, a method for manufacturing an alkaline storage battery used as a power source for an electric vehicle or a hybrid electric vehicle. Is suitable as

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の製造方法で製造されるアルカリ蓄電
池の一例を示す一部分解斜視図である。
FIG. 1 is a partially exploded perspective view showing an example of an alkaline storage battery manufactured by a manufacturing method of the present invention.

【図2】 本発明の製造方法の一例についてパルス充放
電の回数と銅の析出量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the number of times of pulse charge and discharge and the amount of copper deposited in an example of the manufacturing method of the present invention.

【図3】 本発明の製造方法の一例についてエージング
の条件と微小短絡の発生日との関係を示す図である。
FIG. 3 is a diagram showing a relationship between an aging condition and a micro short circuit occurrence date in an example of the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

10 ニッケル・水素蓄電池 11 電槽 11a セル 11b 隔壁 12 正極板 13 負極板 14 セパレータ 15、16 集電板 20 電極群 10 Nickel / hydrogen storage battery 11 battery case 11a cell 11b partition 12 Positive plate 13 Negative electrode plate 14 Separator 15, 16 Current collector 20 electrode group

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 正人 静岡県湖西市境宿555番地 パナソニック EVエナジー株式会社内 (72)発明者 武田 幸大 静岡県湖西市境宿555番地 パナソニック EVエナジー株式会社内 (72)発明者 山下 晴義 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 高橋 泰博 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H028 AA02 AA05 BB01 BB03 BB04 BB05 BB10 BB12 BB14 CC01 HH00 HH08 HH10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Onishi             Panasonic, 555 Sakaijuku, Kosai City, Shizuoka Prefecture             EV Energy Co., Ltd. (72) Inventor, Kodai Takeda             Panasonic, 555 Sakaijuku, Kosai City, Shizuoka Prefecture             EV Energy Co., Ltd. (72) Inventor Haruyoshi Yamashita             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Yasuhiro Takahashi             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F term (reference) 5H028 AA02 AA05 BB01 BB03 BB04                       BB05 BB10 BB12 BB14 CC01                       HH00 HH08 HH10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 (I)価数が3価未満のコバルトを含む
正極板と負極板とセパレータとを用いて電極群を形成
し、前記電極群と電解液とを電槽に封入して蓄電池を組
み立てる工程と、 (II)前記蓄電池を、前記コバルトがオキシ水酸化コバ
ルトに変化する条件で充電する工程と、 (III)前記蓄電池を過充電したのちに、所定の充電状
態になるまで放電する工程と、 (IV)前記蓄電池を所定の期間、所定の温度に維持して
エージングする工程と、 (V)前記蓄電池の充放電を複数回繰り返して前記蓄電
池を活性化する工程とをこの順序で含むアルカリ蓄電池
の製造方法。
1. A storage battery in which an electrode group is formed by using (I) a positive electrode plate, a negative electrode plate, and a separator containing cobalt having a valence of less than 3 and the electrode group and an electrolytic solution are sealed in a battery case. And (II) charging the storage battery under the condition that the cobalt changes into cobalt oxyhydroxide, and (III) overcharging the storage battery and then discharging until a predetermined charge state is reached. A step, (IV) maintaining the storage battery at a predetermined temperature for a predetermined period of time and aging, and (V) charging and discharging the storage battery a plurality of times to activate the storage battery in this order. A method of manufacturing an alkaline storage battery including.
【請求項2】 前記(II)の工程において、前記正極板
とセパレータとが密着するように前記電槽を加圧する請
求項1に記載のアルカリ蓄電池の製造方法。
2. The method for manufacturing an alkaline storage battery according to claim 1, wherein in the step (II), the battery case is pressurized so that the positive electrode plate and the separator are in close contact with each other.
【請求項3】 前記(I)の工程において、設計値より
も多くなるように前記電解液を前記電槽に封入し、 前記(V)の工程が終了したのちに前記電解液の量が設
計値になるように前記電槽から前記電解液の一部を抜き
取る請求項1に記載のアルカリ蓄電池の製造方法。
3. In the step (I), the electrolytic solution is sealed in the container so that the amount of the electrolytic solution becomes larger than a design value, and the amount of the electrolytic solution is designed after the step (V) is completed. The method for producing an alkaline storage battery according to claim 1, wherein a part of the electrolytic solution is extracted from the battery case so that the value becomes a value.
【請求項4】 前記蓄電池の定格容量をX(Ah)とし
たときに、前記(II)の工程において、0.1X(A)
〜1.0X(A)の範囲内の電流値で充電を行う請求項
1に記載のアルカリ蓄電池の製造方法。
4. When the rated capacity of the storage battery is X (Ah), 0.1X (A) in the step (II).
The method for manufacturing an alkaline storage battery according to claim 1, wherein the charging is performed at a current value within a range of from 1.0X (A).
【請求項5】 (i)価数が3価未満のコバルトを含む
正極板と負極板とセパレータとを用いて電極群を形成
し、前記電極群と電解液とを電槽に封入して蓄電池を組
み立てる工程と、 (ii)前記蓄電池を、前記コバルトがオキシ水酸化コバ
ルトに変化する条件で充電する工程と、 (iii)前記蓄電池を過充電したのちに、所定の充電状
態になるまで放電する工程と、 (iv)前記蓄電池の充放電を複数回繰り返して前記蓄電
池を活性化する工程と、 (v)前記蓄電池が一定の範囲内の電流値で放電する状
態で前記蓄電池を所定の期間、所定の温度に維持してエ
ージングする工程とをこの順序で含むアルカリ蓄電池の
製造方法。
5. (i) An electrode group is formed by using a positive electrode plate, a negative electrode plate, and a separator containing cobalt having a valence of less than 3 and a storage battery in which the electrode group and the electrolytic solution are enclosed in a battery case. And (ii) charging the storage battery under the condition that the cobalt changes into cobalt oxyhydroxide, and (iii) overcharging the storage battery and then discharging until a predetermined charge state is reached. And (iv) a step of activating the storage battery by repeating charging and discharging of the storage battery a plurality of times, (v) the storage battery being discharged at a current value within a certain range for a predetermined period, A method of manufacturing an alkaline storage battery, which includes, in this order, a step of maintaining a predetermined temperature and aging.
【請求項6】 前記(v)の工程において、前記蓄電池
を定抵抗に接続する請求項5に記載のアルカリ蓄電池の
製造方法。
6. The method of manufacturing an alkaline storage battery according to claim 5, wherein the storage battery is connected to a constant resistance in the step (v).
【請求項7】 前記(v)の工程において、前記蓄電池
を55℃〜65℃の範囲内の温度に維持する請求項5ま
たは6に記載のアルカリ蓄電池の製造方法。
7. The method for manufacturing an alkaline storage battery according to claim 5, wherein in the step (v), the storage battery is maintained at a temperature within the range of 55 ° C. to 65 ° C.
【請求項8】 前記(ii)の工程と前記(iii)の工程
との間に、前記蓄電池をパルス充放電する工程をさらに
含む請求項5ないし7のいずれかに記載のアルカリ蓄電
池の製造方法。
8. The method for manufacturing an alkaline storage battery according to claim 5, further comprising a step of pulse charging / discharging the storage battery between the step (ii) and the step (iii). .
JP2002105725A 2001-06-18 2002-04-08 Method of manufacturing alkaline storage battery Withdrawn JP2003077527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105725A JP2003077527A (en) 2001-06-18 2002-04-08 Method of manufacturing alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-183930 2001-06-18
JP2001183930 2001-06-18
JP2002105725A JP2003077527A (en) 2001-06-18 2002-04-08 Method of manufacturing alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2003077527A true JP2003077527A (en) 2003-03-14

Family

ID=26617134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105725A Withdrawn JP2003077527A (en) 2001-06-18 2002-04-08 Method of manufacturing alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2003077527A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP2008181858A (en) * 2006-12-28 2008-08-07 Panasonic Ev Energy Co Ltd Short circuit inspection method for square battery, manufacturing method for square battery, and current collector forming device
JP2010086754A (en) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd Method for manufacturing battery
JP2010153261A (en) * 2008-12-25 2010-07-08 Panasonic Ev Energy Co Ltd Manufacturing method of nickel metal hydride storage battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
WO2021015488A1 (en) * 2019-07-22 2021-01-28 주식회사 엘지화학 Method for manufacturing secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253027A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Method for manufacturing secondary battery
JP4720221B2 (en) * 2005-03-11 2011-07-13 トヨタ自動車株式会社 Manufacturing method of secondary battery
JP2008181858A (en) * 2006-12-28 2008-08-07 Panasonic Ev Energy Co Ltd Short circuit inspection method for square battery, manufacturing method for square battery, and current collector forming device
JP2013033742A (en) * 2006-12-28 2013-02-14 Primearth Ev Energy Co Ltd Shaping apparatus for current collecting plate
JP2010086754A (en) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd Method for manufacturing battery
JP2010153261A (en) * 2008-12-25 2010-07-08 Panasonic Ev Energy Co Ltd Manufacturing method of nickel metal hydride storage battery
JP2010153275A (en) * 2008-12-26 2010-07-08 Toyota Motor Corp Method for deciding quality of secondary battery, and method for manufacturing secondary battery
WO2021015488A1 (en) * 2019-07-22 2021-01-28 주식회사 엘지화학 Method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
CN107768761B (en) Method for manufacturing battery pack
JP5050999B2 (en) Test method for battery and electrode
JP2012084346A (en) Method for producing lithium ion secondary battery
JP2012084322A (en) Method for producing lithium ion secondary battery
JP3943822B2 (en) Battery spiral electrode group and battery
JP2009252459A (en) Alkali storage battery inspecting method
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP4179528B2 (en) Secondary battery inspection method
WO2021100247A1 (en) Capacity recovering method and manufacturing method for secondary battery
JP2003077527A (en) Method of manufacturing alkaline storage battery
CN112018456A (en) Method for manufacturing secondary battery and nickel-hydrogen secondary battery
JP6567616B2 (en) Secondary battery state determination method and secondary battery state determination device
JP2021002464A (en) Manufacturing method of nickel hydrogen secondary battery
JP3109559B2 (en) Chemical formation of sealed alkaline storage batteries.
JP4618025B2 (en) Battery pack and charge control method thereof
JP7355772B2 (en) Manufacturing method of nickel metal hydride storage battery
Coates et al. Development of a long cycle life sealed nickel-zinc battery for high energy-density applications
JPH0869811A (en) Lead-acid battery
Ahir et al. Impact of battery cell imbalance on the voltage behavior of commercial Ni-MH EV/HEV battery modules
JPH10154504A (en) Battery pack
JPH10125317A (en) Monaqueous electrolyte secondary battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP6200897B2 (en) Storage battery module and storage battery system
CN114966445A (en) Method for inspecting internal resistance of secondary battery and method for manufacturing secondary battery
JP2002286819A (en) Method for measuring internal resistance of secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705