JP2003028249A - Pulley width adjuster for continuously variable transmission - Google Patents

Pulley width adjuster for continuously variable transmission

Info

Publication number
JP2003028249A
JP2003028249A JP2001211058A JP2001211058A JP2003028249A JP 2003028249 A JP2003028249 A JP 2003028249A JP 2001211058 A JP2001211058 A JP 2001211058A JP 2001211058 A JP2001211058 A JP 2001211058A JP 2003028249 A JP2003028249 A JP 2003028249A
Authority
JP
Japan
Prior art keywords
ball screw
pulley
screw cylinder
peripheral surface
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001211058A
Other languages
Japanese (ja)
Other versions
JP2003028249A5 (en
Inventor
Kiichi Minaki
希一 皆木
Minao Umeda
三奈生 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001211058A priority Critical patent/JP2003028249A/en
Priority to DE2002131164 priority patent/DE10231164A1/en
Publication of JP2003028249A publication Critical patent/JP2003028249A/en
Publication of JP2003028249A5 publication Critical patent/JP2003028249A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)
  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure with an excellent transmission efficiency and a low cost as an actuator 17 for adjusting a clearance between a fixed pulley element 2 and a displaceable pulley element 3. SOLUTION: The ball screw type actuator 17 comprises a fixed male ball screw cylinder 18 provided with a male ball screw groove 31 in an outer circumference, a female ball screw cylinder 19 provided with a female ball screw groove 44 in an inner circumference and rotatively driven by an electric motor, a plurality of balls 20, 20 and a first ball bearing 21 disposed between the displaceable pulley element 3 and a tip portion of the female ball screw cylinder 19. The male and female ball screw cylinders 31 and 44 are each fabricated by cutting and grinding on a raw material formed into a rough shape by plastic machining from a steel plate.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明に係る無段変速機用
プーリ幅調整装置は、自動車用、産業機械等各種機械装
置用の無段変速機に組み込んで、駆動軸と従動軸との間
の変速比を変えるべく、駆動プーリ或は従動プーリの幅
を調節する為のものである。 【0002】 【従来の技術】無段変速機は、エンジンの出力を最良の
状態で利用できる為、近年自動車用の自動変速機として
広く普及する様になっている。このうちの、ベルト式の
無段変速機として従来から、特許第2744038号公
報等に記載されたものが知られている。ベルト式の無段
変速機は、例えばこの公報に記載されている様に、それ
ぞれが幅を調節自在とした、駆動軸側に設けたプーリ
(プライマリプーリ)と従動軸側に設けたプーリ(セカ
ンダリプーリ)との間に無端ベルトを掛け渡して成る。
駆動軸と従動軸との間の変速比を変える場合には、上記
プライマリプーリ及びセカンダリプーリの幅を、互いに
同期して逆方向に変化させる。例えば、増速側に変化さ
せる場合には、プライマリプーリの幅を狭くすると共に
セカンダリプーリの幅を広くして、上記無端ベルトをプ
ライマリプーリの外径側に移動させると共にセカンダリ
プーリの内径側に移動させる。反対に、減速側に変化さ
せる場合には、プライマリプーリの幅を広くすると共に
セカンダリプーリの幅を狭くして、上記無端ベルトをプ
ライマリプーリの内径側に移動させると共にセカンダリ
プーリの外径側に移動させる。 【0003】上述の様な無端ベルト式の無段変速機のプ
ーリの幅を調整する為の無段変速機用プーリ幅調整装置
として従来から、図4に示す様な構造のものが知られて
いる。この無段変速機用プーリ幅調整装置では、回転軸
1の一端部(図4の右端部)に固定側プーリ片2を固定
し、この回転軸1の中間部に変位側プーリ片3を、この
回転軸1に対する軸方向の変位のみ自在に支持してい
る。この変位側プーリ片3には回転筒4を、ラジアル荷
重及びスラスト荷重を支承自在な深溝型の第一の玉軸受
5により、この変位側プーリ片3に対する回転のみ自在
に支持している。そして、上記回転筒4の片端部(図4
の左端部)内周面に形成した雌ねじ6と、変速機ケース
12の内側に支持固定した固定筒7の外周面に形成した
雄ねじ8とを螺合させている。又、上記回転軸1は、上
記変速機ケース12の内側に、第二、第三の玉軸受1
3、14により回転のみ自在に支持している。更に、上
記回転筒4の外周面に固定した従動歯車9と、駆動軸1
0に設けた駆動歯車11とを噛合させて、上記回転筒4
を回転駆動自在としている。変速比を変える場合には、
この回転筒4を回転させ、この回転筒4と共に上記変位
側プーリ片3を軸方向に変位させて、この変位側プーリ
片3の内側面と上記固定側プーリ片2の内側面との間隔
であるプーリ幅を、駆動側と従動側とを同期させて変え
る。 【0004】 【発明が解決しようとする課題】上述した従来構造の場
合、変位側プーリ片3を回転軸1の軸方向に変位させる
為のアクチュエータを、内周面に雌ねじ6を形成した回
転筒4と、外周面に雄ねじ8を形成した固定筒7と、上
記回転筒4と変位側プーリ片3との間に設けた第一の玉
軸受5とにより構成している。そして、上記雌ねじ6と
雄ねじ8とを螺合させている。これら雌ねじ6と雄ねじ
8との接触状態は、滑り接触を含む為、これら両ねじ
6、8同士の係合部分での摩擦損失を十分に小さくする
事は難しく、アクチュエータ部分での伝達効率を十分に
確保できない可能性がある。この様に伝達効率を十分に
確保できない場合には、アクチュエータを作動させる為
に使用する電動モータの消費電力が大きくなる。又、こ
の場合には、電動モータが大型化して、この電動モータ
を含むプーリ幅調整装置全体の大型化を招く原因とな
る。 【0005】又、上述した従来構造の場合、上記アクチ
ュエータを構成する回転筒4及び固定筒7の何れも、棒
状の鋼材や、この鋼材に鍛造加工を施す事により大まか
な形状に形成して得た素材に、切削加工及び研削加工を
施す事により所定の形状に形成している。この為、上記
回転筒4及び固定筒7を所定の形状に形成する際に、鋼
材から切削加工等により除去すべき材料の量が多くなる
為、上記回転筒4及び固定筒7を加工するのに要する時
間が長くなっている。又、鋼材から除去すべき無駄な材
料の量が多くなる為、材料費が嵩む原因となる。この
為、プーリ幅調整装置のコストが嵩む原因となる。特
に、プーリ幅調整装置の十分な軽量化を図るべく、上記
回転筒4や固定筒7の肉厚を十分に小さくする場合に
は、切削加工により除去すべき材料の量がより多くなる
為、プーリ幅調整装置のコストが嵩み易くなる。本発明
は、この様な事情に鑑みて発明したものである。 【0006】 【課題を解決する為の手段】本発明の無段変速機用プー
リ幅調整装置は、前述した従来から知られている無段変
速機用プーリ幅調整装置と同様に、無端ベルトの一部を
掛け渡したプーリの幅を変える事により駆動軸と従動軸
との間の変速比を変える無段変速機に組み込んで、上記
プーリの幅を変える為に使用する。そして、このプーリ
を、回転軸の周囲にこの回転軸の軸方向の変位を阻止し
た状態でこの回転軸と同期した回転を自在として支持さ
れた固定側プーリ片と、この回転軸の軸方向の変位及び
この回転軸と同期した回転を自在として支持された変位
側プーリ片と、この変位側プーリ片を上記回転軸の軸方
向に変位させる為のアクチュエータとから構成してい
る。 【0007】特に、本発明の無段変速機用プーリ幅調整
装置に於いては、上記アクチュエータは、雄ボールねじ
筒と、雌ボールねじ筒と、複数のボールと、第一の転が
り軸受とを備える。このうち、上記雄ボールねじ筒は、
変速機ケースの内側に固定されたもので、外周面に雄ボ
ールねじ溝を形成している。又、上記雌ボールねじ筒
は、上記雄ボールねじ筒の周囲に、この雄ボールねじ筒
と同心に配置されたもので、内周面に雌ボールねじ溝を
形成している。又、上記複数のボールは、上記雌ボール
ねじ溝と上記雄ボールねじ溝との間に設けられたもので
ある。又、上記第一の転がり軸受は、上記雌ボールねじ
筒の先端部内周面と上記変位側プーリ片の内径側端部に
形成した円筒部の外周面との間に設けられたもので、ラ
ジアル荷重及びスラスト荷重を支承自在である。そし
て、上記雄ボールねじ筒と雌ボールねじ筒とのうち、少
なくとも一方の部材を、鋼板に塑性加工を施す事により
造っている。 【0008】 【作用】上述の様に構成する本発明の無段変速機用プー
リ幅調整装置によりプーリ幅を変える場合には、電動モ
ータ等の駆動源により、歯車減速機等の伝達機構を介し
て、雌ボールねじ筒を回転させる。すると、この雌ボー
ルねじ筒の内周面に形成した雌ボールねじ溝と、固定の
雄ボールねじ筒の外周面に形成した雄ボールねじ溝との
間に設けた複数のボールの転動に伴って、上記雌ボール
ねじ筒が軸方向に変位する。この雌ボールねじ筒の軸方
向変位は、第一の転がり軸受を介して変位側プーリ片に
伝えられ、この変位側プーリ片が軸方向に変位するの
で、上記プーリ幅が変わる。この様に本発明の場合に
は、変位側プーリ片を回転軸の軸方向に変位させる為の
アクチュエータに、ボールねじ機構を使用している為、
このアクチュエータ部分での摩擦損失を低減し、伝達効
率を向上させて、省エネルギ化を図れる。 【0009】更に、本発明の場合には、上記雄ボールね
じ筒と雌ボールねじ筒とのうち、少なくとも一方の部材
を、鋼板に塑性加工を施す事により造っている。この
為、上記雄ボールねじ筒又は雌ボールねじ筒を所定の形
状に加工する際に、鋼板から切削加工により除去すべき
材料を、上記雄、雌各ボールねじ溝を形成するのに必要
な最小限の量にできる。この為、上記雄ボールねじ筒又
は雌ボールねじ筒の加工の際に、上記鋼板から除去すべ
き材料の量を少なくすると共に、上記雄ボールねじ筒又
は雌ボールねじ筒の加工に要する時間を短くして、プー
リ幅調整装置のコストを低減できる。更に、本発明によ
れば、上記雄ボールねじ筒又は雌ボールねじ筒のコスト
を高くする事なく、このボールねじ筒の肉厚を小さくで
きて、プーリ幅調整装置の軽量化を、安価に図れる。 【0010】 【発明の実施の形態】図1〜2は、本発明の実施の形態
の第1例を示している。ベルト式の無段変速機を構成す
る駆動軸又は従動軸である回転軸1の一端部(図1の右
端部)に固定側プーリ片2を固定し、この回転軸1の中
間部に変位側プーリ片3を、この回転軸1に対する軸方
向の変位のみ自在に支持している。即ち、この回転軸1
の外周面に係止したキー15と、上記変位側プーリ片3
の内周面に形成したキー溝16とを係合させて、この変
位側プーリ片3を上記回転軸1に、この回転軸1の軸方
向の変位を自在に、且つこの回転軸1と同期した回転を
自在に支持している。 【0011】そして、上記変位側プーリ片3を、本発明
の特徴であるアクチュエータ17により、上記回転軸1
の軸方向に変位させる様にしている。このアクチュエー
タ17は、雄ボールねじ筒18と、雌ボールねじ筒19
と、複数のボール20、20と、第一の玉軸受21とに
より構成している。このうち、雄ボールねじ筒18は、
変速機ケース12の内側に固定している。この雄ボール
ねじ筒18は、鋼板に、絞り加工、プレス加工等の塑性
加工を施す事により造ったもので、円輪部22と、この
円輪部22の径方向両端縁から連続する状態で互いに同
方向に設けた外側円筒部23及び内側円筒部24と、こ
の内側円筒部24の軸方向一端縁(図1、2の右端縁)
から連続する状態で、内径側に全周に亙り設けた内向鍔
部25とを備える。又、上記外側円筒部23の軸方向長
さは、上記内側円筒部24の軸方向長さよりも大きくし
ている。 【0012】そして、上記雄ボールねじ筒18を、上記
変速機ケース12の内面の一部に設けた、内周面が円筒
形である、有底凹孔状の収納部26内に、この収納部2
6と同心に固定している。即ち、この収納部26の奥部
にこの収納部26と同心に設けた小径部27に上記外側
円筒部23の基端部を、回転を阻止した状態で内嵌支持
している。 【0013】そして、この雄ボールねじ筒18を構成す
る内側円筒部24の内周面と上記回転軸1の他端部(図
1、2の左端部)外周面との間に、深溝型の第二の玉軸
受28を設けている。この為に、本例の場合には、上記
雄ボールねじ筒18を構成する内側円筒部24に上記第
二の玉軸受28を構成する外輪49を、内嵌している。
又、この外輪49の軸方向一端面(図1、2の右端面)
を、上記雄ボールねじ筒18を構成する内向鍔部25の
片面に突き当てている。これに対して、上記回転軸1の
軸方向他端部外周面に上記第二の玉軸受28を構成する
内輪50を外嵌している。この内輪50は、上記回転軸
1の他端寄り部分外周面に設けた段差面51と、上記回
転軸1の他端部に外嵌固定した環状部材52との間で挟
持する事により、上記回転軸1に固定している。そし
て、上記外輪49の内周面に形成した外輪軌道53と、
上記内輪50の外周面に形成した内輪軌道54との間
に、複数個の玉43、43を転動自在に設けている。 【0014】これに対して、上記回転軸1の一端部外周
面と変速機ケース12の内面との間には、深溝型の第三
の玉軸受29を設けている。そして、この第三の玉軸受
29と上記第二の玉軸受28とにより、上記回転軸1を
上記変速機ケース12の内側に、回転のみ自在に支持し
ている。 【0015】上記雄ボールねじ筒18を構成する外側円
筒部23は、上記収納部26の内径よりも小さな外径を
有する。従って、これら外側円筒部23の外周面と収納
部26の内周面との間には、円筒状空間30が形成され
る。そして、上記外側円筒部23の外周面でこの円筒状
空間30に対向する部分から先端部(図1の右端部)に
かけての部分に、雄ボールねじ溝31を形成している。
尚、図1には、簡略化の為、この雄ボールねじ溝31の
一部のみを描いているが、実際の場合にこの雄ボールね
じ溝31は、上記外側円筒部23の外周面のより広い範
囲に形成している。 【0016】上述の様な雄ボールねじ筒18を造る際に
は、先ず、鋼板に、絞り加工或はプレス加工等の塑性加
工を施す事により、おおまかな形状を有する素材を造
る。次いで、この素材の一部で上記外側円筒部23とな
るべき部分の一部外周面に、切削加工及び研削加工を施
す事により、上記雄ボールねじ溝31を設けた雄ボール
ねじ筒18とする。 【0017】上述の様にして変速機ケース12内に固定
した上記雄ボールねじ筒18を構成する外側円筒部23
の先半部(図1の右半部)の周囲には、前記雌ボールね
じ筒19の基半部(図1の左半部)を位置させている。
この雌ボールねじ筒19は、プーリ幅を変える際に、前
記変位側プーリ片3と同期して軸方向に変位する。 【0018】上記雌ボールねじ筒19は、上記雄ボール
ねじ筒18と同様に、鋼板に、絞り加工或はプレス加工
等の塑性加工を施す事により造ったもので、円輪部33
と、この円輪部33の径方向両端縁から連続する状態で
互いに同方向に設けた外側円筒部34及び内側円筒部3
5と、この内側円筒部35の軸方向一端縁(図1の左端
縁)から連続する状態で、内径側に全周に亙り設けた内
向鍔部36とを備える。又、上記外側円筒部34の軸方
向長さを、上記内側円筒部35の軸方向長さよりも大き
くしている。 【0019】又、上記雌ボールねじ筒19の先端部を、
上記変位側プーリ片3の内径側端部に形成した円筒部3
7に対して、ラジアル荷重及びスラスト荷重を支承自在
な深溝型の前記第一の玉軸受21により結合している。
この為に、本例の場合には、上記雌ボールねじ筒19を
構成する内側円筒部35に上記第一の玉軸受21を構成
する外輪38を内嵌している。又、この外輪38の軸方
向一端面(図1の左端面)を、上記雌ボールねじ筒19
を構成する内向鍔部36の片面に突き当てている。これ
に対して、上記円筒部37の基端部(図1の右端部)外
周面に上記第一の玉軸受21を構成する内輪39を、上
記変位側プーリ片3の中間部外周面に形成した段差面4
0に突き当てた状態で、外嵌している。そして、上記第
一の玉軸受21を構成する外輪38の内周面に形成した
外輪軌道41と、上記第一の玉軸受21を構成する内輪
39の外周面に形成した内輪軌道42との間に、複数個
の玉43、43を転動自在に設けている。 【0020】この様な雌ボールねじ筒19を構成する外
側円筒部34の内周面の中間部基端寄り部分には、雌ボ
ールねじ溝44を形成している。上記雌ボールねじ筒1
9を造る際には、先ず、鋼板に、絞り加工、プレス加工
等の塑性加工を施す事により、おおまかな形状を有する
素材を造る。次いで、この素材の一部で上記外側円筒部
34となるべき部分の一部外周面に、切削加工及び研削
加工を施す事により、上記雌ボールねじ溝44を設けた
雌ボールねじ筒19とする。 【0021】そして、この雌ボールねじ溝44と前記雄
ボールねじ溝31との間に、前記複数のボール20、2
0を設けて、上記雌ボールねじ筒19を前記雄ボールね
じ筒18の周囲に、同心に支持する。又、上記雌ボール
ねじ筒19を構成する外側円筒部34の中間部基端寄り
部分で、上記雌ボールねじ溝44を形成した部分の一部
に保持孔45を形成し、この保持孔45内に、循環部材
46を設置している。この循環部材46は、上記雌ボー
ルねじ溝44の一端にまで達したボール20を他端に戻
す為のもので、ボールねじ機構用として従来から周知の
構造を有する。尚、図示の例では、上記雌ボールねじ筒
19を構成する外側円筒部34の基半部に円筒状のスリ
ーブ47を外嵌固定して、上記循環部材46が上記保持
孔45から、径方向外方に抜け出ない様にしている。 【0022】そして、上記雌ボールねじ筒19を、図示
しない電動モータにより回転駆動自在としている。この
為に、回転方向の変換自在な電動モータにより回転駆動
される駆動軸10の中間部に、駆動歯車11を外嵌固定
又は一体に形成している。これに対して、上記雌ボール
ねじ筒19に設けた外側筒部の先端部に、従動歯車9を
外嵌固定している。そして、この従動歯車9と上記駆動
歯車11とを噛合させている。このうちの駆動歯車11
の軸方向寸法は十分に確保して、前記プーリ幅を変える
事に伴う、上記雌ボールねじ筒19の軸方向変位に拘ら
ず、上記従動歯車9と上記駆動歯車11とが噛合した状
態のままとなる様にしている。 【0023】上述の様に構成する本発明の無段変速機用
プーリ幅調整装置によりプーリ幅を変える場合には、上
記電動モータに通電し、上記駆動歯車11及び上記従動
歯車9を介して上記雌ボールねじ筒19を所定方向に回
転させる。すると、この雌ボールねじ筒19を構成する
外側円筒部34の内周面に形成した前記雌ボールねじ溝
44と、前記固定の雄ボールねじ筒18を構成する外側
円筒部23の外周面に形成した前記雄ボールねじ溝31
との間に設けた複数のボール20、20の転動に伴っ
て、上記雌ボールねじ筒19が軸方向に変位する。 【0024】この雌ボールねじ筒19の軸方向変位は、
前記第一の玉軸受21を介して前記変位側プーリ片3に
伝えられ、この変位側プーリ片3が軸方向に変位するの
で、上記プーリ幅が変わる。例えば、この変位側プーリ
片3を図1の右方に移動させれば、上記プーリ幅が狭く
なって無端ベルト48が外径側に変位する。従って、当
該プーリがプライマリ側である場合には無段変速機が増
速側となり、反対にセカンダリ側である場合には減速側
となる。これに対して、変位側プーリ片3を図1の左方
に移動させれば、上記プーリ幅が広くなって無端ベルト
48が内径側に変位する。従って、当該プーリがプライ
マリ側である場合には無段変速機が減速側となり、反対
にセカンダリ側である場合には増速側となる。この様に
本発明の場合には、上記変位側プーリ片を回転軸1の軸
方向に変位させる為のアクチュエータ17に、ボールね
じ機構を使用している為、このアクチュエータ17部分
での摩擦損失を低減し、伝達効率を向上させて、省エネ
ルギ化を図れる。 【0025】更に、本発明の場合には、上記雄ボールね
じ筒18及び雌ボールねじ筒19を鋼板に塑性加工を施
す事により造っている為、これら各ボールねじ筒18、
19の加工の際に、この鋼板から切削加工により除去す
べき材料を、上記雄ボールねじ溝31及び雌ボールねじ
溝44を形成するのに必要な最小限の量にできる。この
為、上記雄、雌各ボールねじ筒18、19の加工の際
に、上記鋼板から除去すべき材料の量を少なくすると共
に、これら各ボールねじ筒18、19の加工に要する時
間を短くして、プーリ幅調整装置のコストを低減でき
る。更に、本発明によれば、上記雄ボールねじ筒18及
び雌ボールねじ筒19のコストを高くする事なく、これ
ら雄、雌各ボールねじ筒18、19の肉厚を小さくでき
て、プーリ幅調整装置の軽量化を、安価に図れる。 【0026】次に、図3は、本発明の実施の形態の第2
例を示している。本例の場合には、アクチュエータ17
のボールねじ機構の内部に異物が入り込む事を防止し、
優れた耐久性を確保すべく工夫している。即ち、本例の
場合には、雄ボールねじ筒18の先端部に第一の防塵部
材55を、全周に亙って装着している。この第一の防塵
部材55の外径は上記雄ボールねじ筒18の外径よりも
大きくし、その外周縁は雌ボールねじ筒19の中間部内
周面に、全周に亙って摺接させている。そして、この第
一の防塵部材55により、上記雄ボールねじ筒18の外
周面と上記雌ボールねじ筒19の中間部内周面との間の
隙間を、全周に亙って塞いでいる。又、上記雌ボールね
じ筒19は、プーリ幅を変える際に、変位側プーリ片3
と同期して軸方向に変位するが、このプーリ幅を最も狭
くすべく、最も固定側プーリ片2に近づく方向(図3で
最も右方)に変位した状態でも、上記第一の防塵部材5
5の外周縁が上記雌ボールねじ筒19の内周面で雌ボー
ルねじ溝44から外れた部分に摺接する様に、各部の寸
法を規制している。 【0027】一方、上記雌ボールねじ筒19の基端部に
外嵌固定したスリーブ47の外周面と、変速機ケース1
2の内面に設けた収納部26の内周面との間に、第二の
防塵部材56を設けて、これら両周面同士の間の隙間を
全周に亙って塞いでいる。この為に、図示の例では、上
記収納部26の内周面の開口寄り端部に形成した係止溝
に上記第二の防塵部材56を係止し、この第二の防塵部
材56の内周縁を上記スリーブ47の外周面に摺接させ
ている。又、上記雌ボールねじ筒19は、プーリ幅を変
える際に、変位側プーリ片3と同期して軸方向に変位す
るが、このプーリ幅を最も狭くすべく、最も固定側プー
リ片2に近づく方向(図3で最も右方)に変位した状態
でも、基端部が上記収納部26内に進入したままの状態
となる様に、各部の寸法を規制している。 【0028】上述の様な、第一、第二の防塵部材55、
56としては、摩耗粉等の異物の通過を阻止できるもの
であれば良く、油密を保持できるものである必要はな
い。そこで、異物の通過を阻止できる事を条件として、
従来から知られている各種材料のものが使用できる。例
えば、フェルト等の繊維質で内部に微細な通路を有する
材料は、空気の通過を許容しつつ異物の通過を阻止する
ので、上記両防塵部材55、56同士の間に存在する空
間内の圧力変動を抑えられる。この為、上記雌ボールね
じ筒19を軸方向に変位させる為に要する力を低く抑え
る事ができる。但し、上記第一、第二の防塵部材55、
56としては、ゴムの如きエラストマー等の弾性材によ
り造られたシールリングであっても良い。 【0029】上記変速機ケース12には、温度変化に伴
うこの変速機ケース12内の圧力変動を抑える為の、図
示しない空気の給排口を設けている為、外部空間に浮遊
する塵芥等の異物が上記変速機ケース12内に入り込む
可能性がある。又、無段変速機の構成部品が摩耗する事
により生じた金属の摩耗粉等が、やはり異物として上記
変速機ケース12内に存在する可能性がある。そして、
このケース12内に入り込んだ異物が、上記雄ボールね
じ筒18の内周面や上記雌ボールねじ筒19の外周面に
付着する可能性がある。この様に付着した異物がボール
ねじ機構を構成する各ボール20、20を設置した部分
に迄入り込んだ場合には、雄、雌各ボールねじ溝31、
44や上記各ボール20、20の表面を傷付けて、作動
不良や早期剥離等、耐久性低下の原因となる。 【0030】これに対して、本例の場合には、上記雌ボ
ールねじ筒19の先端部外周面と前記収納部26の内周
面との間の隙間を、前記第二の防塵部材56により塞い
でいる為、上記雌ボールねじ筒19の外周面に付着した
異物が上記各ボール20、20を設置した部分にまで入
り込む事はない。又、上記雄ボールねじ筒18の先端部
と上記雌ボールねじ筒19の中間部内周面との間を、前
記第一の防塵部材55により塞いでいる為、上記雄ボー
ルねじ筒18の内周面に付着した異物が上記各ボール2
0、20を設置した部分にまで入り込む事はない。この
様に、この部分には何れの側からも異物が入り込まない
為、上記雄、雌各ボールねじ溝31、44や上記各ボー
ル20、20の表面が、異物により傷付く事を防止し
て、上記変位側プーリ片3を駆動する為のアクチュエー
タ19の耐久性向上を図れる。その他の構成及び作用に
就いては、上述した第1例の場合と同様である為、重複
する説明は省略する。 【0031】尚、本例の場合とは別に、雌ボールねじ筒
19の基端部内周面に筒状部材を内嵌固定すると共に、
この筒状部材の先端部外周面と雄ボールねじ筒18の先
端部内周面との間に、第一の防塵部材55を設ける事も
できる。又、上記各ボール20、20を設置した部分へ
の異物の侵入は、上記雌ボールねじ筒19の外周面側か
らの方が内周面側からよりも著しく、防止しにくい。従
って、この内周面側からの異物侵入が特に問題となる程
でなければ、上記第一の防塵部材55を省略する事もで
きる。或は、上記内周面側からの異物侵入は、第一の玉
軸受21としてシール板付の密封型のものを使用すると
共に、変位側プーリ片3に設けた円筒部37の内周面と
回転軸1の中間部外周面との間に防塵部材を設ける等に
よっても防止できる。勿論、この場合には、上記第一の
防塵部材55は省略できる。 【0032】 【発明の効果】本発明は、以上に述べた通り構成され作
用するので、軽量で効率が良い無段変速機用プーリ幅調
整装置を安価に実現して、各種用途に使用するベルト型
の無段変速機の軽量化と省エネルギ化とを、安価に図れ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The pulley width adjusting device for a continuously variable transmission according to the present invention is incorporated in a continuously variable transmission for various mechanical devices such as automobiles and industrial machines. In order to change the gear ratio between the drive shaft and the driven shaft, the width of the drive pulley or the driven pulley is adjusted. 2. Description of the Related Art Continuously variable transmissions have been widely used in recent years as automatic transmissions for automobiles because they can use the output of an engine in the best condition. Among them, a belt-type continuously variable transmission described in, for example, Japanese Patent No. 2744038 is known. As described in this publication, for example, as disclosed in this publication, a belt-type continuously variable transmission has a pulley (primary pulley) provided on a drive shaft side and a pulley (secondary pulley) provided on a driven shaft side. And a pulley).
When changing the gear ratio between the drive shaft and the driven shaft, the widths of the primary pulley and the secondary pulley are changed in the opposite direction in synchronization with each other. For example, when changing to the speed increasing side, the width of the primary pulley is reduced and the width of the secondary pulley is increased, and the endless belt is moved to the outer diameter side of the primary pulley and to the inner diameter side of the secondary pulley. Let it. Conversely, when changing to the deceleration side, the width of the primary pulley is increased and the width of the secondary pulley is reduced, so that the endless belt is moved to the inner diameter side of the primary pulley and to the outer diameter side of the secondary pulley. Let it. As a pulley width adjusting device for a continuously variable transmission for adjusting the width of a pulley of an endless belt type continuously variable transmission as described above, a device having a structure as shown in FIG. 4 has been known. I have. In this pulley width adjusting device for a continuously variable transmission, a fixed pulley piece 2 is fixed to one end (right end in FIG. 4) of a rotating shaft 1, and a displacement pulley piece 3 is attached to an intermediate portion of the rotating shaft 1. Only the axial displacement with respect to the rotating shaft 1 is supported freely. The rotary cylinder 4 is supported on the displacement-side pulley piece 3 by a deep groove-type first ball bearing 5 capable of freely supporting a radial load and a thrust load. Then, one end of the rotary cylinder 4 (FIG. 4)
The female screw 6 formed on the inner peripheral surface and the male screw 8 formed on the outer peripheral surface of the fixed cylinder 7 supported and fixed inside the transmission case 12 are screwed together. The rotating shaft 1 is provided inside the transmission case 12 with the second and third ball bearings 1.
Only the rotation is supported by 3 and 14. Further, a driven gear 9 fixed to the outer peripheral surface of the rotary cylinder 4 and a drive shaft 1
0 is engaged with the driving gear 11 provided on the rotating cylinder 4.
Can be driven to rotate. When changing the gear ratio,
The rotating cylinder 4 is rotated, and the displacement pulley piece 3 is displaced in the axial direction together with the rotating cylinder 4 so that the distance between the inner surface of the displacement pulley piece 3 and the inner surface of the fixed pulley piece 2 is increased. A certain pulley width is changed by synchronizing the driving side and the driven side. In the case of the conventional structure described above, an actuator for displacing the displacement-side pulley piece 3 in the axial direction of the rotary shaft 1 is a rotary cylinder having a female screw 6 formed on the inner peripheral surface. 4, a fixed cylinder 7 having an external thread 8 formed on the outer peripheral surface, and a first ball bearing 5 provided between the rotary cylinder 4 and the displacement-side pulley piece 3. The female screw 6 and the male screw 8 are screwed together. Since the contact state between the female screw 6 and the male screw 8 includes sliding contact, it is difficult to sufficiently reduce the friction loss at the engaging portion between the two screws 6 and 8, and the transmission efficiency at the actuator portion is sufficiently increased. May not be secured. If the transmission efficiency cannot be sufficiently ensured in this way, the power consumption of the electric motor used to operate the actuator increases. In this case, the size of the electric motor is increased, which causes an increase in the size of the entire pulley width adjusting device including the electric motor. In the case of the conventional structure described above, each of the rotary cylinder 4 and the fixed cylinder 7 constituting the actuator is obtained by forming a rod-shaped steel material or a rough shape by forging the steel material. The raw material is formed into a predetermined shape by performing cutting and grinding. For this reason, when forming the rotating cylinder 4 and the fixed cylinder 7 into a predetermined shape, the amount of material to be removed from the steel material by cutting or the like increases, so that the rotating cylinder 4 and the fixed cylinder 7 are processed. The time it takes is longer. In addition, the amount of useless material to be removed from the steel material increases, which causes an increase in material cost. For this reason, the cost of the pulley width adjusting device is increased. In particular, when the thickness of the rotating cylinder 4 or the fixed cylinder 7 is made sufficiently small in order to achieve a sufficient weight reduction of the pulley width adjusting device, the amount of material to be removed by cutting becomes larger, The cost of the pulley width adjusting device is likely to increase. The present invention has been made in view of such circumstances. A pulley width adjusting device for a continuously variable transmission according to the present invention is similar to the pulley width adjusting device for a continuously variable transmission, which is known from the prior art. It is incorporated into a continuously variable transmission that changes the speed ratio between a drive shaft and a driven shaft by changing the width of a pulley partially extended, and is used to change the width of the pulley. A fixed pulley piece supported around the rotation shaft so as to freely rotate in synchronism with the rotation shaft in a state where the displacement of the rotation shaft in the axial direction is prevented, and a pulley piece in the axial direction of the rotation shaft. It comprises a displacement-side pulley piece that is supported so as to be able to freely displace and rotate in synchronization with the rotation axis, and an actuator for displacing the displacement-side pulley piece in the axial direction of the rotation axis. In particular, in the pulley width adjusting device for a continuously variable transmission according to the present invention, the actuator includes a male ball screw cylinder, a female ball screw cylinder, a plurality of balls, and a first rolling bearing. Prepare. Of these, the male ball screw cylinder is
It is fixed inside the transmission case and has a male ball screw groove on the outer peripheral surface. The female ball screw cylinder is disposed concentrically with the male ball screw cylinder around the male ball screw cylinder, and has a female ball screw groove formed on the inner peripheral surface. Further, the plurality of balls are provided between the female ball screw groove and the male ball screw groove. The first rolling bearing is provided between an inner peripheral surface of a distal end portion of the female ball screw cylinder and an outer peripheral surface of a cylindrical portion formed at an inner diameter side end of the displacement-side pulley piece, and is radially provided. Load and thrust load can be supported. At least one of the male ball screw cylinder and the female ball screw cylinder is manufactured by plastically processing a steel plate. When the pulley width is changed by the pulley width adjusting device for a continuously variable transmission of the present invention configured as described above, a driving source such as an electric motor is used to transmit the pulley width via a transmission mechanism such as a gear reducer. Then, rotate the female ball screw cylinder. Then, with the rolling of a plurality of balls provided between the female ball screw groove formed on the inner peripheral surface of the female ball screw cylinder and the male ball screw groove formed on the outer peripheral surface of the fixed male ball screw cylinder, Thus, the female ball screw cylinder is displaced in the axial direction. The axial displacement of the female ball screw cylinder is transmitted to the displacement side pulley piece via the first rolling bearing, and the displacement side pulley piece is displaced in the axial direction, so that the pulley width changes. Thus, in the case of the present invention, since the ball screw mechanism is used for the actuator for displacing the displacement side pulley piece in the axial direction of the rotating shaft,
It is possible to reduce the friction loss at the actuator portion, improve the transmission efficiency, and save energy. Further, in the case of the present invention, at least one of the male ball screw cylinder and the female ball screw cylinder is manufactured by plastically processing a steel plate. For this reason, when processing the male or female ball screw cylinder into a predetermined shape, the material to be removed from the steel plate by cutting is the minimum necessary to form the male and female ball screw grooves. Can be limited to a limited amount. For this reason, when processing the male ball screw cylinder or the female ball screw cylinder, the amount of material to be removed from the steel plate is reduced, and the time required for processing the male ball screw cylinder or the female ball screw cylinder is shortened. Thus, the cost of the pulley width adjusting device can be reduced. Further, according to the present invention, without increasing the cost of the male ball screw cylinder or the female ball screw cylinder, the thickness of the ball screw cylinder can be reduced, and the weight of the pulley width adjusting device can be reduced at low cost. . FIGS. 1 and 2 show a first embodiment of the present invention. A fixed pulley piece 2 is fixed to one end (the right end in FIG. 1) of a rotating shaft 1 which is a drive shaft or a driven shaft constituting a belt-type continuously variable transmission. The pulley piece 3 supports only the axial displacement with respect to the rotating shaft 1 freely. That is, this rotating shaft 1
Key 15 fixed to the outer peripheral surface of the
By engaging a key groove 16 formed on the inner peripheral surface of the rotary shaft 1 with the displacement-side pulley piece 3, the rotary shaft 1 can be freely displaced in the axial direction and synchronized with the rotary shaft 1. It supports freely rotation. Then, the displacement-side pulley piece 3 is moved by the actuator 17 which is a feature of the present invention to the rotating shaft 1.
In the axial direction. The actuator 17 includes a male ball screw cylinder 18 and a female ball screw cylinder 19
And a plurality of balls 20, 20 and a first ball bearing 21. Of these, the male ball screw cylinder 18 is
It is fixed inside the transmission case 12. The male ball screw cylinder 18 is made by subjecting a steel plate to plastic working such as drawing or press working, and is formed in a state of being continuous from the circular ring portion 22 and both radial edges of the circular ring portion 22. An outer cylindrical portion 23 and an inner cylindrical portion 24 provided in the same direction, and one axial edge of the inner cylindrical portion 24 (right edge in FIGS. 1 and 2).
And an inward flange 25 provided over the entire circumference on the inner diameter side in a continuous state from the inner side. The axial length of the outer cylindrical portion 23 is greater than the axial length of the inner cylindrical portion 24. The male ball screw cylinder 18 is housed in a bottomed recessed housing portion 26 provided on a part of the inner surface of the transmission case 12 and having a cylindrical inner peripheral surface. Part 2
It is fixed concentrically with 6. That is, the base end of the outer cylindrical portion 23 is internally fitted to and supported by a small-diameter portion 27 provided concentrically with the storage portion 26 at the back of the storage portion 26 while preventing rotation. A deep groove-shaped groove is provided between the inner peripheral surface of the inner cylindrical portion 24 constituting the male ball screw cylinder 18 and the outer peripheral surface of the other end of the rotary shaft 1 (left end in FIGS. 1 and 2). A second ball bearing 28 is provided. For this reason, in the case of the present example, an outer ring 49 constituting the second ball bearing 28 is fitted inside the inner cylindrical portion 24 constituting the male ball screw cylinder 18.
Also, one end surface in the axial direction of the outer ring 49 (the right end surface in FIGS. 1 and 2).
Abuts against one surface of the inward flange portion 25 constituting the male ball screw cylinder 18. On the other hand, an inner ring 50 constituting the second ball bearing 28 is externally fitted on the outer peripheral surface of the other end of the rotating shaft 1 in the axial direction. The inner ring 50 is sandwiched between a step surface 51 provided on the outer peripheral surface of a portion near the other end of the rotating shaft 1 and an annular member 52 externally fitted and fixed to the other end of the rotating shaft 1, thereby obtaining the above-described structure. It is fixed to the rotating shaft 1. And an outer raceway 53 formed on the inner peripheral surface of the outer race 49;
A plurality of balls 43 are provided between the inner raceway 54 formed on the outer peripheral surface of the inner race 50 so as to roll freely. On the other hand, a deep groove type third ball bearing 29 is provided between the outer peripheral surface of one end of the rotary shaft 1 and the inner surface of the transmission case 12. The third ball bearing 29 and the second ball bearing 28 support the rotary shaft 1 inside the transmission case 12 only for rotation. The outer cylindrical portion 23 constituting the male ball screw cylinder 18 has an outer diameter smaller than the inner diameter of the housing 26. Accordingly, a cylindrical space 30 is formed between the outer peripheral surface of the outer cylindrical portion 23 and the inner peripheral surface of the storage portion 26. A male ball screw groove 31 is formed on the outer peripheral surface of the outer cylindrical portion 23 from a portion facing the cylindrical space 30 to a tip portion (right end portion in FIG. 1).
In FIG. 1, only a part of the male ball screw groove 31 is illustrated for simplification. However, in an actual case, the male ball screw groove 31 It is formed in a wide range. When manufacturing the male ball screw cylinder 18 as described above, first, a steel plate is subjected to plastic working such as drawing or press working to produce a material having a rough shape. Next, a cutting and grinding process is performed on a part of the outer peripheral surface of a part of the material that is to become the outer cylindrical portion 23 to obtain the male ball screw cylinder 18 provided with the male ball screw groove 31. . The outer cylindrical portion 23 constituting the male ball screw cylinder 18 fixed in the transmission case 12 as described above.
The base half (the left half in FIG. 1) of the female ball screw cylinder 19 is positioned around the first half (the right half in FIG. 1).
When changing the pulley width, the female ball screw cylinder 19 is displaced in the axial direction in synchronization with the displacement-side pulley piece 3. The female ball screw cylinder 19 is formed by subjecting a steel plate to plastic working such as drawing or press working in the same manner as the male ball screw cylinder 18.
And an outer cylindrical portion 34 and an inner cylindrical portion 3 which are provided in the same direction in a continuous state from both radial edges of the annular portion 33.
5 and an inward flange portion 36 provided on the inner diameter side over the entire circumference in a state continuous from one axial end edge (the left end edge in FIG. 1) of the inner cylindrical portion 35. Further, the axial length of the outer cylindrical portion 34 is larger than the axial length of the inner cylindrical portion 35. The tip of the female ball screw cylinder 19 is
Cylindrical part 3 formed at the inner diameter side end of the displacement side pulley piece 3
7 is connected to the first ball bearing 21 of a deep groove type capable of freely supporting a radial load and a thrust load.
For this reason, in the case of this example, the outer race 38 constituting the first ball bearing 21 is fitted inside the inner cylindrical portion 35 constituting the female ball screw cylinder 19. Also, one end in the axial direction of the outer ring 38 (the left end in FIG. 1) is connected to the female ball screw cylinder 19.
Are in contact with one side of the inward flange portion 36. On the other hand, an inner ring 39 constituting the first ball bearing 21 is formed on the outer peripheral surface of the base end portion (right end portion in FIG. 1) of the cylindrical portion 37 on the outer peripheral surface of the intermediate portion of the displacement side pulley piece 3. Step surface 4
In the state where it abuts on 0, it is fitted outside. And, between the outer raceway 41 formed on the inner peripheral surface of the outer race 38 constituting the first ball bearing 21 and the inner raceway 42 formed on the outer peripheral surface of the inner race 39 constituting the first ball bearing 21. , A plurality of balls 43, 43 are provided so as to freely roll. A female ball screw groove 44 is formed in a portion of the inner peripheral surface of the outer cylindrical portion 34 which constitutes the female ball screw cylinder 19 near the base end. The above female ball screw cylinder 1
When manufacturing the steel sheet 9, first, a steel sheet having a rough shape is manufactured by subjecting a steel sheet to plastic working such as drawing and pressing. Next, a cutting and grinding process is performed on a part of the outer peripheral surface of a part of the material that is to become the outer cylindrical portion 34, thereby obtaining the female ball screw cylinder 19 provided with the female ball screw groove 44. . The plurality of balls 20, 2 are inserted between the female ball screw groove 44 and the male ball screw groove 31.
0, the female ball screw cylinder 19 is supported concentrically around the male ball screw cylinder 18. A holding hole 45 is formed in a part of the portion where the female ball screw groove 44 is formed at a portion near the base end of the outer cylindrical portion 34 constituting the female ball screw cylinder 19. , A circulation member 46 is provided. The circulation member 46 is for returning the ball 20 reaching one end of the female ball screw groove 44 to the other end, and has a conventionally well-known structure for a ball screw mechanism. In the illustrated example, a cylindrical sleeve 47 is externally fitted and fixed to the base half of the outer cylindrical portion 34 constituting the female ball screw cylinder 19, and the circulation member 46 is moved from the holding hole 45 in the radial direction. I try not to get out. The female ball screw cylinder 19 is rotatably driven by an electric motor (not shown). For this purpose, a drive gear 11 is externally fixed or integrally formed at an intermediate portion of a drive shaft 10 driven to rotate by an electric motor capable of changing the rotation direction. On the other hand, the driven gear 9 is externally fitted and fixed to the distal end of the outer cylindrical portion provided on the female ball screw cylinder 19. The driven gear 9 and the driving gear 11 are meshed. Drive gear 11 of these
The axial dimension of the driven gear 9 and the drive gear 11 remain engaged regardless of the axial displacement of the female ball screw cylinder 19 caused by changing the pulley width. It is to be. When the pulley width is changed by the continuously variable transmission pulley width adjusting device of the present invention configured as described above, the electric motor is energized, and the electric power is supplied to the electric motor via the driving gear 11 and the driven gear 9. The female ball screw cylinder 19 is rotated in a predetermined direction. Then, the female ball screw groove 44 formed on the inner peripheral surface of the outer cylindrical portion 34 constituting the female ball screw cylinder 19 and the outer peripheral surface of the outer cylindrical portion 23 constituting the fixed male ball screw cylinder 18 are formed. Male ball screw groove 31
The female ball screw cylinder 19 is displaced in the axial direction along with the rolling of the plurality of balls 20, 20 provided between them. The axial displacement of the female ball screw cylinder 19 is
The displacement is transmitted to the displacement-side pulley piece 3 via the first ball bearing 21, and the displacement-side pulley piece 3 is displaced in the axial direction, so that the pulley width changes. For example, if the displacement side pulley piece 3 is moved to the right in FIG. 1, the width of the pulley becomes narrower, and the endless belt 48 is displaced to the outer diameter side. Therefore, when the pulley is on the primary side, the continuously variable transmission is on the speed increasing side, and conversely, when the pulley is on the secondary side, it is on the reducing side. On the other hand, if the displacement-side pulley piece 3 is moved to the left in FIG. 1, the width of the pulley is increased, and the endless belt 48 is displaced toward the inner diameter side. Accordingly, when the pulley is on the primary side, the continuously variable transmission is on the reduction side, and when it is on the secondary side, it is on the speed increasing side. As described above, in the case of the present invention, since the ball screw mechanism is used for the actuator 17 for displacing the displacement-side pulley piece in the axial direction of the rotary shaft 1, friction loss at the actuator 17 is reduced. It is possible to reduce the power consumption, improve the transmission efficiency, and save energy. Further, in the case of the present invention, since the male ball screw cylinder 18 and the female ball screw cylinder 19 are formed by plastically processing a steel plate, these ball screw cylinders 18 and
In the processing of No. 19, the material to be removed by cutting from this steel plate can be reduced to the minimum amount necessary for forming the male ball screw groove 31 and the female ball screw groove 44. Therefore, when machining the male and female ball screw cylinders 18 and 19, the amount of material to be removed from the steel plate is reduced, and the time required for machining the ball screw cylinders 18 and 19 is shortened. Thus, the cost of the pulley width adjusting device can be reduced. Further, according to the present invention, the wall thickness of the male and female ball screw cylinders 18 and 19 can be reduced without increasing the cost of the male ball screw cylinder 18 and the female ball screw cylinder 19, and the pulley width adjustment can be performed. The weight of the device can be reduced at low cost. Next, FIG. 3 shows a second embodiment of the present invention.
An example is shown. In the case of this example, the actuator 17
To prevent foreign matter from entering the ball screw mechanism
It is devised to ensure excellent durability. That is, in the case of the present example, the first dustproof member 55 is attached to the distal end portion of the male ball screw cylinder 18 over the entire circumference. The outer diameter of the first dustproof member 55 is made larger than the outer diameter of the male ball screw cylinder 18, and its outer peripheral edge is slidably contacted with the inner peripheral surface of the intermediate portion of the female ball screw cylinder 19 over the entire circumference. ing. The gap between the outer peripheral surface of the male ball screw cylinder 18 and the inner peripheral surface of the intermediate portion of the female ball screw cylinder 19 is closed over the entire circumference by the first dustproof member 55. When the pulley width is changed, the female ball screw cylinder 19 moves the pulley piece 3 on the displacement side.
The first dustproof member 5 is displaced in the axial direction in synchronism with the first dustproof member 5 in order to make the pulley width narrowest even in the direction approaching the fixed side pulley piece 2 (rightmost in FIG. 3).
The dimensions of the respective parts are regulated so that the outer peripheral edge of the portion 5 slides on the inner peripheral surface of the female ball screw cylinder 19 at a portion deviating from the female ball screw groove 44. On the other hand, the outer peripheral surface of the sleeve 47 externally fitted and fixed to the base end of the female ball screw cylinder 19 and the transmission case 1
A second dustproof member 56 is provided between the inner peripheral surface of the housing 2 and the inner peripheral surface of the storage section 26, and the gap between the two peripheral surfaces is closed over the entire periphery. For this reason, in the illustrated example, the second dustproof member 56 is locked in a locking groove formed at an end of the inner peripheral surface of the storage portion 26 near the opening, and the inside of the second dustproof member 56 is The peripheral edge is in sliding contact with the outer peripheral surface of the sleeve 47. When the pulley width is changed, the female ball screw cylinder 19 is displaced in the axial direction in synchronization with the displacement-side pulley piece 3, but approaches the fixed-side pulley piece 2 most in order to make the pulley width narrowest. The dimensions of each part are regulated so that the base end remains in the storage part 26 even when displaced in the direction (rightmost in FIG. 3). As described above, the first and second dustproof members 55,
56 may be any as long as it can block the passage of foreign matter such as abrasion powder, and does not need to be able to maintain oil tightness. Therefore, on the condition that the passage of foreign matter can be prevented,
A variety of conventionally known materials can be used. For example, a fibrous material such as felt having a fine passage therein prevents passage of foreign matters while allowing air to pass therethrough. Therefore, the pressure in the space existing between the dustproof members 55 and 56 is reduced. Fluctuation can be suppressed. For this reason, the force required to displace the female ball screw cylinder 19 in the axial direction can be reduced. However, the first and second dustproof members 55,
As 56, a seal ring made of an elastic material such as an elastomer such as rubber may be used. Since the transmission case 12 is provided with an air supply / discharge port (not shown) for suppressing pressure fluctuation in the transmission case 12 due to a temperature change, dust or the like floating in the external space is provided. Foreign matter may enter the transmission case 12. Further, there is a possibility that abrasion powder of metal or the like generated by wear of the components of the continuously variable transmission is also present as foreign matter in the transmission case 12. And
Foreign matter that has entered the case 12 may adhere to the inner peripheral surface of the male ball screw cylinder 18 and the outer peripheral surface of the female ball screw cylinder 19. When the foreign matter thus attached enters the portion where each of the balls 20, 20 constituting the ball screw mechanism is installed, the male and female ball screw grooves 31,
The surface of each of the balls 44 and the balls 20, 20 may be damaged, resulting in poor operation, early peeling, and a decrease in durability. On the other hand, in the case of the present embodiment, the gap between the outer peripheral surface of the distal end portion of the female ball screw cylinder 19 and the inner peripheral surface of the housing portion 26 is formed by the second dustproof member 56. Since the female balls are closed, foreign matters adhering to the outer peripheral surface of the female ball screw cylinder 19 do not enter the portions where the balls 20 are placed. Further, since the space between the distal end of the male ball screw cylinder 18 and the inner peripheral surface of the intermediate portion of the female ball screw cylinder 19 is closed by the first dustproof member 55, the inner circumference of the male ball screw cylinder 18 Foreign matter adhering to the surface is
It does not enter the part where 0 and 20 are installed. As described above, since foreign matter does not enter this portion from any side, the male and female ball screw grooves 31, 44 and the surfaces of the balls 20, 20 are prevented from being damaged by the foreign matter. Thus, the durability of the actuator 19 for driving the displacement-side pulley piece 3 can be improved. Other configurations and operations are the same as those in the above-described first example, and thus redundant description will be omitted. It is to be noted that, apart from the case of the present embodiment, a cylindrical member is fitted and fixed on the inner peripheral surface of the base end portion of the female ball screw cylinder 19.
A first dustproof member 55 may be provided between the outer peripheral surface of the distal end portion of the tubular member and the inner peripheral surface of the distal end portion of the male ball screw cylinder 18. Further, entry of foreign matter into the portion where the balls 20 are provided is more remarkable from the outer peripheral surface side of the female ball screw cylinder 19 than from the inner peripheral surface side, and is difficult to prevent. Therefore, the first dustproof member 55 can be omitted unless foreign matter intrusion from the inner peripheral surface side becomes a problem. Alternatively, in order to prevent foreign matter from entering from the inner peripheral surface side, a sealed type with a sealing plate is used as the first ball bearing 21 and the inner peripheral surface of the cylindrical portion 37 provided on the displacement side pulley piece 3 is rotated. It can also be prevented by providing a dustproof member between the shaft 1 and the outer peripheral surface of the intermediate portion. Of course, in this case, the first dustproof member 55 can be omitted. Since the present invention is constructed and operates as described above, it is possible to inexpensively realize a lightweight and efficient pulley width adjusting device for a continuously variable transmission, and to use the belt for various applications. It is possible to reduce the weight and energy consumption of the continuously variable transmission at low cost.

【図面の簡単な説明】 【図1】本発明の実施の形態の第1例を示す要部断面
図。 【図2】図1の左部拡大断面図。 【図3】本発明の実施の形態の第2例を示す要部断面
図。 【図4】従来構造の1例を示す要部断面図。 【符号の説明】 1 回転軸 2 固定側プーリ片 3 変位側プーリ片 4 回転筒 5 第一の玉軸受 6 雌ねじ 7 固定筒 8 雄ねじ 9 従動歯車 10 駆動軸 11 駆動歯車 12 変速機ケース 13 第二の玉軸受 14 第三の玉軸受 15 キー 16 キー溝 17 アクチュエータ 18 雄ボールねじ筒 19 雌ボールねじ筒 20 ボール 21 第一の玉軸受 22 円輪部 23 外側円筒部 24 内側円筒部 25 内向鍔部 26 収納部 27 小径部 28 第二の玉軸受 29 第三の玉軸受 30 円筒状空間 31 雄ボールねじ溝 33 円輪部 34 外側円筒部 35 内側円筒部 36 内向鍔部 37 円筒部 38 外輪 39 内輪 40 段差面 41 外輪軌道 42 内輪軌道 43 玉 44 雌ボールねじ溝 45 保持孔 46 循環部材 47 スリーブ 48 無端ベルト 49 外輪 50 内輪 51 段差面 52 環状部材 53 外輪軌道 54 内輪軌道 55 第一の防塵部材 56 第二の防塵部材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an essential part showing a first example of an embodiment of the present invention. FIG. 2 is an enlarged sectional view of a left part of FIG. FIG. 3 is an essential part cross-sectional view showing a second example of the embodiment of the present invention. FIG. 4 is a sectional view of a main part showing an example of a conventional structure. [Description of Signs] 1 Rotary shaft 2 Fixed pulley piece 3 Displacement side pulley piece 4 Rotating cylinder 5 First ball bearing 6 Female screw 7 Fixed cylinder 8 Male screw 9 Follower gear 10 Drive shaft 11 Drive gear 12 Transmission case 13 Second Ball bearing 14 Third ball bearing 15 Key 16 Key groove 17 Actuator 18 Male ball screw cylinder 19 Female ball screw cylinder 20 Ball 21 First ball bearing 22 Ring part 23 Outer cylindrical part 24 Inner cylindrical part 25 Inward flange 26 storage portion 27 small diameter portion 28 second ball bearing 29 third ball bearing 30 cylindrical space 31 male ball screw groove 33 circular ring portion 34 outer cylindrical portion 35 inner cylindrical portion 36 inward flange portion 37 cylindrical portion 38 outer ring 39 inner ring Reference Signs List 40 Step surface 41 Outer ring raceway 42 Inner ring raceway 43 Ball 44 Female ball screw groove 45 Holding hole 46 Circulating member 47 Sleeve 48 Endless belt 49 Outer ring 50 Inner ring 51 Stepped surface 52 Ring member 53 outer ring track 54 inner ring track 55 first dustproof member 56 second dustproof member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J050 AA02 BA08 BB05 CC09 3J062 AA17 AB12 AB22 AC07 BA06 BA07 BA08 CD12 CD27    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 3J050 AA02 BA08 BB05 CC09                 3J062 AA17 AB12 AB22 AC07 BA06                       BA07 BA08 CD12 CD27

Claims (1)

【特許請求の範囲】 【請求項1】 無端ベルトの一部を掛け渡したプーリの
幅を変える事により駆動軸と従動軸との間の変速比を変
える無段変速機に組み込んで、上記プーリの幅を変える
為に、このプーリを、回転軸の周囲にこの回転軸の軸方
向の変位を阻止した状態でこの回転軸と同期した回転を
自在として支持された固定側プーリ片と、この回転軸の
軸方向の変位及びこの回転軸と同期した回転を自在とし
て支持された変位側プーリ片と、この変位側プーリ片を
上記回転軸の軸方向に変位させる為のアクチュエータと
から構成した無段変速機用プーリ幅調整装置に於いて、 このアクチュエータは、変速機ケースの内側に固定され
た、外周面に雄ボールねじ溝を形成した雄ボールねじ筒
と、この雄ボールねじ筒の周囲にこの雄ボールねじ筒と
同心に配置された、内周面に雌ボールねじ溝を形成した
雌ボールねじ筒と、この雌ボールねじ溝と上記雄ボール
ねじ溝との間に設けられた複数のボールと、上記雌ボー
ルねじ筒の先端部内周面と上記変位側プーリ片の内径側
端部に形成した円筒部の外周面との間に設けられた、ラ
ジアル荷重及びスラスト荷重を支承自在な第一の転がり
軸受とを備えたものであり、 上記雄ボールねじ筒と雌ボールねじ筒とのうち、少なく
とも一方の部材を、鋼板に塑性加工を施す事により造っ
た事を特徴とする無段変速機用プーリ幅調整装置。
Claims: 1. A pulley which is incorporated in a continuously variable transmission that changes a speed ratio between a drive shaft and a driven shaft by changing a width of a pulley around which a part of an endless belt is stretched. In order to change the width of the pulley, a fixed pulley piece that is supported around the rotary shaft so as to freely rotate in synchronization with the rotary shaft while preventing axial displacement of the rotary shaft, A continuously variable displacement pulley piece which is supported so as to freely displace the shaft in the axial direction and rotates in synchronization with the rotation axis, and an actuator for displacing the displacement side pulley piece in the axial direction of the rotation axis. In the transmission pulley width adjusting device, this actuator is fixed to the inside of the transmission case, and has a male ball screw cylinder having a male ball screw groove formed on the outer peripheral surface thereof. Male ball screw cylinder A concentrically arranged female ball screw cylinder having a female ball screw groove formed on an inner peripheral surface thereof; a plurality of balls provided between the female ball screw groove and the male ball screw groove; A first rolling bearing provided between the inner peripheral surface of the distal end portion of the cylinder and the outer peripheral surface of the cylindrical portion formed at the inner diameter side end of the displacement-side pulley piece and capable of supporting a radial load and a thrust load. A pulley width adjusting device for a continuously variable transmission, wherein at least one of the male ball screw cylinder and the female ball screw cylinder is made by subjecting a steel plate to plastic working.
JP2001211058A 2001-07-11 2001-07-11 Pulley width adjuster for continuously variable transmission Pending JP2003028249A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001211058A JP2003028249A (en) 2001-07-11 2001-07-11 Pulley width adjuster for continuously variable transmission
DE2002131164 DE10231164A1 (en) 2001-07-11 2002-07-10 Pulley width adjusting device for stepless transmission of vehicles, has outer ring formed directly at inner periphery of female ball screw tube, for bearing of movable pulley piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211058A JP2003028249A (en) 2001-07-11 2001-07-11 Pulley width adjuster for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2003028249A true JP2003028249A (en) 2003-01-29
JP2003028249A5 JP2003028249A5 (en) 2004-12-24

Family

ID=19046434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211058A Pending JP2003028249A (en) 2001-07-11 2001-07-11 Pulley width adjuster for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2003028249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043007A1 (en) * 2003-10-30 2005-05-12 Nsk Ltd. Ball screw device
CN114321327A (en) * 2022-02-17 2022-04-12 广东韶钢松山股份有限公司 Axial displacement adjusting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043007A1 (en) * 2003-10-30 2005-05-12 Nsk Ltd. Ball screw device
CN114321327A (en) * 2022-02-17 2022-04-12 广东韶钢松山股份有限公司 Axial displacement adjusting device

Similar Documents

Publication Publication Date Title
JPH04151053A (en) Traction type gear shifter
KR20030081126A (en) Journal bearing and thrust pad assembly
CN102985710A (en) Conical roller bearing device
JP2002227947A (en) Pulley width adjusting device for continuously variable transmission
WO2020062647A1 (en) Oldham ring, an oldham coupling, and a harmonic reducer
JP2003028249A (en) Pulley width adjuster for continuously variable transmission
JP2010127382A (en) Belt type continuously variable transmission
JP4079691B2 (en) Toroidal continuously variable transmission
US10253853B2 (en) Stepless transmission
EP2811204A1 (en) Toroidal-type continuously variable transmission
JP2000329206A (en) Traction transmitting device
JP4774828B2 (en) Toroidal continuously variable transmission
JP2003028250A (en) Pulley width adjuster for continuously variable transmission
JP2002349677A (en) Roller clutch and roller clutch built-in type rotary transmission device
CN114688154B (en) Sprocket bearing, transmission mechanism and transmission mechanism
CN211231515U (en) Eccentric transmission mechanism of speed reducer
JP2018044639A (en) Sheave drive device for continuously variable transmission
JP2004132471A (en) Ball screw device
JP6582550B2 (en) Single cavity toroidal continuously variable transmission
US10436293B2 (en) Continuously variable transmission
JP2003294097A (en) Pulley width adjusting device for stepless speed change gear
JP2000337479A (en) Roller clutch built-in type pulley device for alternator
JPH04210149A (en) Traction type transmission
JP2015075185A (en) Single cavity type toroidal type continuously variable transmission
JP2007177856A (en) Tapered roller bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703