JP2003035724A - Continuity check probe card and method for checking continuity - Google Patents

Continuity check probe card and method for checking continuity

Info

Publication number
JP2003035724A
JP2003035724A JP2001223183A JP2001223183A JP2003035724A JP 2003035724 A JP2003035724 A JP 2003035724A JP 2001223183 A JP2001223183 A JP 2001223183A JP 2001223183 A JP2001223183 A JP 2001223183A JP 2003035724 A JP2003035724 A JP 2003035724A
Authority
JP
Japan
Prior art keywords
continuity
fine particles
film
probe card
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001223183A
Other languages
Japanese (ja)
Inventor
Takuo Suzuki
卓夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001223183A priority Critical patent/JP2003035724A/en
Publication of JP2003035724A publication Critical patent/JP2003035724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuity check probe card which has no leakage between adjacent electrodes and high reliability and which does not bring about a continuity fault even by repeatedly checking in a continuity check of an electronic circuit device, and to provide a method for checking the continuity. SOLUTION: The continuity check probe comprises a circuit substrate and a continuity check section. A probe of the check section is made of conductive fine particles, which is obtained by coating a metal layer having a thickness of 3 μm or more on a core made of a high molecular weight material, its recovery rate in a 10%-compression deformation at 20 deg.C is 10% or more, its aspect ratio is less than 1.5, and its CV value is 10% or less. The particles are adhesively fixed to the electrode of the board with an electrically insulating adhesive in a state in which the particles are brought into close contact with the electrode in the degree that the 2 to 30% compression deformation is brought about.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路デバイス
の導通検査において、隣接電極間のリークがなく、繰り
返して検査を行っても導通不良を起こさない、信頼性の
高い導通検査プローブカード及び導通検査方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable continuity inspection probe card and a continuity inspection probe card which have no leakage between adjacent electrodes in an electric continuity inspection of an electronic circuit device and do not cause a continuity failure even if the inspection is repeated. Regarding inspection method.

【0002】[0002]

【従来の技術】電子回路デバイスは、半導体集積回路に
代表されるように微細化、高集積化が進み、これに伴い
その電気的諸特性を検査するためのシステムにも微細ピ
ッチ化が要求されている。このため、検査用のプローブ
を多数集積して束ねたプローブカードを検査に使用する
方法が採用されている。
2. Description of the Related Art Electronic circuit devices have been miniaturized and highly integrated as represented by semiconductor integrated circuits, and accordingly, a fine pitch has been required for a system for inspecting various electrical characteristics. ing. Therefore, a method of using a probe card in which a large number of inspection probes are integrated and bundled for inspection is adopted.

【0003】同様に、ICやLSIのプローブカードに
よる検査では、縦針型のプローブを束ねたプローブカー
ドがシリコンウェハー上を動いて、シリコンウェハー上
に並べられたチップ1個1個につき、チップの電極に対
して垂直にプローブ探針を押圧して接触させ、信号を送
ることにより検査を行っている。
Similarly, in an IC or LSI probe card inspection, a probe card in which vertical needle type probes are bundled moves on a silicon wafer, and each chip arranged on the silicon wafer has a chip The inspection is performed by pressing the probe probe perpendicularly to the electrode to bring it into contact with the electrode and sending a signal.

【0004】このような検査方法においては、シリコン
ウェハー上の全てのチップの電極に対してプローブ探針
を接触させることが必要となる。しかし、シリコンウェ
ハーは平面方向に数十〜百数十μm程度のうねりを持っ
ており完全に水平ではないため、プローブ探針を全ての
電極に接触させるためには、プローブカードを検査チッ
プに対して押圧することが必要である。しかしながら、
この押圧操作を行うと、チップの電極を損耗したり、チ
ップそのものが損傷したり、短期間でプローブカードが
使用不能になったりするといった問題点があった。
In such an inspection method, it is necessary to bring the probe probe into contact with the electrodes of all the chips on the silicon wafer. However, since the silicon wafer has undulations of several tens to hundreds of tens of μm in the plane direction and is not perfectly horizontal, in order to bring the probe probe into contact with all the electrodes, the probe card should be attached to the inspection chip. It is necessary to press it. However,
When this pressing operation is performed, there are problems that the electrodes of the chip are worn, the chip itself is damaged, and the probe card becomes unusable in a short period of time.

【0005】このような問題点を解消する目的で、導電
性微粒子をバインダー樹脂中に分散した異方導電性フィ
ルムを上下の電極の間に挟んで、圧接することにより上
下の電極間を導通し、検査する方法が、特開平4−25
7766号公報、特開平3−291807号公報、特開
平5−75250号公報等に開示されている。
For the purpose of solving such a problem, an anisotropic conductive film in which conductive fine particles are dispersed in a binder resin is sandwiched between upper and lower electrodes and pressure-contacted to electrically connect the upper and lower electrodes. The inspection method is disclosed in JP-A-4-25.
It is disclosed in Japanese Patent No. 7766, Japanese Patent Laid-Open No. 3-291807, Japanese Patent Laid-Open No. 5-75250, and the like.

【0006】しかしながら、このような異方導電性フィ
ルムでは導電性微粒子がフィルム中にランダムに分散し
ている構造であるため、圧接時に横方向にも導電性微粒
子がつながる可能性があり、隣接電極間のリークが発生
するおそれがある。また、上下の電極と導電性微粒子と
の間にはバインダー樹脂が存在するため、圧接時に樹脂
の薄層が残る場合があり、接続信頼性が充分に得られな
いという問題があった。
However, in such an anisotropically conductive film, since the conductive fine particles are randomly dispersed in the film, there is a possibility that the conductive fine particles may be connected in the lateral direction at the time of pressure contact, and the adjacent electrodes may be connected. There may be a leak between them. Further, since the binder resin exists between the upper and lower electrodes and the conductive fine particles, a thin layer of the resin may remain during the pressure contact, resulting in a problem that sufficient connection reliability cannot be obtained.

【0007】このような問題点を改善した方法として、
特開平8−78075号公報に、電極間に、表裏に露出
した弾性を有する導電性微粒子を介して、厚さ方向にの
み導電性を有する異方導電性フィルムを挟持することに
より、電気的な接続を行う導通検査方法が開示されてい
る。
As a method for improving such problems,
In Japanese Patent Application Laid-Open No. 8-78075, an anisotropic conductive film having conductivity only in the thickness direction is sandwiched between electrodes by means of conductive conductive fine particles exposed on the front and back sides, whereby electrical conductivity is improved. A continuity inspection method for connecting is disclosed.

【0008】しかしながら、この方法においては、導電
性微粒子の圧接後の回復率に関しての限定がなされてい
ないために、繰り返し導通検査に使用した場合、導電性
微粒子が弾性を有している場合でも圧接を繰り返すこと
で導電性微粒子のへたりが起こり、接続信頼性が得られ
ないという問題点があった。
However, in this method, since there is no limitation on the recovery rate of the conductive fine particles after the pressure contact, when the conductive fine particles are repeatedly used for the continuity test, the pressure contact is performed even if the conductive fine particles have elasticity. By repeating the above, the conductive fine particles are settled, and there is a problem that the connection reliability cannot be obtained.

【0009】また、デバイスの電極は有機汚染や酸化膜
により電気抵抗が高くなることが多く、プローブはこの
絶縁部を貫通して電極金属部へ到達する必要がある。そ
のためにはプローブを検査側電極に強く押圧する必要が
あり、従来の金属メッキ微粒子ではメッキの割れ、剥が
れが生じ、接続信頼性が得られないという問題があっ
た。
Further, the electrodes of the device often have high electric resistance due to organic contamination or oxide film, and the probe must penetrate the insulating portion to reach the electrode metal portion. For that purpose, it is necessary to strongly press the probe against the electrode on the inspection side, and the conventional metal plating fine particles have a problem that the plating is cracked or peeled off and the connection reliability cannot be obtained.

【0010】この問題に対して、特開平8−78075
号公報では、導電性微粒子の表面にシリカ粒子やニッケ
ル粒子を導入する方法が開示されている。しかしこの方
法により得られた異方導電性フィルムを繰り返し導通検
査に使用した場合、シリカ粒子やニッケル粒子が剥がれ
易く接続信頼性が得られないという問題点があった。
To solve this problem, Japanese Patent Laid-Open No. 8-78075
The publication discloses a method of introducing silica particles or nickel particles onto the surface of conductive fine particles. However, when the anisotropic conductive film obtained by this method is repeatedly used for the continuity test, there is a problem that silica particles and nickel particles are easily peeled off and connection reliability cannot be obtained.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、電子回路デバイスの導通検査において、隣接電極
間のリークがなく、繰り返して検査を行っても導通不良
を起こさない、信頼性の高い導通検査プローブカード及
び導通検査方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has a reliability test that does not cause a conduction failure even if repeated tests are performed without leakage between adjacent electrodes in a continuity test of an electronic circuit device. An object of the present invention is to provide a high continuity inspection probe card and a high continuity inspection method.

【0012】[0012]

【課題を解決するための手段】本発明1は、配線基板と
導通検査部分とからなる導通検査プローブカードであっ
て、前記導通検査部分のプローブは、導電性微粒子であ
り、前記導電性微粒子は、高分子量体からなるコアに厚
さ0.3μm以上の金属層が被覆されたものであり、か
つ、20℃、10%圧縮変形における回復率が10%以
上、アスペクト比が1.5未満、CV値が10%以下で
あり、前記導電性微粒子が前記配線基板の電極に、2〜
30%の圧縮変形が生じる程度に密着した状態で、電気
絶縁性の接着剤により接着固定化されているものである
導通検査プローブカードである。
The present invention 1 is a continuity inspection probe card comprising a wiring board and a continuity inspection part, wherein the probe of the continuity inspection part is conductive fine particles, and the conductive fine particles are A core made of a high molecular weight material coated with a metal layer having a thickness of 0.3 μm or more, and a recovery rate at 20 ° C., 10% compression deformation of 10% or more, an aspect ratio of less than 1.5, The CV value is 10% or less, and the conductive fine particles are applied to the electrodes of the wiring board by 2 to
A continuity inspection probe card, which is adhered and fixed by an electrically insulating adhesive in a state of being closely adhered to the extent that compression deformation of 30% occurs.

【0013】本発明2は、配線基板と導通検査部分とか
らなる導通検査プローブカードであって、前記導通検査
部分のプローブは、少なくとも先端部が導電性高硬度膜
で被覆されたものであり、前記導電性高硬度膜は、厚さ
が0.1μm以上であり、かつ、膜単体での表面電気抵
抗が500Ω以下、ビッカース硬度が400Hv以上で
ある導通検査プローブカードである。
A second aspect of the present invention is a continuity inspection probe card comprising a wiring board and a continuity inspection part, wherein the probe of the continuity inspection part has at least a tip end covered with a conductive high hardness film. The conductive high hardness film is a continuity inspection probe card having a thickness of 0.1 μm or more, a surface electric resistance of the film alone of 500 Ω or less, and a Vickers hardness of 400 Hv or more.

【0014】本発明3は、配線基板と導通検査部分とか
らなる導通検査プローブカードであって、前記導通検査
部分は、導電性微粒子が絶縁性フィルムの表裏に露出す
るよう配置されている異方導電性フィルムからなり、前
記導電性微粒子は、高分子量体からなるコアに厚さ0.
3μm以上の金属層が被覆されたものであり、かつ、2
0℃、10%圧縮変形における回復率が10%以上、ア
スペクト比が1.5未満、CV値が10%以下であり、
かつ、少なくともその一部が導電性高硬度膜で被覆され
たものであり、前記導電性高硬度膜は、厚さが0.1μ
m以上であり、かつ、膜単体での表面電気抵抗が500
Ω以下、ビッカース硬度が400Hv以上であり、前記
絶縁性フィルムは、厚さが前記導電性微粒子の平均粒径
の10〜95%であり、前記異方導電性フィルムを介し
て、検査対象である電子回路デバイスの電極と前記配線
基板との電極が電気的に接続されるものである導通検査
プローブカードである。以下に本発明を詳述する。
The present invention 3 is a continuity inspection probe card comprising a wiring board and a continuity inspection portion, wherein the continuity inspection portion is arranged anisotropically so that the conductive fine particles are exposed on the front and back surfaces of the insulating film. The conductive fine particles are made of a conductive film, and the conductive fine particles have a thickness of 0.
It is coated with a metal layer of 3 μm or more, and 2
The recovery rate at 0 ° C. and 10% compression deformation is 10% or more, the aspect ratio is less than 1.5, and the CV value is 10% or less,
At least a part of the conductive high hardness film is coated, and the conductive high hardness film has a thickness of 0.1 μm.
m or more and the surface electric resistance of the film alone is 500
Ω or less, Vickers hardness is 400 Hv or more, the insulating film has a thickness of 10 to 95% of the average particle diameter of the conductive fine particles, and is an inspection target through the anisotropic conductive film. It is a continuity inspection probe card in which an electrode of an electronic circuit device and an electrode of the wiring board are electrically connected. The present invention is described in detail below.

【0015】本発明1の導通検査プローブカードは、導
電性微粒子をプローブとするものである。上記導電性微
粒子は、高分子量体からなるコアに金属層が被覆された
ものである。上記高分子量体としては特に限定されず、
例えば、フェノール樹脂、アミノ樹脂、アクリル樹脂、
エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロ
ック共重合体、ポリエステル樹脂、尿素樹脂、メラミン
樹脂、アルキド樹脂、ポリイミド樹脂、ウレタン樹脂、
エポキシ樹脂等の熱可塑性樹脂;熱硬化性樹脂、架橋樹
脂、有機無機ハイブリッド共重合体等が挙げられる。こ
れらのうち、耐熱性や回復性が良いという点から架橋樹
脂が好ましい。また、上記高分子量体は、必要に応じて
充填物を含んでいても良い。
The continuity inspection probe card of the present invention 1 uses conductive fine particles as a probe. The conductive fine particles have a core made of a high molecular weight material coated with a metal layer. The high molecular weight material is not particularly limited,
For example, phenol resin, amino resin, acrylic resin,
Ethylene-vinyl acetate resin, styrene-butadiene block copolymer, polyester resin, urea resin, melamine resin, alkyd resin, polyimide resin, urethane resin,
Thermoplastic resins such as epoxy resins; thermosetting resins, crosslinked resins, organic-inorganic hybrid copolymers and the like. Of these, crosslinked resins are preferable because they have good heat resistance and recoverability. In addition, the high molecular weight material may include a filler if necessary.

【0016】上記金属層としては特に限定されず、例え
ば、ニッケル、金を含むもの、半田合金からなるもの等
が挙げられる。電極との接触抵抗や導通及び酸化劣化を
起こさないという点から表面層が金であることが好まし
い。
The metal layer is not particularly limited, and examples thereof include those containing nickel and gold, and those composed of a solder alloy. The surface layer is preferably gold from the viewpoint that contact resistance with electrodes, conduction, and oxidative deterioration do not occur.

【0017】上記金属層の厚さは0.3μm以上であ
る。0.3μm未満であると、導通検査において導電性
微粒子を圧接する際にメッキ層が割れたり、剥がれたり
して正確な導通検査ができない。好ましくは1.0μm
以上、より好ましくは2.0μm以上である。
The metal layer has a thickness of 0.3 μm or more. If the thickness is less than 0.3 μm, the plating layer may be cracked or peeled off when the conductive fine particles are pressure-contacted in the continuity test, and an accurate continuity test cannot be performed. Preferably 1.0 μm
Or more, more preferably 2.0 μm or more.

【0018】上記導電性微粒子の平均長径を平均短径で
割った値であるアスペクト比は1.5未満である。1.
5以上であると、導電性微粒子が不揃いとなるため、導
通検査に使用する場合、短径部分が電極に接触せずに接
続不良の原因となる。好ましくは1.3未満であり、よ
り好ましくは1.1未満である。
The aspect ratio, which is a value obtained by dividing the average major axis of the conductive fine particles by the average minor axis, is less than 1.5. 1.
When it is 5 or more, the conductive fine particles become uneven, and when used for the continuity test, the short diameter portion does not come into contact with the electrode and causes a connection failure. It is preferably less than 1.3, more preferably less than 1.1.

【0019】上記導電性微粒子のCV値は10%以下で
ある。10%を超えると、小さい導電性微粒子が電極に
届かず接続不良の原因となる。好ましくは5%以下であ
り、より好ましくは2%以下であり、更に1%以下であ
ると著しく効果が高まる。なお、CV値は下記式により
求められる。 CV値(%)=(σ/Dn)×100% 式中、σは粒子径の標準偏差を表し、Dnは数平均粒子
径を表す。
The CV value of the conductive fine particles is 10% or less. When it exceeds 10%, the small conductive fine particles do not reach the electrodes, which causes a connection failure. It is preferably 5% or less, more preferably 2% or less, and further 1% or less, the effect is remarkably enhanced. The CV value is calculated by the following formula. CV value (%) = (σ / Dn) × 100% In the formula, σ represents the standard deviation of the particle diameter, and Dn represents the number average particle diameter.

【0020】上記導電性微粒子は10%圧縮変形におけ
る回復率が10%以上である。10%未満であると、導
通検査時に導電性微粒子を変形させた際に導電性微粒子
自体が割れを起こしてしまったり、繰り返し導通検査を
行うと導電性微粒子にへたりが生じ、電極に接触しない
導電性微粒子を生じる場合があるため、正確な導通検査
ができない。好ましくは20%以上であり、より好まし
くは50%以上であり、更に80%以上であると著しく
効果が高まる。
The conductive fine particles have a recovery rate of 10% or more in 10% compression deformation. If it is less than 10%, the conductive fine particles themselves will be cracked when the conductive fine particles are deformed during the continuity test, or the conductive fine particles will be settled after repeated continuity tests and will not come into contact with the electrodes. Since conductive fine particles may be generated, an accurate continuity test cannot be performed. It is preferably 20% or more, more preferably 50% or more, and further 80% or more, the effect is remarkably enhanced.

【0021】上記導電性微粒子は、平均粒径が5〜80
0μmであることが好ましい。5μm未満であると、電
極や基板の平滑性の精度の問題から導電性微粒子が電極
と接触せず導通不良を発生する可能性があり、800μ
mを超えると、微細ピッチの電極に対応できず隣接電極
でショートを発生することがある。より好ましくは10
〜300μmであり、更に好ましくは20〜150μm
である。なお、上記平均粒径は、任意の導電性微粒子1
00個の粒径を顕微鏡で測定し、その値を平均して得た
値である。
The conductive fine particles have an average particle size of 5 to 80.
It is preferably 0 μm. If the thickness is less than 5 μm, the conductive fine particles may not come into contact with the electrodes due to the problem of the accuracy of the smoothness of the electrodes and the substrate, and conduction failure may occur.
If it exceeds m, it may not be possible to cope with electrodes having a fine pitch, and a short circuit may occur at the adjacent electrode. More preferably 10
To 300 μm, more preferably 20 to 150 μm
Is. In addition, the above-mentioned average particle diameter is arbitrary conductive fine particles 1
It is a value obtained by measuring the particle size of 00 particles with a microscope and averaging the values.

【0022】上記導電性微粒子の導電抵抗は、平均粒径
の10%を圧縮した場合、単粒子の導電抵抗、すなわ
ち、抵抗値が10Ω以下であることが好ましい。10Ω
を超えると、充分な電流値を確保できなかったり、大き
な電圧に耐えられず素子が正常に作動しなくなることが
ある。より好ましくは5Ω以下であり、更に好ましくは
1Ω以下である。
The conductive resistance of the conductive fine particles is preferably 10 Ω or less, that is, the resistance value of a single particle when 10% of the average particle diameter is compressed. 10Ω
If it exceeds, a sufficient current value may not be secured, or the device may not withstand a large voltage and the device may not operate normally. It is more preferably 5Ω or less, still more preferably 1Ω or less.

【0023】本発明1の導通検査プローブカードは、上
記導電性微粒子を配線基板の電極に、2〜30%の圧縮
変形が生じる程度に密着した状態で、電気絶縁性の接着
剤により接着固定化することにより得られる。接着固定
時の圧縮変形が2%未満であると、配線基板と導電性微
粒子との密着性が不足して導通不良を起こしやすく、3
0%を超えると、導電性微粒子やその被覆層が割れや剥
がれを生じて、導通不良を起こしやすくなる。
In the continuity inspection probe card of the present invention 1, the conductive fine particles are adhered and fixed by an electrically insulating adhesive in a state in which the conductive fine particles are in close contact with the electrodes of the wiring board to the extent that compressive deformation of 2 to 30% occurs. It is obtained by doing. If the compressive deformation at the time of fixing by adhesion is less than 2%, the adhesion between the wiring board and the conductive fine particles is insufficient, and a conduction failure is likely to occur.
If it exceeds 0%, the conductive fine particles or the coating layer thereof may be cracked or peeled off, and a conduction failure is likely to occur.

【0024】本発明2の導通検査プローブカードは、導
通検査部分のプローブの少なくとも先端部が導電性高硬
度膜で被覆されたものである。プローブの先端を導電性
高硬度膜で被覆することにより、低圧で押圧しても酸化
膜等を突き抜けてデバイスの電極金属と直接接触させる
ことができる。また、繰り返して導通検査に使用しても
安定した導通を得ることができる。
In the continuity inspection probe card of the second aspect of the present invention, at least the tip of the probe in the continuity inspection portion is covered with a conductive high hardness film. By coating the tip of the probe with a conductive high hardness film, it is possible to penetrate the oxide film and the like and directly contact with the electrode metal of the device even when pressed at a low pressure. Also, stable continuity can be obtained even if it is repeatedly used for continuity inspection.

【0025】上記導電性高硬度膜は、厚さが0.1μm
以上であり、かつ、膜単体での表面電気抵抗が500Ω
以下、ビッカース硬度が400Hv以上のものである。
この範囲内であると、上記導電性高硬度膜で被覆された
プローブは、低圧で押圧しても酸化膜等を突き抜けてデ
バイスの電極金属と直接接触でき、確実な導通を得るこ
とができる。好ましくは、厚さは1μm以上で、表面電
気抵抗が1Ω以下、ビッカース硬度が1000Hv以上
である。なお、導電性高硬度膜単体の性質は、導電性高
硬度膜をガラス基板等に形成した状態で測定することが
できる。
The conductive high hardness film has a thickness of 0.1 μm.
Above, and the surface electric resistance of the film alone is 500Ω
Hereinafter, the Vickers hardness is 400 Hv or more.
Within this range, the probe coated with the conductive high-hardness film can penetrate through the oxide film or the like and come into direct contact with the electrode metal of the device even when pressed at a low pressure, and reliable conduction can be obtained. Preferably, the thickness is 1 μm or more, the surface electric resistance is 1Ω or less, and the Vickers hardness is 1000 Hv or more. The property of the conductive high-hardness film alone can be measured with the conductive high-hardness film formed on a glass substrate or the like.

【0026】上記導電性高硬度膜としては特に限定され
ないが、工業的にはダイヤモンドライクカーボン(以
下、DLCともいう)が好ましい。上記プローブをDL
Cで被覆する方法としては特に限定されず、例えば、炭
化水素ガスを用いた高周波プラズマCVD、イオン化蒸
着、イオンビーム蒸着、固体炭素を主なソースとして用
いる真空アーク法、スパッタリング法等を挙げることが
できる。また、適切な導電性と硬度とを得るために、D
LCに金、銀、銅、クロム、アルミニウム等の金属成分
を添加することも有効である。なお、プローブの先端部
のみをDLCで被覆するには、プローブの先端部以外を
マスキングしてから被覆すればよい。
The conductive high hardness film is not particularly limited, but industrially, diamond-like carbon (hereinafter also referred to as DLC) is preferable. DL the above probe
The method of coating with C is not particularly limited, and examples thereof include high frequency plasma CVD using a hydrocarbon gas, ionization deposition, ion beam deposition, a vacuum arc method using solid carbon as a main source, and a sputtering method. it can. Further, in order to obtain appropriate conductivity and hardness, D
It is also effective to add metal components such as gold, silver, copper, chromium and aluminum to LC. In order to cover only the tip of the probe with DLC, the area other than the tip of the probe may be masked and then covered.

【0027】本発明2の導通検査プローブカードは、従
来の縦針型の導通検査プローブカードとしても、また、
導電性微粒子をプローブとする導通検査プローブカード
としても用いることができる。
The continuity inspection probe card according to the second aspect of the present invention can also be used as a conventional vertical needle type continuity inspection probe card.
It can also be used as a continuity inspection probe card using conductive fine particles as a probe.

【0028】本発明3の導通検査プローブカードは、そ
の導通検査部分が絶縁性フィルムに導電性微粒子が表裏
に露出するよう配置されている異方導電性フィルムから
なり、上記導電性微粒子の少なくとも一部が導電性高硬
度膜で被覆されているものである。上記導電性微粒子と
しては、本発明1の導通検査プローブカードで用いられ
る導電性微粒子と同様のものを用いることができる。ま
た、上記導電性高硬度膜としては、本発明2の導通検査
プローブカードで用いられる導電性高硬度膜と同様のも
のを用いることができる。
In the continuity inspection probe card of the third aspect of the present invention, the continuity inspection portion is made of an anisotropic conductive film arranged so that the conductive fine particles are exposed on the front and back of the insulating film, and at least one of the conductive fine particles is used. The part is covered with a conductive high hardness film. As the conductive fine particles, the same conductive fine particles as those used in the continuity inspection probe card of the present invention 1 can be used. The conductive high hardness film may be the same as the conductive high hardness film used in the continuity test probe card of the second invention.

【0029】上記絶縁性フィルムとしては、例えば、高
分子量体又はその複合物、セラミック等の無機物からな
るものが挙げられるが、適度な弾性や柔軟性、回復性を
持つものが得やすいという点から高分子量体又はその複
合物からなるものが好ましい。
Examples of the above-mentioned insulating film include high molecular weight substances or their composites, and those made of inorganic substances such as ceramics, but it is easy to obtain those having appropriate elasticity, flexibility, and recoverability. It is preferably composed of a high molecular weight substance or a composite thereof.

【0030】上記高分子量体としては、例えば、フェノ
ール樹脂、アミノ樹脂、アクリル樹脂、エチレン−酢酸
ビニル樹脂、スチレン−ブタジエンブロック共重合体、
ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキド
樹脂、ポリイミド樹脂ウレタン樹脂、エポキシ樹脂等の
熱可塑性樹脂;熱硬化性樹脂、架橋樹脂、有機無機ハイ
ブリッド共重合体等が挙げられる。これらのうち、回復
性が良いという点から架橋樹脂が好ましい。
Examples of the above-mentioned high molecular weight polymer include phenol resin, amino resin, acrylic resin, ethylene-vinyl acetate resin, styrene-butadiene block copolymer,
Thermoplastic resins such as polyester resins, urea resins, melamine resins, alkyd resins, polyimide resins, urethane resins, and epoxy resins; thermosetting resins, crosslinked resins, organic-inorganic hybrid copolymers, and the like. Of these, crosslinked resins are preferable because of their good recoverability.

【0031】上記絶縁性フィルムの厚さは、導電性微粒
子の平均粒径の10〜95%である。10%未満である
と、導電性微粒子をフィルム部分で支持しにくくなり、
95%を超えると、導通検査時に導電性微粒子が電極に
届かなくなり接続不良の原因となる。好ましくは20〜
80%であり、より好ましくは30〜70%である。
The thickness of the insulating film is 10 to 95% of the average particle size of the conductive fine particles. If it is less than 10%, it becomes difficult to support the conductive fine particles in the film portion,
If it exceeds 95%, the conductive fine particles do not reach the electrodes during the continuity test, which causes a connection failure. Preferably 20-
It is 80%, more preferably 30 to 70%.

【0032】上記絶縁性フィルムは、導電性微粒子の保
持性を有し、かつ、上記絶縁性フィルムを挟んで、検査
対象の電子回路デバイスと配線基板とを圧接し導通検査
を行った後に、電子回路デバイスから容易に剥離できる
ものであることが好ましい。具体的には、上記絶縁性フ
ィルムの検査用のデバイスの接する面に離型処理を施し
てもよいし、絶縁性フィルムとして導電性微粒子の保持
性に優れたフィルムに離型性に優れたフィルムをラミネ
ートした多層フィルムを用いても良い。一方、配線基板
に対しては、導通検査部である上記絶縁性フィルムを導
通検査後に容易に剥離できる設計にしても良いし、接着
層を設けて、導電性微粒子が配線基板の電極に接続した
状態で、配線基板に固定化又は仮止めしておいても良
い。この場合の接着層としては、接着剤からなるフィル
ム、粘着テープ等公知のものを使用でき、それらで導電
性微粒子の保持層自体を形成しても良い。また、接着剤
等を使用せず、絶縁性フィルムを配線基板に固定具を用
いて固定又は仮固定しておくこともできる。
The insulating film has a property of holding conductive fine particles, and the electronic circuit device to be inspected and the wiring board are pressure-contacted with each other with the insulating film sandwiched therebetween, and a continuity test is performed. It is preferable that it can be easily peeled from the circuit device. Specifically, the surface of the insulating film in contact with the device for inspection may be subjected to a mold release treatment, or a film having excellent releasability as a film having excellent retention of conductive fine particles as an insulating film. You may use the multilayer film which laminated | stacked. On the other hand, for the wiring board, the insulation film, which is the continuity inspection section, may be designed to be easily peeled off after the continuity inspection, or an adhesive layer may be provided to connect the conductive fine particles to the electrodes of the wiring board. In this state, the wiring board may be fixed or temporarily fixed. As the adhesive layer in this case, a known film such as an adhesive film or an adhesive tape can be used, and the holding layer itself of the conductive fine particles may be formed of them. Alternatively, the insulating film may be fixed or temporarily fixed to the wiring board by using a fixture without using an adhesive or the like.

【0033】本発明3の導通検査プローブカードの導通
検査部分は、上記絶縁性フィルムに上記導電性微粒子が
表裏に露出するよう配置することにより得ることができ
る。上記導電性微粒子が、上記絶縁性フィルムの表裏に
露出することにより、より確実な導通を得ることができ
る。上記導電性微粒子をフィルムに配置する方法として
は特に限定されず、公知の方法を用いることができる。
The continuity inspection portion of the continuity inspection probe card of the third aspect of the invention can be obtained by disposing the conductive fine particles on the insulating film so that the conductive fine particles are exposed on the front and back. By exposing the conductive fine particles to the front and back of the insulating film, more reliable conduction can be obtained. The method for disposing the conductive fine particles on the film is not particularly limited, and a known method can be used.

【0034】本発明の導通検査プローブカードは、ダイ
シング前のシリコンウェハー上のチップ、ダイシングさ
れた後のシリコンチップ、ベアチップIC、TAB型I
C、回路基板上のCPUデバイス、通信用デバイス、液
晶表示素子駆動用デバイス、FPC上のデバイス、セン
サーデバイス、発光素子デバイスの導通検査に好適であ
る。本発明の導通検査プローブカードを用いることによ
り、隣接電極間のリークがなく、繰り返して検査を行っ
ても導通不良を起こさない、信頼性の高い導通検査を行
うことができる。かかる導通検査方法もまた、本発明の
1つである。
The continuity inspection probe card of the present invention is a chip on a silicon wafer before dicing, a silicon chip after dicing, a bare chip IC, a TAB type I.
C, a CPU device on a circuit board, a communication device, a device for driving a liquid crystal display element, a device on an FPC, a sensor device, and a light emitting element device are suitable for continuity inspection. By using the continuity test probe card of the present invention, it is possible to perform a highly reliable continuity test in which there is no leak between adjacent electrodes and a continuity failure does not occur even if the test is repeated. Such a continuity inspection method is also one of the present invention.

【0035】[0035]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0036】(実施例1)懸濁重合により得られたメタ
クリル酸メチルエステルを主成分とする架橋性共重合体
の微粒子に、無電解メッキにより厚さ0.3μmのニッ
ケル層を付け、更に電気メッキにより厚さ2.0μmの
金層を付けた。メッキを施した微粒子を篩と気流分級に
より分級し、平均粒径80μm、アスペクト比1.0
5、CV値2%、回復率50%、抵抗値0.01Ωの導
電性微粒子を得た。配線パターンが描かれた導通検査用
のセラミック基板の各電極上にエポキシーアクリル樹脂
系の紫外線硬化型接着剤を約40μmの厚さで塗布し
て、その上に導電性微粒子を配置した。この導電性微粒
子の上にガラス板を置き、上部から1.0kg/cm2
の荷重をかけたまま、紫外線を照射して紫外線硬化型接
着剤を硬化し、ガラス板を除去して導通検査プローブカ
ードを得た。得られた導通検査プローブカードを、導電
性微粒子がテスト用ICチップの各アルミニウム製電極
の上に位置するように設置し、上から1kg/cm2
圧力で圧接し、導通検査を繰り返して行い、電極間のリ
ークや断線の有無を調べた。結果を表1に示した。
Example 1 Fine particles of a crosslinkable copolymer containing methyl methacrylate as a main component obtained by suspension polymerization were coated with a nickel layer having a thickness of 0.3 μm by electroless plating. A 2.0 μm thick gold layer was applied by plating. The plated fine particles are classified by a sieve and airflow classification, and the average particle diameter is 80 μm and the aspect ratio is 1.0.
5, conductive particles having a CV value of 2%, a recovery rate of 50% and a resistance value of 0.01Ω were obtained. An epoxy-acrylic resin-based UV-curable adhesive was applied to each electrode of the ceramic substrate for a continuity test on which a wiring pattern was drawn in a thickness of about 40 μm, and conductive fine particles were arranged thereon. A glass plate is placed on the conductive fine particles, and 1.0 kg / cm 2 is applied from above.
With the load applied, the ultraviolet curable adhesive was cured by irradiating it with ultraviolet light, and the glass plate was removed to obtain a continuity test probe card. The continuity test probe card thus obtained was placed so that the conductive fine particles were positioned on the respective aluminum electrodes of the test IC chip, and pressure contact was applied from above with a pressure of 1 kg / cm 2 , and the continuity test was repeated. The presence or absence of leakage between electrodes and disconnection was examined. The results are shown in Table 1.

【0037】(実施例2)実施例1で得られた導通検査
プローブカードのプローブの一部が導電性高硬度膜で被
覆された導通検査プローブカードを以下の方法により作
製した。厚さ50μm、1cm角のエポキシ系樹脂シー
トに、実施例1で得られた導通検査プローブカードの導
電性微粒子と対峙する位置に、炭酸ガスレーザーにより
直径70μmの穴を開けた。この穴が導電性微粒子の上
になるように、穴の開いたエポキシ樹脂シートを導通検
査プローブカードの上に配置した。シートの穴を通して
プローブの導電性微粒子の上に、グラファイトカーボン
と銀をターゲットにしたイオンビームスパッタリングを
行い、厚さ1μmのDLC膜を生成し、その後シートを
取り除いて、プローブの一部が導電性高硬度膜で被覆さ
れた導通検査プローブカードを得た。DLC膜生成の条
件として、ガラス板上にDLC膜を成膜したとき、ナノ
インデンテータによるビッカース硬度が2000Hv、
表面抵抗が10Ωになるように電力条件等を調整し、こ
の条件を採用した。この導通検査プローブカードを用い
て、実施例1と同様の導通検査を行った。結果を表1に
示した。
Example 2 A continuity inspection probe card in which a part of the probe of the continuity inspection probe card obtained in Example 1 was covered with a conductive high hardness film was produced by the following method. A 70 μm diameter hole was formed in a 1 μm square epoxy resin sheet having a thickness of 50 μm at a position facing the conductive fine particles of the continuity inspection probe card obtained in Example 1 by a carbon dioxide gas laser. An epoxy resin sheet with holes was placed on the continuity test probe card so that the holes were on the conductive fine particles. Ion beam sputtering targeting graphite carbon and silver to the conductive fine particles of the probe through the holes of the sheet to form a DLC film with a thickness of 1 μm, after which the sheet was removed and part of the probe became conductive. A continuity test probe card coated with a high hardness film was obtained. As a condition for producing the DLC film, when the DLC film is formed on the glass plate, the Vickers hardness by the nanoindentator is 2000 Hv,
The power condition and the like were adjusted so that the surface resistance was 10Ω, and this condition was adopted. Using this continuity test probe card, the same continuity test as in Example 1 was performed. The results are shown in Table 1.

【0038】(実施例3)縦針型導通検査プローブカード
の端子針の先端を、実施例2と同様の条件により導電性
高硬度膜で被覆したものを作製し、これを用いて実施例
1と同様の導通検査を行った。結果を表1に示した。
(Embodiment 3) A tip of a terminal needle of a vertical needle type continuity inspection probe card was coated with a conductive high hardness film under the same conditions as in Embodiment 2, and was used in Embodiment 1 The same continuity test was performed. The results are shown in Table 1.

【0039】(実施例4)厚さ50μm、1cm角のガラ
ス−エポキシ系フィルムに、作動テスト用のICチップ
の電極と位置が合うように約200μmのピッチで16
個の穴を約2mm離して2列、エキシマレーザーで穴径
が50μmになるように開けた。このフィルムの裏側か
ら実施例1で作製した導電性微粒子を吸引し、フィルム
の穴に導電性微粒子を配置した。この導電性微粒子が配
置されたフィルムの上に、同じ穴の開いたフィルムを、
導電性微粒子の位置に穴がくるように重ねて置き、実施
例2で行ったのと同様の条件でスパッタリングを行い、
その後シートを取り除いて、プローブの一部が導電性高
硬度膜で被覆された導通検査プローブカードを得た。得
られた導通検査プローブカードを用いて実施例1と同様
の導通検査を行った。結果を表1に示した。
(Embodiment 4) A glass-epoxy film having a thickness of 50 μm and a size of 1 cm square is placed at a pitch of about 200 μm so as to be aligned with the electrodes of the IC chip for the operation test.
The individual holes were separated by about 2 mm and opened in two rows with an excimer laser so that the hole diameter was 50 μm. The conductive fine particles produced in Example 1 were sucked from the back side of this film, and the conductive fine particles were placed in the holes of the film. On the film where the conductive fine particles are arranged, the film with the same holes,
The conductive fine particles are placed on top of each other so that holes are formed, and sputtering is performed under the same conditions as in Example 2.
After that, the sheet was removed to obtain a continuity inspection probe card in which a part of the probe was covered with a conductive high hardness film. A continuity test similar to that in Example 1 was performed using the obtained continuity test probe card. The results are shown in Table 1.

【0040】(実施例5)平たい容器に実施例1で作製し
た導電性微粒子をほぼ1層になる様に充填し、これをD
LC製膜装置に装入して導電性微粒子上にDLC膜を形
成し、次いで、この導電性微粒子をかき混ぜて更にDL
C膜を形成する操作を4回繰り返し、平均厚さ2μmの
DLC膜で導電性微粒子表面を被覆した。このDLC膜
で被覆した導電性微粒子を、実施例4と同様の方法によ
り、ガラス−エポキシ系フィルムの穴に配置して導通検
査プローブカードを作製した。得られた導通検査プロー
ブカードを用いて実施例1と同様の導通検査を行った。
結果を表1に示した。
(Embodiment 5) A flat container was filled with the conductive fine particles prepared in Embodiment 1 so as to form almost one layer.
A DLC film is formed on the conductive fine particles by charging it into an LC film forming apparatus, and then the conductive fine particles are agitated for further DL.
The operation of forming the C film was repeated 4 times to coat the surface of the conductive fine particles with a DLC film having an average thickness of 2 μm. The conductive fine particles coated with the DLC film were arranged in the holes of the glass-epoxy film by the same method as in Example 4 to prepare a continuity inspection probe card. A continuity test similar to that in Example 1 was performed using the obtained continuity test probe card.
The results are shown in Table 1.

【0041】(比較例1)導電性微粒子として、スチレ
ンを主成分とする架橋性共重合体であって、圧縮回復率
が8%のものを使用した以外は実施例1と同様の方法で
導通検査プローブカードを作製し、導通検査を行った。
結果を表1に示した。
(Comparative Example 1) Conduction was conducted in the same manner as in Example 1 except that a conductive styrene-based crosslinkable copolymer having a compression recovery rate of 8% was used as the conductive fine particles. A test probe card was prepared and a continuity test was performed.
The results are shown in Table 1.

【0042】(比較例2)導電性微粒子として、無電解
メッキにより厚さ0.1μmのニッケル層を付け、更に
電気メッキにより厚さ0.15μmの金層を付けたもの
を用いた以外は実施例1と同様の方法で導通検査プロー
ブカードを作製し、導通検査を行った。結果を表1に示
した。
(Comparative Example 2) The procedure was carried out except that as the conductive fine particles, a nickel layer having a thickness of 0.1 μm was attached by electroless plating, and a gold layer having a thickness of 0.15 μm was further attached by electroplating. A continuity test probe card was produced in the same manner as in Example 1 and a continuity test was performed. The results are shown in Table 1.

【0043】(比較例3)導電性微粒子の接着固定時の
圧縮変形が1%となるようにした以外は実施例1と同様
の方法で導通検査プローブカードを作製し、導通検査を
行った。結果を表1に示した。
(Comparative Example 3) A continuity inspection probe card was prepared in the same manner as in Example 1 except that the compressive deformation at the time of adhesion and fixing of the conductive fine particles was set to 1%, and the continuity inspection was conducted. The results are shown in Table 1.

【0044】(比較例4)DLC膜形成の条件として、
ガラス板上にDLC膜を成膜したとき、ナノインデンテ
ータによるビッカース硬度が4000Hv、表面抵抗が
600Ωになるようにターゲットや電力条件等を調整し
た以外は、実施例2と同様の方法で導通検査プローブカ
ードを作製し、導通検査を行った。結果を表1に示し
た。
(Comparative Example 4) As conditions for forming a DLC film,
When the DLC film was formed on the glass plate, the continuity test was performed in the same manner as in Example 2 except that the target and power conditions were adjusted so that the Vickers hardness by the nanoindentator was 4000 Hv and the surface resistance was 600Ω. A probe card was produced and a continuity test was performed. The results are shown in Table 1.

【0045】(比較例5)DLC膜形成の条件として、
ガラス板上にDLC膜を成膜したとき、ナノインデンテ
ータによるビッカース硬度が200Hv、表面抵抗が
0.1Ωになるようにターゲットや電力条件等を調整し
た以外は、実施例2と同様の方法で導通検査プローブカ
ードを作製し、導通検査を行った。結果を表1に示し
た。
(Comparative Example 5) As conditions for forming a DLC film,
When a DLC film was formed on a glass plate, the target and power conditions were adjusted so that the Vickers hardness by a nanoindentator was 200 Hv and the surface resistance was 0.1Ω. A continuity test probe card was produced and a continuity test was performed. The results are shown in Table 1.

【0046】(比較例6)通常の縦針型プローブカードを
用いて、実施例1と同様に導通検査を行った。結果を表
1に示した。
(Comparative Example 6) A continuity test was conducted in the same manner as in Example 1 using a normal vertical needle type probe card. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明によると、電子回路デバイスの導
通検査において、隣接電極間のリークがなく、繰り返し
て検査を行っても導通不良を起こさない、信頼性の高い
導通検査プローブカード及び導通検査方法を提供するこ
とができる。
According to the present invention, in a continuity test of an electronic circuit device, there is no leakage between adjacent electrodes, and a continuity failure does not occur even if the test is repeated, and a highly reliable continuity test probe card and a continuity test. A method can be provided.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配線基板と導通検査部分とからなる導通
検査プローブカードであって、前記導通検査部分のプロ
ーブは、導電性微粒子であり、前記導電性微粒子は、高
分子量体からなるコアに厚さ0.3μm以上の金属層が
被覆されたものであり、かつ、20℃、10%圧縮変形
における回復率が10%以上、アスペクト比が1.5未
満、CV値が10%以下であり、前記導電性微粒子が前
記配線基板の電極に、2〜30%の圧縮変形が生じる程
度に密着した状態で、電気絶縁性の接着剤により接着固
定化されているものであることを特徴とする導通検査プ
ローブカード。
1. A continuity test probe card comprising a wiring board and a continuity test part, wherein the probe of the continuity test part is conductive fine particles, and the conductive fine particles are formed on a core made of a high molecular weight material. A metal layer having a thickness of 0.3 μm or more, a recovery rate at 20 ° C. and 10% compression deformation of 10% or more, an aspect ratio of less than 1.5, and a CV value of 10% or less, Conduction, characterized in that the conductive fine particles are adhered and fixed by an electrically insulating adhesive in a state in which they are in close contact with the electrodes of the wiring board to the extent that compression deformation of 2 to 30% occurs. Inspection probe card.
【請求項2】 配線基板と導通検査部分とからなる導通
検査プローブカードであって、前記導通検査部分のプロ
ーブは、少なくとも先端部が導電性高硬度膜で被覆され
たものであり、前記導電性高硬度膜は、厚さが0.1μ
m以上であり、かつ、膜単体での表面電気抵抗が500
Ω以下、ビッカース硬度が400Hv以上であることを
特徴とする導通検査プローブカード。
2. A continuity test probe card comprising a wiring board and a continuity test part, wherein the probe of the continuity test part has at least a tip end covered with a conductive high hardness film, The high hardness film has a thickness of 0.1μ
m or more and the surface electric resistance of the film alone is 500
A continuity inspection probe card having an Ω or less and a Vickers hardness of 400 Hv or more.
【請求項3】 配線基板と導通検査部分とからなる導通
検査プローブカードであって、前記導通検査部分は、導
電性微粒子が絶縁性フィルムの表裏に露出するよう配置
されている異方導電性フィルムからなり、前記導電性微
粒子は、高分子量体からなるコアに厚さ0.3μm以上
の金属層が被覆されたものであり、かつ、20℃、10
%圧縮変形における回復率が10%以上、アスペクト比
が1.5未満、CV値が10%以下であり、かつ、少な
くともその一部が導電性高硬度膜で被覆されたものであ
り、前記導電性高硬度膜は、厚さが0.1μm以上であ
り、かつ、膜単体での表面電気抵抗が500Ω以下、ビ
ッカース硬度が400Hv以上であり、前記絶縁性フィ
ルムは、厚さが前記導電性微粒子の平均粒径の10〜9
5%であり、前記異方導電性フィルムを介して、検査対
象である電子回路デバイスの電極と前記配線基板との電
極が電気的に接続されるものであることを特徴とする導
通検査プローブカード。
3. An anisotropic conductive film comprising a wiring board and a continuity inspection portion, wherein the continuity inspection portion is arranged so that the conductive fine particles are exposed on the front and back surfaces of the insulating film. The conductive fine particles are composed of a core made of a high molecular weight material and a metal layer having a thickness of 0.3 μm or more coated on the core.
% Recovery rate in compressive deformation is 10% or more, aspect ratio is less than 1.5, CV value is 10% or less, and at least a part thereof is coated with a conductive high hardness film. High hardness film has a thickness of 0.1 μm or more, a surface electric resistance of the film alone of 500 Ω or less, and a Vickers hardness of 400 Hv or more, and the insulating film has a thickness of the conductive fine particles. 10-9 of the average particle size of
It is 5%, and the electrode of the electronic circuit device to be inspected and the electrode of the wiring board are electrically connected through the anisotropic conductive film, and the continuity inspection probe card is characterized. .
【請求項4】 導電性高硬度膜は、ダイヤモンドライク
カーボンであることを特徴とする請求項2又は3記載の
導通検査プローブカード。
4. The continuity inspection probe card according to claim 2, wherein the conductive high hardness film is diamond-like carbon.
【請求項5】 請求項1、2、3又は4記載の導通検査
プローブカードを用いて行う導通検査方法であって、ダ
イシング前のシリコンウェハー上のチップ、ダイシング
された後のシリコンチップ、ベアチップIC、TAB型
IC、回路基板上のCPUデバイス、通信用デバイス、
液晶表示素子駆動用デバイス、FPC上のデバイス、セ
ンサーデバイス、発光素子デバイスの導通検査を行うも
のであることを特徴とする導通検査方法。
5. A continuity inspection method using the continuity inspection probe card according to claim 1, 2, 3 or 4, wherein a chip on a silicon wafer before dicing, a silicon chip after dicing, and a bare chip IC. , TAB type IC, CPU device on circuit board, communication device,
A continuity test method for conducting a continuity test of a liquid crystal display element driving device, a device on an FPC, a sensor device, and a light emitting element device.
JP2001223183A 2001-07-24 2001-07-24 Continuity check probe card and method for checking continuity Pending JP2003035724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223183A JP2003035724A (en) 2001-07-24 2001-07-24 Continuity check probe card and method for checking continuity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223183A JP2003035724A (en) 2001-07-24 2001-07-24 Continuity check probe card and method for checking continuity

Publications (1)

Publication Number Publication Date
JP2003035724A true JP2003035724A (en) 2003-02-07

Family

ID=19056558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223183A Pending JP2003035724A (en) 2001-07-24 2001-07-24 Continuity check probe card and method for checking continuity

Country Status (1)

Country Link
JP (1) JP2003035724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171078A (en) * 2005-12-26 2007-07-05 Zhizhong Wang Method for treating surface of probing stylus installed on probe card
US11732105B2 (en) 2016-05-05 2023-08-22 Dexerials Corporation Filler disposition film
WO2024004667A1 (en) * 2022-06-29 2024-01-04 東京エレクトロン株式会社 Inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171078A (en) * 2005-12-26 2007-07-05 Zhizhong Wang Method for treating surface of probing stylus installed on probe card
JP4584140B2 (en) * 2005-12-26 2010-11-17 志忠 王 Method for treating the surface of a probe needle installed on a probe card
US11732105B2 (en) 2016-05-05 2023-08-22 Dexerials Corporation Filler disposition film
WO2024004667A1 (en) * 2022-06-29 2024-01-04 東京エレクトロン株式会社 Inspection method

Similar Documents

Publication Publication Date Title
JP3788361B2 (en) Anisotropic conductive connector and its application products
US7821283B2 (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
TW480692B (en) Contact structure having silicon finger contactors and total stack-up structure using same
US8124885B2 (en) Anisotropically conductive connector and anisotropically conductive connector device
US7326633B2 (en) Anisotropic conductive film
TWI281984B (en) Connector for measuring resistance, apparatus and method for measuring resistance of circuit board
WO2007142204A1 (en) Probe card
JP3788258B2 (en) Anisotropic conductive connector and its application products
WO2006008784A1 (en) Anisotropic conductive connector and inspection equipment for circuit device
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
WO2006009144A1 (en) Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
WO2006123772A1 (en) Wafer inspecting sheet-like probe and application thereof
JP2005317944A (en) Probe apparatus, wafer-inspecting apparatus provided with the probe apparatus, and the wafer-inspecting method
US20070040245A1 (en) Anisotropic conductive sheet, manufacturing method thereof, and product using the same
JP5104265B2 (en) Probe member, manufacturing method thereof and application thereof
JP2003035724A (en) Continuity check probe card and method for checking continuity
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JP3928607B2 (en) Anisotropic conductive sheet, its production method and its application
JP2002173702A (en) Electrically conductive metallic grain and electrically conductive composite metallic grain, and appled product using them
JP2009098065A (en) Probe member and manufacturing method thereof, and application of probe member
JP2008070271A (en) Sheet-like probe, manufacturing method therefor and application thereof
JP2008089377A (en) Sheet-like probe, its manufacturing method, and its application
JP2009193710A (en) Anisotropic connector, and apparatus for inspecting circuit device using the same
JP2003141934A (en) Conductive fine particle and anisotropic conductive film