JP2003031504A - Plasma processing apparatus and method and semiconductor device manufactured by using them - Google Patents

Plasma processing apparatus and method and semiconductor device manufactured by using them

Info

Publication number
JP2003031504A
JP2003031504A JP2001213062A JP2001213062A JP2003031504A JP 2003031504 A JP2003031504 A JP 2003031504A JP 2001213062 A JP2001213062 A JP 2001213062A JP 2001213062 A JP2001213062 A JP 2001213062A JP 2003031504 A JP2003031504 A JP 2003031504A
Authority
JP
Japan
Prior art keywords
frequency power
high frequency
electrode
plasma processing
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001213062A
Other languages
Japanese (ja)
Inventor
Haruyuki Morita
春雪 森田
Kenji Wada
健司 和田
Takashi Inamasu
崇 稲増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001213062A priority Critical patent/JP2003031504A/en
Publication of JP2003031504A publication Critical patent/JP2003031504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem, even if high-frequency power is applied to a plurality of linear electrodes in a reaction container, while controlling the phase thereof it is difficult to reduce the ununiformity of electric field strength due to standing waves generated on the electrodes and it is insufficient to produce uniform plasma. SOLUTION: In a plasma processing apparatus, having a plurality of small electrodes arranged nearly in the same plane, when high frequency powers of different frequencies are applied to the electrodes adjacent to each other, the combination of the electric field strengths generated by respective electrodes can provide electric field strength which is uniform over a large area to improve film thickness distribution and etching speed distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ処理装置に
係り、被処理部材に対し膜堆積、エッチングあるいは表
面改質を行うのに好適な処理装置及び処理方法、ならび
にこれらの処理装置または処理方法を用いて作製した半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus, and a processing apparatus and processing method suitable for performing film deposition, etching or surface modification on a member to be processed, and a processing apparatus or processing method thereof. The present invention relates to a semiconductor device manufactured using the same.

【0002】[0002]

【従来の技術】半導体装置の製造プロセスにおいて、プ
ラズマエネルギーを利用した薄膜堆積、エッチング、表
面改質等の処理が必要不可欠であり、これらのプラズマ
処理工程では、液晶ディスプレイや太陽電池等の半導体
装置の大型化、及び処理能力向上の要求に対応した被処
理面積の大型化や処理速度の向上、そして処理品質の向
上が重要な課題になっている。
2. Description of the Related Art In manufacturing processes of semiconductor devices, thin film deposition, etching, surface modification and other treatments using plasma energy are indispensable. In these plasma treatment processes, semiconductor devices such as liquid crystal displays and solar cells are used. In order to meet the demands for larger size, higher processing capacity, larger processing area, higher processing speed, and higher processing quality are important issues.

【0003】このようなプラズマ処理の現状について説
明すると、代表的な膜堆積処理方法であるプラズマCV
D法を例に取ると、堆積される膜として、代表的にはシ
リコンの多結晶薄膜、微結晶薄膜、非晶質薄膜があり、
シリコンの化合物としては酸化シリコン膜、窒化シリコ
ン膜、珪化金属膜などがある。プラズマCVD法におけ
る量産性を向上させるために、高周波電力を高める、ま
たは原料ガスの供給量を増加させることで、製膜速度を
増大させることが可能である。しかしながら、高周波電
力として13.56MHzのRF帯高周波を用いた従来
の方法において、そのような条件で膜堆積を行うと、多
量のパウダーが生成し、パウダーが被処理部材へ付着す
ることによる膜質の低下、引いては歩留まりの低下を引
き起こすために、製膜速度の著しい向上は実現困難であ
る。
The current state of such plasma processing will be described. Plasma CV is a typical film deposition processing method.
Taking the D method as an example, the deposited film is typically a polycrystalline thin film of silicon, a microcrystalline thin film, or an amorphous thin film.
Examples of the silicon compound include a silicon oxide film, a silicon nitride film, and a metal silicide film. In order to improve mass productivity in the plasma CVD method, it is possible to increase the film forming rate by increasing the high frequency power or increasing the supply amount of the source gas. However, in the conventional method using the RF band high frequency of 13.56 MHz as the high frequency power, when film deposition is performed under such conditions, a large amount of powder is generated and the film quality due to the powder adhering to the member to be processed is It is difficult to realize a significant increase in the film formation speed because it causes a decrease in the yield and a decrease in the yield.

【0004】このような良好な膜品質と高い製膜速度の
両立という課題の解決策として、高周波電力の高周波数
化が有望視されている。周波数を更に増加させたVHF
帯高周波を用いることで、プラズマ温度の低減と、プラ
ズマ密度の向上が同時に成し得ることが知られており、
VHF帯高周波を用いることで、高品質な膜をより高速
で堆積できると期待される。
As a solution to the problem of achieving both good film quality and high film forming speed, it is considered promising to increase the frequency of high frequency power. VHF with further increased frequency
It is known that the use of band high frequency can simultaneously reduce the plasma temperature and improve the plasma density.
By using the VHF band high frequency, it is expected that a high quality film can be deposited at a higher speed.

【0005】しかしながら、VHF帯高周波はRF帯高
周波よりも波長が短いため、高周波電極の表面最大寸法
が大きくなるほど、電極上で発生する定在波の影響が大
きくなることが知られている。その結果、プラズマの面
内均一性が悪くなるため、膜堆積の場合は膜厚や膜特性
の面内均一性の悪化、エッチングの場合はエッチングレ
ートの面内均一性の悪化を引き起こしてしまう。また、
周波数が高くなるほど浮遊容量の影響が大きくなり、電
極間以外での高周波電力の損失が大きくなるため、安定
なプラズマ生成が困難になる。これらのことから、RF
帯高周波に対応した従来の装置では、VHF帯高周波を
用いた大面積処理を行うことは、実用上困難である。
However, since the VHF band high frequency has a shorter wavelength than the RF band high frequency, it is known that the larger the maximum surface dimension of the high frequency electrode, the greater the influence of the standing wave generated on the electrode. As a result, the in-plane uniformity of plasma is deteriorated, which causes in-plane uniformity of film thickness and film characteristics in the case of film deposition, and in-plane uniformity of etching rate in the case of etching. Also,
As the frequency becomes higher, the influence of the stray capacitance becomes larger and the loss of the high frequency power other than between the electrodes becomes large, so that stable plasma generation becomes difficult. From these things, RF
It is practically difficult for a conventional apparatus compatible with a high frequency band to perform a large area process using a VHF high frequency band.

【0006】このような課題に鑑み、VHF帯高周波を
用いて大面積処理を可能とする手法が特開2000−3
23297号公報に開示されている。図12により、特
開2000−323297号公報に開示されているプラ
ズマ生成用電極装置の概要を説明する。線状の電極2
1、22と2つの電源11、12を備え、各々の電源か
ら電極に印加される高周波電圧において、互いに位相を
ずらして各々の電極へ印加することにより、各々の電源
から発生する電界強度を合成し、大面積でも均一なプラ
ズマ生成が可能であるとしている。
In view of these problems, a method for enabling large-area processing by using VHF band high frequency is disclosed in Japanese Patent Laid-Open No. 2000-3.
It is disclosed in Japanese Patent No. 23297. An outline of the plasma generating electrode device disclosed in Japanese Patent Laid-Open No. 2000-323297 will be described with reference to FIG. Linear electrode 2
1, 22 and two power supplies 11 and 12, and the high-frequency voltages applied to the electrodes from the respective power supplies are shifted in phase from each other and applied to the electrodes, thereby combining the electric field strengths generated from the respective power supplies. However, it is said that uniform plasma generation is possible even in a large area.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、特開2
000−323297号公報に開示されているような、
小電極を用いたVHF帯高周波を用いた大面積処理の手
法の効果について詳細な検討を行った。図12におい
て、2つの棒状電極21、22が直径1cm、長さ15
0cmのステンレス棒からなり、互いに30mm離間さ
れている高周波電極を仮定し、各々の棒状電極に高周波
電力を同出力かつ逆位相となるように印加した時の高周
波電力の周波数による電界強度分布への影響を電磁界計
算により求めた。その結果を図13に示す。通常、プラ
ズマ処理有効処理領域は、給電点から給電端までの全体
ではなく、ひとまわり小さい領域としており、ここで
は、給電点から給電端までの中心を被処理部材の中心と
し、給電点から給電端までの間の70%の領域を有効処
理領域とみなした。電界強度分布は、前記有効処理領域
における電極近傍の電界強度を100点求めて、100
個のデータの(最大値−最小値)/(最大値+最小値)
×2とした。周波数の増加に伴って電界強度分布が大き
くなっていく事が判った。これは、周波数の増加によ
り、アンテナ電極上に生じる定在波の影響を受けて、電
界強度分布が大きくなったものと考えられる。このよう
な大きな電界強度分布は、2本の高周波電極に逆位相、
同位相の高周波電力を導入したいずれの場合も顕著に表
れる。とりわけ、1本あたりの電極の長さが長いジグザ
ク形状の平面型コイル電極では、定在波による電界強度
の谷が望ましくない所に複数現われ、複雑で不均一な電
界強度分布が生じる。前述のような不均一な電界強度分
布は、不均一なプラズマ生成を引き起こすことを示唆し
ており、このようなプラズマにより処理を行うと、処理
の均一性や品質に問題が生じることは明らかである。つ
まり、均一なプラズマを生成させるためには、高周波電
極に導入する高周波電力の周波数に依存する定在波によ
る影響を考慮する必要があることが分かった。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention
As disclosed in Japanese Patent Publication No. 000-323297,
A detailed study was conducted on the effect of the large area treatment method using the VHF band high frequency using the small electrode. In FIG. 12, two rod-shaped electrodes 21 and 22 have a diameter of 1 cm and a length of 15
Assuming high-frequency electrodes made of 0 cm stainless steel rods and separated from each other by 30 mm, the electric field strength distribution depending on the frequency of the high-frequency power when high-frequency power is applied to each rod-shaped electrode so as to have the same output and opposite phase The effect was obtained by electromagnetic field calculation. The result is shown in FIG. Normally, the effective plasma treatment area is not the entire area from the feeding point to the feeding end, but rather is a small area.Here, the center from the feeding point to the feeding end is the center of the workpiece, and the feeding point 70% of the area up to the edge was considered as the effective treatment area. The electric field intensity distribution is 100 when the electric field intensity in the vicinity of the electrode in the effective treatment region is calculated at 100 points.
(Maximum value-minimum value) / (maximum value + minimum value) of this data
It was set to x2. It was found that the electric field strength distribution increased as the frequency increased. It is considered that this is because the electric field intensity distribution became large due to the influence of the standing wave generated on the antenna electrode due to the increase in frequency. Such a large electric field strength distribution has an opposite phase between the two high frequency electrodes,
It appears remarkably in any case where high frequency power of the same phase is introduced. In particular, in a zigzag planar coil electrode in which the length of each electrode is long, a plurality of valleys of the electric field strength due to standing waves appear in undesired places, and a complicated and nonuniform electric field strength distribution occurs. The above-mentioned non-uniform electric field strength distribution suggests that non-uniform plasma generation is caused, and it is clear that processing with such plasma causes problems in the uniformity and quality of the processing. is there. In other words, it has been found that in order to generate uniform plasma, it is necessary to consider the influence of the standing wave that depends on the frequency of the high frequency power introduced into the high frequency electrode.

【0008】本発明は、上記課題を鑑みてなされたもの
であり、半導体装置の大型化や処理能力向上に対応した
被処理面積の大型化や処理速度の向上、及び処理品質の
向上を可能とするプラズマ処理装置及びプラズマ処理方
法、そして、それを用いて作製した半導体装置を提供す
ることにある。
The present invention has been made in view of the above problems, and it is possible to increase the area to be processed, improve the processing speed, and improve the processing quality in response to the increase in the size and processing capacity of a semiconductor device. Another object of the present invention is to provide a plasma processing apparatus and a plasma processing method, and a semiconductor device manufactured by using the plasma processing apparatus.

【0009】[0009]

【課題を解決するための手段】本発明の第1の態様は、
被処理部材配設部と、該被処理部材配設部との間でプラ
ズマを発生させる複数の小電極とを備え、前記複数の小
電極に異なる周波数の高周波電力を印加する高周波電源
を備えることを特徴とするプラズマ処理装置である。よ
り詳細には、被処理部材配設部と、略同一平面上に配置
された複数の小電極とを備え、該複数の小電極に、高周
波電源から高周波電力を印加することでプラズマを発生
させて、該反応容器内に配置された被処理部材に対し処
理を行う装置であり、該複数の小電極において、互いに
隣接する電極に異なる周波数の高周波電力を印加するこ
とを特徴とするプラズマ処理装置である。
The first aspect of the present invention is as follows.
A high frequency power supply for providing a member to be processed and a plurality of small electrodes for generating plasma between the member to be processed, and for applying high frequency power of different frequencies to the plurality of small electrodes. Is a plasma processing apparatus. More specifically, the member to be processed arrangement portion and a plurality of small electrodes arranged on substantially the same plane are provided, and high frequency power is applied to the plurality of small electrodes from a high frequency power source to generate plasma. And a device for performing processing on a member to be processed arranged in the reaction container, wherein high frequency power of different frequency is applied to adjacent electrodes of the plurality of small electrodes. Is.

【0010】本発明の第2の態様は、被処理部材配設部
と、異なる周波数の高周波電力が印加される複数の小電
極との間でプラズマを発生させ、異なる周波数のプラズ
マで被処理部材をプラズマ処理することを特徴とするプ
ラズマ処理方法である。より詳細には、第1の態様のプ
ラズマ処理装置において、互いに隣接する小電極に異な
る周波数の高周波電力を印加することを特徴とするプラ
ズマ処理方法である。
In a second aspect of the present invention, plasma is generated between the member-to-be-processed arrangement portion and a plurality of small electrodes to which high-frequency power having different frequencies is applied, and the member-to-be-processed with the plasma having different frequencies. Is a plasma treatment method. More specifically, in the plasma processing apparatus of the first aspect, the plasma processing method is characterized in that high frequency powers of different frequencies are applied to adjacent small electrodes.

【0011】本発明の第3の態様は、第1の態様である
プラズマ処理装置、あるいは第2の態様であるプラズマ
処理方法を用いて作製した半導体装置である。
A third aspect of the present invention is a semiconductor device manufactured by using the plasma processing apparatus of the first aspect or the plasma processing method of the second aspect.

【0012】[0012]

【発明の実施の形態】本発明のプラズマ処理装置は、被
処理部材に対向する位置に、略同一平面上に複数の小電
極が並列に備えられており、該複数の小電極に、高周波
電源から高周波電力を印加することで、被処理部材と複
数の小電極との間にプラズマを発生させて、該被処理部
材に対し薄膜堆積、エッチング、表面改質等の処理を行
う装置であり、該複数の小電極において、互いに隣接す
る小電極に異なる周波数の高周波電力を印加することを
特徴とするプラズマ処理装置である。
BEST MODE FOR CARRYING OUT THE INVENTION A plasma processing apparatus of the present invention is provided with a plurality of small electrodes arranged in parallel on substantially the same plane at a position facing a member to be processed, and the plurality of small electrodes are provided with a high frequency power source. By applying high-frequency power from, plasma is generated between the member to be processed and the plurality of small electrodes, thin film deposition on the member to be processed, etching, a device for performing surface modification, etc., In the plurality of small electrodes, a high-frequency power having different frequencies is applied to adjacent small electrodes, which is a plasma processing apparatus.

【0013】図1は本発明の実施の形態に係るプラズマ
処理装置の電極構造の平面図、図2(a),(b),
(c)は同プラズマ処理装置の電極近傍の電場強度を示
すグラフである。
FIG. 1 is a plan view of an electrode structure of a plasma processing apparatus according to an embodiment of the present invention, FIGS. 2 (a), 2 (b),
(C) is a graph showing the electric field strength near the electrodes of the plasma processing apparatus.

【0014】図1において、プラズマ処理装置の電極構
造は、直径1cm、長さ150cmのステンレス棒から
なり、互いに30mm離間されている2つの棒状電極2
1、22を備えている。各電極21、22の両端部は、
それぞれ第1の高周波電源11と第1の接地部31、第
2の高周波電源12と第2の接地部32に接続されてい
る。第1の高周波電源11と第2の高周波電源12は、
それぞれ一方の電極21と他方の電極22に高周波電力
を印加する。また第1の高周波電源11と第2の高周波
電源12は、高周波電力の周波数が異なっており、第1
の高周波電源は50MHz、第2の高周波電源は135
MHzである。
In FIG. 1, the electrode structure of the plasma processing apparatus is composed of two stainless steel rods having a diameter of 1 cm and a length of 150 cm, and two rod-shaped electrodes 2 separated from each other by 30 mm.
1, 22 are provided. Both ends of each electrode 21, 22 are
They are connected to the first high-frequency power supply 11 and the first grounding section 31, and the second high-frequency power supply 12 and the second grounding section 32, respectively. The first high frequency power source 11 and the second high frequency power source 12 are
High frequency power is applied to one electrode 21 and the other electrode 22, respectively. The first high-frequency power source 11 and the second high-frequency power source 12 have different high-frequency power frequencies.
The high-frequency power supply of 50MHz, the second high-frequency power supply is 135MHz
MHz.

【0015】図2(a)は、第1の高周波電源11によ
り一方の電極21に高周波電力を印加した場合に、この
電極21の近傍に生じる電界強度を示している。また図
2(b)は、第2の高周波電源12によりもう一方の電
極22に高周波電力を印加した場合に、この電極22の
近傍に生じる電界強度を示している。図2(a)および
(b)に示すように、周波数の違いによって異なった電
界強度分布となった。通常、プラズマ処理有効処理領域
は、給電点から給電端までの全体ではなく、ひとまわり
小さい領域としており、ここでは、給電点から給電端ま
での中心を被処理部材の中心とし、給電点から給電端ま
での間の70%の領域を有効処理領域とみなした。図2
に示すように、(a)では給電点から給電端までほぼ単
調に電界強度が増加し、(b)では給電端近くで電界強
度が著しく低下する箇所があり、ともに有効処理領域外
は言うまでもなく、有効処理領域内においても定在波に
よる大きな不均一を有する電界強度分布となる。
FIG. 2A shows the electric field strength generated in the vicinity of the electrode 21 when high frequency power is applied to the one electrode 21 by the first high frequency power supply 11. Further, FIG. 2B shows the electric field strength generated in the vicinity of the electrode 22 when the second high frequency power source 12 applies high frequency power to the other electrode 22. As shown in FIGS. 2 (a) and 2 (b), the electric field intensity distribution was different depending on the difference in frequency. Normally, the effective plasma treatment area is not the entire area from the feeding point to the feeding end, but rather is a small area.Here, the center from the feeding point to the feeding end is the center of the workpiece, and the feeding point 70% of the area up to the edge was considered as the effective treatment area. Figure 2
As shown in (a), the electric field strength increases almost monotonically from the feeding point to the feeding end in (a), and the electric field strength decreases remarkably near the feeding end in (b). Needless to say, both are outside the effective treatment area. The electric field strength distribution has a large nonuniformity due to the standing wave even in the effective processing area.

【0016】図2(c)は、図2(a)、(b)の波形
を合成した波形である。このように異なる周波数の高周
波電力で形成される電界を合成することにより、有効処
理領域内の電界強度分布の均一性は改善されることが判
った。
FIG. 2C is a waveform obtained by combining the waveforms of FIGS. 2A and 2B. It has been found that the uniformity of the electric field strength distribution in the effective processing region is improved by combining the electric fields formed by the high frequency powers of different frequencies.

【0017】本発明のプラズマ処理装置は、前記小電極
毎に高周波電源を備えているので、互いに隣接する電極
に異なる周波数の高周波電力を印加するとともに、各々
の電極に印加する高周波電力の量を制御することが可能
となる。
Since the plasma processing apparatus of the present invention is provided with the high frequency power source for each of the small electrodes, the high frequency power of different frequencies is applied to the electrodes adjacent to each other, and the amount of the high frequency power applied to each electrode is controlled. It becomes possible to control.

【0018】このような構成を有する本発明のプラズマ
処理装置を用いると、例えば、各小電極にある条件の高
周波電力を印加した時の膜厚分布やエッチング速度の分
布から、各小電極に印加するべき高周波電力の比率を算
定し、各小電極に前記の算定した比率を考慮して高周波
電力を印加することで、膜厚分布やエッチング速度の分
布を改善することが可能となる。
When the plasma processing apparatus of the present invention having such a configuration is used, for example, it is applied to each small electrode from the distribution of film thickness and etching rate when high frequency power of a certain condition is applied to each small electrode. It is possible to improve the film thickness distribution and the etching rate distribution by calculating the ratio of the high frequency power to be applied and applying the high frequency power to each small electrode in consideration of the calculated ratio.

【0019】同じ周波数の高周波電力を印加する複数の
小電極に対し、一つの高周波電源から分配器によって各
々の小電極に高周波電力を分配し、周波数ごとに印加す
る高周波電力の量を制御可能とすることで、膜厚分布や
エッチング速度の分布を改善することが可能となる。ま
た、この構成により高周波電源の数を減少させることが
可能となり、設備投資の低減や設備占有面積の低減に寄
与する。
With respect to a plurality of small electrodes to which high-frequency power of the same frequency is applied, one high-frequency power source distributes high-frequency power to each small electrode by a distributor, and the amount of high-frequency power applied for each frequency can be controlled. By doing so, it becomes possible to improve the film thickness distribution and the etching rate distribution. Further, with this configuration, the number of high-frequency power sources can be reduced, which contributes to reduction in equipment investment and equipment occupancy area.

【0020】3種類の周波数を用い、任意の第1電極と
隣接する第2の電極および第2の電極と隣接する第3の
電極とは、印加される高周波電圧の周波数が異なり、且
つ、該第1の電極とは隣接せず、該第3の電極とは隣接
する第4の電極に印加する高周波電圧の周波数は、該第
1の電極に印加される高周波電圧の周波数と同じである
ようにすることで、高い周波数を用いた時に生じる定在
波の影響を低減した均一な大面積プラズマ処理が可能と
なる。
The frequency of the applied high-frequency voltage is different from that of the second electrode adjacent to the arbitrary first electrode and the third electrode adjacent to the second electrode by using three kinds of frequencies, and The frequency of the high-frequency voltage applied to the fourth electrode that is not adjacent to the first electrode and is adjacent to the third electrode is
By setting the frequency to be the same as the frequency of the high-frequency voltage applied to the first electrode, it is possible to perform uniform large-area plasma processing with reduced influence of standing waves generated when a high frequency is used.

【0021】2種類の周波数を用い、任意の第1電極と
隣接する第2の電極とは、印加される高周波電圧の周波
数が異なり、且つ、該第1の電極とは隣接せず、該第2
の電極とは隣接する第3の電極に印加する高周波電圧の
周波数は、該第1の電極に印加される高周波電圧の周波
数と同じであるようにすることで、高い周波数を用いた
時に生じる定在波の影響を低減した均一な大面積プラズ
マ処理が簡便で且つ容易に可能となる。
The frequency of the applied high-frequency voltage is different from the second electrode adjacent to an arbitrary first electrode by using two kinds of frequencies, and it is not adjacent to the first electrode, Two
The frequency of the high-frequency voltage applied to the third electrode, which is adjacent to the first electrode, is the same as the frequency of the high-frequency voltage applied to the first electrode. A uniform large-area plasma treatment in which the influence of standing waves is reduced becomes simple and easy.

【0022】このような互いに隣接する小電極に異なる
周波数の高周波電圧を印加することにより、各々の電極
で生じる電界強度を合成して均一な電界強度を生じさせ
る手法は、前記小電極において、長手方向の長さおよび
用いる周波数の波長に対して電極の幅が充分に小さい棒
状あるいは、板状等の形状であれば有効である。
By applying high-frequency voltages of different frequencies to such small electrodes adjacent to each other, the electric field strengths generated in the respective electrodes are combined to generate a uniform electric field strength. It is effective that the electrode has a rod-like shape or a plate-like shape having a sufficiently small width with respect to the length of the direction and the wavelength of the frequency used.

【0023】各小電極で形成される不均一な電界を更に
低減する手法として、各々の小電極に対し、パルス状に
変調された高周波電力を印加することも有効である。各
小電極に印加する高周波電力がオフとなる時間では、プ
ラズマ励起強度が低くなり、処理プロセスに寄与するラ
ジカル等の拡散が生じることによって、各小電極付近で
形成される不均一なプラズマが緩和される。その結果、
大面積にわたる均一なプラズマ処理が可能となる。ま
た、高周波電力がオフとなる時間では、プラズマ励起強
度が低くなりラジカルの重合反応が抑止されることか
ら、パウダーの発生が低減できる。
As a method of further reducing the non-uniform electric field formed by each small electrode, it is also effective to apply pulse-modulated high frequency power to each small electrode. During the time when the high-frequency power applied to each small electrode is turned off, the plasma excitation intensity becomes low, and the diffusion of radicals that contribute to the treatment process occurs, so that the uneven plasma formed near each small electrode is relaxed. To be done. as a result,
Uniform plasma treatment over a large area is possible. Further, during the time when the high frequency power is turned off, the plasma excitation intensity becomes low and the radical polymerization reaction is suppressed, so that the generation of powder can be reduced.

【0024】また、各小電極で形成される不均一な電界
を更に低減する別の手法として、各々の小電極に印加さ
れる高周波電圧の位相を、各々の小電極に応じて調整す
ることが有効である。そのため、本発明のプラズマ処理
装置は、各々の小電極に印加される高周波電圧の位相
が、各々の小電極に応じて調整されていることが好まし
い。各小電極に印加される高周波電圧の位相調整は、キ
ャパシタンスやインダクタンスを用いた位相調整器を高
周波伝送線路に設けたり、高周波伝送線路の長さを調整
することで可能である。通常、電極上の電界強度が大き
くなるため、小電極相互の距離や、電極と被処理基板の
距離、電極に印加する高周波電力の大きさによっては、
被処理部材面の電極上の部分が局所的にプラズマによる
処理速度が速くなる事がある。前述のように電極相互に
位相を制御する事により、電極から隣接する電極への電
界強度を強める事で、被処理部材への電界強度を緩和し
均一とする事が出来る。
As another method for further reducing the non-uniform electric field formed by each small electrode, the phase of the high frequency voltage applied to each small electrode can be adjusted according to each small electrode. It is valid. Therefore, in the plasma processing apparatus of the present invention, it is preferable that the phase of the high-frequency voltage applied to each small electrode is adjusted according to each small electrode. The phase adjustment of the high frequency voltage applied to each small electrode can be performed by providing a phase adjuster using a capacitance or an inductance on the high frequency transmission line or adjusting the length of the high frequency transmission line. Normally, the electric field strength on the electrodes is large, so depending on the distance between the small electrodes, the distance between the electrodes and the substrate to be processed, and the magnitude of the high-frequency power applied to the electrodes,
The processing speed by the plasma may be locally increased in the part on the electrode of the surface of the member to be processed. By controlling the phase between the electrodes as described above, the electric field strength from the electrode to the adjacent electrode can be strengthened, and the electric field strength to the member to be processed can be relaxed and made uniform.

【0025】各小電極に印加される高周波電圧の周波数
を20〜500MHzの範囲とすることで、プラズマ中
の電子密度を増大させ、且つ、プラズマポテンシャルを
低く抑えることができるので、処理の高速化と処理品質
の向上が同時に可能となる。ここで各小電極に印加され
る高周波電圧の周波数は、対象とする装置に備えられた
小電極と、その小電極の終端インピーダンスに応じて、
各々の周波数で生じる定在波による電界強度分布が均一
化されるように選択される。
By setting the frequency of the high frequency voltage applied to each small electrode in the range of 20 to 500 MHz, the electron density in the plasma can be increased and the plasma potential can be suppressed to a low level, so that the processing speed can be increased. And the processing quality can be improved at the same time. Here, the frequency of the high frequency voltage applied to each small electrode depends on the small electrode provided in the target device and the termination impedance of the small electrode.
It is selected so that the electric field strength distribution due to the standing wave generated at each frequency is made uniform.

【0026】本発明のプラズマ処理装置ならびにプラズ
マ処理方法は、半導体装置の製造工程における膜堆積、
エッチング、及び表面改質等のプラズマ処理において、
処理能力向上に対応した被処理面積の大型化、処理速度
の向上及び処理品質の向上をなし得るものであり、該装
置または方法を用いて作製された半導体装置は、高性能
かつ安価に製造できるという利点を有する。
A plasma processing apparatus and a plasma processing method according to the present invention are applicable to film deposition in a semiconductor device manufacturing process,
In plasma processing such as etching and surface modification,
The area to be processed can be increased, the processing speed can be improved, and the processing quality can be improved in response to the improvement in processing capacity. A semiconductor device manufactured by using the device or method can be manufactured at high performance and at low cost. Has the advantage.

【0027】以下、本発明の一実施例を、複数の複数の
細長い小電極が平面状に配設されてなる高周波電極を有
するプラズマCVD装置により説明するが、本発明はこ
れにより何ら限定されるものではない。例えば、ジグザ
グ形状、スパイラル形状、U字、M字等の形状でもよ
く、各小電極の配置も平行配置に限定されるものではな
い。また、プラズマ処理としてCVDに限定されるもの
ではなく、エッチングなどでも同様に処理品質を向上さ
せることができる。 <実施例1>図3に、本実施例に使用したプラズマCVD
装置の略平面図を、図4に本実施例に使用したプラズマ
CVD装置の略断面図を示す。本装置は、ガス導入手段
5と真空排気手段6を備えたステンレス鋼製の反応容器
4内部に、6本の棒状の小電極21〜26を同一平面上
で互いに平行に平面状に配設し且つ、被処理部材40の
面に対して平行となるように配設してなる、誘導結合型
のプラズマCVD装置である。被処理部材40は、図中
に示すように小電極21〜26の略中央に被処理部材4
0の中央が位置するように被処理部材を載置する台3の
上に設置されている。本実施例における小電極21〜2
6はステンレス鋼製の一直線状の細長い厚み2mm、幅
10mmの板であり、1本の長さは150cmであり、
40mmピッチで配設されている。各々の小電極21〜
26の一端には、各々に整合器71〜76を介して周波
数が可変の高周波電源11〜16が接続されており、各
々の小電極に印加する周波数及び高周波電力を個別に制
御可能としている。本実施例においては、周波数可変の
高周波電源を用いたが、周波数の異なる周波数固定の高
周波電源を用いても良い。また、各々の小電極のもう一
方の端は、接地部に接続されている。本実施例では、下
記の製膜条件を用いて非晶質シリコン薄膜を製膜した。 被処理部材に対して平面状に配設される複数の小電極2
1〜26のうち、21と24には周波数150MHzの
高周波電力を印加し、22と25には周波数50MHz
の高周波電力を印加し、23と26には100MHzの
高周波電力を印加する。このとき、各高周波電源は11
〜16は、各小電極21〜26へ印加される高周波電力
が600Wで同じとなるように調整した。
An embodiment of the present invention will be described below with reference to a plasma CVD apparatus having a high-frequency electrode having a plurality of elongated small electrodes arranged in a plane, but the present invention is not limited thereto. Not a thing. For example, the shape may be a zigzag shape, a spiral shape, a U shape, an M shape, or the like, and the arrangement of the small electrodes is not limited to the parallel arrangement. Further, the plasma processing is not limited to the CVD, and the processing quality can be similarly improved by etching or the like. Example 1 FIG. 3 shows the plasma CVD used in this example.
FIG. 4 shows a schematic plan view of the apparatus, and FIG. 4 shows a schematic sectional view of the plasma CVD apparatus used in this embodiment. In this device, six rod-shaped small electrodes 21 to 26 are arranged in a plane on the same plane in parallel to each other inside a stainless steel reaction vessel 4 equipped with a gas introduction unit 5 and a vacuum exhaust unit 6. In addition, the inductively coupled plasma CVD apparatus is arranged so as to be parallel to the surface of the member 40 to be processed. As shown in the figure, the member to be processed 40 is disposed at the substantially center of the small electrodes 21 to 26.
It is installed on the table 3 on which the member to be processed is placed so that the center of 0 is located. Small electrodes 21 to 2 in this embodiment
6 is a straight thin and long plate made of stainless steel with a thickness of 2 mm and a width of 10 mm, and the length of one is 150 cm,
It is arranged at a pitch of 40 mm. Each small electrode 21-
High frequency power supplies 11 to 16 having variable frequencies are connected to one end of 26 via matching units 71 to 76, respectively, and the frequency and high frequency power applied to each small electrode can be individually controlled. In this embodiment, the variable frequency high frequency power source is used, but a fixed frequency high frequency power source having different frequencies may be used. Further, the other end of each small electrode is connected to the ground portion. In this example, an amorphous silicon thin film was formed under the following film forming conditions. A plurality of small electrodes 2 arranged in a plane with respect to the member to be processed
Of 1 to 26, high frequency power of frequency 150 MHz is applied to 21 and 24, and frequency of 50 MHz to 22 and 25.
And the high frequency power of 100 MHz is applied to 23 and 26. At this time, each high frequency power source
˜16 were adjusted so that the high frequency power applied to each of the small electrodes 21 to 26 was the same at 600 W.

【0028】1時間の製膜処理の後、非晶質シリコン薄
膜が堆積されたガラス基板を反応容器4から取出し、ガ
ラス基板の長手方向を10等分、短い方を10等分とな
るように切断して膜厚測定用サンプルを100個作製し
た。段差計を用いて、それらのサンプル中心部の膜厚測
定を行い、平均膜厚と膜厚分布を評価した結果、膜厚分
布は15%となった。本例では、小電極201と204
に対応する位置で膜厚が最大となり、小電極202と2
05に対応する位置で膜厚が最小となっていた。なお、
100個のサンプルの(最大値−最小値)/(最大値+
最小値)×2を膜厚分布として求めた。 <実施例2>実施例1の膜厚分布を考慮し、小電極22お
よび25に印加する高周波電力が、小電極21と24に
印加する高周波電力の1.4倍となるように調整し、そ
れ以外の条件は実施例1と同様に製膜を行ったところ、
膜厚分布は13%となった。
After the film forming process for 1 hour, the glass substrate on which the amorphous silicon thin film is deposited is taken out from the reaction container 4, and the longitudinal direction of the glass substrate is divided into 10 equal parts and the shorter one into 10 equal parts. It cut and produced 100 samples for film thickness measurement. The film thickness was measured at the central part of the samples using a step meter, and the average film thickness and the film thickness distribution were evaluated. As a result, the film thickness distribution was 15%. In this example, the small electrodes 201 and 204
The film thickness becomes maximum at the position corresponding to
The film thickness was the minimum at the position corresponding to 05. In addition,
(Maximum value-minimum value) / (maximum value + of 100 samples
The minimum value) × 2 was determined as the film thickness distribution. <Example 2> Considering the film thickness distribution of Example 1, the high frequency power applied to the small electrodes 22 and 25 is adjusted to be 1.4 times the high frequency power applied to the small electrodes 21 and 24, Other conditions were the same as in Example 1 except that the film was formed.
The film thickness distribution was 13%.

【0029】小電極21および24は、小電極22およ
び25に比べて投入する高周波電力の周波数が高いため
に小電極22や25上に比べて高密度のプラズマが生成
され、局所的に高い製膜速度にすることができた。本発
明のプラズマ処理装置には、各々の小電極に対して、高
周波電源が配設されているので、各々の小電極ごとに印
加される周波数および電力量を調整することが出来るた
め、さらなる膜厚分布の改善が可能になる。 <比較例1>本例では、実施例1及び実施例2と同様の装
置構成および製膜条件とし、小電極21〜26の全てに
50MHzの高周波電力を印加した時、100MHzの
高周波電力を印加した時、150MHzの高周波電力を
印加した時の膜厚分布を確認した。その結果、周波数5
0MHzでは29%、周波数100MHzでは36%、
周波数150MHzでは63%となった。 <実施例3>図5に本実施例に使用したプラズマCVD装
置の略平面図を示す。本実施例のプラズマCVD装置
は、周波数が可変の高周波電源3つ11〜13を備えて
いる。高周波電源11から整合器71を介して分配器8
1によって等分配され、小電極21および24に高周波
電力が印加される。同様に高周波電源12からは、整合
器72を介して分配器82によって等分配され、小電極
22および25に高周波電力が印加される。高周波電源
13からは、整合器73を介して分配器83によって等
分配され、小電極23および26に高周波電力が印加さ
れる。その他の装置構成を実施例1と同じくし、実施例
1と同じ製膜条件を用いて非晶質シリコン薄膜を製膜し
た。
The small electrodes 21 and 24 generate high-density plasma as compared with the small electrodes 22 and 25 because the frequency of the high-frequency power to be applied is higher than that of the small electrodes 22 and 25. The film speed could be made. In the plasma processing apparatus of the present invention, since a high frequency power source is provided for each small electrode, it is possible to adjust the frequency and the amount of power applied to each small electrode. It is possible to improve the thickness distribution. <Comparative Example 1> In this example, the same apparatus configuration and film forming conditions as in Example 1 and Example 2 were used, and when high frequency power of 50 MHz was applied to all of the small electrodes 21 to 26, high frequency power of 100 MHz was applied. Then, the film thickness distribution when a high frequency power of 150 MHz was applied was confirmed. As a result, frequency 5
29% at 0 MHz, 36% at frequency 100 MHz,
It became 63% at the frequency of 150 MHz. Example 3 FIG. 5 shows a schematic plan view of the plasma CVD apparatus used in this example. The plasma CVD apparatus of this embodiment includes three high frequency power supplies 11 to 13 whose frequencies are variable. Distributor 8 from high frequency power source 11 via matching unit 71
1, and the high frequency power is applied to the small electrodes 21 and 24. Similarly, from the high frequency power source 12, the distributor 82 is equally distributed by the distributor 82 and the high frequency power is applied to the small electrodes 22 and 25. From the high-frequency power source 13, the distributor 83 is equally distributed by the distributor 83, and high-frequency power is applied to the small electrodes 23 and 26. Other configurations of the apparatus were the same as in Example 1, and an amorphous silicon thin film was formed under the same film forming conditions as in Example 1.

【0030】高周波電源11の周波数を150MHzと
し、高周波電源12の周波数を50MHzとし、高周波
電源13の周波数を100MHzとする。このとき、各
小電極21〜26へ印加される高周波電力が600Wで
同じとなるように調整した。
The frequency of the high frequency power source 11 is 150 MHz, the frequency of the high frequency power source 12 is 50 MHz, and the frequency of the high frequency power source 13 is 100 MHz. At this time, the high frequency power applied to each of the small electrodes 21 to 26 was adjusted to be the same at 600 W.

【0031】1時間の製膜処理の後、非晶質シリコン薄
膜が堆積されたガラス基板を反応容器4から取出し、ガ
ラス基板の長手方向を10等分、短い方を10等分とな
るように切断して膜厚測定用サンプルを100個作製し
た。段差計を用いて、それらのサンプル中心部の膜厚測
定を行い、平均膜厚と膜厚分布を評価した結果、実施例
1と同様の15%の膜厚分布が得られた。本実施例で
は、実施例1に比べ、高周波電源や整合器の個数を削減
できることから、設備投資及び設備のフットプリントの
低減に有効である。 <実施例4>実施例3の膜厚分布を考慮し、小電極22お
よび25に印加する高周波電源12の高周波電力が、小
電極21と24に印加する高周波電源11の高周波電力
の1.4倍となるように調整し、それ以外の条件は実施
例3と同様に製膜を行ったところ、実施例2と同様の1
3%の膜厚分布が得られた。
After the film forming process for 1 hour, the glass substrate on which the amorphous silicon thin film is deposited is taken out from the reaction container 4, and the longitudinal direction of the glass substrate is divided into 10 equal parts, and the shorter one is divided into 10 equal parts. It cut and produced 100 samples for film thickness measurement. As a result of measuring the film thickness at the central part of these samples using a step meter and evaluating the average film thickness and the film thickness distribution, the same film thickness distribution of 15% as in Example 1 was obtained. Compared to the first embodiment, the present embodiment can reduce the number of high-frequency power supplies and matching devices, which is effective in reducing equipment investment and equipment footprint. <Example 4> Considering the film thickness distribution of Example 3, the high frequency power of the high frequency power supply 12 applied to the small electrodes 22 and 25 is 1.4 times the high frequency power of the high frequency power supply 11 applied to the small electrodes 21 and 24. When the film formation was performed in the same manner as in Example 3 except that the film thickness was adjusted to double, the same conditions as in Example 2 were obtained.
A film thickness distribution of 3% was obtained.

【0032】小電極21および24は、小電極22およ
び25に比べて投入する高周波電力の周波数が高いため
に小電極22や25上に比べて高密度のプラズマが生成
され、局所的に高い製膜速度にすることができた。本発
明のプラズマ処理装置には、同じ周波数が印加される小
電極ごとに高周波電源が配設されているので、周波数単
位で印加される電力量を調整することが出来るため、さ
らなる膜厚分布の改善が可能となる。また、実施例3と
同様に本実施例も高周波電源や整合器の個数を削減でき
ることから、設備投資及び設備占有面積の低減に有効で
ある。 <実施例5>図6に本実施例に使用したプラズマCVD装
置の略平面図を示す。本装置は、ガス導入手段5と真空
排気手段6を備えたステンレス鋼製の反応容器4内部
に、16本の棒状の小電極201〜216を同一平面上
で互いに平行に平面状に配設し且つ、被処理部材40の
面に対して平行に対向となるように配設してなる、誘導
結合型のプラズマCVD装置である。被処理部材40
は、図中に示すように小電極201〜216の略中央に
被処理部材の中央が位置するように被処理部材を載置す
る台3の上に設置されている。本実施例における小電極
201〜216はステンレス鋼製の一直線状の丸棒であ
り、1本当たりの直径6mm、長さ130cmであり、
40mmピッチで配設されている。本実施例のプラズマ
CVD装置は、周波数が可変の2つの高周波電源11、
12を備えている。高周波電源11から整合器71を介
して分配器81によって等分配され、奇数番号に位置す
る小電極群に印加される。同様に高周波電源12から
は、整合器72を介して分配器82によって等分配さ
れ、偶数番号に位置する小電極群に印加される。本実施
例では、下記の製膜条件を用いて非晶質シリコン薄膜を
製膜した。 被処理部材に対して平面状に配設される複数の小電極2
01〜216のうち、奇数番号に位置する小電極群には
周波数135MHzの高周波電力を印加し、偶数番号に
位置する小電極群には50MHzの高周波電力を印加す
る。このとき、各小電極201〜216へ印加される高
周波電力が600Wで同じとなるように調整した。
The small electrodes 21 and 24 generate high-density plasma as compared with the small electrodes 22 and 25 because the frequency of the high-frequency power to be input is higher than that of the small electrodes 22 and 25, and the locally high manufacturing efficiency is achieved. The film speed could be made. In the plasma processing apparatus of the present invention, since the high frequency power source is provided for each small electrode to which the same frequency is applied, it is possible to adjust the amount of electric power applied in frequency units, and thus to further increase the film thickness distribution. Improvement is possible. Also, like the third embodiment, this embodiment can reduce the number of high-frequency power supplies and matching devices, which is effective in reducing equipment investment and equipment occupying area. <Embodiment 5> FIG. 6 shows a schematic plan view of a plasma CVD apparatus used in this embodiment. In this device, 16 rod-shaped small electrodes 201 to 216 are arranged in a plane in parallel with each other on the same plane inside a reaction vessel 4 made of stainless steel equipped with a gas introduction unit 5 and a vacuum exhaust unit 6. In addition, the inductively coupled plasma CVD apparatus is arranged so as to face the surface of the member to be processed 40 in parallel. Processed member 40
Is installed on the table 3 on which the member to be processed is placed so that the center of the member to be processed is located substantially in the center of the small electrodes 201 to 216 as shown in the figure. The small electrodes 201 to 216 in this embodiment are straight rods made of stainless steel, each having a diameter of 6 mm and a length of 130 cm.
It is arranged at a pitch of 40 mm. The plasma CVD apparatus according to the present embodiment includes two high frequency power sources 11 having variable frequencies.
It has twelve. The high-frequency power source 11 distributes the light equally through the matching unit 71 by the distributor 81, and applies it to the small electrode groups located at odd numbers. Similarly, from the high frequency power source 12, the electric power is equally distributed by the distributor 82 via the matching unit 72 and applied to the small electrode groups located at even numbers. In this example, an amorphous silicon thin film was formed under the following film forming conditions. A plurality of small electrodes 2 arranged in a plane with respect to the member to be processed
Of 01 to 216, a small electrode group located at an odd number is applied with a high frequency power of 135 MHz, and a small electrode group located at an even number is applied with a high frequency power of 50 MHz. At this time, the high frequency power applied to each of the small electrodes 201 to 216 was adjusted to be the same at 600 W.

【0033】1時間の製膜処理の後、非晶質シリコン薄
膜が堆積されたガラス基板を反応容器4から取出し、ガ
ラス基板の長手方向を10等分、短い方を30等分とな
るように切断して膜厚測定用サンプルを300個作製し
た。段差計を用いて、それらのサンプル中心部の膜厚測
定を行い、平均膜厚と膜厚分布を評価した結果、膜厚分
布は18%となり、大面積の製膜においてもその効果が
みられた。このように、任意の第1電極と隣接する第2
の電極とは、印加される高周波電圧の周波数が異なり、
且つ、該第1の電極とは隣接せず、該第2の電極とは隣
接する第3の電極に印加する高周波電圧の周波数は、該
第1の電極に印加される高周波電圧の周波数と同じであ
るようにすることで、簡便な設備で且つ大面積にわたっ
て良好な膜厚分布を得る事が可能である。本例では、奇
数番号に位置する小電極群に対応する位置で膜厚が最大
となり、偶数番号に位置する小電極群に対応する位置で
膜厚が最小となっていた。 <実施例6>実施例5の膜厚分布を考慮し、偶数番号に位
置する小電極群に印加する高周波電力が、奇数番号に位
置する小電極群に印加する高周波電力の1.2倍となる
ように調整し、それ以外の条件は実施例5と同様に製膜
を行ったところ、膜厚分布は15%となった。
After the film forming process for 1 hour, the glass substrate on which the amorphous silicon thin film is deposited is taken out from the reaction container 4, and the longitudinal direction of the glass substrate is divided into 10 equal parts and the shorter one into 30 equal parts. The sample was cut to prepare 300 film thickness measurement samples. The film thickness was measured at the center of these samples using a step gauge, and the average film thickness and film thickness distribution were evaluated. As a result, the film thickness distribution was 18%, and the effect was observed even in the film formation of a large area. It was Thus, the second electrode adjacent to any first electrode
The frequency of the applied high frequency voltage is different from the electrode of
The frequency of the high-frequency voltage applied to the third electrode that is not adjacent to the first electrode and is adjacent to the second electrode is the same as the frequency of the high-frequency voltage applied to the first electrode. By doing so, it is possible to obtain a good film thickness distribution over a large area with simple equipment. In this example, the film thickness is maximum at the position corresponding to the small electrode group located at the odd number, and the film thickness is minimum at the position corresponding to the small electrode group located at the even number. <Example 6> Considering the film thickness distribution of Example 5, the high frequency power applied to the small electrode groups located at even numbers is 1.2 times the high frequency power applied to the small electrode groups located at odd number. The film thickness distribution was 15% when the film formation was performed under the same conditions as in Example 5 except that

【0034】奇数番号に位置する小電極群は、偶数番号
に位置する小電極群に比べて投入する高周波電力の周波
数が高いために偶数番号に位置する小電極群上に比べて
高密度のプラズマが生成され、局所的に高い製膜速度に
することができた。本発明のプラズマ処理装置には、周
波数ごとに高周波電源が配設されているので、周波数単
位で印加される電力量を調整することが出来るため、さ
らなる膜厚分布の改善が可能となる。 <実施例7>図7に本実施例に使用したプラズマCVD装
置の略平面図を示す。本実施例のプラズマCVD装置
は、各高周波電源毎に変調用電源91、92を備えてお
り、高周波電源11、12から供給される高周波電圧を
パルス変調することにより、各小電極201〜216に
印加する高周波電圧をパルス状にオン・オフして繰り返
し印加することができる。本実施例では、各小電極20
1〜216に印加する高周波電圧に対して、デューティ
ー比50%、100kHzのパルス変調を行った。オン
・オフするタイミングは各小電極21〜24で同じとし
た。それ以外の条件は実施例5と同様にして製膜した結
果、膜厚分布は10%であった。また、パウダーの発生
もみとめられなかった。 <実施例8>図8に本実施例に使用したプラズマCVD装
置の略平面図を示す。本実施例のプラズマCVD装置
は、周波数が可変の2つの高周波電源11、12を備え
ている。高周波電源11から発振された高周波は、分配
器81によって8つに等分配され、奇数番号の8つの小
電極が接続されている高周波線路へ導入し、各々の高周
波線路に設けられた奇数番号の整合器及び位相調整器を
経て奇数番号に位置する小電極群に印加される。同様に
高周波電源12から発振された高周波は、分配器82に
よって8つに等分配され、偶数番号の8つの小電極が接
続されている高周波線路へ導入し、各々の高周波線路に
設けられた偶数番号の整合器及び位相調整器を経て偶数
番号に位置する小電極群に印加される。各小電極201
〜216に印加する高周波電圧の位相制御は、図示して
いない同期回路によって各高周波電源の発振器の同期を
とったうえで、各高周波線路に設けたインダクタンスお
よびキャパシタンスから構成される位相調整器101〜
116によって行った。本実施例では、奇数番号に位置
する小電極群には周波数150MHzの高周波電力を印
加し、偶数番号に位置する小電極群には100MHzの
高周波電力を印加し、奇数電極群に印加する高周波電圧
の位相を前記位相調整器によって180度ずらした。そ
れ以外の条件は実施例5と同様にして製膜した結果、膜
厚分布は16%であった。
Since the small electrode group located at the odd number has a higher frequency of the high-frequency power to be input than the small electrode group located at the even number, the density of plasma is higher than that on the small electrode group located at the even number. Was generated, and it was possible to achieve a locally high film formation rate. In the plasma processing apparatus of the present invention, since a high frequency power source is provided for each frequency, it is possible to adjust the amount of electric power applied in units of frequency, so that it is possible to further improve the film thickness distribution. <Embodiment 7> FIG. 7 shows a schematic plan view of a plasma CVD apparatus used in this embodiment. The plasma CVD apparatus of the present embodiment is equipped with modulation power supplies 91 and 92 for each high frequency power supply, and pulse-modulates the high frequency voltage supplied from the high frequency power supplies 11 and 12 to each of the small electrodes 201 to 216. The applied high frequency voltage can be repeatedly applied by turning on and off in a pulse shape. In this embodiment, each small electrode 20
The high frequency voltage applied to Nos. 1 to 216 was pulse-modulated with a duty ratio of 50% and 100 kHz. The timing of turning on and off was the same for each of the small electrodes 21 to 24. Other conditions were the same as in Example 5, and as a result, the film thickness distribution was 10%. Moreover, generation of powder was not found. <Embodiment 8> FIG. 8 shows a schematic plan view of a plasma CVD apparatus used in this embodiment. The plasma CVD apparatus of this embodiment includes two high frequency power supplies 11 and 12 whose frequencies are variable. The high frequency oscillated from the high frequency power supply 11 is equally divided into eight by the distributor 81, is introduced into the high frequency line to which the eight odd-numbered small electrodes are connected, and the high-frequency line of each odd number is provided. It is applied to the small electrode group located at the odd number through the matching unit and the phase adjuster. Similarly, the high frequency oscillated from the high frequency power source 12 is equally divided into eight by the distributor 82, introduced into the high frequency line to which the eight even-numbered small electrodes are connected, and the even number provided in each high frequency line. It is applied to the small electrode group located at an even number through the number matching device and the phase adjuster. Each small electrode 201
The phase control of the high-frequency voltage applied to ˜216 is performed by synchronizing the oscillator of each high-frequency power supply by a synchronizing circuit (not shown), and then the phase adjuster 101 including the inductance and the capacitance provided in each high-frequency line.
By 116. In this embodiment, a high frequency power having a frequency of 150 MHz is applied to the small electrode groups located at odd numbers, a high frequency power of 100 MHz is applied to the small electrode groups located at even numbers, and a high frequency voltage is applied to the odd electrode groups. The phase was shifted by 180 degrees by the phase adjuster. Other conditions were the same as in Example 5, and as a result, the film thickness distribution was 16%.

【0035】本実施例では、小電極として平行配置した
一直線状の小電極を使用して、同一方向から高周波電力
を印加したが、これになんら限定されることはなく、例
えば櫛歯状に相対する方向から高周波電力を印加しても
構わない。 <実施例9>本実施例では、図7に示すプラズマCVD装
置を用いて、非晶質シリコン薄膜からなる光電変換層を
形成することで、薄膜太陽電池を作製した。本実施例に
おいて作製した薄膜太陽電池の略断面図を図9に示す。
基板401として60cm×70cmで厚さ1.1mm
のガラス基板を用い、この上に透明電極402として、
スパッタリング法によりZnOを約1μmの膜厚となる
ように形成した。その後、透明電極402が形成された
側が複数の小電極からなる高周波電極に対向するよう
に、基板401を図7に示すプラズマCVD装置の反応
容器内部に装入する。透明電極132の上に、膜厚30
nmのp型非晶質シリコン薄膜403、膜厚300nm
のi型非晶質シリコン薄膜404、膜厚30nmのn型
非晶質シリコン薄膜405の順に製膜することで光電変
換層を形成した。p、i、n型各々の非晶質シリコン薄
膜の製膜条件を以下に示す。なお、i型非晶質シリコン
薄膜404の製膜の際には、各小電極201〜216に
印加する高周波電力に対してデューティー比50%、1
00kHzのパルス変調を行っている。 p型非晶質シリコン薄膜の製膜条件 高周波電力:600W 変調高周波:無 原料ガス:SiH4 200sccm H2 1800sccm B26(2.0%/H2) 360sccm 製膜圧力:10Pa 周波数:奇数番号電極群は135MHz、偶数番号電極群は50MHz。 基板温度:200℃ i型非晶質シリコン薄膜の製膜条件 高周波電力:600W 変調高周波:オン時間=50μsec. オフ時間=50μsec. 原料ガス:SiH4 1300SCCM H2 1800SCCM 製膜圧力:10Pa 周波数:奇数番号電極群は135MHz、偶数番号電極群は50MHz。 基板温度:200℃ n型非晶質シリコン薄膜の製膜条件 高周波電力:600W/cm2 変調高周波:無 原料ガス:SiH4 150sccm H2 1800sccm PH3(2.0%/H2) 150sccm 製膜圧力:10Pa 周波数:奇数番号電極群は135MHz、偶数番号電極群は50MHz。 基板温度:200℃ 反応容器から基板401を取り出した後、裏面電極40
6として、スパッタリング法によりAgを300nmの
厚さとなるように形成した。裏面電極406は、光電変
換層を一旦透過した光を反射させることで、発電効率を
改善する役割をも有している。
In this embodiment, the straight electrodes arranged in parallel are used as the small electrodes, and the high frequency power is applied from the same direction. However, the present invention is not limited to this, and for example, comb-shaped relative electrodes are used. The high-frequency power may be applied from the direction. Example 9 In this example, a thin film solar cell was produced by forming a photoelectric conversion layer made of an amorphous silicon thin film using the plasma CVD apparatus shown in FIG. A schematic cross-sectional view of the thin film solar cell manufactured in this example is shown in FIG.
Substrate 401 is 60 cm x 70 cm and thickness is 1.1 mm
Using a glass substrate of, as the transparent electrode 402 on this,
ZnO was formed to have a film thickness of about 1 μm by the sputtering method. After that, the substrate 401 is loaded into the reaction vessel of the plasma CVD apparatus shown in FIG. 7 so that the side on which the transparent electrode 402 is formed faces the high frequency electrode composed of a plurality of small electrodes. A film thickness of 30 is formed on the transparent electrode 132.
nm p-type amorphous silicon thin film 403, film thickness 300 nm
A photoelectric conversion layer was formed by sequentially forming the i-type amorphous silicon thin film 404 and the n-type amorphous silicon thin film 405 having a thickness of 30 nm. The film forming conditions for the p-type, i-type, and n-type amorphous silicon thin films are shown below. During the film formation of the i-type amorphous silicon thin film 404, the duty ratio is 50% and 1% with respect to the high frequency power applied to each of the small electrodes 201 to 216.
The pulse modulation of 00 kHz is performed. Film-forming conditions for p-type amorphous silicon thin film High frequency power: 600 W Modulation high frequency: Raw material gas: SiH 4 200 sccm H 2 1800 sccm B 2 H 6 (2.0% / H 2 ) 360 sccm Film forming pressure: 10 Pa Frequency: odd number The number electrode group is 135 MHz, and the even number electrode group is 50 MHz. Substrate temperature: 200 ° C. Film forming conditions for i-type amorphous silicon thin film High frequency power: 600 W Modulation high frequency: On time = 50 μsec. Off time = 50 μsec. Source gas: SiH 4 1300 SCCM H 2 1800 SCCM Film forming pressure: 10 Pa Frequency: 135 MHz for odd numbered electrode groups, 50 MHz for even numbered electrode groups. Substrate temperature: 200 ° C. Film forming conditions for n-type amorphous silicon thin film High frequency power: 600 W / cm 2 Modulation High frequency: Raw material gas: SiH 4 150 sccm H 2 1800 sccm PH 3 (2.0% / H 2 ) 150 sccm Film formation Pressure: 10 Pa Frequency: 135 MHz for odd numbered electrode groups, 50 MHz for even numbered electrode groups. Substrate temperature: 200 ° C. After taking out the substrate 401 from the reaction container, the back electrode 40
As No. 6, Ag was formed by sputtering to have a thickness of 300 nm. The back electrode 406 also has a role of improving the power generation efficiency by reflecting the light that has once passed through the photoelectric conversion layer.

【0036】1枚のガラス基板当たり、10個×10個
の単位セル(電極面積4cm角)を作成し、その光電変
換効率の分布を測定した。図10は、100個の単位セ
ルにおける光電変換効率の平均値を1とした時の、その
バラツキを示したものである。 <比較例2>図13に示したプラズマCVD装置を用い、
高周波電力の周波数を除いて実施例9と同様の製膜条件
で太陽電池を作製した。周波数は135MHzのみと
し、各小電極201〜216に印加する高周波電力に対
してデューティー比50%、100kHzのパルス変調
を行っている。本例で作製した100個の単位セルにお
ける光電変換効率のバラツキを、図11に示す。
10 × 10 unit cells (electrode area 4 cm square) were prepared for each glass substrate, and the distribution of photoelectric conversion efficiency was measured. FIG. 10 shows the variation when the average value of the photoelectric conversion efficiencies in 100 unit cells is 1. <Comparative Example 2> Using the plasma CVD apparatus shown in FIG.
A solar cell was produced under the same film forming conditions as in Example 9 except for the frequency of the high frequency power. The frequency is only 135 MHz, and the high frequency power applied to each of the small electrodes 201 to 216 is pulse-modulated with a duty ratio of 50% and 100 kHz. FIG. 11 shows variations in photoelectric conversion efficiency in 100 unit cells manufactured in this example.

【0037】本発明のプラズマCVD装置を用いて作製
した薄膜太陽電池の光電変換効率のバラツキは小さく、
本発明のプラズマCVD装置及びプラズマCVD方法に
より、歩留の向上がなし得ることが確認できた。
The variation in photoelectric conversion efficiency of the thin film solar cell produced by using the plasma CVD apparatus of the present invention is small,
It was confirmed that the yield can be improved by the plasma CVD apparatus and the plasma CVD method of the present invention.

【0038】本実施例では、本発明のプラズマCVD装
置及びプラズマCVD方法を、非晶質シリコン薄膜を光
電変換層とする薄膜太陽電池の製造プロセスに適用した
が、本発明の効果はこれに限らない。例えば、多結晶シ
リコン薄膜の製膜、あるいは非晶質シリコン薄膜や多結
晶シリコン薄膜のエッチング等においても、半導体装置
の大型化や処理能力向上に対応した被処理面積の大型化
や処理速度の向上、及び処理品質の向上が可能であり、
本発明により、膜堆積やエッチング等のプラズマ処理工
程において、歩留まり、信頼性、量産性が向上されるこ
とは言うまでもない。しかるに、薄膜太陽電池の製造プ
ロセスのみならず、薄膜トランジスタ等の製造プロセス
に適用できることは言うまでもない。本発明において、
各小電極に印加される高周波電圧の周波数は、上記各実
施例の周波数に限定されるものではなく、要するに対象
とする装置に備えられた小電極と、その小電極の終端イ
ンピーダンスに応じて、各々の周波数で生じる定在波に
よる電界強度分布が均一化されるように選択される。
In the present embodiment, the plasma CVD apparatus and plasma CVD method of the present invention were applied to the manufacturing process of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion layer, but the effect of the present invention is not limited to this. Absent. For example, in forming a polycrystalline silicon thin film or etching an amorphous silicon thin film or a polycrystalline silicon thin film, the area to be processed is increased and the processing speed is increased in response to the increase in the size of the semiconductor device and the improvement in the processing capacity. , And improvement of processing quality are possible,
It goes without saying that the present invention improves yield, reliability, and mass productivity in plasma processing steps such as film deposition and etching. However, it goes without saying that the present invention can be applied not only to the manufacturing process of thin film solar cells but also to the manufacturing process of thin film transistors and the like. In the present invention,
The frequency of the high-frequency voltage applied to each small electrode is not limited to the frequency of each of the above-mentioned embodiments, in short, the small electrode provided in the target device and the terminal impedance of the small electrode, It is selected so that the electric field strength distribution due to the standing wave generated at each frequency is made uniform.

【0039】[0039]

【発明の効果】本発明により、反応容器内に略同一平面
上に配置された複数の小電極に対して、互いに隣接する
電極に異なる周波数の高周波電力を印加することで、各
々の電極で生じる電界強度を合成して大面積にわたって
均一な電界強度を生じさせることが可能となるプラズマ
処理装置が提供される。
EFFECTS OF THE INVENTION According to the present invention, by applying high-frequency power of different frequencies to adjacent electrodes with respect to a plurality of small electrodes arranged in substantially the same plane in a reaction container, each electrode is generated. Provided is a plasma processing apparatus that can combine electric field strengths to generate uniform electric field strengths over a large area.

【0040】したがって、本発明により、半導体装置製
造プロセスにおける製膜及びエッチング工程等のプラズ
マ処理工程において、半導体装置の大型化や処理能力向
上に対応した被処理面積の大型化や処理速度の向上、及
び処理品質の向上が可能であり、その結果、歩留まり、
信頼性、量産性を向上させることが可能となる。
Therefore, according to the present invention, in a plasma processing step such as a film forming step and an etching step in a semiconductor device manufacturing process, an area to be processed is increased and a processing speed is increased in response to an increase in size of a semiconductor device and an increase in processing capability. It is possible to improve the processing quality, and as a result, the yield,
It is possible to improve reliability and mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ処理装置における高周波電極
の略平面図を示す。
FIG. 1 shows a schematic plan view of a high frequency electrode in a plasma processing apparatus of the present invention.

【図2】本発明の態様であるプラズマCVD装置の電極
近傍の電界強度を示すグラフを示す。
FIG. 2 is a graph showing the electric field strength in the vicinity of the electrodes of the plasma CVD apparatus that is an embodiment of the present invention.

【図3】本発明の1つの態様であるプラズマCVD装置
の略平面図を示す。
FIG. 3 is a schematic plan view of a plasma CVD apparatus that is one embodiment of the present invention.

【図4】本発明の1つの態様であるプラズマCVD装置
の略断面図を示す。
FIG. 4 is a schematic cross-sectional view of a plasma CVD apparatus that is one embodiment of the present invention.

【図5】本発明の別の態様であるプラズマCVD装置の
略平面図を示す。
FIG. 5 is a schematic plan view of a plasma CVD apparatus that is another embodiment of the present invention.

【図6】本発明のさらに別の態様であるプラズマCVD
装置の略平面図を示す。
FIG. 6 is a plasma CVD method according to yet another embodiment of the present invention.
Figure 3 shows a schematic plan view of the device.

【図7】本発明のさらに別の態様であるプラズマCVD
装置の略平面図を示す。
FIG. 7 is plasma CVD which is yet another embodiment of the present invention.
Figure 3 shows a schematic plan view of the device.

【図8】本発明のさらに別の態様であるプラズマCVD
装置の略断面図を示す。
FIG. 8 is plasma CVD which is yet another embodiment of the present invention.
Figure 3 shows a schematic cross section of the device.

【図9】本発明の半導体装置である薄膜太陽電池の略断
面図を示す。
FIG. 9 is a schematic cross-sectional view of a thin film solar cell that is a semiconductor device of the present invention.

【図10】本発明のプラズマCVD方法により作製した
薄膜太陽電池における光電変換効率のバラツキを示す。
FIG. 10 shows variations in photoelectric conversion efficiency in a thin film solar cell manufactured by the plasma CVD method of the present invention.

【図11】従来のプラズマCVD方法により作製した薄
膜太陽電池における光電変換効率のバラツキを示す。
FIG. 11 shows variations in photoelectric conversion efficiency in a thin film solar cell manufactured by a conventional plasma CVD method.

【図12】従来のプラズマ処理装置における高周波電極
の略平面図を示す。
FIG. 12 is a schematic plan view of a high frequency electrode in a conventional plasma processing apparatus.

【図13】従来のプラズマ処理装置における電界強度分
布の周波数依存性を示す。
FIG. 13 shows frequency dependence of electric field strength distribution in a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

11〜16 高周波電源 21〜26、201〜216 小電極 3 被処理部材配設部 4 反応容器 5 ガス導入手段 6 真空排気手段 71〜76、701〜716 整合器 81〜83 分配器 91、92 変調用電源 101〜116 位相調整器 31〜36、301〜316 接地部 40 被処理部材 401 ガラス基板 402 透明電極 403 p型非晶質シリコン 404 i型非晶質シリコン 405 n型非晶質シリコン 406 裏面電極 11-16 High frequency power supply 21-26, 201-216 Small electrodes 3 Processing member arrangement part 4 reaction vessels 5 Gas introduction means 6 Evacuation means 71-76, 701-716 Matching device 81-83 distributor 91,92 Modulation power supply 101-116 Phase adjuster 31-36, 301-316 Grounding part 40 Processed member 401 glass substrate 402 transparent electrode 403 p-type amorphous silicon 404 i-type amorphous silicon 405 n-type amorphous silicon 406 Back electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲増 崇 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 4K030 AA06 AA18 BA30 CA06 CA12 FA03 JA18 KA15 KA30 LA16 LA18 5F045 AA08 AB04 AC01 AD06 AE07 AF07 BB02 CA13 CA15 EH04 EH11 EH20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Inamasu             22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka             Inside the company F-term (reference) 4K030 AA06 AA18 BA30 CA06 CA12                       FA03 JA18 KA15 KA30 LA16                       LA18                 5F045 AA08 AB04 AC01 AD06 AE07                       AF07 BB02 CA13 CA15 EH04                       EH11 EH20

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 被処理部材配設部と、該被処理部材配設
部との間でプラズマを発生させる複数の小電極とを備
え、前記複数の小電極に異なる周波数の高周波電力を印
加する高周波電源を備えることを特徴とするプラズマ処
理装置。
1. A member disposition part to be processed and a plurality of small electrodes for generating plasma between the member disposition part to be processed, and high frequency power of different frequencies is applied to the plurality of small electrodes. A plasma processing apparatus comprising a high frequency power supply.
【請求項2】 前記小電極毎に高周波電源を備え、該高
周波電源の出力制御手段を備えることを特徴とする請求
項1に記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, further comprising a high frequency power source for each of the small electrodes, and an output control unit for the high frequency power source.
【請求項3】 前記一の高周波電源の出力を前記複数の
小電極のうち、少なくとも2つ以上の電極に印加するこ
とを特徴とする請求項1〜2に記載のプラズマ処理装
置。
3. The plasma processing apparatus according to claim 1, wherein the output of the one high-frequency power source is applied to at least two or more electrodes among the plurality of small electrodes.
【請求項4】 前記一の高周波電源と、該高周波電源に
接続される2つ以上の小電極の間に出力制御手段を備え
ることを特徴とする請求項3に記載のプラズマ処理装
置。
4. The plasma processing apparatus according to claim 3, further comprising an output control unit between the one high-frequency power source and two or more small electrodes connected to the high-frequency power source.
【請求項5】 前記小電極の中、偶数番と奇数番はそれ
ぞれ異なる周波数の高周波電源に接続されることを特徴
とする請求項1〜4に記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the even-numbered and odd-numbered small electrodes are connected to high-frequency power sources having different frequencies.
【請求項6】 互いに隣接する第1、第2、第3の小電
極は、それぞれ異なる周波数の第1、第2、第3の高周
波電源に接続されることを特徴とする請求項1〜4に記
載のプラズマ処理装置。
6. The first, second, and third small electrodes adjacent to each other are connected to first, second, and third high-frequency power sources having different frequencies, respectively. The plasma processing apparatus according to.
【請求項7】 前記高周波電源と小電極の間にパルス変
調手段を配設することを特徴とする請求項1〜6のいず
れかに記載のプラズマ処理装置。
7. The plasma processing apparatus according to claim 1, further comprising a pulse modulator disposed between the high frequency power source and the small electrode.
【請求項8】 被処理部材配設部と、異なる周波数の高
周波電力が印加される複数の小電極との間でプラズマを
発生させ、異なる周波数のプラズマで被処理部材をプラ
ズマ処理することを特徴とするプラズマ処理方法。
8. A plasma is generated between the member-to-be-treated arrangement portion and a plurality of small electrodes to which high-frequency power having different frequencies is applied, and the member-to-be-treated is plasma-treated with plasma having different frequencies. And a plasma processing method.
【請求項9】 前記小電極の中、偶数番と奇数番はそれ
ぞれ異なる周波数の高周波電源の出力を印加することを
特徴とする請求項8に記載のプラズマ処理方法。
9. The plasma processing method according to claim 8, wherein the even-numbered electrode and the odd-numbered electrode among the small electrodes are applied with outputs of high-frequency power sources having different frequencies.
【請求項10】 互いに隣接する第1、第2、第3の小
電極に、それぞれ異なる周波数の第1、第2、第3の高
周波電源の出力を印加することを特徴とする請求項8に
記載のプラズマ処理方法。
10. The output of the first, second and third high frequency power supplies having different frequencies is applied to the first, second and third small electrodes adjacent to each other. The plasma processing method described.
【請求項11】 前記電極に対し、パルス状に変調され
た高周波電力を印加することを特徴とする請求項8〜1
0に記載のプラズマ処理方法。
11. The high frequency power modulated in a pulse shape is applied to the electrode.
0. The plasma processing method described in 0.
【請求項12】 請求項8〜11に記載のプラズマ処理
方法において、前記複数の電極に対し、印加する高周波
電圧の位相をずらすことを特徴とするプラズマ処理方
法。
12. The plasma processing method according to claim 8, wherein a phase of a high-frequency voltage applied to the plurality of electrodes is shifted.
【請求項13】 前記高周波の周波数を20MHz〜5
00MHzとすることを特徴とする請求項8〜12のい
ずれかに記載のプラズマ処理方法。
13. The frequency of the high frequency is 20 MHz to 5
It is set to 00 MHz, The plasma processing method in any one of Claims 8-12 characterized by the above-mentioned.
【請求項14】 請求項1〜13のいずれかに記載のプ
ラズマ処理装置及びプラズマ処理方法を用いて作製した
半導体装置。
14. A semiconductor device manufactured by using the plasma processing apparatus and the plasma processing method according to claim 1. Description:
JP2001213062A 2001-07-13 2001-07-13 Plasma processing apparatus and method and semiconductor device manufactured by using them Pending JP2003031504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213062A JP2003031504A (en) 2001-07-13 2001-07-13 Plasma processing apparatus and method and semiconductor device manufactured by using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213062A JP2003031504A (en) 2001-07-13 2001-07-13 Plasma processing apparatus and method and semiconductor device manufactured by using them

Publications (1)

Publication Number Publication Date
JP2003031504A true JP2003031504A (en) 2003-01-31

Family

ID=19048112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213062A Pending JP2003031504A (en) 2001-07-13 2001-07-13 Plasma processing apparatus and method and semiconductor device manufactured by using them

Country Status (1)

Country Link
JP (1) JP2003031504A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056159A1 (en) * 2002-12-16 2004-07-01 Japan Science And Technology Agency Plasma generation device, plasma control method, and substrate manufacturing method
WO2004064460A1 (en) * 2003-01-16 2004-07-29 Japan Science And Technology Agency High frequency power supply device and plasma generator
WO2005009090A1 (en) * 2003-07-23 2005-01-27 Sekisui Chemical Co., Ltd. Plasma treating apparatus and its electrode structure
JP2006202638A (en) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd Plasma generation device and plasma generation method
JP2006216679A (en) * 2005-02-02 2006-08-17 Ulvac Japan Ltd Plasma processing method/device by pulse division supply and plasma cvd method
JP2006221887A (en) * 2005-02-09 2006-08-24 Masayoshi Murata High-frequency plasma generator, surface treatment apparatus comprising the same, and surface treatment method
JP2008541367A (en) * 2005-05-11 2008-11-20 ダブリン シティ ユニバーシティ HF plasma source comprising a plurality of electrodes that are out of phase
JP2009104947A (en) * 2007-10-24 2009-05-14 Foi:Kk Plasma treatment device
JP2010174272A (en) * 2009-01-27 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Plasma generation apparatus and plasma generation method
CN103681196A (en) * 2012-09-26 2014-03-26 株式会社东芝 Plasma processing apparatus and plasma processing method
EP3367419A1 (en) * 2017-02-28 2018-08-29 Meyer Burger (Germany) AG Electrode unit with an internal electric network for feeding high frequency voltage and carrier assembly for a plasma processing system
JP7460938B2 (en) 2019-07-12 2024-04-03 日新電機株式会社 Plasma control system and plasma control program

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056159A1 (en) * 2002-12-16 2004-07-01 Japan Science And Technology Agency Plasma generation device, plasma control method, and substrate manufacturing method
US8444806B2 (en) 2002-12-16 2013-05-21 Japan Science And Technology Agency Plasma generator, plasma control method and method of producing substrate
US7785441B2 (en) 2002-12-16 2010-08-31 Japan Science And Technology Agency Plasma generator, plasma control method, and method of producing substrate
WO2004064460A1 (en) * 2003-01-16 2004-07-29 Japan Science And Technology Agency High frequency power supply device and plasma generator
US7567037B2 (en) 2003-01-16 2009-07-28 Japan Science And Technology Agency High frequency power supply device and plasma generator
WO2005009090A1 (en) * 2003-07-23 2005-01-27 Sekisui Chemical Co., Ltd. Plasma treating apparatus and its electrode structure
JP4554380B2 (en) * 2005-01-21 2010-09-29 三井造船株式会社 Plasma generating apparatus and plasma generating method
JP2006202638A (en) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd Plasma generation device and plasma generation method
JP2006216679A (en) * 2005-02-02 2006-08-17 Ulvac Japan Ltd Plasma processing method/device by pulse division supply and plasma cvd method
JP4707403B2 (en) * 2005-02-02 2011-06-22 株式会社アルバック Plasma processing method and apparatus by pulse division supply and plasma CVD method
JP2006221887A (en) * 2005-02-09 2006-08-24 Masayoshi Murata High-frequency plasma generator, surface treatment apparatus comprising the same, and surface treatment method
JP2008541367A (en) * 2005-05-11 2008-11-20 ダブリン シティ ユニバーシティ HF plasma source comprising a plurality of electrodes that are out of phase
JP2009104947A (en) * 2007-10-24 2009-05-14 Foi:Kk Plasma treatment device
JP2010174272A (en) * 2009-01-27 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Plasma generation apparatus and plasma generation method
CN103681196A (en) * 2012-09-26 2014-03-26 株式会社东芝 Plasma processing apparatus and plasma processing method
US20140083977A1 (en) * 2012-09-26 2014-03-27 Kabushiki Kaisha Toshiba Plasma processing apparatus and plasma processing method
US10381198B2 (en) * 2012-09-26 2019-08-13 Toshiba Memory Corporation Plasma processing apparatus and plasma processing method
EP3367419A1 (en) * 2017-02-28 2018-08-29 Meyer Burger (Germany) AG Electrode unit with an internal electric network for feeding high frequency voltage and carrier assembly for a plasma processing system
WO2018158013A1 (en) * 2017-02-28 2018-09-07 Meyer Burger (Germany) Ag Electrode unit having an internal electrical network for supplying high-frequency voltage, and carrier arrangement for a plasma treatment system
KR20190114015A (en) * 2017-02-28 2019-10-08 마이어 버거 (저머니) 게엠베하 Carrier arrangement for plasma processing system and electronic unit with internal electrical network for supplying high frequency voltage
CN110462782A (en) * 2017-02-28 2019-11-15 迈尔博尔格(德国)有限公司 Electrode unit including the internal network for conveying high frequency voltage and the rack arrangement structure for apparatus for processing plasma
KR102124434B1 (en) 2017-02-28 2020-06-18 마이어 버거 (저머니) 게엠베하 Electronic unit with internal electrical network to supply high frequency voltage and carrier arrangement for plasma processing system
CN110462782B (en) * 2017-02-28 2021-09-17 迈尔博尔格(德国)有限公司 Electrode unit and support arrangement for a plasma processing apparatus
JP7460938B2 (en) 2019-07-12 2024-04-03 日新電機株式会社 Plasma control system and plasma control program

Similar Documents

Publication Publication Date Title
EP2407998B1 (en) Plasma processing in a capacitively-coupled reactor with trapezoidal-waveform excitation
EP1505174A1 (en) Manufacturing method of silicon thin film solar cell
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
JP2003031504A (en) Plasma processing apparatus and method and semiconductor device manufactured by using them
JP4509337B2 (en) Thin film forming method and thin film forming apparatus
KR101353684B1 (en) Apparatus and method for generation a plasma
JP3980314B2 (en) Plasma processing apparatus and plasma processing method
JP5484375B2 (en) Plasma film forming apparatus and plasma film forming method
US8704445B2 (en) Method for improving uniformity of high-frequency plasma discharge by means of frequency modulation
JP2002313744A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JP2000268994A (en) Method for treating surface utilizing high frequency glow discharge
JP2001007028A (en) Discharge electrode, high-frequency plasma generation system, power feed method, and semiconductor processing method
JP2006286705A (en) Plasma deposition method and deposition structure
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JPH09320966A (en) Plasma enhanced chemical vapor deposition system and plasma etching system
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JP2003068659A (en) Apparatus and method for plasma treatment, thin film produced by using the same, substrate, and semiconductor device
JP3637291B2 (en) Method and apparatus for equalizing large area of high frequency plasma in plasma chemical vapor deposition apparatus
JP2003059840A (en) Apparatus and method for plasma treatment
TWI405867B (en) Thin film deposition apparatus
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method
JP3814218B2 (en) Power supply method to discharge electrode
JP2003068651A (en) Plasma treatment apparatus, plasma cvd system, plasma treatment method, thin film produced using them, substrate, and semiconductor device
JP4462461B2 (en) Thin film forming method, thin film forming apparatus, and solar cell
JP2001288573A (en) Deposited film forming method and deposited film forming equipment