JP2003055772A - Ac discharge plasma cvd film deposition apparatus - Google Patents

Ac discharge plasma cvd film deposition apparatus

Info

Publication number
JP2003055772A
JP2003055772A JP2001243737A JP2001243737A JP2003055772A JP 2003055772 A JP2003055772 A JP 2003055772A JP 2001243737 A JP2001243737 A JP 2001243737A JP 2001243737 A JP2001243737 A JP 2001243737A JP 2003055772 A JP2003055772 A JP 2003055772A
Authority
JP
Japan
Prior art keywords
plasma
film
electrodes
gas
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001243737A
Other languages
Japanese (ja)
Inventor
Hiroshi Akahori
宏 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU DEVICE KK
Original Assignee
SHINKU DEVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU DEVICE KK filed Critical SHINKU DEVICE KK
Priority to JP2001243737A priority Critical patent/JP2003055772A/en
Publication of JP2003055772A publication Critical patent/JP2003055772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit a film of average and uniform thickness on a base material of a relatively large area placed in plasma by using, as a raw material, a film deposition gas such as an organic gas or a gas containing a metal compound which can be less easily excited to plasma. SOLUTION: An AC discharge plasma CVD film deposition apparatus forms an atmosphere in which an inert gas easily excited to plasma and a gas for film deposition less easily excited to plasma are mixed. An AC voltage is applied between electrodes 5 and 5 facing each other to cause glow discharge, and the film deposition on the surface of the base material 7 placed in plasma is performed by decomposing and re-composing the gas for film deposition less easily excited to plasma by the plasma excitation energy of the inert gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は希薄ガスのグロー放
電におけるプラズマのエネルギーを利用してプラズマ励
起の困難な有機ガス或いは含有金属有機ガス等の成膜用
ガスを分解、再合成させることにより、基板や試料等の
基材の表面に再合成有機膜或いは金属膜の成膜を行わせ
る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the energy of plasma in glow discharge of a rare gas to decompose and resynthesize a film-forming gas such as an organic gas or a metal-organic gas containing metal that is difficult to excite plasma. The present invention relates to an apparatus for forming a resynthesized organic film or a metal film on the surface of a substrate such as a substrate or a sample.

【0002】[0002]

【従来の技術】希薄気体を直流高電圧グロー放電によっ
てプラズマ化し、プラズマの熱エネルギーを利用して基
材の表面に有機化合物のガスを分解再合成させることに
より、基材表面に皮膜を形成させる方法はプラズマCV
D法として公知である。
2. Description of the Related Art A dilute gas is turned into plasma by direct current high voltage glow discharge, and the thermal energy of the plasma is used to decompose and recombine a gas of an organic compound on the surface of the base material to form a film on the surface of the base material. Method is plasma CV
This is known as method D.

【0003】従来のプラズマCVD成膜装置は、低圧の
ガス雰囲気を保持できる真空槽の中に対向して平板状の
電極を設置し、この対向する電極の間に直流の高電圧を
印可してグロー放電を発生させて雰囲気ガスをプラズマ
状態にする。この時雰囲気ガスに有機ガスを混合してお
くと、プラズマの熱エネルギーによって有機ガスが分解
されより安定な化合物に再結合すると共に、陰極近傍に
置かれた基材表面に付着して重合膜を形成する。
In a conventional plasma CVD film forming apparatus, flat plate electrodes are installed facing each other in a vacuum chamber capable of holding a low-pressure gas atmosphere, and a high DC voltage is applied between the facing electrodes. Glow discharge is generated to bring the atmospheric gas into a plasma state. At this time, if the organic gas is mixed with the atmospheric gas, the organic gas is decomposed by the thermal energy of plasma and recombined into a more stable compound, and at the same time, the polymer film adheres to the surface of the base material placed in the vicinity of the cathode to form a polymer film. Form.

【0004】また、比較的大面積の基材へのプラズマ重
合膜作成法として高周波電圧励起プラズマ成膜法が提案
されている。この方法は基材を設置した真空槽の外周に
高周波誘導コイルを設置し、真空槽内を有機ガスを含む
希薄気体の雰囲気として高周波誘導により雰囲気ガスを
プラズマ励起し、設置されている基材上に有機合成膜を
生成させるものである。
Further, a high frequency voltage excitation plasma film forming method has been proposed as a method for forming a plasma polymerized film on a substrate having a relatively large area. In this method, a high-frequency induction coil is installed on the outer circumference of the vacuum chamber in which the base material is installed, and the atmosphere gas is plasma-excited by high-frequency induction as an atmosphere of a dilute gas containing an organic gas in the vacuum chamber and the base material is installed. To produce an organic synthetic film.

【0005】[0005]

【発明が解決しようとしている課題】前者の直流放電プ
ラズマCVD装置の場合、基材上へのプラズマ重合膜の
成長速度が陰極近傍において顕著で、陰極より離れると
膜の成長速度が急激に低下する。そのため、基材は陰極
面上に近接して置くことを常套手段としている。従って
放電を阻害するような大面積の基材の表面には、均一な
膜厚の皮膜の形成は難しいという課題がある。
In the former DC discharge plasma CVD apparatus, the growth rate of the plasma polymerized film on the substrate is remarkable in the vicinity of the cathode, and the film growth rate drops sharply when the distance from the cathode increases. . Therefore, it is a common practice to place the base material close to the cathode surface. Therefore, there is a problem that it is difficult to form a film having a uniform film thickness on the surface of a large-area base material that hinders discharge.

【0006】この直流放電プラズマCVD装置におい
て、有機ガスの分解再重合は陰極表面に近接して形成さ
れる負グロー層内において最も活発で、生成された新重
合粒子は電気的に中性の粒子或いは同時に発生する電子
と結合して負のラジカル粒子となり、広い空間に拡散す
る。陰極表面よりの距離が遠のく程、基材面に堆積する
速度が急速に低下するのはこの再重合粒子の広い空間へ
の拡散が原因である。
In this DC discharge plasma CVD apparatus, decomposition and repolymerization of organic gas is most active in the negative glow layer formed in the vicinity of the cathode surface, and the newly polymerized particles produced are electrically neutral particles. Alternatively, they combine with electrons generated at the same time to form negative radical particles and diffuse into a wide space. The larger the distance from the cathode surface, the faster the deposition rate on the surface of the substrate is due to the diffusion of the repolymerized particles into a wide space.

【0007】また後者の高周波電圧励起プラズマ成膜装
置では、高周波誘導によるプラズマ励起力の限界から真
空槽の大きさ、ひいては成膜できる基材の大きさに限界
がある。さらに、真空槽内に励起されるプラズマ密度も
希薄であり、従って有機ガスの分解、再重合速度にも限
界があることから、基材上への合成膜の成長速度が緩慢
で実用的ではない。
Further, in the latter high-frequency voltage excitation plasma film forming apparatus, there is a limit in the size of the vacuum chamber and hence in the size of the substrate on which the film can be formed due to the limit of the plasma excitation force by the high frequency induction. Furthermore, the plasma density excited in the vacuum chamber is also low, and therefore the decomposition and repolymerization rates of organic gas are limited, so the growth rate of the synthetic film on the substrate is slow and not practical. .

【0008】本発明では、前記従来のプラズマCVD成
膜装置における課題に鑑み、比較的大きな面積の基材上
に、平均的で均一な膜厚の皮膜を成膜するものである。
特にプラズマ励起の困難な有機ガス或いは含有金属化合
物ガス等の成膜用ガスを原料として、プラズマの中に置
いた基材試料表面に成膜を行わせることができる交流放
電プラズマCVD成膜装置を提供することを目的とす
る。
In view of the problems in the conventional plasma CVD film forming apparatus, the present invention forms a film having an average and uniform film thickness on a substrate having a relatively large area.
In particular, an AC discharge plasma CVD film forming apparatus capable of forming a film on a surface of a base material sample placed in plasma by using a film forming gas such as an organic gas or a metal compound gas containing metal, which is difficult to excite plasma, as a raw material. The purpose is to provide.

【0009】[0009]

【課題を解決する手段】すなわち、本発明による交流放
電プラズマCVD成膜装置は、プラズマ励起の容易な不
活性ガスとプラズマ励起の困難な成膜用ガスとを混合し
た雰囲気を作り、対向して設けた電極5、5の間に交流
の電圧を印加してグロー放電を行わせ、プラズマ励起の
困難な成膜用ガスを不活性ガスのプラズマ励起エネルギ
ーによって分解、再結合させることによりプラズマの中
に置いた基材7の表面上に成膜を行わせるものである。
That is, the AC discharge plasma CVD film-forming apparatus according to the present invention creates an atmosphere in which an inert gas that is easily plasma-excited and a film-forming gas that is difficult to plasma-excite are mixed, and they are opposed to each other. Glow discharge is performed by applying an AC voltage between the provided electrodes 5 and 5, and the film-forming gas, which is difficult to be plasma-excited, is decomposed and recombined by the plasma excitation energy of the inert gas to generate the plasma. The film is formed on the surface of the base material 7 placed on.

【0010】このような本発明による交流放電プラズマ
CVD成膜装置では、プラズマ励起の困難な有機ガス或
いは含有金属化合物ガス等の成膜用ガスを、プラズマ励
起の容易な不活性ガスのプラズマ励起エネルギーによっ
て分解、再結合させることにより、安定したグロー放電
を維持し、安定したプラズマ状態を維持できるため、そ
のプラズマの中に置いた基材7の表面上に再合成有機膜
或いは金属膜等の成膜を行わせることができる。
In the AC discharge plasma CVD film forming apparatus according to the present invention as described above, the film forming gas such as the organic gas or the contained metal compound gas, which is difficult to excite the plasma, is converted into the plasma exciting energy of the inert gas which is easily excited by the plasma. By decomposing and recombining with each other, a stable glow discharge can be maintained and a stable plasma state can be maintained. Therefore, a re-synthesized organic film or a metal film is formed on the surface of the substrate 7 placed in the plasma. Membranes can be made to occur.

【0011】対向する平面状の電極5、5に交流電圧を
印加してグロー放電を行うと、両電極5、5がこの拡散
を相補って基材7の表面上に比較的平均的で均一な厚さ
の膜が形成されることが実験によって確認されている。
この場合の電極5、5の面積、電極間の距離は基材7の
形状、面積によって決める。
When an AC voltage is applied to the opposing flat electrodes 5 and 5 to perform glow discharge, both electrodes 5 and 5 complement the diffusion and are relatively average and uniform on the surface of the base material 7. It has been confirmed by experiments that a film having a different thickness is formed.
In this case, the areas of the electrodes 5, 5 and the distance between the electrodes are determined by the shape and area of the base material 7.

【0012】交流放電においても両電極5、5の距離を
大きくするとプラズマ励起に要する電圧が高くなり、プ
ラズマは両電極5、5の静電レンズ作用により収斂さ
れ、中央部と外周部との成膜速度に差が発生する。対向
する平板状の電極5、5の中間付近に電極5、5の表面
に平行に基材7を設置した場合、放電電圧が高くなる程
基材7の表面上の中心部に厚く、外周部に薄く成膜され
る。電極5、5の表面上に均一で平均的な厚さの成膜を
行うには両電極5、5間の距離を小さくして放電電圧を
低くし、プラズマの収斂度を小さくする必要がある。こ
の装置の利点としては、一対の基材7、7を背中合わせ
に重ねて設置すれば同時に2枚の基材7、7に成膜する
ことができることである。
Even in AC discharge, if the distance between both electrodes 5 and 5 is increased, the voltage required for plasma excitation increases, and the plasma is converged by the electrostatic lens action of both electrodes 5 and 5, forming the central portion and the outer peripheral portion. A difference occurs in the film speed. When the base material 7 is installed in the vicinity of the middle of the opposing flat plate-shaped electrodes 5 and 5 in parallel with the surfaces of the electrodes 5 and 5, the higher the discharge voltage, the thicker the central portion on the surface of the base material 7 and the thinner the outer peripheral portion. It is formed into a film. In order to form a film having a uniform and average thickness on the surfaces of the electrodes 5 and 5, it is necessary to reduce the distance between the electrodes 5 and 5 to reduce the discharge voltage and the plasma convergence. . An advantage of this apparatus is that a pair of base materials 7, 7 can be formed on two base materials 7, 7 at the same time if they are placed back to back.

【0013】基材7が矩形で幅と長さの比が大きい場合
は、対向する両極5、5の間の距離を大きくし、両電極
5、5の中心を結ぶ中心線付近に基材7を設置する。こ
の場合の両電極5、5の面積は基材7の幅に対応した大
きさで良い。但し両電極5、5の間の距離は基材7の長
さに応じて大きくしなければならないので放電電圧が高
くなり、プラズマは収斂作用も強くなって基材7の表面
上で中心側が厚く外側が薄く成膜される傾向が強くな
る。特に両電極5、5の中心を結ぶ中心線上は静電レン
ズによって収斂された電子の通路となり、基材7のその
中心線上の部分は電子線照射による損傷を受ける。従っ
て、両極間隔を広げるには限界がある。
When the base material 7 is rectangular and has a large width-to-length ratio, the distance between the opposing electrodes 5 and 5 is increased, and the base material 7 is located near the center line connecting the centers of the electrodes 5 and 5. Set up. In this case, the area of both electrodes 5, 5 may be a size corresponding to the width of the base material 7. However, since the distance between both electrodes 5, 5 must be increased according to the length of the base material 7, the discharge voltage becomes high, the plasma also has a strong converging effect, and the center side on the surface of the base material 7 becomes thick. There is a strong tendency to form a thin film on the outside. In particular, the center line connecting the centers of both electrodes 5 and 5 serves as a path for electrons converged by the electrostatic lens, and the portion of the base 7 on the center line is damaged by the electron beam irradiation. Therefore, there is a limit to widen the distance between the two electrodes.

【0014】但し、平板状の電極5、5を対向させた場
合に発生するプラズマの密度は両電極5、5の中心線上
がもっとも高く、その中心線よりの距離に比例して希薄
となり、重合膜の成長速度もこれに比例する。従って、
基材7の表面上に形成された合成膜の厚さ分布も前記の
中心線近傍が厚く、その中心線より離れるに従い薄くな
る。プラズマの収斂度を低下させるため放電電圧を低く
するとプラズマ密度が低下し、成膜速度も比例して低下
するのでその兼ね合いが難しい。
However, the density of plasma generated when the flat plate-shaped electrodes 5 and 5 are opposed to each other is highest on the center lines of both electrodes 5 and 5, and becomes thin in proportion to the distance from the center lines, and polymerization is performed. The film growth rate is also proportional to this. Therefore,
The thickness distribution of the synthetic film formed on the surface of the base material 7 is thick in the vicinity of the center line and becomes thinner as the distance from the center line increases. If the discharge voltage is lowered to lower the plasma convergence, the plasma density is lowered, and the film formation rate is also lowered proportionately, which is difficult to balance.

【0015】従って平板状の電極5、5を対向させた場
合は、希望する基材7の面積に応じて電極5、5の面積
を大きくし、電極5、5の間の距離を小さくして放電電
圧を低くする必要がある。しかし、平板状の電極5、5
で大面積の基材7の表面上に均一で平均的な膜厚の成膜
を行うことには限界がある。
Therefore, when the flat electrodes 5 and 5 are opposed to each other, the areas of the electrodes 5 and 5 are increased and the distance between the electrodes 5 and 5 is decreased in accordance with the desired area of the base material 7. It is necessary to lower the discharge voltage. However, the flat electrodes 5, 5
Therefore, there is a limit in forming a uniform and average film thickness on the surface of the large-sized substrate 7.

【0016】そこで、放電電圧と放電電流を抑えてプラ
ズマ密度の増大を行うには対向する電極5、5の形状を
球形或いは円筒形とし、基材7の大きさに対応した間隔
を取って対向して設置し、両電極5、5の間でグロー放
電を行い、グロー放電によって励起されたプラズマが円
筒形の電極5、5の作る静電レンズ作用によって拡散し
ない範囲の交流電圧を印加する。これにより、両電極
5、5を結ぶ空間に収斂された密度の高い円柱状のプラ
ズマ領域を形成することができる。この時プラズマの中
に成膜に必要な原料ガスを注入すれば、成膜領域は円柱
状のプラズマ領域に等しくなるから、円柱状のプラズマ
の中に置いた基材7の表面上に円柱の縦断面に相当した
面積の成膜が可能である。円柱の直径より大きい基材7
の場合は、回転可能な基材設置台9上に基材7を設置
し、基材7を回転させながらプラズマ重合を行えば良
い。
Therefore, in order to suppress the discharge voltage and the discharge current and increase the plasma density, the electrodes 5 and 5 facing each other are formed into a spherical shape or a cylindrical shape, and the electrodes are opposed to each other with an interval corresponding to the size of the base material 7. Then, glow discharge is performed between the electrodes 5 and 5, and an AC voltage in a range in which plasma excited by the glow discharge is not diffused by the electrostatic lens action formed by the cylindrical electrodes 5 and 5 is applied. As a result, it is possible to form a high-density columnar plasma region that is converged in the space connecting both electrodes 5, 5. At this time, if the source gas necessary for film formation is injected into the plasma, the film formation region becomes equal to the cylindrical plasma region, so that a cylindrical shape is formed on the surface of the base material 7 placed in the cylindrical plasma. It is possible to form a film having an area corresponding to a vertical section. Substrate 7 larger than the diameter of the cylinder
In this case, the base material 7 may be placed on the rotatable base material installation base 9 and plasma polymerization may be performed while rotating the base material 7.

【0017】[0017]

【発明の実施の形態】次に、図面を参照しながら、本発
明の実施の形態について、具体的且つ詳細に説明する。
図1は平板状の電極5、5を使用した本発明の一実施形
態による交流放電プラズマCVD成膜装置を示す概略縦
断側面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
FIG. 1 is a schematic vertical sectional side view showing an AC discharge plasma CVD film forming apparatus according to an embodiment of the present invention, which uses flat electrodes 5 and 5.

【0018】真空槽1は、その底部に排気バルブ2aを
介して接続したターボ分子ポンプ等の真空ポンプ2によ
り排気され、その真空度は真空メータ2bにより監視さ
れる。この真空槽は接地されている。真空槽1の中央部
には、皮膜を成膜する下地を有する基板や試料等の基材
7、7が縦に設置されている。図1の実施形態では、2
枚の基材7、7がその成膜面を互いに反対側に向け、い
わゆる互いに背中合わせに垂直に設置されている。
The vacuum chamber 1 is evacuated by a vacuum pump 2 such as a turbo molecular pump, which is connected to the bottom of the vacuum chamber 1 through an exhaust valve 2a, and the degree of vacuum is monitored by a vacuum meter 2b. This vacuum chamber is grounded. In the central portion of the vacuum chamber 1, substrates 7 having a base on which a film is formed and substrates such as samples are vertically installed. In the embodiment of FIG. 1, 2
The base materials 7, 7 are arranged vertically, so-called back-to-back with each other, with their film-forming surfaces facing away from each other.

【0019】これらの基材7、7を挟んで、一対の平板
状の電極5、5が対向して配置されている。この電極
5、5の面積は、基材7、7とほぼ同じかそれより大き
くする。この電極5、5の間には、交流電源8による交
流電圧が印加されるよう接続されており、この交流電圧
とその電流はそれぞれ電圧計Vと電流計mAにより測定
される。交流電源8による電極5、5の交流電圧の印加
は、タイマー(図示せず)により放電開始から所要の時
間後に停止される。
A pair of flat plate-shaped electrodes 5 and 5 are arranged to face each other with the base materials 7 and 7 interposed therebetween. The areas of the electrodes 5 and 5 are substantially the same as or larger than those of the base materials 7 and 7. An AC voltage is applied between the electrodes 5 and 5 by an AC power source 8, and the AC voltage and its current are measured by a voltmeter V and an ammeter mA, respectively. The application of the AC voltage to the electrodes 5 and 5 by the AC power supply 8 is stopped by a timer (not shown) after a required time from the start of discharge.

【0020】さらに、この電極5、5の対向した面を除
くその外側を囲むように、漏洩電流防止用の静電シール
ド電極6、6が設けられている。この静電シールド電極
6、6は、電極5、5及び真空槽1と絶縁されており、
電位的に浮遊した状態である。真空槽1の底部には、流
量制御バルブ3bと開閉バルブ3aを介してキャリアガ
ス供給源3が接続されている。また、この真空槽1の底
部には、流量制御バルブ4bと開閉バルブ4aを介して
成膜用ガス供給源4が接続されている。
Further, electrostatic shield electrodes 6, 6 for preventing leakage current are provided so as to surround the outer sides of the electrodes 5, 5 excluding the facing surfaces. The electrostatic shield electrodes 6, 6 are insulated from the electrodes 5, 5 and the vacuum chamber 1,
It is in a floating state. A carrier gas supply source 3 is connected to the bottom of the vacuum chamber 1 via a flow rate control valve 3b and an opening / closing valve 3a. A film forming gas supply source 4 is connected to the bottom of the vacuum chamber 1 via a flow rate control valve 4b and an opening / closing valve 4a.

【0021】キャリアガス供給源3は、例えばアルゴ
ン、ネオン、窒素等のプラズマ励起が容易な不活性キャ
リアガスを供給するものである。流量調整バルブ3bに
より、真空ポンプ2による真空槽1の排気量とキャリア
ガス供給量とを平衡させ、真空槽1内をプラズマ励起容
易な圧力に保持し、前記電極5、5への交流電圧の印加
により、安定したグロー放電を維持する。
The carrier gas supply source 3 supplies, for example, an inert carrier gas such as argon, neon or nitrogen, which is easily plasma-excited. By the flow rate adjusting valve 3b, the exhaust amount of the vacuum chamber 1 by the vacuum pump 2 and the carrier gas supply amount are balanced, the pressure inside the vacuum chamber 1 is maintained at a pressure that facilitates plasma excitation, and the AC voltage of the electrodes 5 and 5 is changed. A stable glow discharge is maintained by applying the voltage.

【0022】成膜用ガス供給源4は、成膜原料である有
機ガス或いは含有金属有機ガス等のプラズマ励起の困難
な成膜用ガスの供給源である。開閉バルブ4aにより成
膜用ガスの真空槽1内への注入を開始し、流量調整バル
ブ4bにより必要な注入量が調整される。開閉バルブ4
aは、前記交流電源8を停止するタイマー(図示せず)
により成膜用ガスの真空槽1内への注入の開始から所要
の時間後に閉じられ、成膜用ガスの真空槽1内への注入
が停止される。真空槽1内への成膜用ガスの導入位置
は、必ずしもその底部に限定されないが、図1の実施形
態では基材7、7及び電極5、5が縦に設置されている
ので、真空槽1の底部から導入している。
The film-forming gas supply source 4 is a film-forming gas supply source for which it is difficult to excite plasma such as an organic gas as a film-forming raw material or a contained metal organic gas. The opening / closing valve 4a starts the injection of the film forming gas into the vacuum chamber 1, and the flow rate adjusting valve 4b adjusts the required injection amount. Open / close valve 4
a is a timer (not shown) for stopping the AC power supply 8
Thus, the film forming gas is closed after a required time from the start of the injection into the vacuum chamber 1, and the injection of the film forming gas into the vacuum chamber 1 is stopped. The introduction position of the film forming gas into the vacuum chamber 1 is not necessarily limited to the bottom thereof, but in the embodiment of FIG. 1, since the base materials 7, 7 and the electrodes 5, 5 are vertically installed, It is introduced from the bottom of 1.

【0023】このような構成からなる交流放電プラズマ
CVD成膜装置における成膜手順は次の通りである。ま
ず、基材7、7を電極5、5の間に設置した状態で、真
空ポンプ2により真空槽1の排気を行う。そして、キャ
リヤガス供給源3からキャリアガスを真空槽1内に供給
しながら、真空槽1内の圧力を10Pa〜100Paに
安定化させる。交流電源8により、電極5、5の間に3
00Vないし500Vの交流電圧を印加し、5mA〜5
0mAの放電電流を流す。放電により、基材7、7の表
面及び真空槽1の内壁や真空槽1内のその他の部品の表
面から吸蔵ガスが放出され、真空槽1内の雰囲気圧力の
上昇があるが、設定した圧力に戻るまで放電を続ける。
これにより試料表面のイオンクリーニング処理ができ
る。圧力が安定したら成膜反応時間を設定したタイマー
(図示せず)をスタートさせると同時に、成膜用ガス供
給源4の調整バルブ4b及び開閉バルブ4aを開き、真
空槽1内に成膜用ガスを注入する。成膜用ガスの注入に
よる真空槽1内の圧力上昇は、キャリヤガス設定圧力の
30%以内とする。反応時間は希望する膜の厚さに従い
決定する。
The film forming procedure in the AC discharge plasma CVD film forming apparatus having such a structure is as follows. First, with the substrates 7, 7 installed between the electrodes 5, 5, the vacuum chamber 1 is evacuated by the vacuum pump 2. Then, while supplying the carrier gas into the vacuum chamber 1 from the carrier gas supply source 3, the pressure in the vacuum chamber 1 is stabilized to 10 Pa to 100 Pa. An AC power source 8 is used to connect the electrodes 3 and 5 between the electrodes 5 and 5.
Applying AC voltage of 00V to 500V, 5mA to 5mA
A discharge current of 0 mA is passed. Due to the discharge, the stored gas is released from the surfaces of the base materials 7 and 7 and the inner wall of the vacuum chamber 1 and the surfaces of other components in the vacuum chamber 1, and the atmospheric pressure in the vacuum chamber 1 rises. Continue discharging until returning to.
This allows the sample surface to be ion-cleaned. When the pressure is stabilized, a timer (not shown) for setting the film formation reaction time is started, and at the same time, the adjustment valve 4b and the opening / closing valve 4a of the film formation gas supply source 4 are opened to form the film formation gas in the vacuum chamber 1. Inject. The pressure increase in the vacuum chamber 1 due to the injection of the film forming gas is within 30% of the carrier gas set pressure. The reaction time is determined according to the desired film thickness.

【0024】真空槽1内へ成膜用ガスの注入を開始した
後、タイマー(図示せず)で設定した成膜反応時間が経
過すると、成膜用ガス供給源4の開閉バルブ4aが閉じ
られると共に、交流電源8による電極5、5の交流電圧
の印加が停止され、またキャリヤガス供給源3側の開閉
バルブ3aも閉じられる。その後、未反応のガスを真空
槽1内から排気した後、真空槽1の排気を停止、その真
空を破って基材7、7を取り出す。
When the film forming reaction time set by a timer (not shown) elapses after starting the film forming gas injection into the vacuum chamber 1, the opening / closing valve 4a of the film forming gas supply source 4 is closed. At the same time, the application of the AC voltage to the electrodes 5 and 5 by the AC power supply 8 is stopped, and the opening / closing valve 3a on the carrier gas supply source 3 side is also closed. Then, after the unreacted gas is exhausted from the vacuum chamber 1, the exhaust of the vacuum chamber 1 is stopped, the vacuum is broken, and the substrates 7, 7 are taken out.

【0025】次に、図2は、球形或いは円筒形の対向す
る電極5、5を用いた本発明の実施形態による交流放電
プラズマCVD装置の概略構成断面図である。図1と同
じ部分は同じ符号で示してある。真空槽1はグロー放電
を行わせるため真空ポンプ2により0.1Pa程度の圧
力保持を可能にしている。この真空槽1の上面には透明
な監視窓10が設けられており、この監視窓10は、基
材7の成膜面への成膜過程での紫外線などのレーザー光
照射にも役立つ。
Next, FIG. 2 is a schematic sectional view of an AC discharge plasma CVD apparatus according to an embodiment of the present invention, which uses spherical or cylindrical electrodes 5 and 5 facing each other. The same parts as those in FIG. 1 are denoted by the same reference numerals. The vacuum chamber 1 can hold a pressure of about 0.1 Pa by the vacuum pump 2 in order to perform glow discharge. A transparent monitor window 10 is provided on the upper surface of the vacuum chamber 1, and the monitor window 10 is also useful for irradiating a laser beam such as ultraviolet rays on the film formation surface of the base material 7 during the film formation process.

【0026】対向する一対の電極5、5は、円筒形のカ
ップ状の電極であり、一対が反応槽1内に必要な距離を
置いて対向して設置されている。この円筒形の電極5、
5は反応槽1と電気的に絶縁して設置され、その外周は
漏洩電流防止用のやはり円筒形のカップ状の静電シール
ド電極6によって囲まれている。電極5、5の直径は特
に大きくする必要はなく、両電極5、5の間の電界強度
を高めるために適した大きさにする。具体的には直径を
50mmないし100mmの間とする。両電極5、5の
間の距離は、後述する基材7の大きさに対応した試料設
置台6に接触しない距離とするが、間隔の拡大に対応し
て放電電圧も大きくなるから必要以上に距離を大きくす
ることは好ましくない。なお、図示の電極5、5と静電
シールド電極6、6は、円筒形であるが、この電極5、
5や静電シールド電極6、6は中空半球形であってもよ
い。
The pair of electrodes 5 and 5 facing each other are cylindrical cup-shaped electrodes, and the pair of electrodes 5 and 5 are installed to face each other in the reaction tank 1 with a necessary distance. This cylindrical electrode 5,
5 is installed so as to be electrically insulated from the reaction tank 1, and its outer circumference is surrounded by an electrostatic shield electrode 6 which is also cylindrical and has a cylindrical shape for preventing leakage current. The diameters of the electrodes 5 and 5 do not need to be particularly large, and are set to a size suitable for increasing the electric field strength between the electrodes 5 and 5. Specifically, the diameter is between 50 mm and 100 mm. The distance between the electrodes 5 and 5 is set so as not to come into contact with the sample installation base 6 corresponding to the size of the base material 7 described later, but the discharge voltage also increases as the distance increases, so it is more than necessary. Increasing the distance is not preferable. Although the electrodes 5 and 5 and the electrostatic shield electrodes 6 and 6 shown in the figure are cylindrical,
5 and the electrostatic shield electrodes 6 and 6 may have a hollow hemispherical shape.

【0027】表面に皮膜を成膜する基材7は、回転駆動
源9bにより回転される設置台9の上に水平に設置され
ている。設置台9に設置した時の基材7の表面は、前記
対向する円筒形の電極5、5の図2において一点鎖線で
示した中心線より5mmないし10mm下方に離れた位
置とする。これは中心線上に電子ビームが集中して流れ
るので基材7によっては電子線によるダメージを受ける
可能性があるためである。
The base material 7 for forming a film on its surface is horizontally installed on an installation table 9 rotated by a rotary drive source 9b. The surface of the base material 7 when installed on the installation table 9 is located 5 mm to 10 mm below the center line of the opposing cylindrical electrodes 5 and 5 shown by the alternate long and short dash line in FIG. This is because the electron beam concentrates and flows on the center line, so that the base material 7 may be damaged by the electron beam.

【0028】なお、図示の交流放電プラズマCVD装置
では、電極5、5の中心線の下だけに基材7を設置して
いるが、この中心線を挟んで設置台9を対向して2基設
置し、電極5、5の中心線から外れた位置にそれぞれに
基材7を設置すればすれば同時に2枚の基材試料に同一
厚さの成膜が可能である。この場合の監視窓10は、基
材7を側面から監視できる位置に設ける。
In the illustrated AC discharge plasma CVD apparatus, the base material 7 is installed only below the center lines of the electrodes 5 and 5, but two installation bases 9 are opposed to each other with the center line sandwiched therebetween. If the base material 7 is installed and the base material 7 is installed at a position deviated from the center line of the electrodes 5 and 5, it is possible to simultaneously form a film having the same thickness on two base material samples. In this case, the monitoring window 10 is provided at a position where the base material 7 can be monitored from the side surface.

【0029】キャリアガス供給源3は、流量制御バルブ
3bと開閉バルブ3aを介してやはり真空槽1の底部に
接続されている。これに対し、成膜原料である有機ガス
或いは含有金属有機ガス等の成膜用ガスを供給する成膜
用ガス供給源4は、流量調整バルブ4bと開閉バルブ4
aを介して分岐管に接続され、この分岐管を通して真空
槽1の側面に設けた成膜用ガス導入部4c、4cに接続
されている。成膜用ガスは、この成膜用ガス導入部4
c、4cから対向する一対の電極5、5の中心軸に沿っ
てその電極5、5の中に注入される。この成膜用ガスの
真空槽1内への導入位置は、かならずしもこの位置に限
定されないが、円筒形の両電極5、5の中に直接導入す
ることにより、平均化した成膜が可能となり、原料ガス
の消費量節約にも役立つ。特に有害ガスを使用する場合
は大気汚染の防止に効果がある。
The carrier gas supply source 3 is also connected to the bottom of the vacuum chamber 1 via a flow rate control valve 3b and an opening / closing valve 3a. On the other hand, the film-forming gas supply source 4 for supplying the film-forming gas such as the organic gas as the film-forming raw material or the contained metal organic gas is the flow rate adjusting valve 4 b and the opening / closing valve 4.
It is connected to a branch pipe via a, and is connected to the film forming gas introducing portions 4c and 4c provided on the side surface of the vacuum chamber 1 through the branch pipe. The film-forming gas is supplied through the film-forming gas introduction unit 4
It is injected into the electrodes 5, 5 along the central axis of the pair of electrodes 5, 5 facing each other from c, 4c. The introduction position of this film forming gas into the vacuum chamber 1 is not always limited to this position, but by introducing the film forming gas directly into both the cylindrical electrodes 5 and 5, an averaged film formation becomes possible, It also helps to save the consumption of raw material gas. Especially when harmful gas is used, it is effective in preventing air pollution.

【0030】このような構成からなる交流放電プラズマ
CVD成膜装置における成膜手順もまた、基本的には前
記図1の交流放電プラズマCVD成膜装置の場合と同じ
である。まず、基材7を設置台9に設置した状態で、真
空ポンプ2により真空槽1の排気を行う。そして、キャ
リヤガス供給源3からキャリアガスを真空槽1内に供給
しながら、真空槽1内の圧力を10Pa〜100Paに
安定化させる。交流電源8により、電極5、5の間に3
00Vないし500Vの交流電圧を印加し、5mA〜5
0mAの放電電流を流す。この放電により、前述した交
流放電プラズマCVD成膜装置と同様にしてイオンクリ
ーニング処理をする。圧力が安定したら成膜反応時間を
設定したタイマー(図示せず)をスタートさせると同時
に、成膜用ガス供給源4の調整バルブ4b及び開閉バル
ブ4aを開き、真空槽1内に成膜用ガスを注入する。成
膜用ガスの注入による真空槽1内の圧力上昇は、やはり
キャリヤガス設定圧力の30%以内とする。反応時間は
希望する膜の厚さに従い決定する。但しこの場合、回転
駆動源9bにより設置台9上の基材7を毎分10〜30
回転程度しながら成膜を行う。
The film forming procedure in the AC discharge plasma CVD film forming apparatus having such a structure is also basically the same as that in the AC discharge plasma CVD film forming apparatus shown in FIG. First, the vacuum tank 1 is evacuated by the vacuum pump 2 with the substrate 7 installed on the installation table 9. Then, while supplying the carrier gas into the vacuum chamber 1 from the carrier gas supply source 3, the pressure in the vacuum chamber 1 is stabilized to 10 Pa to 100 Pa. An AC power source 8 is used to connect the electrodes 3 and 5 between the electrodes 5 and 5.
Applying AC voltage of 00V to 500V, 5mA to 5mA
A discharge current of 0 mA is passed. With this discharge, an ion cleaning process is performed in the same manner as the above-mentioned AC discharge plasma CVD film forming apparatus. When the pressure is stabilized, a timer (not shown) for setting the film formation reaction time is started, and at the same time, the adjustment valve 4b and the opening / closing valve 4a of the film formation gas supply source 4 are opened to form the film formation gas in the vacuum chamber 1. Inject. The pressure rise in the vacuum chamber 1 due to the injection of the film-forming gas is still within 30% of the carrier gas set pressure. The reaction time is determined according to the desired film thickness. However, in this case, the rotary drive source 9b moves the base material 7 on the installation table 9 at 10 to 30 minutes per minute.
Film formation is performed while rotating.

【0031】真空槽1内へ成膜用ガスの注入を開始した
後、タイマー(図示せず)で設定した成膜反応時間が経
過すると、成膜用ガス供給源4の開閉バルブ4aが閉じ
られると共に、交流電源8による電極5、5の交流電圧
の印加が停止され、またキャリヤガス供給源3側の開閉
バルブ3aも閉じられる。その後、未反応のガスを真空
槽1内から排気した後、真空槽1の排気を停止、その真
空を破って基材7、7を取り出す。この手順は、前述し
た交流放電プラズマCVD成膜装置と同じである。
When the film-forming reaction time set by a timer (not shown) has elapsed after starting the film-forming gas injection into the vacuum chamber 1, the opening / closing valve 4a of the film-forming gas supply source 4 is closed. At the same time, the application of the AC voltage to the electrodes 5 and 5 by the AC power supply 8 is stopped, and the opening / closing valve 3a on the carrier gas supply source 3 side is also closed. Then, after the unreacted gas is exhausted from the vacuum chamber 1, the exhaust of the vacuum chamber 1 is stopped, the vacuum is broken, and the substrates 7, 7 are taken out. This procedure is the same as the above-mentioned AC discharge plasma CVD film forming apparatus.

【発明の効果】【The invention's effect】

【0032】以上説明した通り、本発明による交流放電
プラズマCVD成膜装置では、プラズマ励起の困難な有
機ガス或いは含有金属化合物ガスを、プラズマ励起の容
易な不活性ガスのプラズマ励起エネルギーによって分
解、再結合させることにより、安定したグロー放電を維
持し、安定したプラズマ状態を維持できるため、そのプ
ラズマの中に置いた基材7の表面上に再合成有機膜或い
は金属膜の成膜を行わせることができる。
As described above, in the AC discharge plasma CVD film forming apparatus according to the present invention, the organic gas or the contained metal compound gas, which is difficult to be plasma excited, is decomposed and regenerated by the plasma excitation energy of the inert gas which is easily plasma excited. Since the stable glow discharge can be maintained and the stable plasma state can be maintained by combining them, it is necessary to form the re-synthesized organic film or the metal film on the surface of the base material 7 placed in the plasma. You can

【0033】基材7の表面上への合成皮膜の成長速度は
プラズマの密度に比例する。図1に示すような平板状の
対向電極5、5を設けたものにおいても放電電圧を高く
して放電電流を増すことでプラズマ密度を大にすること
は可能である。しかし、放電電流の増大は基材7の電子
線照射による損傷を招くので、大きい基材7のために過
度に電極5、5の面積を大きくしたり電極5、5の間隔
を大きくすることには限界がある。
The growth rate of the synthetic film on the surface of the substrate 7 is proportional to the plasma density. Even in the case where flat plate-shaped counter electrodes 5 and 5 as shown in FIG. 1 are provided, it is possible to increase the discharge voltage and increase the discharge current to increase the plasma density. However, since an increase in the discharge current causes damage to the base material 7 due to electron beam irradiation, it is necessary to excessively increase the area of the electrodes 5 and 5 or increase the distance between the electrodes 5 and 5 for the large base material 7. Has a limit.

【0034】この欠点を改善するには両電極5、5を円
筒形または中空半球形とし、円筒の端面間に形成される
静電レンズ作用を利用することである。この静電レンズ
作用により低い放電電圧で効果的にプラズマを発生させ
収斂させて密度の高いプラズマ領域を作ることができ
る。更にプラズマ励起容易なキャリヤガスを利用するこ
とで、より低い放電電圧で高密度のプラズマ領域を作る
ことが出来るから、このキャリヤガスの中に成膜用ガス
を混合すれば、プラズマ化困難なガスもプラズマのエネ
ルギーで分解し目的の基材試料表面に効率良く再合成、
成膜させることができる。
To remedy this drawback, both electrodes 5, 5 should be cylindrical or hollow hemispherical, and the electrostatic lens effect formed between the end faces of the cylinder should be utilized. By this electrostatic lens action, plasma can be effectively generated and converged at a low discharge voltage to form a high-density plasma region. Furthermore, by using a carrier gas that facilitates plasma excitation, a high-density plasma region can be created at a lower discharge voltage. Also decomposes with the energy of plasma and efficiently re-synthesizes on the target substrate sample surface,
A film can be formed.

【0035】円筒形(または中空半球形)の電極5、5
を対向させた図2に示すような交流放電プラズマCVD
成膜装置において、直流放電ではプラズマ密度が陰極側
に偏って発生する。これに対し、交流放電であれば互い
に相補って両電極5、5の間のプラズマ密度が平均化さ
れる。適切な放電電圧を選べばプラズマの形状は電極
5、5の直径にほぼ等しい円柱状になる。基材7はプラ
ズマ円柱内に円柱軸に沿って設置されるが、プラズマ円
柱の直径より大きい試料は回転試料台9に設置して回転
駆動源9bにより回転させながら成膜を進行させること
により全面に均一な膜厚で成膜が可能である
Cylindrical (or hollow hemispherical) electrodes 5, 5
AC plasma plasma CVD as shown in FIG.
In the film forming apparatus, the plasma density is biased toward the cathode side in DC discharge. On the other hand, in the case of AC discharge, the plasma densities between the electrodes 5 and 5 are averaged in a complementary manner. If a suitable discharge voltage is selected, the shape of the plasma will be a columnar shape that is approximately equal to the diameter of the electrodes 5, 5. The base material 7 is installed in the plasma cylinder along the cylinder axis, and a sample larger than the diameter of the plasma cylinder is installed on the rotating sample table 9 and is rotated by the rotary drive source 9b to progress the film formation. It is possible to form a uniform film thickness

【0036】キャリヤガスの中に混合する成膜材料とし
ての有機化合物ガス或いは含有金属化合物ガス等の成膜
用ガスの注入部位は特に限定されないが、両方の円筒形
の電極5、5内に開口する導入部4c、4cを設けて両
電極5、5内に直接注入することにより、注入されたガ
スが効率よく利用され、未反応ガスとして排出される割
合が極めて少なくなるので、原料ガスの節約になると共
に原料ガスが人畜に有害であるときは大気汚染の防止に
も大きな効果がある。
The injection site of the film forming gas such as the organic compound gas or the contained metal compound gas as the film forming material mixed in the carrier gas is not particularly limited, but it is opened in both cylindrical electrodes 5, 5. By directly introducing the gas into the electrodes 5 and 5 by providing the introducing portions 4c and 4c, the injected gas is efficiently used and the ratio of being discharged as an unreacted gas is extremely small, so that the raw material gas is saved. In addition, when the source gas is harmful to humans and animals, it has a great effect on preventing air pollution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による平板電極対向型交流
放電プラズマCVD成膜装置を示す概略図である。
FIG. 1 is a schematic view showing a flat plate electrode facing type AC discharge plasma CVD film forming apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施形態による円筒電極対向型交
流放電プラズマ成膜装置を示す概略図である。
FIG. 2 is a schematic view showing a cylindrical electrode facing type AC discharge plasma film forming apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽 2 真空ポンプ 3 キャリアガス供給源 4 成膜用ガス供給源 5 電極 6 静電シールド 7 基材 8 交流電源 9 設置台 1 vacuum tank 2 vacuum pump 3 Carrier gas supply source 4 Gas supply source for film formation 5 electrodes 6 electrostatic shield 7 Base material 8 AC power supply 9 installation stand

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ励起の容易な不活性ガスとプラ
ズマ励起の困難な成膜用ガスとを混合した雰囲気を作
り、対向して設けた電極間に交流の電圧を印加してグロ
ー放電を行わせ、プラズマ励起の困難な成膜用ガスを不
活性ガスのプラズマ励起エネルギーによって分解、再結
合させることによりプラズマの中に置いた基材の表面上
に成膜を行わせることを特徴とする交流放電プラズマ成
膜装置。
1. A glow discharge is carried out by creating an atmosphere in which an inert gas that is easily plasma-excited and a film-forming gas that is difficult to plasma-excite are mixed, and applying an AC voltage between electrodes that are opposed to each other. And the film-forming gas, which is difficult to excite the plasma, is decomposed and recombined by the plasma excitation energy of the inert gas to form a film on the surface of the substrate placed in the plasma. Discharge plasma film forming apparatus.
【請求項2】 請求項1の交流放電成膜装置において、
対向する両電極を円筒形とし、両電極の円筒端面間に形
成される静電レンズ作用を利用してプラズマ密度を上げ
ることにより、成膜速度を向上させたことを特徴とする
交流放電プラズマ成膜装置
2. The AC discharge film forming apparatus according to claim 1,
Both electrodes facing each other have a cylindrical shape, and the plasma density is increased by utilizing the electrostatic lens effect formed between the cylindrical end faces of both electrodes, so that the film formation rate is improved. Membrane device
【請求項3】 請求項2のプラズマ成膜装置において、
両電極の間に回転可能な試料台を設け、その上に設置し
た基材を回転させることにより、大面積の基材において
も均一な成膜を施す如くしたことを特徴とする交流放電
プラズマ成膜装置。
3. The plasma film forming apparatus according to claim 2,
A rotatable sample holder was provided between both electrodes, and the base material placed on it was rotated so that uniform film formation could be performed even on a large area base material. Membrane device.
【請求項4】 請求項1または2のプラズマ成膜装置に
おいて、円筒形の電極の中に成膜用ガスを注入すること
を特徴とする交流放電プラズマ成膜装置。
4. The AC discharge plasma film forming apparatus according to claim 1 or 2, wherein a film forming gas is injected into a cylindrical electrode.
JP2001243737A 2001-08-10 2001-08-10 Ac discharge plasma cvd film deposition apparatus Pending JP2003055772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001243737A JP2003055772A (en) 2001-08-10 2001-08-10 Ac discharge plasma cvd film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001243737A JP2003055772A (en) 2001-08-10 2001-08-10 Ac discharge plasma cvd film deposition apparatus

Publications (1)

Publication Number Publication Date
JP2003055772A true JP2003055772A (en) 2003-02-26

Family

ID=19073782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001243737A Pending JP2003055772A (en) 2001-08-10 2001-08-10 Ac discharge plasma cvd film deposition apparatus

Country Status (1)

Country Link
JP (1) JP2003055772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144418A (en) * 2010-01-14 2011-07-28 Filgen Inc Plasma deposition method for conductive thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213481A (en) * 1989-02-15 1990-08-24 Fujitsu Ltd Thin film forming device
JPH04337076A (en) * 1991-05-14 1992-11-25 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk High-speed film formation by plasma and radical cvd method under high pressure
JPH0850997A (en) * 1994-08-04 1996-02-20 Minoru Sugawara Electrode for high-frequency discharge and high-frequency plasma substrate treatment device
JP2001190948A (en) * 1999-10-22 2001-07-17 Robert Bosch Gmbh Method and apparatus for plasma treatment of surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213481A (en) * 1989-02-15 1990-08-24 Fujitsu Ltd Thin film forming device
JPH04337076A (en) * 1991-05-14 1992-11-25 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk High-speed film formation by plasma and radical cvd method under high pressure
JPH0850997A (en) * 1994-08-04 1996-02-20 Minoru Sugawara Electrode for high-frequency discharge and high-frequency plasma substrate treatment device
JP2001190948A (en) * 1999-10-22 2001-07-17 Robert Bosch Gmbh Method and apparatus for plasma treatment of surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144418A (en) * 2010-01-14 2011-07-28 Filgen Inc Plasma deposition method for conductive thin film

Similar Documents

Publication Publication Date Title
JP2601127B2 (en) Plasma CVD equipment
KR100354413B1 (en) Plasma processing system and method
JP2000331995A (en) Flat plate gas introduction device of ccp reaction vessel
JPH02281734A (en) Treating method of surface by plasma
KR100351516B1 (en) Method for Surface Modification of 3-Dimensional Bulk Polymers
US7708866B2 (en) Sputtering apparatus
JP2003055772A (en) Ac discharge plasma cvd film deposition apparatus
JP2003064207A (en) Dry surface treatment method for making surface of porous material hydrophilic
JPS61238962A (en) Method and apparatus for forming film
JPS6156273A (en) Method and device for surface processing by glow electric discharge
JPS6267822A (en) Plasma processor
JPS63155546A (en) Plasma treatment device
JP4070871B2 (en) Copper thin film formation method
JPS61174726A (en) Formation of thin film
JPH04211115A (en) Rf plasma cvd apparatus and thin film forming method
JP2012507834A (en) Method and apparatus for plasma processing a planar substrate
JPH02115379A (en) Device for forming thin film
JPH11144891A (en) Plasma processing device
JPS62177180A (en) Surface treatment
JPH0627340B2 (en) Hybrid plasma thin film synthesis method and device
JPH09153486A (en) Plasma processing method and device
JP2000265277A (en) Formation of film using electron beam plasma
JPH0481325B2 (en)
JPH09202974A (en) Thin film forming device
JPH02281730A (en) Plasma etching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222