JP2003039531A - Multi-layer preform and multi-layer bottle using the same - Google Patents

Multi-layer preform and multi-layer bottle using the same

Info

Publication number
JP2003039531A
JP2003039531A JP2001171523A JP2001171523A JP2003039531A JP 2003039531 A JP2003039531 A JP 2003039531A JP 2001171523 A JP2001171523 A JP 2001171523A JP 2001171523 A JP2001171523 A JP 2001171523A JP 2003039531 A JP2003039531 A JP 2003039531A
Authority
JP
Japan
Prior art keywords
resin
preform
mold
layer
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001171523A
Other languages
Japanese (ja)
Other versions
JP4239436B2 (en
Inventor
Kazunobu Watanabe
和伸 渡辺
Tsuneo Imatani
恒夫 今谷
Makoto Eto
誠 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2001171523A priority Critical patent/JP4239436B2/en
Publication of JP2003039531A publication Critical patent/JP2003039531A/en
Application granted granted Critical
Publication of JP4239436B2 publication Critical patent/JP4239436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/0685Compression blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3411Feeding the material to the mould or the compression means using carrying means mounted onto arms, e.g. grippers, fingers, clamping frame, suction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • B29C2949/3018Preforms or parisons made of several components at body portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-layer preform effectively using a resin low in molecular weight for forming a bottle without substantially deteriorating the mechanical properties, impact resistance, and appearance of the bottle. SOLUTION: In the multi-layer preform, a resin whose molecular weight is smaller than that of an inner and outer layer resin in an amount of 10-80 wt.% of the total is incorporated in the inner and outer layer resin as an intermediate layer, and no gate is provided in the bottom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二軸延伸ブロー成
形に用いる多層プリフォーム及びそれを用いた多層ボト
ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer preform used for biaxial stretch blow molding and a multilayer bottle using the same.

【0002】[0002]

【従来の技術】延伸ブロー成形プラスチックボトル、特
にポリエステルボトルは今日では一般化しており、その
優れた透明性と適度なガスバリヤー性とにより、液体洗
剤、シャンプー、化粧品、醤油、ソース等の液体商品の
外に、ビール、コーラ、サイダー等の炭酸飲料や、果
汁、ミネラルウオータ等の他の飲料容器に広く使用され
ている。
2. Description of the Related Art Stretch blow-molded plastic bottles, especially polyester bottles, have become common today, and due to their excellent transparency and moderate gas barrier properties, liquid products such as liquid detergents, shampoos, cosmetics, soy sauce, sauces, etc. Besides, it is widely used for carbonated drinks such as beer, cola and cider, and other beverage containers such as fruit juice and mineral water.

【0003】ポリエステルボトルの製造法には、大別し
て、ホットパリソン法と、コールドパリソン法が知られ
ている。前者のホットパリソン法では、ポリエステルの
射出成形により形成されたプリフォームを完全に冷却す
ることなく、ホットな状態で延伸ブロー成形する。一
方、後者のコールドパリソン法では、ポリエステルの射
出成形により、最終容器より寸法がかなり小さく、且つ
ポリエステルが非晶質である過冷却有底プリフォームを
予め形成し、このプリフォームをその延伸温度に予備加
熱し、ブロー金型中で軸方向に引張延伸すると共に、周
方向にブロー延伸する方法が採用されている。
The methods for producing polyester bottles are roughly classified into a hot parison method and a cold parison method. In the former hot parison method, stretch blow molding is performed in a hot state without completely cooling a preform formed by injection molding of polyester. On the other hand, in the latter cold parison method, by injection molding of polyester, a precooled bottomed preform having a size considerably smaller than that of the final container and the polyester being amorphous is formed in advance, and this preform is stretched at its stretching temperature. A method of preheating and tensile stretching in the blow mold in the axial direction and blow stretching in the circumferential direction is adopted.

【0004】コールドパリソン法に用いるプリフォーム
は、一般には射出成形法で製造されるが、圧縮成形法で
製造することも知られており、例えば本出願人の出願に
係る特開2000−25729号公報には、熱可塑性樹
脂から形成されたブロー成形用予備成形物において、熱
可塑性樹脂溶融物の圧縮成形で形成され、最終成形体の
口部に対応する形状及び寸法の口部と、ブロー成形され
るべき有底テーパー状胴部とを有し且つ閉塞底部にはゲ
ート部がないことを特徴とするブロー成形用予備成形物
が記載されている。
The preform used in the cold parison method is generally manufactured by an injection molding method, but it is also known to be manufactured by a compression molding method. For example, Japanese Patent Application Laid-Open No. 2000-25729 filed by the present applicant. The publication discloses a blow molding preform formed from a thermoplastic resin, which is formed by compression molding of a thermoplastic resin melt, and has a shape and size corresponding to the mouth of the final molded body, and a blow molding. There is described a blow molding preform characterized in that it has a bottomed tapered barrel and that there is no gate at the closed bottom.

【0005】一方、ポリエステル製容器の使用量が増大
するにつれて、廃棄処理の困難なことや、資源の有効利
用の見地から、樹脂の再生利用が検討されてきている
(例えば、特開昭58−193254号公報)。
On the other hand, as the amount of polyester containers used increases, recycling of resins has been studied from the viewpoint of difficulty in waste disposal and effective utilization of resources (see, for example, JP-A-58-58). 193254).

【0006】本出願人の出願に係る実公平6−6911
号公報には、バージンのポリエチレンテレフタレートか
ら成る内外層で、使用後回収された容器のポリエチレン
テレフタレート(PCR)から成る中間層をサンドイッ
チした多層構造を有し、且つ37℃の雰囲気中で容器内
スペースへのアセトアルデヒド移行速度が、950ppb/
m・day以下に抑制されていることを特徴とするポリエ
ステル製容器が記載されている。
Japanese Utility Model Application No. 6-6911 filed by the applicant
Japanese Patent Laid-Open Publication No. 1989-242242 has a multilayer structure in which inner and outer layers made of virgin polyethylene terephthalate are sandwiched with an intermediate layer made of polyethylene terephthalate (PCR) of a container recovered after use, and a space in the container in an atmosphere of 37 ° C. Transfer rate of acetaldehyde to 950ppb /
A polyester container characterized by being suppressed to m 2 · day or less is described.

【0007】[0007]

【発明が解決しようとする課題】上記提案は、内容品の
香味保持性を実質的に低下させることなしに、使用後回
収される容器のPET樹脂を新たな容器の製造に再利用
したポリエステル製容器を提供したという点で重要な意
義を有するものであるが、未だ解決すべき問題点を有し
ている。
DISCLOSURE OF THE INVENTION The above-mentioned proposal is made of a polyester made by reusing the PET resin of the container recovered after use in the production of a new container without substantially lowering the flavor retention of the contents. Although it has an important meaning in providing the container, it still has a problem to be solved.

【0008】すなわち、リサイクルポリエステル(PC
R)はバージンのポリエステルに比して固有粘度(I
V)がかなり低下しており、機械的特性や他の物性にお
いて劣るという問題がある。また、このPCRはバージ
ンのポリエステルに比して熱結晶化速度が大きく、特に
容器の底部中心のゲート部では容易に結晶化による白化
が生じて外観不良となったり、落下衝撃による割れが発
生し易いなどの欠点を有している。
That is, recycled polyester (PC
R) is the intrinsic viscosity (I
V) is considerably lowered, and there is a problem that mechanical properties and other physical properties are inferior. In addition, this PCR has a higher thermal crystallization rate than virgin polyester, and in particular, the gate portion at the center of the bottom of the container is easily whitened due to crystallization, resulting in poor appearance and cracking due to drop impact. It has the drawback of being easy.

【0009】本発明者らは、リサイクルポリエステルの
ように分子量の低下した樹脂でも、通常の樹脂の内外層
に封入し、しかもゲート部が形成されないような条件下
で成形を行うときには、機械的特性や物性において遜色
がなく、しかも外観特性や耐衝撃性に優れたボトルを形
成できる多層プリフォームが得られることを見出した。
The inventors of the present invention have found that even if a resin having a reduced molecular weight, such as recycled polyester, is encapsulated in the inner and outer layers of a normal resin and molding is carried out under such a condition that the gate portion is not formed, the mechanical properties of the resin are improved. It was found that a multi-layer preform capable of forming a bottle that is not inferior in terms of physical properties and excellent in appearance characteristics and impact resistance can be obtained.

【0010】すなわち、本発明の目的は、機械的特性、
耐衝撃性、外観特性を実質上低下させることなく、分子
量の低い樹脂をボトルの形成に有効に利用した多層プリ
フォームを提供することにある。
That is, the object of the present invention is to obtain mechanical properties,
An object of the present invention is to provide a multi-layer preform in which a resin having a low molecular weight is effectively used for forming a bottle without substantially lowering impact resistance and appearance characteristics.

【0011】[0011]

【課題を解決するための手段】本発明によれば、内外層
樹脂中に全体当たり10乃至80重量%の内外層樹脂に
比して分子量の小さい樹脂が中間層として内封されてお
り且つ底部にゲート部を有しないことを特徴とする多層
プリフォームが提供される。本発明の多層プリフォーム
においては、内外層樹脂がバージンの熱可塑性ポリエス
テルであり、且つ中間層樹脂がリサイクル熱可塑性ポリ
エステルであることが、回収PETボトルの有効利用の
点で好ましい。また、プリフォームの口部及び首部(こ
れらはそのままボトルの口部及び首部となる)が内外層
樹脂のみで形成されていることが密封性能や衛生的特性
の点で好ましい。また、この多層プリフォームは、中間
層樹脂が内外層樹脂中の下方に偏心した状態で内封され
た溶融樹脂塊をキャビティ型に供給し、コア型で圧縮す
ることにより形成されたものであることが好ましい。本
発明によれば更に、上記多層プリフォームを二軸延伸ブ
ロー成形して得られる多層ボトルが提供される。この多
層ボトルは、顔料未配合の状態において、底部に白化が
なく透明であるという特徴をも有している。
According to the present invention, a resin having a lower molecular weight than the inner / outer layer resin is contained in the inner / outer layer resin as an intermediate layer in an amount of 10 to 80% by weight. There is provided a multi-layer preform characterized in that it has no gate portion. In the multilayer preform of the present invention, it is preferable that the inner and outer layer resin is a virgin thermoplastic polyester and the intermediate layer resin is a recycled thermoplastic polyester from the viewpoint of effective utilization of the recovered PET bottle. In addition, it is preferable in terms of sealing performance and hygienic properties that the mouth and neck of the preform (these become the mouth and neck of the bottle as they are) are formed of only the inner and outer layer resin. In addition, this multilayer preform is formed by supplying a molten resin mass encapsulated in a state in which the intermediate layer resin is eccentrically downward in the inner and outer layer resins to a cavity mold and compressing the core mold. It is preferable. The present invention further provides a multi-layer bottle obtained by biaxially stretch blow molding the multi-layer preform. This multi-layer bottle is also characterized in that it is transparent with no whitening at the bottom when no pigment is added.

【0012】[0012]

【発明の実施形態】[作用]本発明の多層プリフォーム
は、内外層樹脂中に全体当たり10乃至80重量%の内
外層樹脂に比して分子量の小さい樹脂が中間層として内
封されており且つ底部にゲート部を有しないことを特徴
とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION [Function] In the multi-layer preform of the present invention, a resin having a smaller molecular weight than that of the inner / outer layer resin is encapsulated in the inner / outer layer resin as an intermediate layer. In addition, it is characterized in that it has no gate portion at the bottom.

【0013】分子量の小さい樹脂から形成されたボトル
は、分子量の大きい樹脂から形成されたボトルに比し
て、耐圧強度や耐衝撃強度が低く、耐熱性にも劣るとい
う欠点がある。更に分子量の小さい樹脂から形成された
ボトル形成用のプリフォームは、分子量の大きい樹脂か
ら形成されたプリフォームに比して、ボトルへの成形性
に難点があり、特に耐熱性の付与を目的として熱固定を
行うと、樹脂の球晶化を生じて、白化による外観不良
や、脆化を招くという不都合がある。この傾向は、射出
成形で形成されるプリフォーム底部のゲート部では顕著
であり、分子量の低い樹脂から形成されたプリフォーム
では、射出成形の際、ゲート部が結晶化温度に保たれる
時間が長いため、既に白化するという問題を生じる。
Bottles made of a resin having a small molecular weight have the drawbacks that they have lower pressure resistance and impact strength and are inferior in heat resistance as compared with a bottle made of a resin having a large molecular weight. Further, a preform for forming a bottle formed from a resin having a small molecular weight has a problem in moldability into a bottle as compared with a preform formed from a resin having a large molecular weight, and particularly for the purpose of imparting heat resistance. When heat setting is performed, spherulite of the resin occurs, resulting in poor appearance due to whitening and embrittlement. This tendency is remarkable in the gate part at the bottom of the preform formed by injection molding, and in a preform formed of a resin having a low molecular weight, the time during which the gate part is kept at the crystallization temperature during injection molding is Since it is long, it causes a problem that it is already white.

【0014】本発明では、この問題を解消するため、内
外層樹脂中に分子量の小さい樹脂を中間層として内封さ
せる。この構成により、中間層が分子量の大きい内外層
で保護され、耐圧強度、耐衝撃強度及び耐熱性が優れた
レベルに維持されるという利点がある。内外層の樹脂が
成形性に優れているので、中間層樹脂もこれらに挟持さ
れる形で延伸ブロー成形され、成形不良を生じることが
ない。更に、分子量の小さい樹脂は中間層として存在す
るため、熱処理用金型等との直接的な接触が妨げられ、
しかも中間層にも有効な分子配向が付与されることもあ
って、中間層樹脂の白化も有効に防止されるものであ
る。
In the present invention, in order to solve this problem, a resin having a small molecular weight is internally sealed as an intermediate layer in the resin for the inner and outer layers. With this configuration, the intermediate layer is protected by the inner and outer layers having a large molecular weight, and there is an advantage that the pressure resistance, the impact resistance and the heat resistance are maintained at excellent levels. Since the resin of the inner and outer layers is excellent in moldability, the intermediate layer resin is stretch blow-molded in such a manner that it is sandwiched between them, and molding defects do not occur. Furthermore, since a resin having a small molecular weight exists as an intermediate layer, direct contact with a heat treatment mold or the like is hindered,
Moreover, effective molecular orientation may be imparted to the intermediate layer, so that whitening of the intermediate layer resin is effectively prevented.

【0015】更に、本発明では、溶融樹脂塊をキャビテ
ィ型とコア型とで圧縮成形することにより、底部にゲー
ト部を生じることなくプリフォームを形成する。これに
より、分子量の小さい樹脂を使用しながら、底部中心に
おける白化を防止し、外観特性及び耐衝撃性に優れたボ
トル底部を形成することができる。
Further, in the present invention, the molten resin mass is compression-molded by the cavity mold and the core mold to form a preform without forming a gate portion at the bottom. As a result, it is possible to prevent the whitening at the center of the bottom and form a bottle bottom having excellent appearance characteristics and impact resistance while using a resin having a small molecular weight.

【0016】既に指摘したとおり、ポリエステル樹脂の
分子量は、それから製造されるボトルの強度及び透明性
に重大な影響をもたらす。すなわち、フィルムに比較し
てボトルでは、未延伸部から高延伸部まで種々の延伸の
程度の領域が存在し、しかも熱固定の程度も甘いため、
高い強度を得るためには、フィルムよりも分子量の高い
ものを用いる必要がある。また、分子量の高いものを用
いると、加熱或いは冷却の際の結晶化速度を遅くするこ
とが可能となる。このため、ボトル用のポリエステルは
固相重合、すなわち溶融重合で製造されたポリエステル
を融点より30〜60℃低い温度で更に重合させる方法
で製造されている。そのため、ボトル形成用のポリエス
テルはかなりコストの高いものとなっている。一方、P
ETボトルの回収はかなり進められてはいるものの、回
収樹脂の分子量の低下が著しいため、繊維への再利用が
行われているに過ぎず、ボトルへの再利用には未だ至っ
ていない。本発明によれば、リサイクルポリエステルを
上記の構造でプリフォーム中に組み込むことにより、ボ
トルの製造に再利用することが可能となり、これにより
資源を節約し、ボトルのコストを低減させることが可能
となる。
As already pointed out, the molecular weight of polyester resins has a significant effect on the strength and transparency of bottles made therefrom. That is, in the bottle as compared to the film, there are regions of various degree of stretching from the unstretched portion to the highly stretched portion, and the degree of heat setting is also poor,
In order to obtain high strength, it is necessary to use one having a higher molecular weight than the film. In addition, when a high molecular weight one is used, the crystallization rate during heating or cooling can be slowed down. For this reason, polyester for bottles is manufactured by solid-phase polymerization, that is, a method in which polyester manufactured by melt polymerization is further polymerized at a temperature 30 to 60 ° C. lower than the melting point. Therefore, the polyester for forming a bottle is considerably expensive. On the other hand, P
Although the recovery of ET bottles has been considerably advanced, the molecular weight of the recovered resin has been remarkably reduced, and thus the ET bottles have only been recycled into fibers, and have not yet been recycled into bottles. According to the present invention, by incorporating recycled polyester into the preform with the above structure, it becomes possible to reuse it in the production of bottles, thereby saving resources and reducing the cost of bottles. Become.

【0017】また、本発明で中間層に用いる分子量の低
い樹脂は、上述したリサイクルポリエステルに限定され
ない。すなわち、フィルムや繊維の製造に用いられる溶
融重合法により得られる低分子量の樹脂をプリフォーム
の製造に利用することにより、ボトルの性能を実質的に
低下させることなく、ボトルの製造コストを低減させる
ことが可能となる。
The low molecular weight resin used for the intermediate layer in the present invention is not limited to the above-mentioned recycled polyester. That is, by utilizing a low molecular weight resin obtained by the melt polymerization method used for the production of films and fibers for the production of preforms, the production cost of the bottle is reduced without substantially reducing the performance of the bottle. It becomes possible.

【0018】本発明のプリフォームでは、低分子量の樹
脂は中間層として、高分子量の樹脂の内外層間に完全に
内封されているが、プリフォームの口部及び首部は内外
層の高分子量の樹脂のみで形成されていることが、ボト
ルとしたときの密封性能や衛生的特性から好ましい。
In the preform of the present invention, the low molecular weight resin is completely enclosed as an intermediate layer between the inner and outer layers of the high molecular weight resin, but the mouth and neck of the preform have a high molecular weight of the inner and outer layers. It is preferable that the resin is formed only from the viewpoint of sealing performance and hygienic properties when it is used as a bottle.

【0019】この多層プリフォームは、中間層樹脂が内
外層樹脂樹脂中の下方に偏心した状態で内封された溶融
樹脂塊をキャビティ型に供給し、コア型で圧縮すること
により形成することができる。この溶融樹脂塊をコア型
で圧縮すると、溶融樹脂塊中に中間層樹脂が下向きに偏
心した状態で含まれているため、コア型が最初に係合す
る溶融樹脂塊の上部には分子量の相対的に大きい内外層
樹脂のみが存在し、コア型による押圧により、内外層樹
脂がキャビティ型に沿って上方及び下方に流動する。最
後に中間層樹脂を含む部分がコア型で押圧され、口部及
び首部が内外層樹脂のみで形成され、しかも胴部及び底
部では中間層樹脂が内外層間に内封されたプリフォーム
が、ゲート部のない状態で形成されることになる。
This multi-layer preform can be formed by supplying a molten resin mass, in which the intermediate layer resin is eccentric downward in the inner and outer layer resin, to a cavity mold and compressing it in the core mold. it can. When this molten resin mass is compressed by the core mold, the intermediate layer resin is contained in the molten resin mass in a downwardly eccentric state, so that the upper part of the molten resin mass with which the core mold first engages has a relative molecular weight. Since only the inner and outer layer resin is relatively large, the inner and outer layer resin flows upward and downward along the cavity die when pressed by the core die. Finally, the part containing the intermediate layer resin is pressed by the core mold, the mouth and neck are formed only by the inner and outer layer resin, and the preform in which the intermediate layer resin is enclosed between the inner and outer layers at the body and bottom is the gate. It will be formed without any parts.

【0020】本発明によれば、上記多層プリフォームを
それ自体公知の手段で二軸延伸ブロー成形することによ
り、二軸延伸ブロー成形多層ボトルが得られる。このボ
トルの口部及び首部は、プリフォームのそれと同じであ
って、内外層樹脂のみから形成されていて、密封性能に
優れていると共に、衛生的特性にも優れている。また、
ボトルの胴部及び底部においては、相対的に分子量の小
さな中間層樹脂が内外層樹脂中に完全に内封されてお
り、ボトルの耐圧強度、耐衝撃性、耐熱性も中間層樹脂
を含まないものに比して同様のレベルに保持されてい
る。更に、この多層ボトルは、顔料未配合の状態におい
て、底部に白化がなく透明であるという特徴をも有して
いる。
According to the present invention, a biaxially stretch blow molded multilayer bottle is obtained by biaxially stretch blow molding the above-mentioned multilayer preform by a means known per se. The mouth and neck of this bottle are the same as those of the preform, and are formed only of the inner and outer layer resins, and have excellent sealing performance and hygienic properties. Also,
In the body and bottom of the bottle, the intermediate layer resin having a relatively small molecular weight is completely encapsulated in the inner and outer layer resin, and the bottle does not contain the intermediate layer resin in pressure resistance, impact resistance and heat resistance. It is held at a similar level compared to the ones. Further, this multi-layered bottle is also characterized in that it is transparent with no whitening at the bottom when no pigment is added.

【0021】[樹脂]本発明において、成形用樹脂とし
ては、延伸ブロー成形及び熱結晶化可能なプラスチック
材料であれば、任意のものを使用し得るが、熱可塑性ポ
リエステル、特にエチレンテレフタレート系熱可塑性ポ
リエステルが有利に使用されるが、勿論、ポリブチレン
テレフタレート、ポリエチレンナフタレートなどの他の
ポリエステル、或いはポリカーボネートやアリレート樹
脂等とのブレンド物を用いることもできる。
[Resin] In the present invention, any resin may be used as the molding resin as long as it is a plastic material which can be stretch blow molded and thermally crystallized. However, thermoplastic polyester, particularly ethylene terephthalate thermoplastic Polyester is advantageously used, but, of course, other polyesters such as polybutylene terephthalate and polyethylene naphthalate, or blends with polycarbonate, arylate resin or the like can be used.

【0022】本発明に用いるエチレンテレフタレート系
熱可塑性ポリエステルは、エステル反復単位の大部分、
一般に70モル%以上、特に80モル%以上をエチレン
テレフタレート単位を占めるものであり、ガラス転移点
(Tg)が50乃至90℃、特に55乃至80℃で、融
点(Tm)が200乃至275℃、特に220乃至27
0℃にある熱可塑性ポリエステルが好適である。
The ethylene terephthalate type thermoplastic polyester used in the present invention comprises most of ester repeating units,
Generally, ethylene terephthalate units account for 70 mol% or more, particularly 80 mol% or more, and have a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C. Especially 220 to 27
Thermoplastic polyesters at 0 ° C are preferred.

【0023】ホモポリエチレンテレフタレートが耐熱圧
性の点で好適であるが、エチレンテレフタレート単位以
外のエステル単位の少量を含む共重合ポリエステルも使
用し得る。テレフタル酸以外の二塩基酸としては、イソ
フタル酸、フタル酸、ナフタレンジカルボン酸等の芳香
族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環
族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、
ドデカンジオン酸等の脂肪族ジカルボン酸;の1種又は
2種以上の組合せが挙げられ、エチレングリコール以外
のジオール成分としては、プロピレングリコール、1,
4−ブタンジオール、ジエチレングリコール、1,6−
ヘキシレングリコール、シクロヘキサンジメタノール、
ビスフェノールAのエチレンオキサイド付加物等の1種
又は2種以上が挙げられる。
Although homopolyethylene terephthalate is preferable in terms of heat resistance and pressure resistance, a copolymerized polyester containing a small amount of ester units other than ethylene terephthalate units can also be used. Dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid,
Aliphatic dicarboxylic acid such as dodecanedioic acid; or a combination of two or more thereof. As the diol component other than ethylene glycol, propylene glycol, 1,
4-butanediol, diethylene glycol, 1,6-
Hexylene glycol, cyclohexanedimethanol,
One or more of bisphenol A ethylene oxide adducts and the like can be mentioned.

【0024】また、エチレンテレフタレート系熱可塑性
ポリエステルにガラス転移点の比較的高い例えばポリエ
チレンナフタレート、ポリカーボネート或いはポリアリ
レート等を5%〜25%程度をブレンドした複合材を用
いることができ、それにより比較的高温時の材料強度を
高めることができる。さらに、ポリエチレンテレフタレ
ートと上記のガラス転移点の比較的高い材料とを積層化
して用いることもできる。
Further, it is possible to use a composite material obtained by blending ethylene terephthalate type thermoplastic polyester with about 5% to 25% of a relatively high glass transition point, for example, polyethylene naphthalate, polycarbonate, polyarylate or the like. The material strength at high temperature can be increased. Further, polyethylene terephthalate and the above-mentioned material having a relatively high glass transition point may be laminated and used.

【0025】用いるエチレンテレフタレート系熱可塑性
ポリエステルは、少なくともフィルムを形成するに足る
分子量を有するべきであり、用途に応じて、射出グレー
ド或いは押出グレードのものが使用される。その固有粘
度(I.V.)は一般的に0.6乃至1.4dl/g、
特に0.63乃至1.3dl/gの範囲にあるものが望
ましい。
The ethylene terephthalate type thermoplastic polyester used should have at least a molecular weight sufficient to form a film, and an injection grade or an extrusion grade is used depending on the application. Its intrinsic viscosity (IV) is generally 0.6 to 1.4 dl / g,
In particular, those in the range of 0.63 to 1.3 dl / g are desirable.

【0026】[内外層ポリエステル樹脂]本発明におい
て、内外層を構成するポリエステル樹脂としては、エチ
レンテレフタレート系熱可塑性ポリエステルが好適であ
り、エステル反復単位の大部分、一般に70モル%以
上、特に80モル%以上をエチレンテレフタレート単位
で占めるものであり、ガラス転移点(Tg)が50乃至
90℃、特に55乃至80℃で、融点(Tm)が200
乃至275℃、特に220乃至270℃である熱可塑性
ポリエステル樹脂が好適である。また、バージンのポリ
エステル樹脂の固有粘度[η]は、0.6dl/g以
上、特に0.7乃至0.9dl/gの範囲にあるものが
好適である。また、このポリエステル樹脂には、ボトル
の品質を損なわない範囲内で種々の添加剤、例えば、着
色剤、紫外線吸収剤、離型剤、滑剤、核剤等を配合する
ことができる。
[Inner / Outer Layer Polyester Resin] In the present invention, as the polyester resin forming the inner / outer layer, ethylene terephthalate type thermoplastic polyester is preferable, and most of the ester repeating units, generally 70 mol% or more, especially 80 mol. % Of ethylene terephthalate units, having a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200.
A thermoplastic polyester resin having a temperature of from 275 to 275 ° C, particularly from 220 to 270 ° C is suitable. Further, the intrinsic viscosity [η] of the virgin polyester resin is preferably 0.6 dl / g or more, and particularly preferably in the range of 0.7 to 0.9 dl / g. Further, various additives such as a colorant, an ultraviolet absorber, a release agent, a lubricant, a nucleating agent and the like can be added to the polyester resin within a range that does not impair the quality of the bottle.

【0027】[回収ポリエステル樹脂]本発明におい
て、回収ポリエステル樹脂は、多層プリフォームの重量
の10乃至80重量%、特に25乃至65重量%の割合
を占めることが好ましい。また、回収ポリエステル樹脂
を含有させるベースとなる樹脂は、上述したバージンポ
リエステル樹脂の他、容器製造工程で生じるスクラップ
樹脂を用いることも勿論できる。回収ポリエステル樹脂
を含む樹脂の固有粘度[η]は、0.6dl/g以上、
特に0.65乃至0.80dl/gの範囲にあるものが
好適である。尚、回収ポリエステル樹脂には、固有粘度
を調整する目的で、ポリエステル樹脂、ポリプロピレン
等を添加剤として添加しても良い。
[Recovered Polyester Resin] In the present invention, the recovered polyester resin preferably accounts for 10 to 80% by weight, particularly 25 to 65% by weight of the weight of the multilayer preform. In addition to the above-mentioned virgin polyester resin, it is of course possible to use scrap resin generated in the container manufacturing process as the base resin containing the recovered polyester resin. The intrinsic viscosity [η] of the resin containing the recovered polyester resin is 0.6 dl / g or more,
In particular, those in the range of 0.65 to 0.80 dl / g are preferable. Incidentally, polyester resin, polypropylene or the like may be added to the recovered polyester resin as an additive for the purpose of adjusting the intrinsic viscosity.

【0028】[プリフォーム及びその製造]本発明で
は、中間層樹脂が内外層樹脂中の下方に偏心した状態で
内封された溶融樹脂塊を製造し、この溶融樹脂塊をキャ
ビティ型に供給し、コア型で圧縮することにより、プリ
フォームを製造する。
[Preform and Production Thereof] In the present invention, a molten resin mass in which the intermediate layer resin is eccentrically downward in the inner and outer layer resin is manufactured, and the molten resin mass is supplied to the cavity mold. A preform is manufactured by compressing with a core mold.

【0029】上記溶融樹脂塊は、内外層樹脂押出機と中
間層樹脂押出機と二層二重ダイとを使用し、内外層樹脂
をダイ内に連続的に押し出す一方で、中間層樹脂を間欠
的に押し出して、中間層樹脂がドロップ状に内外層樹脂
中に内封された押出物を形成し、この押出物を中間層樹
脂の下端に近い部分でダイリップ近傍のカッターで切断
することにより得られる。内外層樹脂と中間層樹脂との
使用割合は、前述した範囲にあるのがよい。
The molten resin block uses an inner / outer layer resin extruder, an intermediate layer resin extruder, and a two-layer double die to continuously extrude the inner / outer layer resin into the die while intermittently ejecting the intermediate layer resin. By extruding the intermediate layer resin to form an extrudate in which the intermediate layer resin is encapsulated in the inner and outer layer resin in a drop shape, and cutting the extrudate with a cutter near the die lip near the lower end of the intermediate layer resin. To be The use ratio of the inner / outer layer resin and the intermediate layer resin is preferably in the range described above.

【0030】本発明では、上述した溶融樹脂塊を使用
し、この樹脂の圧縮成形、特に一段圧縮成形でプリフォ
ームを製造するのが好ましい。すなわち、圧縮成形法で
製造されるプリフォームの底部には、白化等がなく、ま
た流動配向歪みが実質上なく、優れた特性を有するポリ
エステルボトルが得られる。更に、これに加えて以下に
述べるような多くの利点も得られる。
In the present invention, it is preferable to use the above-mentioned molten resin mass and to manufacture the preform by compression molding of this resin, particularly by one-step compression molding. That is, the bottom portion of the preform produced by the compression molding method has no whitening or the like and substantially no flow orientation distortion, and thus a polyester bottle having excellent properties can be obtained. Further, in addition to this, many advantages as described below are obtained.

【0031】圧縮成形では、射出成形と異なり、比較的
低い温度での加工が可能となり、特に1回の加熱溶融と
圧縮成形により、ブロー成形用プリフォームが得られる
ので、樹脂の熱劣化の程度が少なく、物性に優れたブロ
ーボトルを製造することができる。この利点は、本発明
のように分子量の低い樹脂を中間層として用いる場合に
は特に顕著なものである。
Unlike injection molding, compression molding enables processing at a relatively low temperature, and since a blow molding preform can be obtained by one-time heat melting and compression molding, the degree of heat deterioration of the resin is high. It is possible to produce a blow bottle having less physical properties and excellent physical properties. This advantage is particularly remarkable when a resin having a low molecular weight is used as the intermediate layer as in the present invention.

【0032】すなわち、同一物性(強度・耐衝撃性)の
ブロー成形品を製造するためにより安価な樹脂を使用で
き、同一原料樹脂を使用する場合にはより物性に優れた
ブローボトルを製造する事が出来る。また樹脂粘度が高
く、射出成形には不適当な樹脂原料でも容易にプリフォ
ームを経てボトルに成形することが可能であり、特に高
い耐衝撃性が必要な大型ブローボトルを得ることも可能
である。
That is, a cheaper resin can be used to produce a blow-molded article having the same physical properties (strength and impact resistance), and when the same raw material resin is used, a blow bottle having better physical properties must be produced. Can be done. Further, the resin viscosity is high, and even a resin raw material unsuitable for injection molding can be easily molded into a bottle through a preform, and it is also possible to obtain a large blow bottle that requires particularly high impact resistance. .

【0033】また、一段圧縮成形法では、樹脂の溶融押
出時に樹脂の溶融塊が有する熱量を有効に利用すると共
に、この塊の局部的な冷却を可及的に阻止すること、特
に溶融塊のプリフォーム底部を形成する部分を冷却しな
いこと及び圧縮成形時に樹脂の型表面における動きが制
約されないようにすることが、内部組織が均質で、延伸
ブロー成形性に優れたプリフォームを製造するために好
ましい。
In the one-step compression molding method, the heat quantity of the molten mass of the resin is effectively utilized during the melt extrusion of the resin, and the local cooling of this mass is prevented as much as possible. In order to produce a preform having a homogeneous internal structure and excellent stretch blow moldability, it is necessary not to cool the part forming the bottom of the preform and not to restrict the movement of the resin on the mold surface during compression molding. preferable.

【0034】この目的のために、押し出し物を切断する
ことにより形成されたほぼ定量の溶融塊を実質上の温度
低下なしに雌型(キャビティ型)内に供給すると共に、
供給された溶融塊を直ちに型(コア型)で圧縮成形する
ようにする。また、圧縮成形に際しても、型内の残留空
気をすみやかに排出しながら、有底胴部と口部とを備え
たプリフォームに圧縮成形する。
For this purpose, a substantially fixed amount of molten mass formed by cutting the extrudate is fed into the female mold (cavity mold) without substantially lowering the temperature, and
The supplied molten mass is immediately subjected to compression molding with a mold (core mold). Also during compression molding, the residual air in the mold is quickly discharged, and compression molding is performed into a preform having a bottomed barrel portion and a mouth portion.

【0035】一段圧縮成形法では、溶融塊に切断した
後、型に投入するまでの間における樹脂の温度低下が、
プリフォームの延伸ブロー成形されるべき有底胴部の組
織の均一さ及び延伸配向性、更には最終ブロー成形品の
物性、特に耐衝撃性に重大な影響をもたらす。この温度
低下の影響は、プリフォームの底部(最終ブロー成形品
の底部)を形成する溶融塊の下部において特に顕著に表
れる。即ち、この溶融樹脂塊の下部が局部的に冷却され
た場合にはプリフォーム底部の歪みの程度が大きくな
り、最終ブロー成形品としたときの外観不良や耐衝撃性
低下の原因となる。一段圧縮成形法では、溶融塊に切断
した後、型に投入するまでの間における樹脂溶融塊の実
質的な温度低下を抑制すること、特に溶融樹脂塊の下部
の上記時間内での温度低下を抑制することにより、上記
のトラブルを有効に解消することができる。
In the one-step compression molding method, the temperature decrease of the resin between the cutting into the molten mass and the charging into the mold is
Stretching of the preform has a significant influence on the uniformity and stretch orientation of the structure of the bottomed body to be blow-molded, as well as the physical properties of the final blow-molded product, especially the impact resistance. The influence of this temperature decrease is particularly remarkable in the lower portion of the molten mass forming the bottom portion of the preform (bottom portion of the final blow molded product). That is, when the lower portion of the molten resin mass is locally cooled, the degree of distortion of the bottom of the preform becomes large, which causes poor appearance and impact resistance in the final blow-molded product. In the one-stage compression molding method, it is possible to suppress a substantial temperature decrease of the resin molten mass after cutting into the molten mass and before it is charged into the mold, and particularly to reduce the temperature decrease of the lower portion of the molten resin mass within the above time. By suppressing, the above trouble can be effectively eliminated.

【0036】上記のように、溶融塊の温度低下を抑制す
るためには、溶融塊に切断した後、型に投入するまでの
間、例えば把持部を除いて、溶融塊と他の部材との接触
をさけるべきであり、特に溶融塊の下部と他の部材との
接触は極力さけるべきである。
As described above, in order to suppress the temperature decrease of the molten mass, the molten mass and the other members are separated from each other until the molten mass is cut into the mold and before being charged into the mold. Contact should be avoided, especially contact between the lower part of the molten mass and other members.

【0037】好適な製造法では、この目的のために、ポ
リエステル溶融物を、雄型(コア)及び雌型(キャビテ
ィ)の軸方向と平行に押し出し、切断された溶融塊をそ
の平行な状態を実質上維持したまま型内に供給する。
In a preferred manufacturing method, for this purpose, the polyester melt is extruded parallel to the axial direction of the male mold (core) and the female mold (cavity), and the cut molten mass is brought into its parallel state. Supply into the mold while maintaining it substantially.

【0038】また、溶融塊をほぼ定量な状態で供給可能
にすると共に、下部の冷却を可及的に避けるために、樹
脂の溶融塊を円柱乃至円柱に近い形状で供給することが
好ましい。更に、溶融塊の下部における温度低下を可及
的に避ける目的と、溶融塊の供給を安定に行う、つまり
溶融塊の倒れなどを防止する目的で、溶融塊をその重心
よりも上の部位で把持して、切断位置から型位置まで移
動し、型内に供給することが好ましい。
Further, it is preferable to supply the molten mass of the resin in a columnar shape or a shape close to the columnar shape so that the molten mass can be supplied in a substantially quantitative state and the cooling of the lower part can be avoided as much as possible. In addition, for the purpose of avoiding the temperature drop in the lower part of the molten mass as much as possible and for stably supplying the molten mass, that is, for preventing the molten mass from falling down, the molten mass should be placed above the center of gravity. It is preferable to grasp, move from the cutting position to the mold position, and supply into the mold.

【0039】溶融塊の冷却を避けるためには、切断から
型への投入及び型へ投入されてからの成形開始も可及的
に短時間で行うのがよく、一般に切断から型への投入は
1秒以内、型へ投入されてから成形開始までは0.5秒
以内で行うことが推奨される。
In order to avoid cooling of the molten mass, it is preferable that the cutting and charging into the mold and the start of molding after the charging into the mold are carried out in the shortest possible time. It is recommended to perform the process within 1 second, and within 0.5 seconds from the time when the mold is put into the mold to the start of molding.

【0040】一段圧縮成形法では、型の底部乃至その近
傍の残留空気を排除しながら、圧縮成形を行うことも至
って重要である。即ち、型内部に空気が残留する条件で
は、型にくっついた部分乃至その近傍にしわが発生する
傾向がある。これに対して、成形を始めたら速やかに空
気を排除するようにすると、しわの発生が有効に防止す
ることができる。しわの発生は、型表面への密着部分と
非密着部分とが微細な間隔で生じるのがその原因と考え
られ、これは圧縮成形に特有の現象であると信じられる
が、空気を排除する条件では、金型表面と樹脂とが再密
着し、しわのない器壁が形成されると思われる。
In the one-step compression molding method, it is extremely important to carry out compression molding while eliminating residual air at the bottom of the mold or in the vicinity thereof. That is, under the condition that air remains inside the mold, wrinkles tend to be generated in the part attached to the mold or in the vicinity thereof. On the other hand, if the air is quickly removed after the molding is started, the generation of wrinkles can be effectively prevented. The wrinkles are thought to be caused by a minute gap between the part that adheres to the mold surface and the part that does not adhere to the mold surface.This is believed to be a phenomenon peculiar to compression molding. Then, it is considered that the mold surface and the resin are re-adhered to each other to form a wrinkle-free vessel wall.

【0041】雌型表面の残留空気を排除するには、残留
空気に対する成形部位から外部への逃げ道を形成させれ
ばよく、その手段は特に限定されないが、例えば、雌型
を、底部乃至その近傍に微細な隙間乃至多孔質部を備え
た金型とするのがよい。また成形開始と共に強制的に外
部真空ポンプ等により残留空気を排除することは特に有
効である。
In order to eliminate the residual air on the surface of the female mold, an escape path for the residual air from the molding site to the outside may be formed, and the means therefor is not particularly limited. It is preferable that the mold has fine gaps or porous portions. Further, it is particularly effective to forcibly remove residual air with an external vacuum pump or the like at the start of molding.

【0042】一段圧縮成形法では、雌型及び雄型の形状
及び構造は、有底の胴部と口部との成形を行えるもので
あればよく、特に制限を受けないが、一般には、雄型と
して、コア金型と、コア金型の周囲に、これと同軸に且
つ開閉可能に設けられた従動金型とからなるものを使用
し、コア金型と雌型(キャビティ型)とで有底テーパー
部の成形を行い、コア金型と従動金型とで口部の成形を
行うことが望ましい。この場合、従動金型はコア金型と
共に往復駆動されるが、従動金型はスプリングのような
賦勢手段により、雌型の方へ常に賦勢されているが、コ
ア金型の下死点においては、コア金型と従動金型とは、
常に一定の当接状態に保たれるようになっている。この
ため、溶融樹脂塊に量の変動が若干ある場合にも、常に
一定高さ(底部内面から口部頂面までの高さ)で、しか
も密封上重要な口部形状が常に一定なプリフォームが形
成されることになる。また、溶融樹脂塊の量の変動は、
コア金型と雌型(キャビティ金型)との噛み合わせ、即
ち形成されるプリフォームの有底胴部の厚みで吸収でき
るようになっている。
In the one-step compression molding method, the shapes and structures of the female mold and the male mold are not particularly limited as long as they can mold the bottomed body portion and the mouth portion. As the mold, a mold composed of a core mold and a driven mold provided around the core mold and coaxially with the core mold so as to be openable and closable is used, and the core mold and the female mold (cavity mold) are provided. It is desirable to mold the bottom taper part and mold the mouth part with the core mold and the driven mold. In this case, the driven die is reciprocally driven together with the core die, but the driven die is always urged toward the female die by an urging means such as a spring. In, the core mold and the driven mold are
A constant contact state is always maintained. Therefore, even if there is a slight fluctuation in the amount of molten resin mass, the preform always has a constant height (the height from the inner surface of the bottom to the top of the mouth) and the shape of the mouth that is important for sealing is always constant. Will be formed. Also, the fluctuation of the amount of molten resin mass is
The core mold and the female mold (cavity mold) are engaged with each other, that is, the thickness can be absorbed by the thickness of the bottomed body of the preform to be formed.

【0043】一段圧縮成形法では、成形時のひけ防止に
ある程度の圧力が必要であるとしても、成形力そのもの
は一般にかなり少なくてよいという利点を有する。この
ため、射出成形装置に比して、装置自体をかなり小型化
し、装置コストを低減できるという利点がある。
The one-step compression molding method has an advantage that the molding force itself is generally quite small even if a certain amount of pressure is required to prevent sink marks during molding. Therefore, there is an advantage that the apparatus itself can be considerably downsized and the apparatus cost can be reduced as compared with the injection molding apparatus.

【0044】本発明によるブロー成形用プリフォーム
は、樹脂溶融物の圧縮成形で形成され、最終成形体の口
部に対応する形状及び寸法の口部と、ブロー成形される
べき有底胴部とを備えているが、閉塞底部には流動配向
の歪みが実質的になくしかもゲート部がないという特徴
を備えている。
The blow molding preform according to the present invention is formed by compression molding of a resin melt, and has a mouth portion having a shape and size corresponding to the mouth portion of the final molded body, and a bottomed body portion to be blow molded. However, the closed bottom has a characteristic that there is substantially no strain in the flow orientation and there is no gate.

【0045】射出成形の有底プリフォームに存在するゲ
ート部が、生産性や製造コスト、最終的なブロー成形物
の特性の点で、多くの問題となっているが、本発明のプ
リフォームでは、このゲート部が一切存在しないため、
その切断工程が不要であり、またスクラップ樹脂の発生
もなく、更に底中心部も滑らかで均質であり、結晶化や
白化の原因となるものが一切ないという利点がある。
Although the gate portion existing in the bottomed preform of injection molding has many problems in terms of productivity, manufacturing cost, and properties of the final blow-molded product, in the preform of the present invention. , Because this gate part does not exist at all,
The cutting step is unnecessary, scrap resin is not generated, the center of the bottom is smooth and homogeneous, and there is nothing that causes crystallization or whitening.

【0046】また、本発明によるブロー成形用プリフォ
ームでは、前述した厳密な温度管理と残留空気排除条件
下で成形が行われていることに関連して、底部乃至その
近傍にしわがないという特徴を有している。
Further, the blow molding preform according to the present invention is characterized in that there is no wrinkle at the bottom or in the vicinity thereof in connection with the fact that the molding is carried out under the above-mentioned strict temperature control and exclusion of residual air. Have

【0047】上記のブロー成形用プリフォームを用いる
と、底部に流動配向歪みやゲートがなくしかもしわの発
生もなく、平滑性や組織の均一性に際だって優れている
ため、これを延伸ブロー成形してなるブロー成形物は、
底部の外観特性や耐衝撃性に著しく優れているという利
点がある。
When the above blow molding preform is used, there is no flow orientation distortion or gate at the bottom and no wrinkles are formed, and the smoothness and the uniformity of the structure are remarkably excellent. The blow molded product is
There is an advantage that the appearance characteristics and impact resistance of the bottom are remarkably excellent.

【0048】また、このプリフォームでは、樹脂の熱劣
化の程度が前述したように少なく、引張強度、耐圧強
度、耐衝撃性、耐熱性等の諸物性に優れたブロー成形物
を製造できるという利点を有している。
Further, with this preform, the degree of heat deterioration of the resin is small as described above, and it is possible to manufacture a blow-molded article having excellent physical properties such as tensile strength, pressure resistance, impact resistance and heat resistance. have.

【0049】[圧縮成形装置]一段圧縮成形法に用いる
装置の全体の配置の一例を示す図1(側面図)におい
て、この装置は、大まかにいって、溶融樹脂塊の押出供
給装置10、圧縮成形用のキャビティ型20及び圧縮成
形用のコア型30からなっている。
[Compression Molding Apparatus] In FIG. 1 (side view) showing an example of the overall arrangement of the apparatus used in the one-stage compression molding method, this apparatus is roughly shown as an apparatus for extruding and supplying a molten resin block 10 and a compression apparatus. It comprises a cavity mold 20 for molding and a core mold 30 for compression molding.

【0050】溶融樹脂塊の押出供給装置10は、図2に
示すとおり、内外層樹脂を溶融混練するための押出機本
体11aと中間層樹脂を溶融混練するための押出機本体
11bと備えており、この本体の入口側には、成形すべ
き樹脂の粉末乃至ペレットを乾燥状態に保持して押出機
本体に供給するための真空ホッパー12a、12bがそ
れぞれ設けられている。これらの押出機が接続されるダ
イ13には内外層樹脂通路14a及び中間層樹脂通路1
4bが設けられており、これらの各樹脂通路14a、1
4bは押出通路15で合流するようになっている。中間
層樹脂押出機11bと中間層樹脂通路14bとの間には
間欠加圧機構16が設けられており、中間層樹脂を間欠
的に押し出すことにより、内外層樹脂1中に中間層樹脂
2をドロップ状に内封せしめる。この状態で、溶融樹脂
塊17はダイリップ18から外部に押し出されるが、ダ
イリップ近傍には、一対のカッター19が設けられてい
て、溶融樹脂塊17をドロップ状の中間樹脂の下端に近
接した位置で切断する。
As shown in FIG. 2, the apparatus 10 for supplying and extruding the molten resin mass comprises an extruder body 11a for melt-kneading the inner and outer layer resins and an extruder body 11b for melt-kneading the intermediate layer resin. At the inlet side of the main body, vacuum hoppers 12a and 12b for holding the powder or pellets of the resin to be molded in a dry state and supplying it to the extruder main body are provided, respectively. The die 13 to which these extruders are connected has an inner and outer layer resin passage 14a and an intermediate layer resin passage 1
4b are provided, and these resin passages 14a, 1 are provided.
4b merges in the extrusion passage 15. An intermittent pressurizing mechanism 16 is provided between the intermediate layer resin extruder 11b and the intermediate layer resin passage 14b. By intermittently extruding the intermediate layer resin, the intermediate layer resin 2 is introduced into the inner and outer layer resin 1. Enclose it in a drop shape. In this state, the molten resin block 17 is pushed out from the die lip 18, but a pair of cutters 19 are provided in the vicinity of the die lip, and the molten resin block 17 is located at a position close to the lower end of the drop-shaped intermediate resin. Disconnect.

【0051】再び、図1に戻って、キャビティ型20は
プリフォームの胴部及び閉塞底部を形成するためのキャ
ビティ21を備えている。コア型30は、前記キャビテ
ィ21に挿入されるコア部31とコア部31の上部且つ
周囲に配置された口部及び首部成形のための首部成形型
32とを備えており、上下に昇降動可能となっている。
また、この首部成形型32は水平方向に開閉可能となっ
ている。
Returning again to FIG. 1, the cavity mold 20 is provided with a cavity 21 for forming a body portion and a closed bottom portion of the preform. The core mold 30 includes a core part 31 to be inserted into the cavity 21, a mouth part arranged above and around the core part 31, and a neck part molding mold 32 for molding the neck part, and can move up and down. Has become.
The neck mold 32 can be opened and closed horizontally.

【0052】図1には、溶融樹脂塊押出工程(A)、溶
融樹脂塊切断供給工程(B)、多層プリフォーム成形の
ための圧縮成形工程(C)及び多層プリフォーム冷却工
程(D)が各装置の配置と共に示されている。
FIG. 1 shows a molten resin block extruding step (A), a molten resin block cutting and supplying step (B), a compression molding step (C) for molding a multilayer preform, and a multilayer preform cooling step (D). It is shown with the arrangement of each device.

【0053】先ず、溶融樹脂塊押出工程(A)において
は、図2において説明したとおり、ダイリップ18から
溶融樹脂塊17が押し出される。
First, in the molten resin block extrusion step (A), the molten resin block 17 is extruded from the die lip 18 as described with reference to FIG.

【0054】溶融樹脂塊切断供給工程(B)において、
溶融樹脂塊の押出供給装置10とキャビティ型20とは
同軸上に位置しており、この位置においてカッター19
が作動して溶融樹脂塊17が切り離され、キャビティ型
20のキャビティ21内に投入される。
In the molten resin block cutting and supplying step (B),
The molten resin block extrusion supply device 10 and the cavity mold 20 are positioned coaxially, and at this position, the cutter 19
Is activated, the molten resin block 17 is cut off, and is put into the cavity 21 of the cavity mold 20.

【0055】多層プリフォーム成形のための圧縮成形工
程(C)においては、コア型30とキャビティ型20と
は同軸上に位置しており、コア型30が下降して、キャ
ビティ内の溶融樹脂塊17を多層プリフォームに圧縮成
形する。
In the compression molding step (C) for molding the multi-layer preform, the core mold 30 and the cavity mold 20 are positioned coaxially with each other, and the core mold 30 descends so that the molten resin mass in the cavity is lowered. 17 is compression molded into a multi-layer preform.

【0056】多層プリフォーム冷却工程(D)におい
て、キャビティ型20及びコア型30は内部から強制冷
却されており、成形された多層プリフォームを非晶質状
態に過冷却する。冷却が完了した後、コア型30が上昇
して、プリフォームはキャビティ型20から抜き取ら
れ、更に首部成形型32が開いて、コア型30からも取
り外される。
In the multilayer preform cooling step (D), the cavity mold 20 and the core mold 30 are forcibly cooled from the inside, and the molded multilayer preform is supercooled to an amorphous state. After the cooling is completed, the core mold 30 rises, the preform is extracted from the cavity mold 20, the neck mold 32 is opened, and the core mold 30 is also removed.

【0057】図1に示した具体例では、溶融樹脂塊切断
供給工程(B)において、溶融樹脂塊の押出供給装置1
0とキャビティ型20とは同軸上に位置しており、この
位置においてカッター19が作動して溶融樹脂塊17が
切り離され、直接キャビティ型20のキャビティ21内
に投入されるが、切り離した溶融樹脂塊を保持部材で保
持して、キャビティ型20に投入することもできる。
In the concrete example shown in FIG. 1, in the molten resin block cutting and feeding step (B), the molten resin block extrusion feeding device 1 is used.
0 and the cavity mold 20 are located on the same axis, and the cutter 19 is operated at this position to separate the molten resin block 17 and directly put into the cavity 21 of the cavity mold 20. The lump can be held by a holding member and put into the cavity mold 20.

【0058】一段圧縮成形法に用いる装置の全体の配置
の他の例を示す図3(側面図)において、この装置は、
大まかにいって、溶融樹脂塊の押出供給装置10、圧縮
成形用のキャビティ型20、圧縮成形用のコア型30及
び溶融樹脂塊の保持搬送装置40からなっている。図3
には、溶融樹脂塊押出切断工程(A1)、溶融樹脂塊の
搬送工程(A2)、溶融樹脂塊供給工程(B’)、多層
プリフォーム成形のための圧縮成形工程(C)及び多層
プリフォーム冷却工程(D)が各装置の配置と共に示さ
れている。図3における多層プリフォーム成形のための
圧縮成形工程(C)及び多層プリフォーム冷却工程
(D)は、基本的に図1に関して説明したものと同様で
ある。
In FIG. 3 (side view) showing another example of the overall arrangement of the apparatus used for the one-step compression molding method, this apparatus is
Broadly speaking, it comprises a molten resin block extrusion supply device 10, a compression molding cavity mold 20, a compression molding core mold 30, and a molten resin mass holding and conveying device 40. Figure 3
Includes a molten resin block extrusion cutting step (A1), a molten resin block transporting step (A2), a molten resin block supplying step (B '), a compression molding step (C) for forming a multilayer preform, and a multilayer preform. The cooling step (D) is shown with the arrangement of each device. The compression molding step (C) and the multilayer preform cooling step (D) for molding the multilayer preform in FIG. 3 are basically the same as those described with reference to FIG.

【0059】溶融樹脂塊押出切断工程(A1)におい
て、保持搬送装置40がカッター19の下側に位置して
いる状態で、溶融樹脂塊17のカッター19による切り
離しが行われ、溶融樹脂塊17は直ちに保持搬送装置4
0により保持され、溶融樹脂塊の搬送工程(A2)に入
る。溶融樹脂塊供給工程(B’)においては、溶融樹脂
塊17は保持搬送装置40によりキャビティ型20と同
軸上に位置するように搬送され、この位置において保持
搬送装置40が開くことにより、溶融樹脂塊17が開放
され、キャビティ型20のキャビティ21内に投入され
る。
In the molten resin block extrusion cutting step (A1), the molten resin block 17 is separated by the cutter 19 while the holding and conveying device 40 is located below the cutter 19, and the molten resin block 17 is separated. Immediately holding and conveying device 4
0 is held, and the step (A2) of conveying the molten resin mass is started. In the molten resin lump supplying step (B ′), the molten resin lump 17 is conveyed by the holding / conveying device 40 so as to be positioned coaxially with the cavity mold 20, and the holding / conveying device 40 is opened at this position to melt the molten resin lumps. The lump 17 is opened and put into the cavity 21 of the cavity mold 20.

【0060】かくして形成されたプリフォームの断面構
造を示す図4において、この多層プリフォーム3は、口
部及び首部4と胴部5と閉塞底部6とからなっている。
閉塞底部6は滑らかであり、ゲート部を有していない。
胴部5及び底部6は内層1a、外層1bとこれらの間に
内封された中間層2とからなる一方で、口部及び首部4
は内外層樹脂1のみで形成されている。
In FIG. 4 showing the sectional structure of the preform thus formed, the multilayer preform 3 comprises a mouth portion, a neck portion 4, a body portion 5 and a closed bottom portion 6.
The closed bottom 6 is smooth and has no gate.
The body portion 5 and the bottom portion 6 are composed of the inner layer 1a, the outer layer 1b and the intermediate layer 2 enclosed between them, while the mouth portion and the neck portion 4 are formed.
Is formed of only the inner and outer layer resin 1.

【0061】[成形条件]樹脂の溶融押出温度(ダイヘ
ッドの温度)は、樹脂の種類によっても相違するが、一
般に熱可塑性ポリエステル樹脂の融点(Tm)を基準と
して、Tm+100℃乃至Tm+10℃、特にTm+4
0℃乃至Tm+20℃の範囲にあるのが好ましい。上記
範囲よりも低い温度では、剪断速度が大きくなりすぎて
一様な溶融押出物を形成することが困難となる場合があ
り、一方上記範囲よりも高温では、樹脂の熱劣化の程度
が大きくなったり、或いはドローダウンが大きくなりす
ぎる傾向がある。
[Molding conditions] The melt extrusion temperature of the resin (the temperature of the die head) varies depending on the type of the resin, but is generally Tm + 100 ° C. to Tm + 10 ° C., especially Tm + 4, based on the melting point (Tm) of the thermoplastic polyester resin.
It is preferably in the range of 0 ° C. to Tm + 20 ° C. If the temperature is lower than the above range, it may be difficult to form a uniform melt extrudate due to too high shear rate, while if the temperature is higher than the above range, the degree of thermal deterioration of the resin becomes large. Or, the drawdown tends to be too large.

【0062】切断する溶融塊の重量、即ち目付は、当然
最終ブローボトルによって決定されるが、一般的に10
0乃至2g、特に65乃至10gの範囲から、要求され
る強度によって適当な値を選定するのがよい。溶融樹脂
塊中に占めるリサイクル熱可塑性ポリエステル樹脂の割
合は10乃至80重量%、特に25乃至65重量%が好
ましい。80重量%を越えると、ボトル口部におけるリ
サイクル熱可塑性ポリエステル樹脂が占める割合が多く
なって黄味を呈するためである。また、下限は経済的理
由により制限される。また、リサイクル熱可塑性ポリエ
ステル樹脂は溶融樹脂塊の下方に位置することが好まし
い。上方に位置する場合、リサイクル熱可塑性ポリエス
テル樹脂がボトル口部に偏ってしまい、ボトル口部が黄
味を呈するからである。下方に位置する場合、好適範囲
である25乃至65重量%においては、ボトル口部にお
けるリサイクル熱可塑性ポリエステル樹脂の割合は実質
的に零であり、外観上優れたボトルが得られる。
The weight of the molten mass to be cut, that is, the basis weight is naturally determined by the final blow bottle, but is generally 10
It is preferable to select an appropriate value from the range of 0 to 2 g, especially 65 to 10 g according to the required strength. The proportion of the recycled thermoplastic polyester resin in the molten resin mass is preferably 10 to 80% by weight, particularly 25 to 65% by weight. This is because if the amount exceeds 80% by weight, the recycled thermoplastic polyester resin occupies a large proportion at the mouth of the bottle and exhibits a yellowish tint. Also, the lower limit is limited for economic reasons. Further, the recycled thermoplastic polyester resin is preferably located below the molten resin mass. This is because, when it is located above, the recycled thermoplastic polyester resin is biased to the bottle mouth portion, and the bottle mouth portion exhibits a yellowish color. In the case of being located below, in the preferable range of 25 to 65% by weight, the ratio of recycled thermoplastic polyester resin at the mouth of the bottle is substantially zero, and a bottle excellent in appearance is obtained.

【0063】また、溶融塊が円柱状乃至それに近い形状
であることが取り扱いの点で有利であるが、溶融塊の径
(D)と高さ(H)の比(H/D)は、一般に0.8乃
至4の範囲にあるのが、溶融塊の温度低下を可及的に防
止し且つ雌型への溶融塊の投入を容易に行う点で有利で
ある。即ち、H/Dが上記範囲外では溶融塊の表面積が
大きくなって、温度低下が生じやすくなる傾向がある。
Further, it is advantageous in terms of handling that the molten mass has a columnar shape or a shape close thereto, but the ratio (H / D) of the diameter (D) to the height (H) of the molten mass is generally The range of 0.8 to 4 is advantageous in that the temperature decrease of the molten mass is prevented as much as possible and the molten mass is easily charged into the female mold. That is, when H / D is outside the above range, the surface area of the molten mass becomes large, and the temperature tends to decrease.

【0064】溶融樹脂塊の切断には、任意のカッターが
使用されるが、樹脂の粘着を防止できるようなものが好
適である。例えば、工具表面のショットブラスト等の表
面処理は特に有効である。
An arbitrary cutter is used for cutting the molten resin block, but a cutter capable of preventing the resin from sticking is preferable. For example, surface treatment such as shot blasting on the tool surface is particularly effective.

【0065】溶融樹脂塊を移動させるための把持部材と
しては、熱絶縁性の良い材料からなるものを使用して、
樹脂への接触面積を極力少なくしたものが好適に使用さ
れる。溶融樹脂塊の切断から型への投入までは、すみや
かにしかもすでに指摘した時間内で行うのがよい。
As the holding member for moving the molten resin mass, one made of a material having a good heat insulating property is used.
A material having a contact area with the resin as small as possible is preferably used. It is preferable to cut the molten resin mass and put it in the mold promptly and within the time already pointed out.

【0066】圧縮成形金型としては、底部乃至その近傍
に微細な間隙或いは多孔質部を形成したものが使用さ
れ、微細間隙は、雌型の底部乃至その近傍をいくつかの
ピースに分割し、これらのピース間に空気を排除するた
めの微細な隙間を形成させるか、或いは金型に空気を排
除するための孔を形成させることにより、形成させるこ
とができる。また、多孔質部は、例えば焼結金属等を部
品加工することによって使用できる。
As the compression molding die, one in which a fine gap or a porous portion is formed at the bottom or in the vicinity thereof is used, and the fine gap divides the bottom of the female die or in the vicinity thereof into several pieces, It can be formed by forming a minute gap for excluding air between these pieces, or by forming a hole for excluding air in the mold. Further, the porous portion can be used, for example, by processing a sintered metal or the like into a component.

【0067】圧縮成形型の表面温度は、溶融樹脂の固化
が生じる温度であればよく、例えばポリエステルの場
合、50乃至10℃の温度範囲が適当である。金型の表
面温度を上記範囲内に維持するために、金型内に冷却水
や、調温された水等の媒体を通すのがよい。
The surface temperature of the compression mold may be any temperature at which the molten resin is solidified. For example, in the case of polyester, a temperature range of 50 to 10 ° C. is suitable. In order to keep the surface temperature of the mold within the above range, it is preferable to pass a medium such as cooling water or temperature-controlled water through the mold.

【0068】圧縮成形に必要な成形力はかなり小さくて
よいのが特徴の一つである。具体的な成形力は、樹脂の
種類やブロー成形用プリフォームの大きさによってもか
なり相違するが、一般的にいって、80乃至5MPa、
特に20乃至8MPaの成形力が適当である。
One of the features is that the molding force required for compression molding may be considerably small. The specific molding force varies considerably depending on the type of resin and the size of the blow molding preform, but generally speaking, 80 to 5 MPa,
A molding force of 20 to 8 MPa is particularly suitable.

【0069】上に説明した一段の圧縮成形により、底部
に流動配向歪みがなく、ゲート部やその他トリミング操
作の一切必要のないブロー成形用プリフォームが得られ
るので、このプリフォームは、そのまま延伸ブロー成形
工程に用いることができ、工程の簡略化及び生産性の点
でも多くの利点を有する。
By the above-described one-step compression molding, a blow molding preform having no flow orientation distortion at the bottom and no need for a gate portion or any other trimming operation can be obtained. It can be used in a molding process and has many advantages in terms of process simplification and productivity.

【0070】上記プリフォームは、そのまま延伸ブロー
成形に用いることもできるし、またプリフォームの口部
に耐熱性、剛性を与えるため、プリフォームの段階で口
部を熱処理により結晶化させ、白化させてもよく、また
後述の二軸延伸ブロー成形によりプリフォームをボトル
に成形後、得られたプラスチックボトルの口部を結晶化
させ、白化させてもよい。
The above preform can be used as it is for stretch blow molding, and in order to impart heat resistance and rigidity to the mouth of the preform, the mouth of the preform is crystallized and whitened by heat treatment at the stage of preform. Alternatively, the preform may be molded into a bottle by the biaxial stretching blow molding described below, and then the mouth of the obtained plastic bottle may be crystallized to be whitened.

【0071】[延伸ブロー成形]上記プリフォームを延
伸温度に加熱し、このプリフォームを軸方向に引っ張り
延伸すると共に周方向にブロー延伸し、ボトルを製造す
る。尚、プリフォームの成形とその延伸ブロー成形と
は、コールドパリソン方式で実施することができるほ
か、圧縮成形によるプリフォームを完全に冷却しないで
延伸ブロー成形を行うホットパリソン方式にも適用でき
ることが理解されるべきである。
[Stretch Blow Molding] The above preform is heated to a stretching temperature, stretched and stretched in the axial direction and blow stretched in the circumferential direction to manufacture a bottle. In addition, it is understood that the preform molding and the stretch blow molding can be performed by the cold parison method, and can also be applied to the hot parison method in which the stretch blow molding is performed without completely cooling the preform by compression molding. It should be.

【0072】延伸ブロー成形に先だって、必要により、
プリフォームを熱風、赤外線ヒーター、高周波誘導加熱
等の手段で延伸適性温度まで予備加熱する。その温度範
囲は、ポリエステルの場合、85乃至120℃、特に9
5乃至110℃の範囲にあるのがよい。
Prior to stretch blow molding, if necessary,
The preform is preheated to a temperature suitable for stretching by means of hot air, infrared heater, high frequency induction heating or the like. In the case of polyester, the temperature range is 85 to 120 ° C, especially 9 ° C.
It is preferably in the range of 5 to 110 ° C.

【0073】このプリフォームを、それ自体公知の延伸
ブロー成形機中に供給し、金型内にセットして、延伸棒
の押し込みにより軸方向に引張延伸すると共に、流体の
吹き込みにより周方向へブロー延伸成する。
This preform was fed into a stretch blow molding machine known per se, set in a mold, stretched axially by pushing a stretch rod, and blown in the circumferential direction by blowing a fluid. Stretch.

【0074】最終ボトルにおける延伸倍率は、面積倍率
で1.5乃至25倍が適当であり、この内でも、軸方向
延伸倍率を1.2乃至6倍とし、周方向延伸倍率を1.
2乃至4.5倍とするのがよい。
The stretching ratio in the final bottle is suitably 1.5 to 25 times in area ratio. Among them, the axial stretching ratio is 1.2 to 6 and the circumferential stretching ratio is 1.
It is preferable to set it to 2 to 4.5 times.

【0075】延伸ブロー成形されたボトルは、それ自体
公知の手段で熱固定することもできる。熱固定は、ワン
モールド法で、ブロー成形金型中で行うこともできる
し、また、ツーモールド法で、ブロー成形金型とは別個
の熱固定用の金型中で行うこともできる。熱固定の温度
は120乃至180℃の範囲が適当である。
The stretch-blow molded bottle can be heat-set by a means known per se. The heat setting can be performed by a one-mold method in a blow molding die, or can be performed by a two-mold method in a heat setting die separate from the blow molding die. The heat setting temperature is suitably in the range of 120 to 180 ° C.

【0076】また、他の延伸ブロー成形方法としては、
本願出願人に係わる特許第2917851号公報に例示
されるように、プリフォームを、一次二軸延伸ブロー金
型を用いて最終ボトルよりも大きい寸法の一次ブロー成
形体とし、次いでこの一次ブロー成形体を加熱収縮させ
た後、二次金型を用いて二軸延伸ブロー成形を行ってボ
トルとする二段ブロー成形を採用しても良い。この製造
方法によれば、ボトルの底部が十分に延伸薄肉化され、
熱間充填、加熱滅菌時の底部の変形、耐衝撃性に優れた
ボトルとすることができる。
As another stretch blow molding method,
As illustrated in Japanese Patent No. 2917851 relating to the applicant of the present application, a preform is made into a primary blow molded body having a size larger than that of a final bottle by using a primary biaxially stretched blow mold, and then this primary blow molded body is used. After heat-shrinking, the two-stage blow molding for forming a bottle by performing biaxial stretching blow molding using a secondary mold may be adopted. According to this manufacturing method, the bottom of the bottle is sufficiently stretched and thinned,
It is possible to obtain a bottle that is excellent in impact resistance and deformation of the bottom portion during hot filling and heat sterilization.

【0077】本発明による二軸延伸ブロー成形ボトルを
示す図5において、このボトル50は、口部51、胴部
52及び底部53からなっており、胴部52及び底部5
3は内層1a、外層1b及びこれらの間に内封された中
間層2からなっている。口部51は多層プリフォームと
同様に内外層樹脂のみで形成されている。このボトルで
は、圧縮成形で形成され、ゲート部の全くない多層プリ
フォームから形成されているため、底部中心において
も、内層1a、外層1b及び中間層2に全く乱れを生じ
ていないことが注目されるべきである。
In FIG. 5 showing a biaxially stretch blow molded bottle according to the present invention, the bottle 50 comprises a mouth portion 51, a body portion 52 and a bottom portion 53.
3 comprises an inner layer 1a, an outer layer 1b and an intermediate layer 2 enclosed between them. Like the multi-layer preform, the mouth portion 51 is formed of only the inner and outer layer resin. Since this bottle is formed by compression molding and is formed from a multi-layer preform having no gate portion, it is noted that the inner layer 1a, the outer layer 1b, and the intermediate layer 2 are not disturbed even at the bottom center. Should be.

【0078】[0078]

【実施例】本発明を次の例により、更に説明する。 [評価] 1.外観 実施例、比較例により得られた多層ポリエステルボトル
を、それぞれ10本ずつ抽出し、ボトル全体の白化の状
態と口部の黄色味を目視により観察し、発生本数を調べ
た。
The present invention will be further described by the following examples. [Evaluation] 1. Appearance Ten multilayer polyester bottles were obtained from each of the examples and comparative examples, and the whitening state of the entire bottle and the yellowness of the mouth were visually observed to check the number of occurrences.

【0079】2.耐衝撃性 500ccの水を入れて密封した多層ボトルを、高さ1
20cmからコンクリート床上に垂直落下させて、破損
した本数を調べた。
2. The height of a multi-layered bottle filled with 500cc of impact resistance and sealed
The number of damaged pieces was checked by vertically dropping from 20 cm onto a concrete floor.

【0080】3.剥離試験 多層ポリエステルボトルの胴部を、幅15mm、長さ5
0mmの短冊状片に切り取り、この短冊片の一端を剥離
して、Tピール強度測定機「テンシロン」にて剥離強度
を測定した。
3. Peeling test Multi-layer polyester bottle body, width 15mm, length 5
The strip was cut into 0 mm strips, one end of the strip was peeled off, and the peeling strength was measured with a T-peel strength measuring machine “Tensilon”.

【0081】[実施例1]固有粘度が0.8dl/gの
バージンの熱可塑性ポリエステル樹脂を、単軸押出機か
ら樹脂温度270℃の条件で二層二重ダイの外側流路に
連続的に押し出した。同時に固有粘度0.72dl/g
のフレーク状のリサイクル熱可塑性ポリエステル樹脂
を、樹脂温度270℃の条件で二軸押出機から間欠加圧
装置を介して、毎分30回の周期で二層二重ダイの合流
部でバージンの熱可塑性ポリエステル樹脂中にリサイク
ル熱可塑性ポリエステル樹脂をドロップ状に内封させ
た。この時の全重量当たりのリサイクル熱可塑性樹脂の
割合が10重量%となるように、単軸、二軸押出機の押
し出し量を調整した。さらに、二層二重ダイから共押し
出しされた溶融樹脂流を、間欠加圧装置の周期に同期さ
せてカッターを作動させ、長さ63mm、口径21mm
の円柱状の溶融樹脂塊に切断した。そして、この時のド
ロップ状のリサイクル熱可塑性ポリエステル樹脂が円柱
状の溶融樹脂塊の下方に位置するようにカッターのタイ
ミングを調整した。次いで、この円柱状の溶融樹脂塊を
15℃に冷却された雄型と共同作業によって型締め力1
0MPaの条件で圧縮成形し、バージンの熱可塑性ポリ
エステル樹脂を内外層、リサイクル熱可塑性ポリエステ
ル樹脂を中間層とする目付量25.0gの二種三層プリ
フォームを得た。さらに、このプリフォームを赤外線ヒ
ーターにより110℃に加熱し、60℃に加熱されたブ
ロー成形金型で二軸延伸ブロー成形を行い、内容量が5
00ccの多層ポリエステルボトルとした。この時の外
観評価、耐衝撃性、剥離強度の結果を表1に示す。
Example 1 A virgin thermoplastic polyester resin having an intrinsic viscosity of 0.8 dl / g was continuously applied from a single-screw extruder to a resin layer temperature of 270 ° C. in an outer flow path of a two-layer double die. I pushed it out. At the same time, intrinsic viscosity 0.72 dl / g
The flake-shaped recycled thermoplastic polyester resin is heated at a temperature of 270 ° C. from a twin-screw extruder through an intermittent pressurizing device at a merging portion of a two-layer double die at a cycle of 30 times per minute. The recycled thermoplastic polyester resin was enclosed in a drop shape in the plastic polyester resin. The extrusion amounts of the single-screw and twin-screw extruders were adjusted so that the ratio of the recycled thermoplastic resin to the total weight at this time was 10% by weight. Further, the molten resin flow co-extruded from the two-layer double die was synchronized with the cycle of the intermittent pressurizer to operate the cutter, and the length was 63 mm and the caliber was 21 mm.
Was cut into a cylindrical molten resin block. Then, the cutter timing was adjusted so that the drop-shaped recycled thermoplastic polyester resin at this time was positioned below the columnar molten resin mass. Then, the columnar molten resin mass was worked together with a male mold cooled to 15 ° C. to perform a mold clamping force 1
Compression molding was carried out under the condition of 0 MPa to obtain a two-kind three-layer preform having a basis weight of 25.0 g and using a virgin thermoplastic polyester resin as an inner and outer layer and a recycled thermoplastic polyester resin as an intermediate layer. Further, this preform was heated to 110 ° C. by an infrared heater and biaxially stretch blow molded by a blow molding mold heated to 60 ° C.
It was a multi-layer polyester bottle of 00 cc. Table 1 shows the results of appearance evaluation, impact resistance, and peel strength at this time.

【0082】[実施例2]実施例1において、全重量当
たりのリサイクル熱可塑性ポリエステル樹脂の割合を2
5重量%とした以外は、実施例1と同様の多層ポリエス
テルボトルとし、評価した。
[Example 2] In Example 1, the ratio of the recycled thermoplastic polyester resin to the total weight was set to 2.
A multilayer polyester bottle similar to that of Example 1 except that the content was 5% by weight was evaluated.

【0083】[実施例3]実施例1において、全重量当
たりのリサイクル熱可塑性ポリエステル樹脂の割合を6
5重量%とした以外は、実施例1と同様の多層ポリエス
テルボトルとし、評価した。
[Example 3] In Example 1, the ratio of the recycled thermoplastic polyester resin to the total weight was 6%.
A multilayer polyester bottle similar to that of Example 1 except that the content was 5% by weight was evaluated.

【0084】[実施例4]実施例1において、全重量当
たりのリサイクル熱可塑性ポリエステル樹脂の割合を8
0重量%とした以外は、実施例1と同様の多層ポリエス
テルボトルとし、評価した。
[Example 4] In Example 1, the ratio of the recycled thermoplastic polyester resin to the total weight was 8%.
The same multilayer polyester bottle as in Example 1 was used except that the content was 0% by weight, and the evaluation was performed.

【0085】[比較例1]実施例1において、全重量当
たりのリサイクル熱可塑性ポリエステル樹脂の割合を9
0重量%とした以外は、実施例1と同様の多層ポリエス
テルボトルとし、評価した。
[Comparative Example 1] In Example 1, the ratio of the recycled thermoplastic polyester resin to the total weight was 9%.
The same multilayer polyester bottle as in Example 1 was used except that the content was 0% by weight, and the evaluation was performed.

【0086】[比較例2]実施例2において、二層二重
ダイから共押し出しして切断されるドロップ状の溶融樹
のリサイクル熱可塑性ポリエステル樹脂が、該溶融樹脂
塊の上方に位置するようにカッターのタイミングを調整
した以外は、実施例2と同様の多層ポリエステルボトル
とし、評価した。
[Comparative Example 2] In Example 2, the recycled thermoplastic polyester resin of the drop-shaped molten tree that was cut by co-extrusion from the two-layer double die was positioned above the molten resin mass. A multilayer polyester bottle similar to that in Example 2 was prepared and evaluated except that the timing of the cutter was adjusted.

【0087】[比較例3]射出成形機を用いて成形温度
285℃、樹脂圧力40MPaの条件下で15℃に冷却
された射出金型内に共射出し、バージンの熱可塑性ポリ
エステル樹脂を内外層、リサイクル熱可塑性ポリエステ
ル樹脂を中間層とする二種三層プリフォームを得た。こ
の多層プリフォームの目付量は25.0g、胴部の肉厚
は3mm、リサイクル熱可塑性ポリエステル樹脂の割合
は30%であった。尚、ゲート部は1mm以内で切断し
た。次いで、このプリフォームを前記実施例1と同様に
二軸延伸ブロー成形し、内容量が500ccの多層ポリ
エステルボトルとし、同様の評価を行った。
Comparative Example 3 Using an injection molding machine, co-injection was carried out in an injection mold cooled to 15 ° C. under conditions of a molding temperature of 285 ° C. and a resin pressure of 40 MPa, and a virgin thermoplastic polyester resin was used as inner and outer layers. A two-kind three-layer preform having a recycled thermoplastic polyester resin as an intermediate layer was obtained. The basis weight of this multilayer preform was 25.0 g, the wall thickness of the body was 3 mm, and the ratio of recycled thermoplastic polyester resin was 30%. The gate portion was cut within 1 mm. Then, this preform was biaxially stretch blow molded in the same manner as in Example 1 to obtain a multilayer polyester bottle having an internal capacity of 500 cc, and the same evaluation was performed.

【0088】評価した結果、実施例1乃至4の多層ポリ
エステルボトルは、胴部及び底部の白化が無く、落下試
験においても剥離や割れ等の欠陥を生じなかった。ま
た、ゲート部が無いため、外観的にも良好であった。一
方、比較例1及び2の多層ポリエステルボトルは、リサ
イクル熱可塑性ポリエステル樹脂の占める割合が多いた
め、ボトル口部に若干の黄色味を呈し、外観不良状態で
あった。さらに、比較例3の多層ポリエステルボトル
は、中間層のリサイクル熱可塑性ポリエステル樹脂が乳
白色に白化し、特にゲート部周辺で白化が顕著であっ
た。また、落下試験においても、層間の剥離強度が低い
ため、剥離や割れが生じた。これらの結果を表1に示
す。
As a result of the evaluation, the multilayer polyester bottles of Examples 1 to 4 had no whitening of the body and the bottom, and did not cause defects such as peeling and cracking even in the drop test. Further, since there is no gate portion, the appearance was good. On the other hand, in the multi-layer polyester bottles of Comparative Examples 1 and 2, the recycled thermoplastic polyester resin occupies a large proportion, so that the mouth of the bottle was slightly yellowed and the appearance was poor. Further, in the multilayer polyester bottle of Comparative Example 3, the recycled thermoplastic polyester resin of the intermediate layer was milky white, and whitening was particularly remarkable around the gate portion. Also in the drop test, peeling and cracking occurred because the peel strength between the layers was low. The results are shown in Table 1.

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【発明の効果】本発明によれば、内外層樹脂中に全体当
たり10乃至80重量%の内外層樹脂に比して分子量の
小さい樹脂を中間層として内封させ、しかも底部にゲー
ト部を形成しないように多層プリフォームを製造するこ
とにより、機械的特性、耐衝撃性、外観特性を実質上低
下させることなく、分子量の低い樹脂をボトルの形成に
有効に利用することができる。また、内外層樹脂として
バージンの熱可塑性ポリエステル、中間層樹脂としてリ
サイクル熱可塑性ポリエステルを用いることにより、回
収PETボトルを再びボトルの形で有効利用することが
できる。また、プリフォームの口部及び首部(これらは
そのままボトルの口部及び首部となる)を内外層樹脂の
みで形成することにより、優れた密封性能や衛生的特性
を得ることができる。また、この多層プリフォームは、
中間層樹脂が内外層樹脂中の下方に偏心した状態で内封
された溶融樹脂塊をキャビティ型に供給し、コア型で圧
縮することにより形成することで、樹脂の熱劣化を防止
し、諸性能に優れたボトルを製造することができる。
According to the present invention, a resin having a lower molecular weight than the inner / outer layer resin is contained in the inner / outer layer resin as an intermediate layer, and a gate portion is formed at the bottom. By producing a multi-layer preform so as not to do so, a resin having a low molecular weight can be effectively used for forming a bottle without substantially lowering mechanical properties, impact resistance, and appearance properties. By using virgin thermoplastic polyester as the inner and outer layer resins and recycled thermoplastic polyester as the intermediate layer resin, the recovered PET bottle can be effectively used again in the form of a bottle. Further, by forming the mouth and neck of the preform (these become the mouth and neck of the bottle as they are) with only the inner and outer layer resins, excellent sealing performance and hygienic properties can be obtained. In addition, this multilayer preform
By supplying a molten resin block enclosed in a state where the intermediate layer resin is eccentric downward in the inner and outer layer resin to the cavity mold and compressing it with the core mold to prevent thermal deterioration of the resin, A bottle with excellent performance can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一段圧縮成形法に用いる装置の全体の
配置の一例を示す側面図である。
FIG. 1 is a side view showing an example of the overall arrangement of an apparatus used in the one-step compression molding method of the present invention.

【図2】溶融樹脂塊の押出装置の詳細を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing details of an apparatus for extruding a molten resin block.

【図3】一段圧縮成形法に用いる装置の全体の配置の他
の例を示す側面図である。
FIG. 3 is a side view showing another example of the overall arrangement of the apparatus used for the one-step compression molding method.

【図4】本発明の多層プリフォームの一例の断面図であ
る。
FIG. 4 is a sectional view of an example of the multilayer preform of the present invention.

【図5】本発明の多層プリフォームを二軸延伸ブロー成
形した多層ボトルの参考図である。
FIG. 5 is a reference view of a multilayer bottle obtained by biaxially stretch-blow molding the multilayer preform of the present invention.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:26 B29L 9:00 B29L 9:00 22:00 22:00 B65D 1/00 C B Fターム(参考) 3E033 AA01 BA17 BB08 CA03 CA06 DA03 DB01 EA01 FA03 GA02 4F201 AA24K AA50 AG03 AG07 AH55 BA03 BC02 BC12 BD06 BM07 BM13 4F208 AA24K AA50 AG03 AG07 AH55 LA02 LA04 LB22 LG06 LG32 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 105: 26 B29L 9:00 B29L 9:00 22:00 22:00 B65D 1/00 C BF term (reference) 3E033 AA01 BA17 BB08 CA03 CA06 DA03 DB01 EA01 FA03 GA02 4F201 AA24K AA50 AG03 AG07 AH55 BA03 BC02 BC12 BD06 BM07 BM13 4F208 AA24K AA50 AG03 AG07 AH55 LA02 LA04 LB22 LG06 LG32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内外層樹脂中に全体当たり10乃至80
重量%の内外層樹脂に比して分子量の小さい樹脂が中間
層として内封されており、且つ底部にゲート部を有しな
いことを特徴とする多層プリフォーム。
1. The whole resin in the inner and outer layers is 10 to 80.
A multi-layer preform characterized in that a resin having a smaller molecular weight than the weight% of the inner and outer layer resins is encapsulated as an intermediate layer and does not have a gate portion at the bottom.
【請求項2】 内外層樹脂がバージンの熱可塑性ポリエ
ステルであり、且つ中間層樹脂がリサイクル熱可塑性ポ
リエステルであることを特徴とする請求項1に記載の多
層プリフォーム。
2. The multilayer preform according to claim 1, wherein the resin for the inner and outer layers is a virgin thermoplastic polyester, and the resin for the intermediate layer is a recycled thermoplastic polyester.
【請求項3】 口部及び首部が内外層樹脂のみで形成さ
れていることを特徴とする請求項1または2に記載の多
層プリフォーム。
3. The multi-layer preform according to claim 1, wherein the mouth portion and the neck portion are formed only of the inner and outer layer resins.
【請求項4】 中間層樹脂が内外層樹脂中の下方に偏心
した状態で内封された溶融樹脂塊をキャビティ型に供給
し、コア型で圧縮することにより形成されたものである
ことを特徴とする請求項1乃至3の何れかに記載の多層
プリフォーム。
4. The intermediate layer resin is formed by supplying a molten resin mass encapsulated in the inner and outer layer resin in a downwardly eccentric state to a cavity mold and compressing it with a core mold. The multilayer preform according to any one of claims 1 to 3.
【請求項5】 請求項1乃至4の何れかに記載の多層プ
リフォームを二軸延伸ブロー成形して得られる多層ボト
ル。
5. A multi-layer bottle obtained by biaxially stretch blow molding the multi-layer preform according to any one of claims 1 to 4.
【請求項6】 顔料未配合の状態において、底部に白化
がなく透明であることを特徴とする請求項5に記載の多
層ボトル。
6. The multi-layer bottle according to claim 5, wherein the bottom is transparent without whitening in a state where no pigment is blended.
JP2001171523A 2001-05-23 2001-06-06 Multilayer preform and multilayer bottle using the same Expired - Fee Related JP4239436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171523A JP4239436B2 (en) 2001-05-23 2001-06-06 Multilayer preform and multilayer bottle using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001154319 2001-05-23
JP2001-154319 2001-05-23
JP2001171523A JP4239436B2 (en) 2001-05-23 2001-06-06 Multilayer preform and multilayer bottle using the same

Publications (2)

Publication Number Publication Date
JP2003039531A true JP2003039531A (en) 2003-02-13
JP4239436B2 JP4239436B2 (en) 2009-03-18

Family

ID=26615590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171523A Expired - Fee Related JP4239436B2 (en) 2001-05-23 2001-06-06 Multilayer preform and multilayer bottle using the same

Country Status (1)

Country Link
JP (1) JP4239436B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109108A1 (en) * 2005-04-13 2006-10-19 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatus for transferring doses and dose
JP2007039109A (en) * 2005-08-04 2007-02-15 Nippon Koka Cola Kk Bottle container for beverage use
EP1757421A1 (en) * 2005-08-22 2007-02-28 Aisapack Holding SA Multilayered preform and method of manufacturing it
JP2007525350A (en) * 2004-03-01 2007-09-06 エイサパック ホールディング ソシエテ アノニム Multilayer dose
WO2008026437A1 (en) * 2006-08-31 2008-03-06 Yoshino Kogyosho Co., Ltd. Multilayered blow container and method of forming the same
JP2008162244A (en) * 2007-01-05 2008-07-17 Dainippon Printing Co Ltd Molten resin material molding process, plastic lump for multilayered preforms, plastic lump for multilayered preforms, and multilayered preform fabricated using plastic lump for multilayered preform
JP2009101613A (en) * 2007-10-24 2009-05-14 Toyo Seikan Kaisha Ltd Compound synthetic resin element supply device
US20100151163A1 (en) * 2008-12-15 2010-06-17 Rubbermaid Incorporated Blowmolding apparatus and method
KR101041416B1 (en) 2003-10-22 2011-06-15 도요 세이칸 가부시키가이샤 Multilayered molten resin mass, multilayered preform for blow molding formed from the multilayered molten resin mass by compression molding, and multilayered container
US8157555B2 (en) 2005-01-12 2012-04-17 Toyo Seikan Kaisha, Ltd. Extrusion feed device for composite resin and composite resin mass
US8277211B2 (en) 2004-04-23 2012-10-02 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatus for transferring doses and dose
JP2021116112A (en) * 2020-01-28 2021-08-10 大日本印刷株式会社 Polyester container and polyester preform

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041416B1 (en) 2003-10-22 2011-06-15 도요 세이칸 가부시키가이샤 Multilayered molten resin mass, multilayered preform for blow molding formed from the multilayered molten resin mass by compression molding, and multilayered container
JP2007525350A (en) * 2004-03-01 2007-09-06 エイサパック ホールディング ソシエテ アノニム Multilayer dose
US8277211B2 (en) 2004-04-23 2012-10-02 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatus for transferring doses and dose
US8157555B2 (en) 2005-01-12 2012-04-17 Toyo Seikan Kaisha, Ltd. Extrusion feed device for composite resin and composite resin mass
WO2006109108A1 (en) * 2005-04-13 2006-10-19 Sacmi Cooperativa Meccanici Imola Societa' Cooperativa Apparatus for transferring doses and dose
JP2007039109A (en) * 2005-08-04 2007-02-15 Nippon Koka Cola Kk Bottle container for beverage use
US8246890B2 (en) 2005-08-22 2012-08-21 Aisapack Holding S.A. Multilayer articles and their production method
WO2007023428A3 (en) * 2005-08-22 2007-06-07 Aisapack Holding Sa Multilayer objects and production method thereof
WO2007023428A2 (en) * 2005-08-22 2007-03-01 Aisapack Holding S.A. Multilayer objects and production method thereof
EP1757421A1 (en) * 2005-08-22 2007-02-28 Aisapack Holding SA Multilayered preform and method of manufacturing it
AU2006283257B2 (en) * 2005-08-22 2011-06-09 Aisapack Holding S.A. Multilayer objects and production method thereof
CN101247933B (en) * 2005-08-22 2011-02-09 艾萨帕克控股公司 Multilayer objects and production method thereof
US8061540B2 (en) 2006-08-31 2011-11-22 Yoshino Kogyosho Co., Ltd. Multi-layered, blow molded container and process for molding the same
WO2008026437A1 (en) * 2006-08-31 2008-03-06 Yoshino Kogyosho Co., Ltd. Multilayered blow container and method of forming the same
JP2008055808A (en) * 2006-08-31 2008-03-13 Yoshino Kogyosho Co Ltd Multi-layer blow molded container and method for molding the same
KR101410529B1 (en) 2006-08-31 2014-06-20 가부시키가이샤 요시노 고교쇼 Multilayered blow container and method of forming the same
JP2008162244A (en) * 2007-01-05 2008-07-17 Dainippon Printing Co Ltd Molten resin material molding process, plastic lump for multilayered preforms, plastic lump for multilayered preforms, and multilayered preform fabricated using plastic lump for multilayered preform
JP2009101613A (en) * 2007-10-24 2009-05-14 Toyo Seikan Kaisha Ltd Compound synthetic resin element supply device
US20100151163A1 (en) * 2008-12-15 2010-06-17 Rubbermaid Incorporated Blowmolding apparatus and method
JP2021116112A (en) * 2020-01-28 2021-08-10 大日本印刷株式会社 Polyester container and polyester preform

Also Published As

Publication number Publication date
JP4239436B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR101154138B1 (en) Preform and blow molded container from the preform
KR100615910B1 (en) Plastic bottle and method of producing the same
CN1082427C (en) Method for preventing uncontrolled polymer flow in preform neck finish during packing and cooling stage
JP2002103428A (en) Multilayered preform and multilayered bottle manufactured using the same
JP4265122B2 (en) Multilayer bottle
US20090317577A1 (en) Preform, method of producing the same, and biaxially drawn container made from the preform
CN1473102A (en) Multilayer containers and preforms having barrier properties utilizing recycled material
SE469883B (en) Process for producing a multilayer tube and process for producing a multilayer polyester container
JP3823641B2 (en) Bottle
JP4239436B2 (en) Multilayer preform and multilayer bottle using the same
JP3405209B2 (en) Method of manufacturing preform for blow molding
JP2003127211A (en) Method and apparatus for molding preform
JP4186587B2 (en) Preform and biaxially stretched container manufactured using the same
JPH1177744A (en) Preparation of multilayer preform having recovered polyester resin layer and multilayer preform
JP2002248675A (en) Multilayer preform and its manufacturing method
JPH10337770A (en) Multilayer preform with recovery polyester resin layer, its manufacture, and multilayer container molded from the preform
JP2002137282A (en) Hollow molded object and method for manufacturing the same
JP3578157B2 (en) Compression molding equipment for compression molding of preforms for blow molding
JP4232348B2 (en) Multilayer preform manufacturing method
JP3690388B2 (en) Compression molding method
JP2004168039A (en) Preform, its manufacturing method, and container produced by biaxially stretching the preform
JP2005171081A (en) Polyester resin for compression molding, and preform and polyester container composed of the same
JPS61259943A (en) Gas barriering multilayer polyester vessel and manufacture thereof
JP2005171109A (en) Polyester resin for compression molding, manufacturing method of preform, preform and polyester container
JP2005171082A (en) Polyester resin for compression molding, and preform and polyester container composed of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4239436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees