JP2003064569A - Polylactic acid-based filament nonwoven fabric and polylactic acid-based filament - Google Patents

Polylactic acid-based filament nonwoven fabric and polylactic acid-based filament

Info

Publication number
JP2003064569A
JP2003064569A JP2001255402A JP2001255402A JP2003064569A JP 2003064569 A JP2003064569 A JP 2003064569A JP 2001255402 A JP2001255402 A JP 2001255402A JP 2001255402 A JP2001255402 A JP 2001255402A JP 2003064569 A JP2003064569 A JP 2003064569A
Authority
JP
Japan
Prior art keywords
temperature
polylactic acid
nonwoven fabric
crystallization
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001255402A
Other languages
Japanese (ja)
Other versions
JP4212264B2 (en
Inventor
Atsushi Matsunaga
篤 松永
Koichi Nagaoka
孝一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2001255402A priority Critical patent/JP4212264B2/en
Publication of JP2003064569A publication Critical patent/JP2003064569A/en
Application granted granted Critical
Publication of JP4212264B2 publication Critical patent/JP4212264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polylactic acid-based filament nonwoven fabric which can well be subjected to a partial thermocompression treatment, even when a polylactic acid-based polymer is used, and is hardly peeled in the thickness direction, and to provide polylactic acid-based filaments. SOLUTION: This nonwoven fabric comprises filaments which comprise a polylactic acid-based polymer, have single phase cross sections, respectively, and are partially thermocompression-bonded to each other. The filaments forming the nonwoven fabric have a temperature-falling crystallization temperature Tcc, when melted at a temperature-up speed of 10 deg.C/min and then measured with a differential thermal analyzer at a temperature-falling speed of 10 deg.C/min, have the temperature-falling crystallization temperature Tcc of 90 to 110 deg.C, and have a crystallization calorie ΔHexo of >=10 mJ/mg.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ乳酸系長繊維
不織布とポリ乳酸系長繊維に関し、特に、構成繊維同士
の熱圧着に伴う熱圧着特性に優れたポリ乳酸系長繊維不
織布とポリ乳酸系長繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polylactic acid-based long fiber non-woven fabric and a polylactic acid-based long fiber, and more particularly to a polylactic acid-based long fiber non-woven fabric and a polylactic acid having excellent thermocompression bonding properties due to thermocompression bonding of constituent fibers. The present invention relates to long fibers.

【0002】[0002]

【従来の技術】従来より、長繊維不織布としては、スパ
ンボンド法にて製造され、熱圧着してなるものが一般的
によく知られている。すなわち、熱可塑性重合体を加熱
溶融して紡糸口金から吐出させ、得られた紡出糸条を従
来公知の横型吹付や環状吹付などの冷却装置を用いて冷
却し、その後、エアーサッカー等の吸引装置を用いて所
望の単糸繊度が得られるよう牽引・細化して、従来公知
の開繊器具にて開繊させながらスクリーン上にウエブを
堆積させる。そしてこのウエブを、エンボス装置に通し
て部分熱圧着処理を施すことで、長繊維不織布が得られ
る。
2. Description of the Related Art Conventionally, as a long-fiber non-woven fabric, one produced by a spunbond method and thermocompression-bonded is generally well known. That is, the thermoplastic polymer is heated and melted and discharged from the spinneret, and the obtained spun yarn is cooled by using a conventionally known cooling device such as horizontal spraying or annular spraying, and then suction such as air sucker. Using a device, the web is deposited on the screen while being pulled / thinned so as to obtain a desired single yarn fineness and being opened by a conventionally known opening device. Then, the web is passed through an embossing device and subjected to a partial thermocompression bonding treatment, whereby a long-fiber nonwoven fabric is obtained.

【0003】近年、生分解性を有する長繊維不織布が開
発されており、中でも、ポリ乳酸系重合体からなる長繊
維不織布は、生分解性を有するだけでなく、その融点が
比較的高いことから、実用性が高く、様々な用途に好適
に使用できることが期待されている。
In recent years, biodegradable long fiber non-woven fabrics have been developed. Among them, long fiber non-woven fabrics made of polylactic acid type polymers are not only biodegradable but also have a relatively high melting point. It is expected to be highly practical and suitable for various purposes.

【0004】しかし、ポリ乳酸系重合体からなる不織布
を得るにあたって、実験装置でなく、紡糸、開繊、ウエ
ブ作成などのスパンボンド工程と、熱圧着工程とが連続
工程となっている本生産機にて、スパンボンド法により
製造されたウエブに部分熱圧着を施して得られたポリ乳
酸系重合体からなる不織布は、見かけ上は部分熱圧着が
施されているようであるが、使用中に部分熱圧着部が破
壊されて構成繊維同士の接着がほどけ、不織布がその厚
み方向に剥離してしまうことがあった。特に、目付の低
い長繊維不織布を得ようとする際や、生産効率を上げる
ためにウエブの搬送速度を速くすると、この現象はさら
に著しくなった。
However, in order to obtain a non-woven fabric made of a polylactic acid-based polymer, a spunbonding process such as spinning, opening and web making, and a thermocompression bonding process are continuous processes, not an experimental device. In, a non-woven fabric made of a polylactic acid-based polymer obtained by subjecting a web manufactured by the spunbond method to partial thermocompression bonding seems to be partially thermocompression-appearing during use. In some cases, the partially thermocompression bonded portion was destroyed, the constituent fibers were unbonded, and the non-woven fabric was peeled in the thickness direction. In particular, when a long-fiber nonwoven fabric having a low basis weight is obtained, or when the web conveying speed is increased to increase the production efficiency, this phenomenon becomes more remarkable.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記問題点を
解決し、構成繊維としてポリ乳酸系重合体を用いても、
部分熱圧着を良好に行え、厚み方向への剥離が生じにく
いポリ乳酸系長繊維不織布とポリ乳酸系長繊維を提供す
ることを課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and uses a polylactic acid-based polymer as a constituent fiber,
It is an object of the present invention to provide a polylactic acid-based long fiber non-woven fabric and a polylactic acid-based long fiber, which can perform partial thermocompression bonding well and are less likely to peel in the thickness direction.

【0006】[0006]

【課題を解決するための手段】本発明者らは、この課題
を達成するために、種々検討を行った。ポリ乳酸は、同
じポリエステルであって汎用性の高いポリエチレンテレ
フタレート(以下、「PET」と称す。)とガラス転移
温度(Tg)が近いことから、ポリ乳酸からなる繊維も
また、PET繊維と似た機械的性質並びに糸質特性を有
している。しかし、ポリ乳酸は、PETと比べて結晶化
速度が遅く、結晶化しにくいという特徴がある。
Means for Solving the Problems The present inventors have conducted various studies to achieve this object. Polylactic acid, which is the same polyester as polyethylene terephthalate (hereinafter referred to as “PET”), which has high versatility, has a glass transition temperature (Tg) close to each other. Therefore, the fiber made of polylactic acid is also similar to PET fiber. It has mechanical properties as well as yarn quality properties. However, polylactic acid has a characteristic that it has a slower crystallization rate than PET and is less likely to be crystallized.

【0007】通常、熱可塑性繊維からなるウエブを部分
的に熱圧着処理する場合、熱エンボスロールの凸部が当
接した部分の繊維は、一旦溶融して、その後、冷えて固
まり、その熱圧着部は、熱可塑性重合体が溶融して繊維
同士を強固に接着する部分となる。
Usually, when a web made of thermoplastic fibers is partially subjected to thermocompression bonding, the fibers in the portion where the convex portion of the hot embossing roll abuts are once melted and then cooled and solidified, and the thermocompression bonding is performed. The part is a part where the thermoplastic polymer is melted and the fibers are firmly bonded to each other.

【0008】しかし、ポリ乳酸は、その結晶化速度が遅
いために、一旦溶融してから十分に冷え固まるまでに時
間がかかる。スパンボンド工程と熱圧着工程とが連続工
程からなるような本生産機では、スパンボンド工程で紡
糸、開繊してウエブを形成する工程と、このウエブを熱
圧着工程にて熱圧着する工程と、得られた不織布を巻き
取る工程の各工程間で、ウエブまたは不織布は搬送され
るが、その搬送においてウエブまたは不織布には張力が
かかる。ポリ乳酸は、上記のような結晶化速度が遅いと
いう特徴を有するものであるため、このような連続工程
からなる本生産機では、ポリ乳酸からなるウエブが熱圧
着工程でエンボス装置に通され、溶融した熱圧着部が冷
え固まる途中の段階で、熱圧着処理を施したウエブに搬
送や巻き取りのための張力が徐々にかかり、その張力に
よって冷え固まる前の圧着部分が外れてしまい、強固な
熱圧着部を形成することができないということが考えら
れる。
However, since polylactic acid has a slow crystallization rate, it takes time until it is sufficiently cooled and solidified once it is melted. In this production machine in which the spunbond process and the thermocompression bonding process are continuous processes, a process of forming a web by spinning and opening the fiber in the spunbond process, and a process of thermocompression bonding the web in the thermocompression bonding process. The web or nonwoven fabric is transported between the steps of winding the obtained nonwoven fabric, but tension is applied to the web or nonwoven fabric during the transport. Since polylactic acid has a characteristic that the crystallization rate is slow as described above, in this production machine consisting of such a continuous process, a web made of polylactic acid is passed through an embossing device in a thermocompression bonding process, While the molten thermo-compression bonding part is in the process of cooling and hardening, tension for transporting and winding is gradually applied to the web that has been subjected to thermo-compression bonding, and the tension causes the crimping part before cooling and hardening to come off, making it strong. It is considered that the thermocompression bonding portion cannot be formed.

【0009】そこで、本発明者らは、熱圧着処理を施し
た後のウエブに張力が徐々にかかっても、溶融した熱圧
着部が冷え固まって強固な部分熱圧着部を形成できるよ
うな、すなわち、一旦溶融した後に冷え固まりやすいポ
リ乳酸系繊維について研究を行い、ポリ乳酸系繊維にあ
る特性を付与することにより、連続工程からなる本生産
機で生産が可能で、かつ生産効率を下げずに部分熱圧着
を良好に施すことができ、不織布の厚み方向に剥離しな
い部分熱圧着部を形成することができることを見出し、
本発明に到達した。
Therefore, the inventors of the present invention can form a strong partial thermocompression bonding portion by cooling and solidifying the melted thermocompression bonding portion even if tension is gradually applied to the web after the thermocompression bonding treatment. In other words, by conducting research on polylactic acid-based fibers that tend to cool and solidify after being melted, and by imparting certain characteristics to the polylactic acid-based fibers, it is possible to produce with this production machine consisting of continuous processes, and production efficiency is not reduced. It was found that partial thermocompression bonding can be satisfactorily applied to the non-woven fabric, and a partial thermocompression bonding part that does not separate in the thickness direction of the nonwoven fabric can be formed.
The present invention has been reached.

【0010】すなわち、本発明は、ポリ乳酸系重合体か
らなる単相断面の長繊維からなり、前記長繊維同士が部
分的に熱圧着されてなる不織布であって、前記不織布を
構成する繊維が、昇温速度10℃/分で融解した後、降
温速度10℃/分で示差熱分析したときに降温結晶化温
度Tccが存在し、かつこの降温結晶化温度Tccが90℃
以上110℃以下であり、結晶化熱量ΔHexoが10m
J/mg以上であることを特徴とするポリ乳酸系長繊維
不織布を要旨とするものである。
That is, the present invention is a non-woven fabric composed of long fibers having a single-phase cross section made of a polylactic acid-based polymer, wherein the long fibers are partially thermocompressed with each other, and the fibers constituting the non-woven fabric are After melting at a temperature rising rate of 10 ° C./min and then performing a differential thermal analysis at a temperature lowering rate of 10 ° C./min, there is a lowering temperature crystallization temperature Tcc, and this lowering crystallization temperature Tcc is 90 ° C.
Above 110 ° C and the heat of crystallization ΔHexo is 10 m
The gist of the present invention is a polylactic acid-based long-fiber non-woven fabric characterized by being J / mg or more.

【0011】また、本発明は、ポリ乳酸系重合体からな
る単相断面の長繊維であって、昇温速度10℃/分で融
解した後、降温速度10℃/分で示差熱分析したときに
降温結晶化温度Tccが存在し、かつこの降温結晶化温度
Tccが90℃以上110℃以下であり、結晶化熱量ΔH
exoが10mJ/mg以上であることを特徴とするポリ
乳酸系長繊維を要旨とするものである。
The present invention also relates to a single-phase cross-section filament made of a polylactic acid-based polymer, which is melted at a heating rate of 10 ° C./min and then subjected to a differential thermal analysis at a cooling rate of 10 ° C./min. Has a cooling crystallization temperature Tcc, and this cooling crystallization temperature Tcc is 90 ° C. or more and 110 ° C. or less, and the heat of crystallization ΔH
The gist is a polylactic acid-based long fiber characterized by having exo of 10 mJ / mg or more.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明のポリ乳酸系長繊維不織布は、ポリ乳酸系
重合体からなる単相断面の長繊維からなり、この長繊維
同士が部分的に熱圧着されてなる不織布である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The polylactic acid-based long fiber non-woven fabric of the present invention is a non-woven fabric composed of long fibers having a single-phase cross section made of a polylactic acid-based polymer, and the long fibers are partially thermocompression-bonded to each other.

【0013】ポリ乳酸系重合体としては、ポリ(D−乳
酸)と、ポリ(L−乳酸)と、D−乳酸とL−乳酸との
共重合体と、D−乳酸とヒドロキシカルボン酸との共重
合体と、L−乳酸とヒドロキシカルボン酸との共重合体
と、D−乳酸とL−乳酸とヒドロキシカルボン酸との共
重合体とから選ばれるいずれかの重合体あるいはブレン
ド体が挙げられる。ヒドロキシカルボン酸としては、グ
リコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒド
ロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシ
ヘプタン酸、ヒドロキシオクタン酸等が挙げられ、これ
らの中でも特に、ヒドロキシカプロン酸またはグリコー
ル酸が、微生物分解性能を有することや低コスト化が図
れる点から好ましい。
The polylactic acid-based polymer includes poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, and D-lactic acid and hydroxycarboxylic acid. Examples thereof include any polymer or blend selected from a copolymer, a copolymer of L-lactic acid and hydroxycarboxylic acid, and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid. . Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxyoctanoic acid. Among them, hydroxycaproic acid or glycolic acid is a microorganism. It is preferable from the viewpoint of having decomposition performance and cost reduction.

【0014】不織布を構成する繊維は、示差熱分析を行
った時に、以下のような特性を有する必要がある。図1
(a),(b)は、本発明におけるポリ乳酸系重合体か
らなる繊維を示差熱分析したときの昇温時と降温時のD
SC曲線を示す。図1(a)のDSC曲線a1に示すよ
うに昇温速度10℃/分で繊維を融解した後、図1
(b)のDSC曲線b1に示すように降温速度10℃/
分で示差熱分析を行う。
The fibers constituting the non-woven fabric must have the following characteristics when the differential thermal analysis is performed. Figure 1
(A) and (b) are D at the time of temperature rising and at the time of temperature lowering when fibers made of the polylactic acid-based polymer of the present invention are subjected to differential thermal analysis.
The SC curve is shown. As shown in the DSC curve a1 of FIG. 1 (a), after the fibers were melted at a heating rate of 10 ° C./min,
As shown in the DSC curve b1 in (b), the cooling rate is 10 ° C /
Perform differential thermal analysis in minutes.

【0015】本発明においては、降温時のDSC曲線b
1に降温結晶化温度Tccが存在する必要がある。降温結
晶化温度Tccは溶融した繊維が冷却され結晶化される時
の温度であり、DSC曲線b1に存在する発熱ピーク時
の温度で示される。降温時のDSC曲線b1に降温結晶
化温度Tccが存在する長繊維は、一旦、溶融した後に結
晶化する能力が高く、短時間での結晶固化が可能とな
る。
In the present invention, the DSC curve b when the temperature is lowered
It is necessary that the temperature-falling crystallization temperature Tcc exists at 1. The cooling crystallization temperature Tcc is a temperature at which the melted fiber is cooled and crystallized, and is represented by a temperature at an exothermic peak existing in the DSC curve b1. The long fibers having the temperature-reduced crystallization temperature Tcc in the DSC curve b1 when the temperature is lowered have a high ability to be crystallized after being once melted, and can be crystallized and solidified in a short time.

【0016】降温結晶化温度Tccを有する長繊維は、熱
圧着工程において熱エンボスロールの凸部に当接する長
繊維が溶融または軟化された後、冷えて、降温結晶化温
度Tccの温度まで達した時に結晶固化して熱圧着点が形
成され、不織布となるが、この部分熱圧着を十分に行う
ためには、降温結晶化温度Tccは、90℃以上110℃
以下の範囲にある必要がある。降温結晶化温度Tccが9
0℃未満であると、熱圧着処理により一旦溶融した繊維
が冷えて降温結晶化温度Tccに達するまでに時間がかか
り、その間にウエブに張力がかかって強固な熱圧着点が
形成されにくくなる。一方、降温結晶化温度Tccが11
0℃を超えると、一旦溶融した繊維が冷えて降温結晶化
温度Tccに到達するまでの時間が短くなるため、理論上
は好ましいが、降温結晶化温度Tccが110℃を超える
ポリ乳酸系繊維を得ようとすると、紡糸直下においてか
なり急激な急冷を要し、繊維の糸切れが多発して不織布
自体を得ることが困難となる。
The long fibers having the temperature-lowering crystallization temperature Tcc are cooled and reach the temperature of the temperature-lowering crystallization temperature Tcc after melting or softening of the long fibers contacting the convex portions of the hot embossing roll in the thermocompression bonding process. At times, crystallization solidifies to form thermocompression bonding points to form a non-woven fabric, but in order to perform this partial thermocompression bonding sufficiently, the cooling crystallization temperature Tcc is 90 ° C or higher and 110 ° C or higher.
It must be within the following range. Falling crystallization temperature Tcc is 9
If the temperature is lower than 0 ° C., it takes time for the fibers once melted by the thermocompression bonding to cool and reach the temperature falling crystallization temperature Tcc, and during that time, tension is applied to the web to make it difficult to form a strong thermocompression bonding point. On the other hand, the falling crystallization temperature Tcc is 11
If it exceeds 0 ° C, the time until the once melted fiber cools and reaches the temperature-lowering crystallization temperature Tcc becomes shorter, so it is theoretically preferable. If it is attempted to be obtained, a fairly rapid quenching is required immediately below the spinning, and the fiber breaks frequently, making it difficult to obtain the nonwoven fabric itself.

【0017】結晶化熱量ΔHexoは発熱ピーク時の発熱
量であり、発熱ピークの面積S2から求められる。本発
明においては、結晶化熱量ΔHexoは10mJ/mg以
上である必要がある。結晶化熱量ΔHexoが10mJ/
mg未満であると、上記と同様に、熱圧着工程において
溶融した繊維が冷えて結晶固化するまでに時間がかか
り、熱圧着点が十分に形成されなくなる。
The heat of crystallization ΔHexo is the amount of heat generated at the exothermic peak, and is calculated from the area S2 of the exothermic peak. In the present invention, the heat of crystallization ΔHexo needs to be 10 mJ / mg or more. Heat of crystallization ΔHexo is 10mJ /
If the amount is less than mg, it takes time for the fibers melted in the thermocompression bonding step to cool and crystallize in the thermocompression bonding step, and the thermocompression bonding points cannot be formed sufficiently.

【0018】上記のように構成された長繊維からなる不
織布は、目付の低い不織布である場合や高速生産による
不織布であっても、十分に熱圧着が施され、熱圧着部の
破壊による厚み方向への剥離などの発生を抑えた良好な
長繊維不織布となる。
The non-woven fabric composed of long fibers constructed as described above is sufficiently thermo-compressed even if the non-woven fabric has a low basis weight or is produced by high-speed production, and the thickness direction due to the destruction of the thermo-compression bonding portion It becomes a good long-fiber non-woven fabric in which the occurrence of peeling into the fabric is suppressed.

【0019】上記のような熱特性を有する長繊維は、
結晶化を促進するための不活性粒子を選択して混合、
ノズルより紡出した糸条に急冷を行うこと、ポリ乳酸
系ポリマー粘度の選択という3つの条件を組み合わせて
製造することにより得ることができる。
The long fibers having the above thermal characteristics are
Select and mix inert particles to promote crystallization,
It can be obtained by combining three conditions of rapidly cooling the yarn spun from the nozzle and selecting the viscosity of the polylactic acid polymer.

【0020】結晶化を促進するための不活性粒子(結晶
核剤)としては、タルク、炭酸カルシウム、酸化チタン
等が好適に使用できる。不活性粒子の添加量は、0.1
〜2.0質量%の範囲にあることが好適である。不活性
微粒子の添加量が0.1質量%よりも少ないと十分な結
晶化の促進効果が得られず、不活性微粒子の添加量が
2.0質量%を超えると、結晶性に劣り、ひどいときに
は糸切れが多発する。
As the inert particles (crystal nucleating agent) for promoting crystallization, talc, calcium carbonate, titanium oxide and the like can be preferably used. The amount of inert particles added is 0.1
It is preferable to be in the range of 2.0 mass%. If the addition amount of the inert fine particles is less than 0.1% by mass, a sufficient crystallization accelerating effect cannot be obtained, and if the addition amount of the inert fine particles exceeds 2.0% by mass, the crystallinity is poor and terrible. Sometimes thread breaks occur frequently.

【0021】ノズルより紡出した糸条の急冷は、冷却開
始位置をノズル面下70cm以内とし、冷却温度、冷却
風量等は適宜選択することで行える。ポリ乳酸ポリマー
粘度は、ASTM−D−1238に記載の方法に準じて
温度210℃で測定したMFR(g/10分)が、50
以上100未満であることが好ましく、60〜85の範
囲であることがより好ましい。MFRが50未満である
とポリマーの粘度が高すぎて、ノズルから吐出された糸
条が冷え固まる点(固化点)がノズル面から離れる。こ
のような糸条は冷えにくく徐冷型であるため、固化点か
ら引き取りジェットまでの距離が短く十分な延伸が行わ
れにくく、その結果、十分に結晶化しなくなる。逆にM
FRが100g/10分を超えると、溶融粘度が低すぎ
るために曳糸性が劣るとともに得られる繊維の機械的特
性に劣り、繊度斑が大きくなり、安定した操業が困難と
なる。
[0021] The yarn spun from the nozzle can be rapidly cooled by setting the cooling start position within 70 cm below the nozzle surface and selecting the cooling temperature, the cooling air volume and the like as appropriate. The polylactic acid polymer viscosity is 50 MFR (g / 10 minutes) measured at a temperature of 210 ° C. according to the method described in ASTM-D-1238.
It is preferably 100 or more and less than 100, more preferably 60 to 85. If the MFR is less than 50, the viscosity of the polymer is too high, and the point (solidification point) at which the yarn discharged from the nozzle cools and solidifies separates from the nozzle surface. Since such a yarn is hard to cool and is a slow-cooling type, the distance from the solidification point to the take-up jet is short, and it is difficult to perform sufficient drawing, and as a result, it is not sufficiently crystallized. Conversely, M
When FR exceeds 100 g / 10 minutes, the melt viscosity is too low and thus the spinnability is poor and the mechanical properties of the resulting fiber are poor, and the fineness unevenness becomes large, making stable operation difficult.

【0022】また、本発明の不織布を構成する繊維は、
上記構成に加えて、昇温速度10℃/分で示差熱分析し
た時に、融点Tmが160℃以上、融解熱量ΔHendoが
20mJ/mg以上とすることが好ましい。
The fibers constituting the nonwoven fabric of the present invention are
In addition to the above configuration, it is preferable that the melting point Tm is 160 ° C. or more and the heat of fusion ΔHendo is 20 mJ / mg or more when the differential thermal analysis is performed at a temperature rising rate of 10 ° C./min.

【0023】融点Tmは、図1(a)に示すDSC曲線
a1において、重合体の結晶融解による吸熱ピーク時の
温度であり、この融点Tmを160℃以上とすること
で、熱安定性が良好な不織布が得られる。ポリ乳酸系重
合体が160℃以上の融点を有するためには、モノマー
成分の共重合量比を決定する必要がある。すなわち、ポ
リ乳酸のホモポリマーであるポリ(L−乳酸)やポリ
(D−乳酸)の融点は約180℃であるが、ポリ乳酸系
重合体として前記コポリマーを用いる場合には、コポリ
マーの融点が160℃以上となるようにモノマー成分の
共重合量比を決定することが重要となる。L−乳酸とD
−乳酸とのコポリマーにおいては、L−乳酸とD−乳酸
との共重合量比が、モル比で、(L−乳酸)/(D−乳
酸)=3/97〜0/100、あるいは(L−乳酸)/
(D−乳酸)=97/3〜100/0のものを採用す
る。この範囲を外れると、重合体の融点ひいては不織布
の構成繊維の融点が160℃未満となるとともに重合体
が非晶性となり、製糸時の冷却性が低下して、得られた
不織布の熱安定性が損なわれ、その使用用途が制限され
る傾向となる。
The melting point Tm is the temperature at the endothermic peak due to the crystal melting of the polymer in the DSC curve a1 shown in FIG. 1 (a). By setting the melting point Tm to 160 ° C. or higher, the thermal stability is good. A non-woven fabric can be obtained. In order for the polylactic acid polymer to have a melting point of 160 ° C. or higher, it is necessary to determine the copolymerization ratio of the monomer components. That is, the melting point of poly (L-lactic acid) or poly (D-lactic acid), which is a homopolymer of polylactic acid, is about 180 ° C., but when the copolymer is used as the polylactic acid-based polymer, the melting point of the copolymer is It is important to determine the copolymerization amount ratio of the monomer components so as to be 160 ° C or higher. L-lactic acid and D
-In the copolymer with lactic acid, the copolymerization amount ratio of L-lactic acid and D-lactic acid is (L-lactic acid) / (D-lactic acid) = 3/97 to 0/100, or (L -Lactic acid) /
(D-lactic acid) = 97 / 3-100 / 0 is used. If it is out of this range, the melting point of the polymer, and thus the melting point of the constituent fibers of the non-woven fabric, becomes less than 160 ° C., the polymer becomes amorphous, and the cooling property during spinning is lowered, resulting in the thermal stability of the obtained non-woven fabric. Is impaired, and its intended use tends to be limited.

【0024】また、融解熱量ΔHendoは、昇温速度10
℃/分で昇温したときの全結晶を融解させるのに必要な
熱量であり、図1(a)に示すように、DSC曲線a1
において重合体の結晶融点付近に現れる結晶融解による
吸熱ピークの面積S1から求められる。この融解熱量Δ
Hendoは、主に繊維そのものの結晶性に依存し、結晶性
が大きいと、この値は大きくなる。融解熱量ΔHendoは
20mJ/mg以上であることが好ましい。融解熱量Δ
Hendoが20mJ/mg未満であると、繊維の結晶性が
十分でなくなり、この繊維からなる不織布の寸法安定性
や機械的特性に劣り、実用性に劣る傾向となる。また、
熱に対する安定性を欠くため、高温下で用いたときに不
織布に収縮が発生しやすく、用途が限定されやすい。
The amount of heat of fusion ΔHendo is 10
It is the amount of heat required to melt all the crystals when the temperature is raised at ° C / min, and as shown in Fig. 1 (a), the DSC curve a1
In S.1, the area S1 of the endothermic peak due to crystal melting that appears near the crystal melting point of the polymer is obtained. This heat of fusion Δ
Hendo mainly depends on the crystallinity of the fiber itself, and when the crystallinity is large, this value becomes large. The heat of fusion ΔHendo is preferably 20 mJ / mg or more. Heat of fusion Δ
When Hendo is less than 20 mJ / mg, the crystallinity of the fiber becomes insufficient, and the nonwoven fabric made of this fiber tends to be poor in dimensional stability and mechanical properties and in practical use. Also,
Since it lacks heat stability, the nonwoven fabric tends to shrink when used at high temperatures, and its application is likely to be limited.

【0025】なお、上述のような特性を有しないポリ乳
酸系重合体からなる長繊維、すなわち、図2(a)に示
すように、昇温時のDSC曲線a2は本発明と同様の傾
向を示すが、図2(b)に示すように、降温時のDSC
曲線b2に発熱ピークが発現せず降温結晶化温度Tccが
存在しないポリ乳酸系重合体からなる長繊維は、熱圧着
工程において十分な熱圧着が得られない。これは、繊維
の結晶化能力が低いため、熱圧着工程において、軟化さ
れた長繊維は短時間での結晶固化が困難で、ガラス転移
温度Tg(58℃)にまで冷えないと、十分に結晶固化
することができず、すなわち結晶固化するためには、長
い時間がかかると考えられる。
A long fiber made of a polylactic acid type polymer which does not have the above-mentioned characteristics, that is, as shown in FIG. 2 (a), the DSC curve a2 at the time of heating shows the same tendency as that of the present invention. As shown in FIG. 2B, the DSC at the time of temperature decrease is shown.
A long fiber made of a polylactic acid-based polymer in which the exothermic peak does not appear in the curve b2 and the falling crystallization temperature Tcc does not exist, and sufficient thermocompression bonding cannot be obtained in the thermocompression bonding process. This is because it is difficult to crystallize the softened long fibers in a short time in the thermocompression bonding step because the crystallization ability of the fibers is low, and the crystals are sufficiently crystallized unless they are cooled to the glass transition temperature Tg (58 ° C). It is considered that it takes a long time to solidify, that is, to solidify the crystal.

【0026】従って、このような繊維では、本生産機の
ように連続工程で熱圧着処理後に張力が徐々にかかるよ
うな生産工程の場合や、また、低目付の長繊維不織布を
得るためや、生産効率を上げるために搬送速度を上げて
熱圧着工程での処理後〜巻き取りまでの時間が短くなる
ような場合に、熱圧着工程で、溶融または軟化された熱
圧着部が冷えて結晶固化し強固な熱圧着点を形成する前
に、張力により熱圧着点が外れる、または、熱圧着工程
が終了してしまう等の問題が発生し、十分な部分熱圧着
点が形成されることなく、得られた不織布が厚み方向に
剥離することになる。
Therefore, in the case of such a fiber, in the production process in which the tension is gradually applied after the thermocompression bonding process in the continuous process as in the present production machine, or in order to obtain a long-fiber nonwoven fabric having a low basis weight, When the transfer speed is increased to increase the production efficiency and the time from the processing in the thermocompression bonding process to the winding becomes short, the melted or softened thermocompression bonding part cools and crystallizes in the thermocompression bonding process. Before forming a strong thermocompression-bonding point, the thermocompression-bonding point is removed by tension, or a problem such as the thermocompression-bonding step ends, and a sufficient partial thermocompression-bonding point is not formed, The obtained nonwoven fabric is peeled off in the thickness direction.

【0027】次に、本発明にかかるポリ乳酸系長繊維お
よびこれからなる不織布の製造方法について説明する。
まず、上記した結晶核剤を添加した特定のMFRのポリ
乳酸系重合体を溶融紡糸し、この紡出糸条を牽引細化し
た後に、移動式捕集面上に開繊させながら堆積させてウ
エブを形成し、このウエブに部分熱圧着を施す。
Next, a method for producing the polylactic acid-based long fibers and the nonwoven fabric made of the same according to the present invention will be described.
First, a polylactic acid-based polymer having a specific MFR, to which the above-mentioned crystal nucleating agent is added, is melt-spun, and the spun filament is drawn and thinned, and then deposited on the movable collecting surface while being opened. A web is formed and the web is partially thermocompressed.

【0028】吸引装置を用いて紡出糸条を牽引細化する
際には、引取速度が2500〜6000m/分となるよ
うにすることが好ましい。この引取速度は重合体のMF
Rに応じて適宜選択できるが、この範囲とすることで、
本発明の目的とする、昇温速度10℃/分で示差熱分析
した融点Tmが160℃以上であり、融解熱量が20m
J/mg以上である繊維を得ることができる。引取速度
が2500m/分未満であると、十分な分子配向が得ら
れにくく、また、残留伸度が高い状態となりやすい。そ
のため得られる不織布は、寸法安定性や機械的特性、熱
安定性に劣る傾向にある。また、引取速度が6000m
/分を超えると、製糸性に劣る傾向にあり、さらに繊径
の均整度に劣る傾向にある。また、結晶性は向上する
が、紡糸応力が高くなるため、それに基づく歪みによっ
て結晶構造が乱れ、この結晶構造内にミクロボイドが発
生する傾向となり、実用的な繊維が得られにくくなる。
また繊維および不織布の機械的特性も劣る傾向にある。
When the spun yarn is towed and thinned by using a suction device, it is preferable that the take-up speed be 2500 to 6000 m / min. This take-up speed depends on the MF of the polymer
It can be appropriately selected according to R, but by setting it in this range,
The melting point Tm measured by differential thermal analysis at a temperature rising rate of 10 ° C./min, which is the object of the present invention, is 160 ° C. or higher, and the heat of fusion is 20 m.
Fibers of J / mg or more can be obtained. When the take-up speed is less than 2500 m / min, it is difficult to obtain sufficient molecular orientation, and the residual elongation tends to be high. Therefore, the obtained non-woven fabric tends to be inferior in dimensional stability, mechanical properties, and thermal stability. The take-off speed is 6000m.
If it exceeds / min, the spinnability tends to be poor, and the uniformity of the fiber diameter tends to be poor. Further, although the crystallinity is improved, the spinning stress is increased, and the strain caused thereby disturbs the crystal structure and tends to generate microvoids in the crystal structure, making it difficult to obtain a practical fiber.
In addition, the mechanical properties of fibers and nonwoven fabrics tend to be inferior.

【0029】以上まとめると、本発明のポリ乳酸系長繊
維不織布を製造する際には、例えば、第1ステップとし
て、ポリ乳酸系重合体を、好ましくは、L−乳酸とD−
乳酸との共重合量比がモル比で、(L−乳酸)/(D−
乳酸)=3/97〜0/100、あるいは(L−乳酸)
/(D−乳酸)=97/3〜100/0でMFRが50
〜100g/10分で且つ結晶核剤を添加したポリ乳酸
を溶融紡糸し、第2ステップとして、紡糸口金より紡出
した糸条をエアーサッカーで高速紡糸を行う際、紡出糸
条をノズル面下70cm以内で冷却し、次いで可能な限
り高速紡糸、好ましくは2500m/分以上、より好ま
しくは3000m/分以上で高速紡糸を行うことにより
目的の長繊維を得ることができる。
In summary, in producing the polylactic acid-based long-fiber nonwoven fabric of the present invention, for example, as the first step, a polylactic acid-based polymer, preferably L-lactic acid and D-lactic acid, is used.
The molar ratio of copolymerization with lactic acid is (L-lactic acid) / (D-
Lactic acid) = 3/97 to 0/100, or (L-lactic acid)
/ (D-lactic acid) = 97 / 3-100 / 0 and MFR is 50
Melt spinning of polylactic acid at -100 g / 10 min and addition of crystal nucleating agent, and as the second step, when the yarn spun from the spinneret is subjected to high-speed spinning with air sucker, the spun yarn is used as the nozzle surface. The target long fiber can be obtained by cooling the mixture within 70 cm or less and then performing high speed spinning as much as possible, preferably 2500 m / min or more, and more preferably 3000 m / min or more.

【0030】この長繊維からなるウエブの熱処理の際に
は、部分熱圧着装置を用いて、繊維を構成する重合体の
融点よりも低い温度で部分的に熱圧着を施す。ウエブの
部分的熱圧着とは、エンボス加工によって点状圧着区域
を形成するものをいい、具体的には、エンボスロールと
表面が平滑な金属ロールとの間にウエブを通して長繊維
間に点状圧着区域を形成する方法を採用する。圧着温度
は、繊維を構成する重合体の融点未満の温度、特に(繊
維を構成する重合体の融点−35)℃〜融点未満の温度
を適用するのが好ましい。
When heat-treating the web made of long fibers, a partial thermocompression bonding apparatus is used to partially thermocompress the web at a temperature lower than the melting point of the polymer constituting the fiber. Partial thermocompression bonding of a web means forming a point-shaped pressure bonding area by embossing. Specifically, the web is passed between an embossing roll and a metal roll with a smooth surface to form a point pressure bonding between long fibers. The method of forming the area is adopted. As the pressure-bonding temperature, it is preferable to apply a temperature lower than the melting point of the polymer constituting the fiber, particularly (melting point of polymer constituting the fiber −35) ° C. to a temperature lower than the melting point.

【0031】ウエブにおける特定の部分領域である個々
の熱圧着領域が0.2〜15mm2の面積を有し、その
領域が丸型、楕円型、菱型、三角型、T字型、井型等の
任意の形状であり、かつその領域の分布密度すなわち圧
着点密度が4〜100点/cm2であることが好まし
い。圧着点密度が4点/cm2未満であると得られる不
織布の機械的強力や形態保持性が向上せず、逆に、圧着
点密度が100点/cm2を超えると得られる不織布が
疎剛化して柔軟性を損なう傾向にあり、いずれも好まし
くない。また、ウエブの全表面積に対する全熱圧着領域
の面積の比、すなわち圧着面積率は、個々の圧着点の面
積に依存するが、3〜50%であることが好ましい。こ
の圧着面積率が3%未満であると、得られる不織布の機
械的強力や形態保持性が向上せず、逆に、圧着面積率が
50%を超えると、得られる不織布が粗剛化して柔軟性
を損なう傾向にあり、いずれも好ましくない。
Each thermocompression bonding area, which is a specific partial area of the web, has an area of 0.2 to 15 mm 2 , and the area is round, elliptical, rhombic, triangular, T-shaped, or well-shaped. And the like, and the distribution density of the region, that is, the density of pressure-bonding points is preferably 4 to 100 points / cm 2 . If the density of crimping points is less than 4 points / cm 2 , the mechanical strength and shape retention of the resulting nonwoven fabric are not improved, and conversely, if the density of crimping points exceeds 100 points / cm 2 , the resulting nonwoven fabric is sparse Tend to be lost and the flexibility is impaired, which is not preferable. The ratio of the area of the total thermocompression bonding area to the total surface area of the web, that is, the pressure bonding area ratio depends on the area of each pressure bonding point, but is preferably 3 to 50%. If this crimping area ratio is less than 3%, the mechanical strength and shape retention of the resulting nonwoven fabric will not improve, and conversely, if the crimping area ratio exceeds 50%, the resulting nonwoven fabric will become coarsely rigid and flexible. This tends to impair the sex and is not preferable.

【0032】上記のように作成された本発明におけるポ
リ乳酸系長繊維不織布を構成する長繊維の単糸繊度は特
に限定されず、1〜12デシテックス程度とする。本発
明におけるポリ乳酸系長繊維不織布の目付は特に限定さ
れないが、10〜200g/m2程度とする。
The single-filament fineness of the long fibers constituting the polylactic acid-based long-fiber non-woven fabric of the present invention produced as described above is not particularly limited and is about 1 to 12 decitex. The basis weight of the polylactic acid-based long-fiber nonwoven fabric in the present invention is not particularly limited, but is about 10 to 200 g / m 2 .

【0033】[0033]

【実施例】以下、実施例に基づき本発明を具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。なお、以下の実施例、比較例における各物性
値の測定は、以下の方法により実施した。 (1)融点(℃):パーキンエルマ社製の示差走査型熱
量計DSC−7型を用い、試料質量を5mg、昇温速度
を10℃/分として測定し、得られた融解吸熱曲線にお
いて極値を与える温度を融点Tm(℃)とした。 (2)融解熱量と結晶化熱量(mJ/mg):パーキン
エルマ社製の示差走査型熱量計DSC−7型を用い、試
料質量を10mg、昇温速度を10℃/分として測定
し、得られた融解吸熱曲線の吸熱ピークの面積を融解熱
量(mJ/mg)とした。また、同様に、降温速度を1
0℃/分として測定して得られた結晶化発熱曲線の発熱
ピークの面積を結晶化熱量(mJ/mg)とした。 (3)降温結晶化温度(℃):パーキンエルマ社製の示
差走査型熱量計DSC−7型を用い、試料質量を10m
g、降温速度を10℃/分として測定して得られた結晶
化発熱曲線の発熱ピークの極値を与える温度を降温結晶
化温度Tcc(℃)とした。 (4)メルトフローレート(g/10分):ASTM−
D−1238に記載の方法に準じて温度210℃で測定
した。(以下、メルトフローレートをMFRと称す。) (5)糸切れ性:紡出糸条をエアサッカーにて引き取る
際に、10分あたりに糸切れが発生しなかったものを糸
切れ性が良好であると判定して○で表した。また10分
あたりに糸切れが発生したものを糸切れ性が不良である
と判定して×で表した。 (6)熱圧着状態:熱圧着されたシートの圧接状態を観
察した。シート全体において、シートの圧接が効いてお
らず長繊維不織布が厚み方向に剥離するシートの圧接状
態を×、一部で厚み方向の剥離が生じるシートの圧接状
態を△、厚み方向の剥離が生じないシートの圧接状態を
○とした。 (7)目付(g/m2):標準状態の試料から、縦10
cm×横10cmの試料片を10点を作製し、平衡水分
に至らしめた後、各試料片の質量(g)を秤量し、得ら
れた値の平均値を単位面積当たりに換算して、目付(g
/m2)とした。 (8)引張強力(N/5cm幅):JIS−L−109
6に記載のストリップ方法に準じて測定した。すなわ
ち、試料長が20cm、試料幅が5cmの試料片各10
点を作製し、各試料片毎に不織布の経および緯方向につ
いて、定速伸張型引張試験機(オリエンテック社製、テ
ンシロンUTM−4−1−100)を用いて、つかみ間
隔10cm、引張速度20cm/分で伸張し、最大引張
強力の平均値を引張強力(N/5cm幅)とした。 (9)沸水収縮率(%):20cm×20cmの試料を
沸騰水中で15分間放置した後の面積(X)cmを測定
し、下記式により算出した。本発明においては、沸水収
縮率が10%以下のものを、熱収縮が小さく良好とす
る。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. In addition, measurement of each physical property value in the following Examples and Comparative Examples was performed by the following methods. (1) Melting point (° C.): using a differential scanning calorimeter DSC-7 type manufactured by Perkin Elma Co., Ltd., measured with a sample mass of 5 mg and a heating rate of 10 ° C./min. The temperature giving the value was defined as the melting point Tm (° C). (2) Heat of fusion and heat of crystallization (mJ / mg): measured using a differential scanning calorimeter DSC-7 type manufactured by Perkin Elma Co., with a sample mass of 10 mg and a heating rate of 10 ° C./min. The area of the endothermic peak of the obtained melting endothermic curve was defined as the heat of fusion (mJ / mg). Similarly, the temperature decrease rate is set to 1
The area of the exothermic peak of the crystallization exothermic curve obtained by measuring 0 ° C./min was defined as the heat of crystallization (mJ / mg). (3) Falling temperature crystallization temperature (° C.): using a differential scanning calorimeter DSC-7 type manufactured by Perkin Elma Co., Ltd., and a sample mass of 10 m
g, the temperature that gives the extreme value of the exothermic peak of the crystallization exothermic curve obtained by measuring the temperature decreasing rate at 10 ° C./min was defined as the temperature decreasing crystallization temperature Tcc (° C.). (4) Melt flow rate (g / 10 minutes): ASTM-
It measured at the temperature of 210 degreeC according to the method of D-1238. (Hereinafter, the melt flow rate is referred to as MFR.) (5) Yarn breakability: When the spun yarn is taken out by air sucker, no yarn breakage occurs per 10 minutes, and good yarn breakability. It was judged that it was, and it was represented by ○. In addition, when the yarn breakage occurred around 10 minutes, it was determined that the yarn breakage property was poor and was represented by x. (6) Thermocompression bonding state: The pressure contact state of the thermocompression bonded sheet was observed. In the entire sheet, the pressure contact of the sheet is not effective and the long fiber non-woven fabric is peeled in the thickness direction. × is the pressure contact state of the sheet, Δ is the pressure contact state of the sheet in which the peeling in the thickness direction occurs, and peeling in the thickness direction occurs. The pressure contact state of the non-existent sheet was marked as ◯. (7) Unit weight (g / m 2 ): Vertical 10 from the standard sample
After making 10 sample pieces of cm × width 10 cm and reaching equilibrium water content, the mass (g) of each sample piece was weighed, and the average value of the obtained values was converted to per unit area, Basis weight (g
/ M 2 ). (8) Tensile strength (N / 5 cm width): JIS-L-109
The measurement was performed according to the strip method described in 6. That is, each of the sample pieces having a sample length of 20 cm and a sample width of 5 cm
Points were prepared, and the warp and weft directions of the non-woven fabric were measured for each sample piece by using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100, manufactured by Orientec Co., Ltd.) and a gripping interval of 10 cm and a pulling speed. It was stretched at 20 cm / min, and the average value of the maximum tensile strength was defined as the tensile strength (N / 5 cm width). (9) Shrinkage rate of boiling water (%): The area (X) cm after a sample of 20 cm × 20 cm was left for 15 minutes in boiling water was measured and calculated by the following formula. In the present invention, those having a boiling water shrinkage of 10% or less are considered to have a small thermal shrinkage and be good.

【0034】 沸水収縮率(%)=(400−X)×100/400 (10)生分解性能:約58℃に維持された熟成コンポ
スト中に不織布を埋設し、1ヶ月後に取り出し、不織布
がその形態を保持していない場合を○で示し、不織布が
形態保持している場合を×で示した。 実施例1 ポリ乳酸系重合体として、融点が171℃、MFRが7
0g/10分であり、L−乳酸/D−乳酸=99/1モ
ル%のL−乳酸/D−乳酸共重合体を用い、この重合体
に添加剤としてタルクを0.5質量%配合した。この混
合物を丸型の紡糸口金より、紡糸温度210℃、単孔吐
出量1.67g/分で溶融紡糸した。ノズルより紡出し
た糸条に急冷を行い、その後、エアサッカーにて500
0m/分で引き取り、これを開繊して移動するコンベア
の捕集面上に堆積してウエブを形成した。次いでこのウ
エブをエンボスロールからなる部分熱圧着装置に通し、
ロール温度135℃、圧着面積率14.9%、圧着点密
度21.9個/cm2、線圧60kg/cmの条件にて
部分的に熱圧着し、単糸繊度3.3デシテックスの長繊
維からなる目付50g/m2の長繊維不織布を得た。
Shrinkage rate of boiling water (%) = (400−X) × 100/400 (10) Biodegradability: A non-woven fabric was embedded in an aged compost maintained at about 58 ° C. and taken out after one month. The case where the morphology is not retained is indicated by ◯, and the case where the nonwoven fabric retains the morphology is indicated by x. Example 1 A polylactic acid-based polymer having a melting point of 171 ° C. and an MFR of 7
0 g / 10 minutes, L-lactic acid / D-lactic acid = 99/1 mol% L-lactic acid / D-lactic acid copolymer was used, and 0.5% by mass of talc was added to this polymer as an additive. . This mixture was melt-spun from a round spinneret at a spinning temperature of 210 ° C. and a single hole discharge rate of 1.67 g / min. The yarn spun from the nozzle is cooled rapidly and then air sucked for 500
It was taken out at 0 m / min, opened, and deposited on the collecting surface of a moving conveyor to form a web. Then, pass this web through a partial thermocompression bonding device consisting of an embossing roll,
Long fibers with a single yarn fineness of 3.3 decitex, which are partially thermocompressed under the conditions of a roll temperature of 135 ° C., a crimping area ratio of 14.9%, a crimping point density of 21.9 pieces / cm 2 , and a linear pressure of 60 kg / cm. A long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained.

【0035】得られた不織布の性能などを表1に示す。Table 1 shows the performance and the like of the obtained non-woven fabric.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例2 ポリ乳酸系重合体として、融点が166℃、MFRが7
0g/分であるL−乳酸/D−乳酸=98/2モル%の
L−乳酸/D−乳酸共重合体を用い、エンボスロールの
ロール温度を130℃とした。そしてそれ以外は実施例
1と同様にして長繊維不織布を得た。
Example 2 A polylactic acid-based polymer having a melting point of 166 ° C. and an MFR of 7
The roll temperature of the embossing roll was set to 130 ° C., using 0 g / min of L-lactic acid / D-lactic acid = 98/2 mol% L-lactic acid / D-lactic acid copolymer. A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0038】得られた不織布の性能などを表1に示す。 実施例3 ポリ乳酸系重合体として、融点が162℃、MFRが7
0g/分であるL−乳酸/D−乳酸=97/3モル%の
L−乳酸/D−乳酸共重合体を用い、エンボスロールの
ロール温度を127℃とした。そしてそれ以外は実施例
1と同様にして長繊維不織布を得た。
Table 1 shows the performance of the obtained non-woven fabric. Example 3 A polylactic acid-based polymer having a melting point of 162 ° C. and an MFR of 7
The roll temperature of the embossing roll was 127 ° C., using 0 g / min L-lactic acid / D-lactic acid = 97/3 mol% L-lactic acid / D-lactic acid copolymer. A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0039】得られた不織布の性能などを表1に示す。 実施例4,5 MFR、単孔吐出量、牽引速度を表1に示すように変更
した。そして、それ以外は実施例1と同様にして長繊維
不織布を得た。
Table 1 shows the performance of the obtained non-woven fabric. Examples 4 and 5 The MFR, single hole discharge rate, and traction speed were changed as shown in Table 1. Then, a long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0040】得られた不織布の性能などを表1に示す。 実施例6,7 単孔吐出量と牽引速度を表1に示すように変更した。そ
して、それ以外は実施例1と同様にして長繊維不織布を
得た。
Table 1 shows the performance and the like of the obtained non-woven fabric. Examples 6 and 7 The single hole discharge amount and the pulling speed were changed as shown in Table 1. Then, a long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0041】得られた不織布の性能などを表1に示す。 実施例8,9 単孔吐出量、牽引速度、単糸繊度を表1に示すように変
更した。そして、それ以外は実施例1と同様にして長繊
維不織布を得た。
Table 1 shows the performance of the obtained non-woven fabric. Examples 8 and 9 The single hole discharge amount, the pulling speed, and the single yarn fineness were changed as shown in Table 1. Then, a long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0042】得られた不織布の性能などを表1に示す。 実施例10 添加剤を酸化チタン(TiO2)に変更した。そしてそ
れ以外は実施例1と同様にして、長繊維不織布を得た。
Table 1 shows the performance of the obtained non-woven fabric. Example 10 The additive was changed to titanium oxide (TiO 2 ). A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0043】得られた不織布の性能などを表1に示す。 実施例11 融点が177℃、MFRが70g/分であるL−乳酸/
D−乳酸=99/1モル%のL−乳酸/D−乳酸共重合
体を第1の成分とし、融点が162℃、MFRが70g
/分であるL−乳酸/D−乳酸=97/3モル%のL−
乳酸/D−乳酸共重合体を第2の成分として、各成分を
第1の成分/第2の成分=1/1(質量比)の割合で混
合し、紡糸口金より、紡糸温度210℃、単孔吐出量
1.67g/分で溶融紡出した。紡出糸条は、冷却空気
流にて冷却した後、引き続いてエアサッカーにて500
0m/分で引き取り、開繊し、移動するコンベアの捕集
面上に堆積することで、ウエブを形成した。次いで、こ
のウエブをエンボスロールからなる部分熱圧着装置に通
し、ロール温度132℃、圧着面積率14.9%、圧着
点密度21.9個/cm2、線圧60kg/cmの条件
にて部分的に熱圧着して、単糸繊度3.3dtexの長
繊維からなる目付50g/m2の長繊維不織布を得た。
Table 1 shows the performance of the obtained non-woven fabric. Example 11 L-lactic acid / having a melting point of 177 ° C. and an MFR of 70 g / min.
D-lactic acid = 99/1 mol% L-lactic acid / D-lactic acid copolymer as the first component, melting point 162 ° C., MFR 70 g
/ Min L-lactic acid / D-lactic acid = 97/3 mol% L-
Using lactic acid / D-lactic acid copolymer as the second component, the respective components were mixed at a ratio of the first component / second component = 1/1 (mass ratio), and the spinning temperature was 210 ° C. from the spinneret. Melt spinning was performed at a single hole discharge rate of 1.67 g / min. The spun yarn is cooled with a cooling air flow and then 500 times with an air sucker.
A web was formed by taking it out at 0 m / min, opening the fiber, and depositing it on the collecting surface of the moving conveyor. Then, this web is passed through a partial thermocompression bonding device consisting of an embossing roll, and the roll temperature is 132 ° C., the bonding area ratio is 14.9%, the bonding point density is 21.9 pieces / cm 2 , and the linear pressure is 60 kg / cm. By thermocompression bonding to obtain a long fiber nonwoven fabric having a unit weight of 50 g / m 2 and made of long fibers having a single yarn fineness of 3.3 dtex.

【0044】得られた不織布の性能などを表1に示す。 実施例12 単孔吐出量と牽引速度を表1に示すように変更した。そ
して、それ以外は実施例1と同様にして長繊維不織布を
得た。
Table 1 shows the performance of the obtained non-woven fabric. Example 12 The single hole discharge rate and the pulling speed were changed as shown in Table 1. Then, a long fiber nonwoven fabric was obtained in the same manner as in Example 1 except for the above.

【0045】得られた不織布の性能などを表1に示す。
表1から明らかなように、実施例1〜12で得られた長
繊維は、降温結晶化温度Tccが存在し、かつそのTccが
90℃以上110℃以下であり、結晶化熱量ΔHexoが
10mJ/mg以上であったため、結晶性が高く、熱圧
着工程において十分な熱圧着が得られ、厚み方向への剥
離のない不織布が得られた。また、融点Tmが160℃
以上であり、融解熱量ΔHendoが20mJ/mg以上あ
ったため、寸法安定性や機械的特性にも優れ、不織布の
沸水収縮率も小さく実用的で、しかも熱的に安定なもの
であった。また、これらの不織布は生分解性能について
も非常に良好であり、コンポストへの埋設後に所定の期
間が経過してから取り出したところ、いずれの不織布も
質量減少率や形態変化が大きく、強力保持率も著しく低
下していた。 比較例1 ポリ乳酸系重合体のMFRを30g/分とした。そして
それ以外は実施例1と同様にして長繊維不織布を作成し
た。
Table 1 shows the performance and the like of the obtained non-woven fabric.
As is clear from Table 1, the long fibers obtained in Examples 1 to 12 have a falling temperature crystallization temperature Tcc, the Tcc is 90 ° C or higher and 110 ° C or lower, and the heat of crystallization ΔHexo is 10 mJ / Since it was at least mg, the crystallinity was high, sufficient thermocompression bonding was obtained in the thermocompression bonding step, and a nonwoven fabric that did not peel in the thickness direction was obtained. Also, the melting point Tm is 160 ° C.
Since the heat of fusion ΔHendo was 20 mJ / mg or more, the dimensional stability and mechanical properties were excellent, the boiling water shrinkage of the nonwoven fabric was small, and it was practical and thermally stable. Further, these non-woven fabrics are also very good in biodegradability, and when they were taken out after a predetermined period passed after being embedded in a compost, all the non-woven fabrics had a large mass reduction rate and a large morphological change, and had a strong retention rate. Was also significantly lower. Comparative Example 1 The polylactic acid-based polymer had an MFR of 30 g / min. A long-fiber nonwoven fabric was prepared in the same manner as in Example 1 except for the above.

【0046】得られた長繊維不織布の性能などを表2に
示す。
Table 2 shows the performance and the like of the obtained long-fiber nonwoven fabric.

【0047】[0047]

【表2】 [Table 2]

【0048】比較例2 ポリ乳酸系重合体のMFRを150g/分とした。そし
てそれ以外は実施例1と同様にして長繊維不織布を作成
しようとしたが、粘度が低すぎて製糸性に劣り、不織布
を作成できなかった。 比較例3,4 ポリ乳酸系重合体として表2に示すD−乳酸とL乳酸の
共重合量比のものを用い、エンボス温度を表2に示す温
度に変更した。そしてそれ以外は実施例1と同様にして
長繊維不織布を作成した。
Comparative Example 2 The polylactic acid-based polymer had an MFR of 150 g / min. Other than that, it was attempted to prepare a long-fiber non-woven fabric in the same manner as in Example 1, but the viscosity was too low and the spinnability was poor, and the non-woven fabric could not be prepared. Comparative Examples 3 and 4 A polylactic acid-based polymer having a copolymerization ratio of D-lactic acid and L-lactic acid shown in Table 2 was used, and the embossing temperature was changed to the temperature shown in Table 2. A long-fiber nonwoven fabric was prepared in the same manner as in Example 1 except for the above.

【0049】得られた長繊維不織布の性能などを表2に
示す。 比較例5 ポリ乳酸系重合体に添加剤を添加しなかった。そしてそ
れ以外は実施例1と同様にして長繊維不織布を作成し
た。
Table 2 shows the performance and the like of the obtained long-fiber nonwoven fabric. Comparative Example 5 No additive was added to the polylactic acid polymer. A long-fiber nonwoven fabric was prepared in the same manner as in Example 1 except for the above.

【0050】得られた長繊維不織布の性能などを表2に
示す。比較例1は、ポリ乳酸系重合体のMFRが本発明
の範囲より小さかったたため、降温結晶化温度Tccが存
在しなかった。その結果、熱圧着工程において、十分な
熱圧着が得られず、得られた不織布は厚み方向への剥離
が生じるものとなった。
Table 2 shows the performance of the obtained long-fiber nonwoven fabric. In Comparative Example 1, since the MFR of the polylactic acid-based polymer was smaller than the range of the present invention, the temperature-lowering crystallization temperature Tcc did not exist. As a result, in the thermocompression bonding step, sufficient thermocompression bonding was not obtained, and the obtained nonwoven fabric peeled in the thickness direction.

【0051】比較例2は、ポリ乳酸系重合体の粘度があ
まりにも低すぎて、高速で紡糸することができず、不織
布化することができなかった。比較例3は、不織布を構
成する長繊維に降温結晶化温度Tccは存在するものの、
その温度は本発明の範囲である90℃よりも低く、結晶
化熱量ΔHexoも10mJ/mgよりも低かったため、
熱圧着部において厚み方向に剥離が生じるものとなっ
た。また、融解熱量ΔHendoが20mJ/mgよりも低
く結晶性が低いため、熱による収縮が大きく、熱安定性
に劣るものとなった。
In Comparative Example 2, the viscosity of the polylactic acid-based polymer was too low to allow high-speed spinning, and a non-woven fabric could not be formed. In Comparative Example 3, although the temperature falling crystallization temperature Tcc exists in the long fibers constituting the nonwoven fabric,
The temperature was lower than 90 ° C., which is the range of the present invention, and the heat of crystallization ΔHexo was also lower than 10 mJ / mg.
Peeling occurred in the thickness direction at the thermocompression bonding portion. Further, since the heat of fusion ΔHendo is lower than 20 mJ / mg and the crystallinity is low, the heat shrinkage is large and the thermal stability is poor.

【0052】比較例4は、降温結晶化温度Tccが存在せ
ず、結晶化熱量ΔHexoもないため、十分な熱圧着部が
形成されず、得られた不織布は厚み方向への剥離が生じ
るものとなった。また、ポリ乳酸系繊維の融解熱量ΔH
endoが20mJ/mgよりも低く、結晶性が低かったた
め、熱による収縮が大きくなり熱安定性に劣るものとな
った。
In Comparative Example 4, since the cooling crystallization temperature Tcc does not exist and the crystallization heat amount ΔHexo does not exist, a sufficient thermocompression bonding portion is not formed, and the obtained nonwoven fabric peels in the thickness direction. became. In addition, the heat of fusion ΔH of the polylactic acid fiber
Since endo was lower than 20 mJ / mg and crystallinity was low, shrinkage due to heat was large and thermal stability was poor.

【0053】比較例5は、不織布を構成する長繊維に降
温結晶化温度Tccは存在するもののその温度は本発明の
範囲である90℃よりも低く、結晶化熱量ΔHexoも1
0mJ/mgよりも低かったため、熱圧着部において厚
み方向に剥離が生じた。また、ポリ乳酸系繊維の融解熱
量ΔHendoが20mJ/mgよりも低く、結晶性が低か
ったため、熱による収縮が大きくなり、熱安定性に劣る
ものとなった。
In Comparative Example 5, although the temperature-lowering crystallization temperature Tcc exists in the long fibers constituting the non-woven fabric, the temperature is lower than 90 ° C. which is the range of the present invention, and the heat of crystallization ΔHexo is also 1.
Since it was lower than 0 mJ / mg, peeling occurred in the thickness direction in the thermocompression bonded portion. In addition, the heat of fusion ΔHendo of the polylactic acid-based fiber was lower than 20 mJ / mg and the crystallinity was low, so that the shrinkage due to heat was large and the thermal stability was poor.

【0054】[0054]

【発明の効果】このように本発明のポリ乳酸系長繊維不
織布によれば、不織布を構成する繊維を、昇温速度10
℃/分で融解した後、降温速度10℃/分で示差熱分析
したときに、降温結晶化温度Tccが存在し、かつこの降
温結晶化温度Tccが90℃以上110℃以下であり、結
晶化熱量ΔHexoが10mJ/mg以上となるようにす
ることで、繊維の結晶化速度が速くなり、一旦溶融して
から冷え固まるまでの時間を短縮でき、スパンボンド工
程と熱圧着工程とが連続工程からなるような本生産機で
の生産が可能となり、生産効率を下げずに高速で部分熱
圧着を良好に施すことができ、不織布の厚み方向に剥離
しない部分熱圧着部を形成することができる。
As described above, according to the polylactic acid-based long-fiber nonwoven fabric of the present invention, the fibers constituting the nonwoven fabric are heated at a heating rate of 10%.
After melting at ℃ / min, when the differential thermal analysis at a temperature decrease rate of 10 ℃ / min, there is a cooling crystallization temperature Tcc, and this cooling crystallization temperature Tcc is 90 ℃ or more and 110 ℃ or less, crystallization By setting the heat quantity ΔHexo to be 10 mJ / mg or more, the crystallization rate of the fiber is increased, and the time from once melting to cooling and hardening can be shortened, and the spunbonding step and thermocompression bonding step can be performed continuously. It is possible to perform production with such a production machine as described above, and it is possible to favorably perform partial thermocompression bonding at high speed without lowering production efficiency, and to form a partial thermocompression bonding portion that does not separate in the thickness direction of the nonwoven fabric.

【0055】また、本発明のポリ乳酸系長繊維は、昇温
速度10℃/分で融解した後、降温速度10℃/分で示
差熱分析したときに降温結晶化温度Tccが存在し、かつ
この降温結晶化温度Tccが90℃以上110℃以下であ
り、結晶化熱量ΔHexoが10mJ/mg以上とするこ
とで、一旦溶融した後に冷え固まりやすいポリ乳酸系長
繊維が得られ、本発明のポリ乳酸系長繊維不織布を実現
できる。
Further, the polylactic acid-based long fiber of the present invention has a temperature-falling crystallization temperature Tcc when it is melted at a temperature-rising rate of 10 ° C./min and then subjected to a differential thermal analysis at a temperature-falling rate of 10 ° C./min, and By setting the temperature falling crystallization temperature Tcc to 90 ° C. or more and 110 ° C. or less and the heat of crystallization ΔHexo to 10 mJ / mg or more, a polylactic acid-based continuous fiber which is easily melted after cooling once is obtained. A lactic acid-based long-fiber nonwoven fabric can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態におけるポリ乳酸系重合体
の昇温時と降温時のDSC曲線を示す図である。
FIG. 1 is a diagram showing a DSC curve of a polylactic acid-based polymer according to an embodiment of the present invention when the temperature is raised and when the temperature is lowered.

【図2】図1と比較するためのポリ乳酸系重合体の昇温
時と降温時のDSC曲線を示す図である。
FIG. 2 is a diagram showing DSC curves of a polylactic acid-based polymer at the time of temperature increase and the temperature decrease, for comparison with FIG.

【符号の説明】[Explanation of symbols]

a1,a2 昇温時のDSC曲線 b1,b2 降温時のDSC曲線 a1, a2 DSC curve at temperature rise b1, b2 DSC curve when the temperature is lowered

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L035 BB31 BB40 BB54 EE20 FF05 4L047 AA21 AB03 AB10 BA08 BA23 EA05    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4L035 BB31 BB40 BB54 EE20 FF05                 4L047 AA21 AB03 AB10 BA08 BA23                       EA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリ乳酸系重合体からなる単相断面の長
繊維からなり、前記長繊維同士が部分的に熱圧着されて
なる不織布であって、前記不織布を構成する繊維が、昇
温速度10℃/分で融解した後、降温速度10℃/分で
示差熱分析したときに降温結晶化温度Tccが存在し、か
つこの降温結晶化温度Tccが90℃以上110℃以下で
あり、結晶化熱量ΔHexoが10mJ/mg以上である
ことを特徴とするポリ乳酸系長繊維不織布。
1. A non-woven fabric comprising long fibers having a single-phase cross-section made of a polylactic acid-based polymer, wherein the long fibers are partially thermocompression-bonded to each other, and the fibers constituting the non-woven fabric have a heating rate. After melting at 10 ° C./min, a temperature-decreasing crystallization temperature Tcc exists when performing differential thermal analysis at a temperature-decreasing rate of 10 ° C./min, and the temperature-decreasing crystallization temperature Tcc is 90 ° C. or more and 110 ° C. or less, and crystallization is performed. A polylactic acid-based long-fiber nonwoven fabric having a calorific value ΔHexo of 10 mJ / mg or more.
【請求項2】 前記不織布を構成する繊維が、昇温速度
10℃/分で示差熱分析した融点Tmが160℃以上で
あり、融解熱量ΔHendoが20mJ/mg以上であるこ
とを特徴とする請求項1記載のポリ乳酸系長繊維不織
布。
2. The fibers constituting the non-woven fabric have a melting point Tm of 160 ° C. or more and a heat of fusion ΔHendo of 20 mJ / mg or more as measured by differential thermal analysis at a heating rate of 10 ° C./min. Item 1. A polylactic acid-based long-fiber nonwoven fabric according to item 1.
【請求項3】 ポリ乳酸系重合体からなる単相断面の長
繊維であって、昇温速度10℃/分で融解した後、降温
速度10℃/分で示差熱分析したときに降温結晶化温度
Tccが存在し、かつこの降温結晶化温度Tccが90℃以
上110℃以下であり、結晶化熱量ΔHexoが10mJ
/mg以上であることを特徴とするポリ乳酸系長繊維。
3. A long fiber having a single-phase cross-section made of a polylactic acid polymer, which is melted at a temperature rising rate of 10 ° C./minute and then crystallized at a temperature lowering rate of 10 ° C./minute by differential thermal analysis. There is a temperature Tcc, the temperature falling crystallization temperature Tcc is 90 ° C. or higher and 110 ° C. or lower, and the heat of crystallization ΔHexo is 10 mJ.
/ Mg or more, a polylactic acid-based long fiber.
【請求項4】 昇温速度10℃/分で示差熱分析した融
点Tmが160℃以上であり、融解熱量ΔHendoが20
mJ/mg以上であることを特徴とする請求項3記載の
ポリ乳酸系長繊維。
4. The melting point Tm measured by differential thermal analysis at a heating rate of 10 ° C./min is 160 ° C. or higher, and the heat of fusion ΔHendo is 20.
The polylactic acid-based long fiber according to claim 3, which has a content of mJ / mg or more.
JP2001255402A 2001-08-27 2001-08-27 Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber Expired - Lifetime JP4212264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255402A JP4212264B2 (en) 2001-08-27 2001-08-27 Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001255402A JP4212264B2 (en) 2001-08-27 2001-08-27 Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber

Publications (2)

Publication Number Publication Date
JP2003064569A true JP2003064569A (en) 2003-03-05
JP4212264B2 JP4212264B2 (en) 2009-01-21

Family

ID=19083376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255402A Expired - Lifetime JP4212264B2 (en) 2001-08-27 2001-08-27 Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber

Country Status (1)

Country Link
JP (1) JP4212264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176616A (en) * 2003-12-16 2005-07-07 Unitika Ltd Binding tape
JP2005200800A (en) * 2004-01-19 2005-07-28 Toray Ind Inc False twist yarn of polylactic acid and method for producing the same
JP2006030668A (en) * 2004-07-16 2006-02-02 Dainippon Printing Co Ltd Heat insulating shrink label and container with label
JP2008081902A (en) * 2006-09-28 2008-04-10 Unitika Ltd Method for producing polylactic acid-based spunbond nonwoven fabric
JP2009203599A (en) * 2008-01-31 2009-09-10 Unitika Ltd Polylactic acid-based filament nonwoven fabric and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176616A (en) * 2003-12-16 2005-07-07 Unitika Ltd Binding tape
JP2005200800A (en) * 2004-01-19 2005-07-28 Toray Ind Inc False twist yarn of polylactic acid and method for producing the same
JP4525082B2 (en) * 2004-01-19 2010-08-18 東レ株式会社 Polylactic acid false twisted yarn and method for producing the same
JP2006030668A (en) * 2004-07-16 2006-02-02 Dainippon Printing Co Ltd Heat insulating shrink label and container with label
JP2008081902A (en) * 2006-09-28 2008-04-10 Unitika Ltd Method for producing polylactic acid-based spunbond nonwoven fabric
JP2009203599A (en) * 2008-01-31 2009-09-10 Unitika Ltd Polylactic acid-based filament nonwoven fabric and method for producing the same

Also Published As

Publication number Publication date
JP4212264B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP2599847B2 (en) Polyethylene terephthalate type melt blown nonwoven fabric and its manufacturing method
JP2829147B2 (en) Nonwoven fabric manufacturing method
JP5355225B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
CN103562446A (en) Polyphenylene sulfide fibers and nonwoven fabric
JP3432340B2 (en) Biodegradable long-fiber nonwoven fabric for molding and method for producing the same
JP2003064569A (en) Polylactic acid-based filament nonwoven fabric and polylactic acid-based filament
JP4312066B2 (en) Heat-resistant polylactic acid-based long fiber nonwoven fabric
JP6652855B2 (en) Continuous fiber nonwoven fabric and method for producing the same
JP5361420B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4009370B2 (en) Production method of polyester fiber
JP4338557B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2001003256A (en) Filament non-woven fabric and its production
JPH1037020A (en) Production of polylactic acid-based biodegradable fiber
JP2000273750A (en) Biodegradable filament nonwoven cloth and its production
WO2022176741A1 (en) Biodegradable non-woven fabric and method for producing molded body
JP2011084837A (en) Spun-bonded nonwoven fabric and method for producing the same
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JP3462977B2 (en) Method for producing polylactic acid fiber
JP2005105434A (en) Polyester-based filament nonwoven fabric
JP3462983B2 (en) Method for producing polylactic acid fiber
JP2021042511A (en) Method of manufacturing polylactic acid filament
JP2000282357A (en) Biodegradable filament nonwoven cloth and its production
JPH11302925A (en) Polylactic acid-based filament and its production
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP2006057197A (en) Polylactic acid-based nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080609

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4212264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

EXPY Cancellation because of completion of term