JP2003034517A - Method and system for manufacturing porous carbon material - Google Patents

Method and system for manufacturing porous carbon material

Info

Publication number
JP2003034517A
JP2003034517A JP2001223831A JP2001223831A JP2003034517A JP 2003034517 A JP2003034517 A JP 2003034517A JP 2001223831 A JP2001223831 A JP 2001223831A JP 2001223831 A JP2001223831 A JP 2001223831A JP 2003034517 A JP2003034517 A JP 2003034517A
Authority
JP
Japan
Prior art keywords
gas
carbon material
inert gas
porous carbon
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001223831A
Other languages
Japanese (ja)
Other versions
JP5114719B2 (en
Inventor
Toshihiro Okabe
敏弘 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Prefecture
Original Assignee
Aomori Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefecture filed Critical Aomori Prefecture
Priority to JP2001223831A priority Critical patent/JP5114719B2/en
Publication of JP2003034517A publication Critical patent/JP2003034517A/en
Application granted granted Critical
Publication of JP5114719B2 publication Critical patent/JP5114719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a porous carbon material having a wide specific surface area. SOLUTION: Carbon raw material M is filled in a furnace core tube 21, a wet gas (hydrated gas) is prepared by diffusing an inert gas, which is generated from a hydrated gas generating system 30, in hot water at an arbitrary temperature of 98 deg.C or lower, preheated to 200 to 300 deg.C, and then fed to the inside of a furnace 22. The gas is brought into uniform steam-diffused state together with the inert gas to obtain the porous carbon material having 1300 (m<2> /g) specific surface area. The inert gas generating apparatus 31 is used for obtaining nitrogen gas as the inert gas from air by using of a nitrogen separating apparatus 35. Since the hydrated gas is preheated in a preheating device 33, the inside of the furnace 22 of the furnace core tube 21 has stable atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物系の多孔性炭
素材の製造方法とそのシステムに関する。更に詳しく
は、水蒸気と不活性ガスにより賦活させて多孔質の炭素
材の製造方法とそのシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and system for producing a plant-based porous carbon material. More specifically, it relates to a method and system for producing a porous carbon material by activating it with water vapor and an inert gas.

【0002】[0002]

【従来の技術】炭素材は、濾過材、吸着剤、電磁シール
ド材料、摺動部材、摩擦材等に活用されている。近年
は、二次電池、湿度センサー、電気二重層コンデンサ
ー、燃料電池などの電極素材としても使用されている。
植物系である木材、木質は、内部に無数の気孔を備えて
いるのでこれを炭化させて、多孔質の炭素材を製造する
方法も提案もされている。
2. Description of the Related Art Carbon materials are used as filtering materials, adsorbents, electromagnetic shield materials, sliding members, friction materials and the like. In recent years, it has also been used as an electrode material for secondary batteries, humidity sensors, electric double layer capacitors, fuel cells and the like.
Since wood and wood, which are plant-based, have innumerable pores inside, a method of carbonizing the pores to produce a porous carbon material has also been proposed.

【0003】例えば、木材にフェノール樹脂を含浸、硬
化させたのち炭化させたウッドセラミックスが知られて
いる。本発明の発明者は、木材をフェノール樹脂溶液に
入れ、真空ポンプで所定時間減圧してフェノール樹脂を
木材内部に注入させた後、ホルマリン雰囲気で硬化させ
る。これを空気を遮断した電気炉中で最高温度で約11
00℃で焼結させて炭化させる製造方法を提案した(特
開平4−164806号公報)。
For example, wood ceramics in which wood is impregnated with a phenol resin, cured, and then carbonized is known. The inventor of the present invention puts wood in a phenol resin solution, depressurizes it for a predetermined time with a vacuum pump to inject the phenol resin into the wood, and then hardens it in a formalin atmosphere. It is about 11 at maximum temperature in an electric furnace with air shut off.
A manufacturing method of sintering and carbonizing at 00 ° C has been proposed (JP-A-4-164806).

【0004】このように植物系の素材を炭化させたもの
は、内部が多孔質であり、単位重量当たりの表面積(m
2/g)を示す比表面積が大きいという特徴がある。この
多孔質を得るために賦活という製法が用いられている。
この賦活には、ガス賦活、薬品賦活、水蒸気賦活などが
知られている。水蒸気賦活法は、種々の方法が提案され
公知であるが、例えば、粉末活性炭を連続的に製造する
方法がある。
The carbonized plant-based material has a porous interior and a surface area per unit weight (m
2 / g) has a large specific surface area. A method called activation is used to obtain this porosity.
For this activation, gas activation, chemical activation, steam activation, etc. are known. Although various methods have been proposed and known as steam activation methods, for example, there is a method of continuously producing powdered activated carbon.

【0005】熱分解炉の中に水蒸気を注入して、別途投
入される空気中の酸素を燃焼させて不活性ガスとして炉
内へ拡散し、炭素材との接触確率を高めたものである。
反応により生じた生成ガスは、反応面から迅速に分離さ
せるが一部を循環させ、この循環ガスの量を制御して賦
活反応容器内の温度を制御するものである(特開平9−
20511号公報)。
Water vapor is injected into the pyrolysis furnace, and oxygen in the air, which is separately charged, is burned and diffused into the furnace as an inert gas to increase the contact probability with the carbon material.
The product gas generated by the reaction is rapidly separated from the reaction surface, but part of it is circulated, and the amount of this circulating gas is controlled to control the temperature in the activation reaction vessel (JP-A-9-
No. 20511).

【0006】図3は、本発明者等が実験に用いた従来の
炭素材の水蒸気賦活のための炭素材賦活システムの実例
を示すものである。電気加熱炉1は、閉鎖された空間を
備えた炉心管2を有し、この炉心管2の外周にはこれを
加熱するためのヒーター3が備えている。ヒーター3の
外周には、保温材4が巻かれている。保温材4は、ヒー
ター3から発熱した熱が炉心管2から逃げないようにす
るための断熱材である。電気加熱炉1の炉内5には、水
(常温)が注入装置10により加圧され注入パイプ6に
より一定量注入される。
FIG. 3 shows an example of a conventional carbon material activating system for steam activation of a conventional carbon material used by the present inventors in experiments. The electric heating furnace 1 has a core tube 2 having a closed space, and a heater 3 for heating the core tube 2 is provided on the outer periphery of the core tube 2. A heat insulating material 4 is wound around the heater 3. The heat insulating material 4 is a heat insulating material for preventing heat generated from the heater 3 from escaping from the core tube 2. Into the furnace 5 of the electric heating furnace 1, water (normal temperature) is pressurized by the injection device 10 and injected by the injection pipe 6 in a fixed amount.

【0007】注入された水は、所定温度に加熱された炉
内5の熱エネルギーにより、注入パイプ6の出口7で水
蒸気化される。炉内5には、ガスボンベ11から不活性
ガス(窒素ガス)が供給されている。この不活性ガスに
より、水蒸気は、均一に拡散され、炭素原料Mを賦活す
る。しかしながら、この従来の賦活方法では、注入装置
10により炉内に導入管により注入される。
The injected water is steamed at the outlet 7 of the injection pipe 6 by the thermal energy in the furnace 5 heated to a predetermined temperature. An inert gas (nitrogen gas) is supplied from the gas cylinder 11 into the furnace 5. The water vapor is uniformly diffused by the inert gas and activates the carbon raw material M. However, in this conventional activation method, the gas is injected by the injection device 10 into the furnace by the introduction pipe.

【0008】この導入管は、加熱された炉と同じ温度に
加熱されている。注入された水は、この導入管内で急激
な加熱を受けて、突然沸騰して炉内で無秩序に飛散され
る。飛散した水は無秩序宇に蒸気化されるため賦活に寄
与する蒸気は少なくなる。即ち、炭素原料Mへの水蒸気
を均一に拡散が難しく、本発明者等の実験結果でも単位
重量当たりの表面積は900(m2/g)程度であった。
The introduction tube is heated to the same temperature as the heated furnace. The injected water is rapidly heated in the introduction pipe, suddenly boils, and randomly scattered in the furnace. Since the scattered water is vaporized into chaotic U, less steam contributes to activation. That is, it is difficult to uniformly diffuse the water vapor into the carbon raw material M, and the experimental results of the present inventors showed that the surface area per unit weight was about 900 (m 2 / g).

【0009】また、加熱した炉内5内に常温の水を注入
するために熱衝撃が大きく、陶器製の炉心管2の破損す
ることもあった。また、不活性ガスを充填したガスボン
ベ11は、長時間の連続運転には容量に限界があるため
に使用できない。同様に、注入装置10のシリンジ12
も水の補充のために取り外す必要もある。
Further, since water at room temperature is injected into the heated furnace 5, the thermal shock is large, and the furnace core tube 2 made of ceramics may be damaged. Further, the gas cylinder 11 filled with the inert gas cannot be used because the capacity is limited for continuous operation for a long time. Similarly, the syringe 12 of the injection device 10
Also needs to be removed to replenish the water.

【0010】[0010]

【発明が解決しようとする課題】本発明は上述のような
技術背景のもとになされたものであり、下記目的を達成
する。本発明の目的は、気孔を増加させて比表面積を大
きくできる多孔性炭素材の製造方法とそのシステムを提
供することにある。本発明の他の目的は、水蒸気の拡散
を効率化することにより、気孔を増加させて比表面積を
大きくできる多孔性炭素材の製造方法とそのシステムを
提供することにある。
The present invention has been made based on the above technical background, and achieves the following objects. An object of the present invention is to provide a method and system for producing a porous carbon material, which can increase pores to increase the specific surface area. Another object of the present invention is to provide a method and system for producing a porous carbon material, which can increase the number of pores and increase the specific surface area by making the diffusion of water vapor more efficient.

【0011】[0011]

【課題を解決するための手段】本発明は、前記目的を達
成するため、次の手段を採る。本発明の多孔性炭素材の
製造方法は、多孔質の炭素材の製造方法であって、加熱
炉内に炭素材を入れ、前記加熱炉内に飽和水蒸気と不活
性ガスとを混合して水和ガスを作り、前記水和ガスを予
備加熱した後、前記水和ガスを前記加熱炉内に供給する
ことにより前記炭素材を賦活して、かつ前記加熱炉を8
00℃以上に加熱して前記炭素材を炭化させて製造する
ことを特徴とする。
The present invention adopts the following means in order to achieve the above object. The method for producing a porous carbon material of the present invention is a method for producing a porous carbon material, in which a carbon material is put in a heating furnace, and saturated steam and an inert gas are mixed in the heating furnace to obtain water. After producing a sum gas and preheating the hydration gas, the carbon material is activated by supplying the hydration gas into the heating furnace, and
It is characterized in that it is manufactured by heating the carbon material to 00 ° C. or higher to carbonize the carbon material.

【0012】前記多孔性炭素材とは、ミクロ孔、トラン
ジョナル孔、マクロ孔等を備えたものであればいかなる
ものであっても良いが、具体的には活性炭、カーボンブ
ラック、木炭、ウッドセラミックス等を指す。また、前
記不活性ガスは、不活性ガスであればどの種類でも良い
が空気を分離して作られた窒素ガスが安価で取り扱い上
も良い。更には、前記不活性ガスと前記水との混合温度
は、大気圧でかつ98℃以下であり、水和ガスの予備加
熱温度は、200℃以上であると良い。前記飽和水蒸気
の量は、前記窒素ガスの供給量に比例したものであると
良い。
The porous carbon material may be any material as long as it has micropores, transitional pores, macropores and the like, and specifically, activated carbon, carbon black, charcoal, wood ceramics and the like. Refers to. The inert gas may be of any type as long as it is an inert gas, but nitrogen gas produced by separating air is inexpensive and easy to handle. Furthermore, the temperature at which the inert gas and the water are mixed is atmospheric pressure and 98 ° C. or lower, and the preheating temperature of the hydrated gas is preferably 200 ° C. or higher. The amount of the saturated steam is preferably proportional to the supply amount of the nitrogen gas.

【0013】本発明の多孔性炭素材の製造システムは、
炭素材を内部に入れる加熱炉と、空気から酸素を除去し
て不活性ガスを分離するための不活性ガス発生手段と、
前記不活性ガス発生装置からの不活性ガスと水を混合す
るための水和手段と、混合された不活性ガスと水を予備
加熱し、前記加熱炉に供給するための予備加熱手段とか
らなる。水和手段による混合温度は、98℃以下であ
り、予備加熱手段の予備加熱温度は、200℃以上であ
ると良い。
The porous carbon material manufacturing system of the present invention comprises:
A heating furnace in which a carbon material is put, an inert gas generating means for removing oxygen from air to separate an inert gas,
A hydration means for mixing the inert gas from the inert gas generator with water, and a preheating means for preheating the mixed inert gas and water and supplying the mixture to the heating furnace. . The mixing temperature by the hydration means is preferably 98 ° C. or lower, and the preliminary heating temperature of the preliminary heating means is preferably 200 ° C. or higher.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施の形態を説明
する。図1は、本発明の実施の形態を示す図であり、多
孔性炭素材の製造システムの概要を示すシステム系統図
である。電気加熱炉20は、閉鎖された空間を備えたセ
ラミックス製の炉心管21である。炉心管21の外周に
は、炉心管21の炉内22を加熱するためのヒーター2
3が配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. FIG. 1 is a diagram showing an embodiment of the present invention, and is a system diagram showing an outline of a porous carbon material manufacturing system. The electric heating furnace 20 is a ceramic core tube 21 having a closed space. A heater 2 for heating the inside 22 of the core tube 21 is provided on the outer periphery of the core tube 21.
3 are arranged.

【0015】ヒーター23の外周には、保温材24が巻
かれている。保温材24は、ヒーター23から発熱した
熱が炉心管21から逃げないようにするための断熱材で
ある。炉心管21の上部位置には、炉内22内部の不活
性ガス、及び炉内22で生成した生成ガスを排出するた
めの管路及びバルブ25が配置されており、バルブ25
の弁を開放することによりこれらのガスを放出する。
A heat insulating material 24 is wound around the outer periphery of the heater 23. The heat insulating material 24 is a heat insulating material for preventing heat generated from the heater 23 from escaping from the core tube 21. A pipe line and a valve 25 for discharging the inert gas inside the furnace 22 and the generated gas generated inside the furnace 22 are arranged at the upper position of the core tube 21.
These gases are released by opening the valve.

【0016】一方、本実施の形態は、多孔性炭素材の製
造システムは、炉内22に水蒸気と不活性ガスと混合し
た水和ガスを供給するための水和ガス発生システム30
を備えている。この水和ガス発生システム30は、不活
性ガス、即ち窒素ガスを発生するための不活性ガス発生
装置31と、この不活性ガスと水とを混合する水和槽3
2と、混合した不活性ガスと水とを加熱する予備加熱器
33等からなる。
On the other hand, in the present embodiment, the porous carbon material manufacturing system comprises a hydration gas generation system 30 for supplying a hydration gas mixed with steam and an inert gas into the furnace 22.
Is equipped with. The hydration gas generation system 30 includes an inert gas generation device 31 for generating an inert gas, that is, a nitrogen gas, and a hydration tank 3 for mixing the inert gas and water.
2 and a pre-heater 33 for heating the mixed inert gas and water.

【0017】水和槽32は、水和槽32内でこの内部の
圧力、温度で決まる飽和蒸気圧レベルの水が付加され飽
和蒸気となる。なお、水和槽32と予備加熱器33との
間にバルブ付の枝管(図示せず)があり、バルブ37を
閉鎖することにより枝管側へ流出してくる水和ガスを冷
却して得られた水を計測して水分量を測定する。電気加
熱炉20に送り込む水分量は、不活性ガスの流量に比例
し定まる(図3参照)。
In the hydration tank 32, water having a saturated vapor pressure level determined by the internal pressure and temperature of the hydration tank 32 is added to form a saturated vapor. There is a branch pipe with a valve (not shown) between the hydration tank 32 and the preheater 33, and the valve 37 is closed to cool the hydration gas flowing out to the side of the branch pipe. The water obtained is measured to measure the water content. The amount of water sent into the electric heating furnace 20 is determined in proportion to the flow rate of the inert gas (see FIG. 3).

【0018】不活性ガス発生装置31は、空中の空気を
加圧する空気ポンプユニット34と加圧された空気を分
離して窒素ガス(希ガスを含む)のみを取り出す窒素分
離装置35とから構成されている。本実施の形態で用い
た窒素分離装置(鐘紡((株)製PSA式窒素ガス発生
装置))35の原理は、酸素及び窒素の吸着速度差が大
きく、加圧下において短時間のうちに酸素を優先的に吸
着し、窒素ガスを分離できる合成高分子吸着剤を用いた
ものである。窒素ガスの純度は、99.0〜99.99
%の範囲で得られ、取り出すガス量の装置能力の1/3
以下にすると99.99%以上にすると99.0%の純
度のガスが得られるものである。
The inert gas generator 31 comprises an air pump unit 34 for pressurizing air in the air and a nitrogen separator 35 for separating the pressurized air and extracting only nitrogen gas (including rare gas). ing. The principle of the nitrogen separator (Kanebo (PSA type nitrogen gas generator manufactured by Kanebo Co., Ltd.)) 35 used in the present embodiment is that the adsorption speed difference between oxygen and nitrogen is large, and oxygen is generated in a short time under pressure. A synthetic polymer adsorbent capable of preferentially adsorbing and separating nitrogen gas is used. The purity of nitrogen gas is 99.0-99.99.
% Obtained in the range of 1/3, and 1/3 of the device capacity of the amount of gas taken out
When it is set to 99.99% or more, a gas having a purity of 99.0% can be obtained.

【0019】分離された窒素ガスは、流量計36を通
り、水和槽32に供給される。水和槽32は、水と窒素
ガスを混合するものである。水と窒素ガスの混合は、9
8℃以下に加熱された温水に不活性ガスを通して、不活
性ガスを湿らすものである。
The separated nitrogen gas passes through the flow meter 36 and is supplied to the hydration tank 32. The hydration tank 32 mixes water and nitrogen gas. Mixing water and nitrogen gas is 9
The inert gas is moistened by passing the inert gas through hot water heated to 8 ° C or lower.

【0020】水と混合された不活性ガスは、電熱線によ
り加熱するタイプの予備加熱器33により加熱されて、
不活性ガスと混合され水和ガスとなる。水和ガスは、バ
ルブ37を通り、炉内22に供給される。
The inert gas mixed with water is heated by a preheater 33 of the type heated by a heating wire,
It becomes a hydration gas when mixed with an inert gas. The hydration gas is supplied into the furnace 22 through the valve 37.

【0021】(実施の形態1の動作)次に、前記実施の
形態の動作を説明する。炉内5に炭素原料Mを投入す
る。ここでいう炭素原料Mとは、植物系ガラス状複合材
料、木材、木質系等をいう。炭素原料Mの投入後、バル
ブ37とバルブ25等の全てのバルブを閉鎖し、脱酸素
状態(実用上の真空状態である。)にしてからバルブ3
7を開放し、不活性ガスを流入させ0.1MPa位まで
昇圧後、バルブ25を開放する。以降、バルブ37とバ
ルブ25は賦活が終了するまて開放した状態で電気加熱
炉20を運転する。
(Operation of Embodiment 1) Next, the operation of the above embodiment will be described. A carbon raw material M is charged into the furnace 5. The carbon raw material M here means a plant-based glassy composite material, wood, wood-based material, or the like. After charging the carbon raw material M, all the valves such as the valve 37 and the valve 25 are closed to be in a deoxidized state (a vacuum state for practical use), and then the valve 3
7 is opened, an inert gas is introduced to increase the pressure to about 0.1 MPa, and then the valve 25 is opened. After that, the electric heating furnace 20 is operated with the valve 37 and the valve 25 opened until the activation is completed.

【0022】水和ガス発生システム30により発生した
不活性ガスを、98℃以下の任意の温度の温水中に拡散
させる。温水の温度を98℃以下にした理由は、賦活に
余分な液状水分を水和ガス中に一切含まないようするた
めである。沸騰状態の水にガスを吹き込むと飽和蒸気に
プラス100℃の液状水分が飛沫同伴される危険性があ
るためである。言い換えると、湿り蒸気の状態となる。
仮に、液状水分を除去するためのフィルターを配置した
としてもこれに飽和蒸気が凝縮する危険性があるためで
ある。
The inert gas generated by the hydration gas generation system 30 is diffused in warm water of an arbitrary temperature of 98 ° C. or lower. The reason why the temperature of the hot water is set to 98 ° C. or lower is to prevent excess liquid water from being included in the hydration gas for activation. This is because when gas is blown into boiling water, there is a risk that saturated steam will be entrained with liquid water of 100 ° C. In other words, it becomes a wet steam state.
This is because even if a filter for removing liquid water is arranged, saturated vapor may be condensed in the filter.

【0023】従って、電気加熱炉20に供給される水和
ガスは、加熱されてガス状態、即ち加熱蒸気の状態とな
り供給される。飽和蒸気(水和性ガス)を、予備加熱器
33により200℃以上に予備加熱する。この予備加熱
により飽和蒸気は加熱蒸気となる。200℃以上に加熱
する理由は、管路中での冷却による結露の防止と、圧力
0.49Kpa(静水圧で50mmAq)を一定以上確保し
て流速を高めるためのものである。この結果、水和ガス
を安定して電気加熱炉20に供給できる。この加熱温度
と圧力の最適な値は、実験と理論的に定まるものであ
る。予備加熱された水和ガスは、炉内22内に投入する
ことにより不活性ガスと共に、均一な水蒸気拡散とな
り、比表面積約1300(m2/g)を得た。また、不活
性ガス発生装置31は、空中の空気を加圧する空気ポン
プユニット34で加圧して、窒素分離装置35に送る。
Therefore, the hydration gas supplied to the electric heating furnace 20 is heated and supplied in a gas state, that is, in the state of heating steam. The saturated vapor (hydratable gas) is preheated to 200 ° C. or higher by the preheater 33. By this preheating, saturated steam becomes heated steam. The reason for heating to 200 ° C. or higher is to prevent dew condensation due to cooling in the pipeline and to secure a pressure of 0.49 Kpa (50 mmAq at hydrostatic pressure) above a certain level to increase the flow velocity. As a result, the hydration gas can be stably supplied to the electric heating furnace 20. The optimum values of the heating temperature and pressure are theoretically determined by experiment. The pre-heated hydration gas was introduced into the furnace 22 and became a uniform water vapor diffusion together with the inert gas, and a specific surface area of about 1300 (m 2 / g) was obtained. In addition, the inert gas generator 31 pressurizes the air in the air by the air pump unit 34 and sends it to the nitrogen separator 35.

【0024】窒素分離装置35は、加圧空気から窒素ガ
スのみを連続的に取り出すものである。分離された窒素
ガスは、水和槽32に供給される。水和槽32は、水と
窒素ガスを混合して予備加熱器33に送る。以上のよう
に水和ガスは、連続的に発生させて供給することができ
るので、作業が中断することもなくできる。また、水和
ガスは、予備加熱器33により予備加熱され加熱蒸気と
なるので、炉心管21の炉内22も安定した雰囲気を作
る。
The nitrogen separation device 35 continuously extracts only nitrogen gas from the pressurized air. The separated nitrogen gas is supplied to the hydration tank 32. The hydration tank 32 mixes water and nitrogen gas and sends them to the preheater 33. As described above, since the hydration gas can be continuously generated and supplied, the work can be performed without interruption. Further, since the hydration gas is preheated by the preheater 33 to become heated steam, the inside of the furnace 22 of the core tube 21 also creates a stable atmosphere.

【0025】バルブ(内径6mm)37とバルブ(内径
2.5mm)25は、全開状態で操作するので、炉内22
の圧力は静水圧で数百mmAq前後の圧力であると推定さ
れる。炉内22は、不活性ガス又は水和ガスで常に飽和
されていることになる。図2は、図4に示す従来の炭素
材賦活システムと、本発明の多孔性炭素材の製造プラン
トとを比較したときの賦活温度と比表面積との関係を示
すデータである。比表面積が飛躍的に増大していること
が伺い知れる。図3は、投入すべき水を求めるための線
図であり、不活性ガスと水分量との関係を示すものであ
る。窒素ガスの流量に比例して、水分量も増加してい
る。
Since the valve (inner diameter 6 mm) 37 and the valve (inner diameter 2.5 mm) 25 are operated in a fully opened state, the inside of the furnace 22
It is estimated that the hydrostatic pressure is about several hundred mmAq in hydrostatic pressure. The inside of the furnace 22 is always saturated with the inert gas or the hydrating gas. FIG. 2 is data showing the relationship between the activation temperature and the specific surface area when the conventional carbon material activation system shown in FIG. 4 and the porous carbon material production plant of the present invention are compared. It can be seen that the specific surface area has increased dramatically. FIG. 3 is a diagram for determining the water to be added, and shows the relationship between the inert gas and the water content. The amount of water also increases in proportion to the flow rate of nitrogen gas.

【0026】炉内5内の炭素原料Mが加熱蒸気を吸着す
る量は、吸着成分iの吸着剤への吸着量Viは次式によ
り圧力と温度の関数で表されることが知られている。
It is known that the amount by which the carbon material M in the furnace 5 adsorbs the heated steam is the adsorption amount V i of the adsorbing component i to the adsorbent expressed by the following equation as a function of pressure and temperature. There is.

【0027】Vi=F(p……pi,……pn,T) 1成分ガスの吸着では、この平衡関係は吸着量、圧力及
び温度を座標とする3次元曲面で表される。実際には、
1つの変量を固定した2次曲線群で表すことが多い。そ
れぞれ吸着等温線(横軸が平衡圧力、縦軸が吸着量)、
吸着等圧線(横軸が温度、縦軸が吸着量)、及び吸着等
量線(横軸が温度、縦軸が平衡圧力)と呼ばれいてい
る。例えば、活性炭やゼオライトへのガス吸着の吸着等
温線は、平衡圧力と共に急速に立ち上がりその後は一定
量となり、カーボンブラックへの水蒸気の吸着の吸着等
温線は、傾きが平衡圧力の増加にしたがって二次関数的
に増加するものである(川井利長著「気体の吸着分離に
関する研究」1976年10月発行、第26頁〜第28
頁)。
V i = F (p 1 ... P i , ... P n , T) In the adsorption of a one-component gas, this equilibrium relationship is represented by a three-dimensional curved surface having adsorption amount, pressure and temperature as coordinates. . actually,
In many cases, one variate is represented by a fixed quadratic curve group. Adsorption isotherm (horizontal axis is equilibrium pressure, vertical axis is adsorption amount),
It is called an adsorption isobaric line (horizontal axis is temperature, vertical axis is adsorption amount) and adsorption isobaric line (horizontal axis is temperature, vertical axis is equilibrium pressure). For example, the adsorption isotherm for gas adsorption on activated carbon or zeolite rises rapidly with the equilibrium pressure, and then becomes a constant amount.The adsorption isotherm for adsorption of water vapor on carbon black has a quadratic slope as the equilibrium pressure increases. It increases functionally (Toshinori Kawai, "Study on adsorption and separation of gases", October 1976, pages 26-28)
page).

【0028】この理論に従えば、水蒸気ガスの吸着量
は、炉内5の圧力と温度で決定されるので、この吸着
量、即ち水蒸気ガスの増減は、水和槽32の温度を調節
して水蒸気の量を調節する方法、予備加熱器33の後で
加熱熱水を導入する方法等で調節しても良い。ただし、
炭素原料Mの賦活のために、前述した理論的、実験的な
ガス吸着量を炉内5内に供給しなければならないという
こととは別の問題である。賦活のための処理とガス吸着
量とは分けて考えられるべきである。
According to this theory, the amount of water vapor gas adsorbed is determined by the pressure and temperature of the furnace 5. Therefore, the amount of water vapor adsorption, that is, the increase or decrease of water vapor gas, can be controlled by adjusting the temperature of the hydration tank 32. It may be adjusted by a method of adjusting the amount of steam, a method of introducing heated hot water after the preheater 33, or the like. However,
In order to activate the carbon raw material M, this is a problem different from the fact that the theoretical and experimental gas adsorption amounts described above must be supplied into the furnace 5. The treatment for activation and the gas adsorption amount should be considered separately.

【0029】[0029]

【発明の効果】本発明の多孔性炭素材の製造方法によ
り、比表面積が大きな多孔性炭化素材を得ることができ
る、本発明の多孔性炭素材の製造システムは、長時間の
連続運転にも耐えられる、という効果ある。
INDUSTRIAL APPLICABILITY According to the method for producing a porous carbon material of the present invention, a porous carbon material having a large specific surface area can be obtained. It has the effect of being endurable.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、多孔性炭素材の製造プラントの概要を
示すシステム系統図である。
FIG. 1 is a system diagram showing an outline of a porous carbon material manufacturing plant.

【図2】図2は、従来の炭素材賦活システムと本発明の
多孔性炭素材の製造プラントとを比較したときの賦活温
度と比表面積との関係を示すデータである。
FIG. 2 is data showing the relationship between activation temperature and specific surface area when a conventional carbon material activation system is compared with a porous carbon material production plant of the present invention.

【図3】図3は、投入すべき水を求めるための線図であ
り、不活性ガスと水分量との関係を示すものである。図
1の正面図である。
FIG. 3 is a diagram for determining the water to be added, showing the relationship between the inert gas and the water content. It is a front view of FIG.

【図4】図4は、多孔性炭素材の製造プラントの概要を
示すシステム系統図である。
FIG. 4 is a system diagram showing an outline of a porous carbon material manufacturing plant.

【符号の説明】[Explanation of symbols]

10…注入装置 20…電気加熱炉 21…炉心管 22…炉内 23…ヒーター 30…水和ガス発生システム 31…不活性ガス発生装置 33…予備加熱器 32…水和槽 10 ... Injection device 20 ... Electric heating furnace 21 ... Reactor tube 22 ... Inside the furnace 23 ... Heater 30 ... Hydration gas generation system 31 ... Inert gas generator 33 ... Preheater 32 ... Hydration tank

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】多孔質の炭素材の製造方法であって、 加熱炉内に炭素材を入れ、前記加熱炉内に飽和水蒸気と
不活性ガスとを混合して水和ガスを作り、前記水和ガス
を予備加熱した後、 前記水和ガスを前記加熱炉内に供給することにより前記
炭素材を賦活して、かつ前記加熱炉を800℃以上に加
熱して前記炭素材を炭化させて製造することを特徴とす
る多孔性炭素材の製造方法。
1. A method for producing a porous carbon material, which comprises placing a carbon material in a heating furnace, mixing saturated steam and an inert gas in the heating furnace to produce a hydration gas, and After preheating the Japanese gas, the hydration gas is supplied into the heating furnace to activate the carbon material, and the heating furnace is heated to 800 ° C. or higher to carbonize the carbon material. A method for producing a porous carbon material, comprising:
【請求項2】請求項1に記載の多孔性炭素材の製造方法
において、 前記不活性ガスは、空気を分離して作られた窒素ガスで
あることを特徴とする多孔性炭素材の製造方法。
2. The method for producing a porous carbon material according to claim 1, wherein the inert gas is a nitrogen gas produced by separating air. .
【請求項3】請求項1又は2に記載の多孔性炭素材の製
造方法において、 前記不活性ガスと前記水との混合温度は、大気圧でかつ
98℃以下であり、 水和ガスの予備加熱温度は、200℃以上であることを
特徴とする多孔性炭素材の製造方法。
3. The method for producing a porous carbon material according to claim 1 or 2, wherein a mixing temperature of the inert gas and the water is atmospheric pressure and 98 ° C. or less, The heating temperature is 200 ° C. or higher, and the method for producing a porous carbon material.
【請求項4】請求項2に記載の多孔性炭素材の製造方法
において、 前記飽和水蒸気の供給量は、前記窒素ガスの供給量に比
例したものであることを特徴とする多孔性炭素材の製造
方法。
4. The method for producing a porous carbon material according to claim 2, wherein the supply amount of the saturated steam is proportional to the supply amount of the nitrogen gas. Production method.
【請求項5】炭素材を内部に入れる加熱炉と、 空気から酸素を除去して不活性ガスを分離するための不
活性ガス発生手段と、 前記不活性ガス発生装置からの不活性ガスと水を混合す
るための水和手段と、 混合された不活性ガスと水を予備加熱し、前記加熱炉に
供給するための予備加熱手段とからなる多孔性炭素材の
製造システム。
5. A heating furnace in which a carbon material is placed, an inert gas generating means for removing oxygen from air to separate an inert gas, an inert gas and water from the inert gas generator. A system for producing a porous carbon material, comprising: a hydration means for mixing the same and a preliminary heating means for preheating the mixed inert gas and water and supplying the preheating to the heating furnace.
【請求項6】請求項5に記載の多孔性炭素材の製造シス
テムにおいて、 水和手段による混合温度は、98℃以下であり、 予備加熱手段の予備加熱温度は、200℃以上であるこ
とを特徴とする多孔性炭素材の製造システム。
6. The system for producing a porous carbon material according to claim 5, wherein the mixing temperature by the hydration means is 98 ° C. or lower, and the preheating temperature of the preheating means is 200 ° C. or higher. Characteristic porous carbon material manufacturing system.
JP2001223831A 2001-07-25 2001-07-25 Production method and system of porous carbon material Expired - Fee Related JP5114719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223831A JP5114719B2 (en) 2001-07-25 2001-07-25 Production method and system of porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223831A JP5114719B2 (en) 2001-07-25 2001-07-25 Production method and system of porous carbon material

Publications (2)

Publication Number Publication Date
JP2003034517A true JP2003034517A (en) 2003-02-07
JP5114719B2 JP5114719B2 (en) 2013-01-09

Family

ID=19057098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223831A Expired - Fee Related JP5114719B2 (en) 2001-07-25 2001-07-25 Production method and system of porous carbon material

Country Status (1)

Country Link
JP (1) JP5114719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260934A (en) * 2011-02-24 2011-11-30 西安诚瑞科技发展有限公司 Continuous induction heating type fiber high-temperature carbonizing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104499A (en) * 1978-02-03 1979-08-16 Takeda Chem Ind Ltd Treating method for activated carbon
JPS6252114A (en) * 1985-08-28 1987-03-06 Sumikin Coke Co Ltd Production of activated carbon having high specific surface area
JPH03208809A (en) * 1990-01-09 1991-09-12 Nkk Corp Production of activated carbon in coke oven
JPH05116926A (en) * 1991-08-28 1993-05-14 Adoole:Kk Method and equipment for producing activated-carbon fiber
JPH0920511A (en) * 1995-06-30 1997-01-21 Kawasaki Heavy Ind Ltd Production of activated carbon and equipment therefor
JP2000072427A (en) * 1998-09-03 2000-03-07 Kawasaki City Production of active carbon by sludge
JP2001226110A (en) * 2000-02-17 2001-08-21 Yoji Hirai Device and method for manufacturing activated carbon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104499A (en) * 1978-02-03 1979-08-16 Takeda Chem Ind Ltd Treating method for activated carbon
JPS6252114A (en) * 1985-08-28 1987-03-06 Sumikin Coke Co Ltd Production of activated carbon having high specific surface area
JPH03208809A (en) * 1990-01-09 1991-09-12 Nkk Corp Production of activated carbon in coke oven
JPH05116926A (en) * 1991-08-28 1993-05-14 Adoole:Kk Method and equipment for producing activated-carbon fiber
JPH0920511A (en) * 1995-06-30 1997-01-21 Kawasaki Heavy Ind Ltd Production of activated carbon and equipment therefor
JP2000072427A (en) * 1998-09-03 2000-03-07 Kawasaki City Production of active carbon by sludge
JP2001226110A (en) * 2000-02-17 2001-08-21 Yoji Hirai Device and method for manufacturing activated carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260934A (en) * 2011-02-24 2011-11-30 西安诚瑞科技发展有限公司 Continuous induction heating type fiber high-temperature carbonizing device

Also Published As

Publication number Publication date
JP5114719B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
CN103693642B (en) Prepare method and the production equipment thereof of bamboo matrix activated carbon
EP2192969B1 (en) Article for extracting a component from a fluid stream, methods and systems including same
US7544222B2 (en) Activated, coal-based carbon foam
CN109850870A (en) A kind of high-strength carbon aeroge and its preparation method and application
CN101987275A (en) Method and device for recovering volatile organic compound through adsorption-electric heat desorption
Valenzuela-Calahorro et al. Influence of particle size and pyrolysis conditions on yield, density and some textural parameters of chars prepared from holm-oak wood
Levendis et al. Catalysis of the combustion of synthetic char particles by various forms of calcium additives
US5792720A (en) Method and apparatus for manufacturing TEDA-impregnated active carbon in fluidized bed type absorbing tower by generating TEDA vapor by means of hot air
CN110652877A (en) Preparation method and application of covalent organic framework hybrid membrane
TWI305154B (en) Apparatus and method for inhibiting decomposition of germane
Yu et al. Electrothermal desorption using joule effect on an activated carbon monolith
Zhang et al. Influence of pore structure of granular activated carbon prepared from anthracite on the adsorption of CO2, CH4 and N2
JP5114719B2 (en) Production method and system of porous carbon material
US4921686A (en) Method of carbonizing and activating fiber materials
KR102030493B1 (en) Regeneration apparatus for wasted activated carbon
CN114368194B (en) High-temperature-resistant heat-insulating ceramic composite material and preparation method thereof
CN100588457C (en) Shaping method for super absorbent charcoal powder body for adsorbing CO2
CN108404598A (en) Activated carbon adsorption and catalytic combustion system
Yang et al. Route‐Optimized Synthesis of Bagasse‐Derived Hierarchical Activated Carbon for Maximizing Volatile Organic Compound (VOC) Adsorption Capture Properties
JPH0472580B2 (en)
RU2001131030A (en) A method of obtaining a composite material
RU2026735C1 (en) Method for manufacture of carbon article
JPS63156542A (en) Method for regenerating activated carbon
CN1490075A (en) Pore adjusting method for coal based carbon film
JPS63139009A (en) Foamed carbon body for molecular sieve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5114719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees