JP2003027050A - Method for producing phosphor particle - Google Patents

Method for producing phosphor particle

Info

Publication number
JP2003027050A
JP2003027050A JP2001218181A JP2001218181A JP2003027050A JP 2003027050 A JP2003027050 A JP 2003027050A JP 2001218181 A JP2001218181 A JP 2001218181A JP 2001218181 A JP2001218181 A JP 2001218181A JP 2003027050 A JP2003027050 A JP 2003027050A
Authority
JP
Japan
Prior art keywords
phosphor
particles
dispersion medium
precursor
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218181A
Other languages
Japanese (ja)
Inventor
Uletto Lengoro Ignatius
ウレット レンゴロ イグナティウス
Kikuo Okuyama
喜久夫 奥山
Yasuo Shimomura
康夫 下村
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Original Assignee
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Mitsubishi Chemical Corp filed Critical Kasei Optonix Ltd
Priority to JP2001218181A priority Critical patent/JP2003027050A/en
Priority to EP02722857A priority patent/EP1298183A1/en
Priority to KR1020027017568A priority patent/KR20040002393A/en
Priority to CN02801419A priority patent/CN1462304A/en
Priority to PCT/JP2002/004265 priority patent/WO2002088275A1/en
Priority to US10/325,826 priority patent/US6712993B2/en
Publication of JP2003027050A publication Critical patent/JP2003027050A/en
Priority to US10/701,449 priority patent/US7001537B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing fine phosphor particles being capable of forming a uniform dense high-luminance fluorescent film when used in e.g. cathode-ray tubes, fluorescent lamps, PDPs because it is highly crystalline, has a low content of agglomerations, and comprises fine particles, and having a high purity, a uniform chemical composition, and excellent luminous characteristics. SOLUTION: In the method for producing phosphor particles by spraying a phosphor constituent metal-containing solution into an entraining air to form liquid droplets, drying the droplets to form solid phosphor material particles, and heating the material particles to form a precursor of a phosphor and producing the phosphor particles through the route of the precursor, the above heating is continued in the state in which the precursor is in contact with a molten medium chemically inert to the phosphor to form a plurality of particles in a dispersed state from the phosphor floating in the entraining gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ブラウン管、蛍光
ランプ、プラズマディスプレーパネル(PDP)などに
用いることが可能な微小蛍光体粒子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine phosphor particles which can be used in a cathode ray tube, a fluorescent lamp, a plasma display panel (PDP) and the like.

【0002】[0002]

【従来の技術】ブラウン管、蛍光ランプやPDPなどに
用いられる蛍光体は、従来、原料粉末を混合したものを
坩堝などの焼成容器に入れた後、高温で長時間加熱する
ことにより固相反応を起こさせ、それをボールミルなど
で微粉砕することにより製造されてきた。
2. Description of the Related Art Conventionally, phosphors used in cathode ray tubes, fluorescent lamps, PDPs, etc., are solid-state reacted by heating a high temperature for a long time after putting a mixture of raw material powders into a firing container such as a crucible. It has been produced by raising it and finely pulverizing it with a ball mill or the like.

【0003】しかし、この方法で製造された蛍光体は、
不規則形状粒子が凝集した粉末からなるため、この蛍光
体を塗布して得られる蛍光膜は不均質で充填密度の低い
ものとなり、発光特性が低かった。また、固相反応後の
ボールミルなどによる微粉砕処理中に蛍光体に物理的及
び化学的な衝撃が加えられるために、粒子内や表面に欠
陥が発生して発光強度が低下するという不都合もあっ
た。さらには、坩堝などの焼成容器に入れて高温で長時
間加熱するために、坩堝からの不純物が混入して発光特
性を低下したり、原料粉末の粒度によっては固相反応が
十分に進行せずに不純物相が混在して発光特性の低下を
招くことがあった。また、高温で長時間加熱すると、消
費エネルギーが大きくなり、蛍光体の製造コストを高く
する要因となる。
However, the phosphor produced by this method is
Since the irregularly shaped particles consist of agglomerated powder, the phosphor film obtained by applying this phosphor is inhomogeneous and has a low packing density, and the emission characteristics are low. Further, physical and chemical impacts are applied to the phosphor during the fine pulverization treatment by a ball mill etc. after the solid phase reaction, so that there is a disadvantage that defects occur in the particles or on the surface and the emission intensity is reduced. It was Furthermore, since it is placed in a firing container such as a crucible and heated at a high temperature for a long time, impurities from the crucible are mixed and the emission characteristics are degraded, or the solid phase reaction does not proceed sufficiently depending on the particle size of the raw material powder. In some cases, an impurity phase was mixed in with to cause deterioration of light emission characteristics. In addition, heating at a high temperature for a long time consumes a large amount of energy, which increases the manufacturing cost of the phosphor.

【0004】これらの問題を解消するために、蛍光体の
構成金属元素含有溶液を超音波ネブライザーで同伴気体
中に噴霧して微液滴を形成した後、これを乾燥して金属
塩粒子や金属錯体粒子とし、この金属塩粒子や金属錯体
粒子を同伴気体とともに熱分解合成炉に導入して加熱す
ることにより、熱分解合成を行って蛍光体を得る方法が
提案されている。しかしながら、この方法では、熱分解
合成炉内での滞留時間を十分に長く取れないために、蛍
光体の結晶性が低い上に付活剤イオンを結晶内に均一に
付活することができず、結果として発光特性の良好な蛍
光体を得られないという問題があった。
In order to solve these problems, a solution containing a phosphor-constituting metal element is sprayed into an entrained gas by an ultrasonic nebulizer to form fine droplets, which are then dried to form metal salt particles or metal. A method has been proposed in which a phosphor is obtained by performing thermal decomposition synthesis by introducing the metal salt particles and the metal complex particles into a thermal decomposition synthesis furnace together with entrained gas and heating them as complex particles. However, in this method, since the residence time in the pyrolysis synthesis furnace cannot be made sufficiently long, the crystallinity of the phosphor is low and activator ions cannot be uniformly activated in the crystal. As a result, there is a problem that it is not possible to obtain a phosphor having good emission characteristics.

【0005】そこで、この問題を解消するために、金属
塩粒子又は金属錯体粒子を比較的低温で短時間熱分解し
て所望の結晶相からなる粉末を得て、これを一旦捕集し
た後、この粉末を比較的高温で長時間再加熱処理して最
終的に蛍光体を得るという、2段階加熱処理法が提案さ
れた。この方法は、熱分解により得られる粒子の結晶性
を更に高めると同時に付活剤イオンを結晶内に均一に付
活できるため、発光特性の良好な球状蛍光体を得ること
ができる。しかし、一旦捕集した粉末を再加熱処理する
と、蛍光体の結晶性は良好となるが、極めて多数の凝集
粒子が生成するため、蛍光膜を形成する際に緻密な膜を
得ることができず、所望の発光特性が得られないという
新たな問題が発生した。
Therefore, in order to solve this problem, the metal salt particles or metal complex particles are pyrolyzed at a relatively low temperature for a short time to obtain a powder having a desired crystal phase, which is once collected, A two-step heat treatment method has been proposed in which this powder is reheated at a relatively high temperature for a long time to finally obtain a phosphor. According to this method, the crystallinity of the particles obtained by thermal decomposition can be further enhanced, and at the same time activator ions can be uniformly activated in the crystal, so that a spherical phosphor having good emission characteristics can be obtained. However, if the powder that has been once collected is reheated, the crystallinity of the phosphor will be good, but a very large number of aggregated particles will be generated, and a dense film cannot be obtained when forming the phosphor film. However, a new problem occurs that desired light emission characteristics cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
を解消し、結晶性が高く、凝集粒子が少なく、微粒子か
らなるため、ブラウン管、蛍光ランプやPDPなどに用
いる際に均質で緻密な高輝度蛍光膜を形成することが可
能で、しかも、高純度で化学組成が均一で発光特性に優
れた微小蛍光体粒子を安価に製造できる方法を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and has high crystallinity, few agglomerated particles, and is composed of fine particles, so that it is homogeneous and dense when used in cathode ray tubes, fluorescent lamps, PDPs and the like. It is an object of the present invention to provide a method capable of forming a high-intensity phosphor film, producing a fine phosphor particle having a high purity, a uniform chemical composition, and excellent emission characteristics at low cost.

【0007】[0007]

【課題を解決するための手段】本発明は、以下の構成を
採用することにより、前記課題の解決に成功した。 (1) 蛍光体の構成金属元素を含有する溶液を同伴気体中
に噴霧して微液滴を形成した後、前記微液滴を乾燥して
固体状蛍光体原料粒子となし、該固体状蛍光体原料粒子
を加熱することにより前記蛍光体の前駆体を生成させ、
該蛍光体前駆体を経由して前記蛍光体の結晶相を主相と
する蛍光体粒子を製造する方法において、前記蛍光体と
化学的に反応しにくい溶融状態の分散媒体と前記蛍光体
前駆体とを接触させながら前記加熱を継続し、前記同伴
気体中に浮遊する前記分散媒体の粒子内に前記蛍光体前
駆体から複数の蛍光体粒子を分散させた状態で生成させ
ること特徴とする蛍光体粒子の製造方法。
The present invention has succeeded in solving the above problems by adopting the following constitution. (1) A solution containing a constituent metal element of the phosphor is sprayed into an entrained gas to form fine droplets, and then the fine droplets are dried to form solid phosphor raw material particles, By generating the precursor of the phosphor by heating the body material particles,
In a method for producing phosphor particles having a crystal phase of the phosphor as a main phase via the phosphor precursor, a dispersion medium in a molten state that is difficult to chemically react with the phosphor and the phosphor precursor Continuing the heating while contacting with, and generating a plurality of phosphor particles in a state of being dispersed from the phosphor precursor in the particles of the dispersion medium suspended in the entrained gas. Method for producing particles.

【0008】(2) 前記分散媒体の原料として、前記蛍光
体粒子の生成時に前記(1) 記載の溶融状態の分散媒体を
生成し得る前記分散媒体の前駆物質を使用することを特
徴とする蛍光体粒子の製造方法。 (3) 前記蛍光体の構成金属元素を含有する前記溶液に、
前記分散媒体又はその前駆物質を予め含有させることを
特徴とする前記(1) 又は(2) 記載の蛍光体粒子の製造方
法。
(2) Fluorescence characterized by using as a raw material of the dispersion medium, a precursor of the dispersion medium capable of forming the molten dispersion medium described in (1) when the phosphor particles are formed. A method for producing body particles. (3) In the solution containing the constituent metal element of the phosphor,
The method for producing phosphor particles according to (1) or (2) above, wherein the dispersion medium or a precursor thereof is contained in advance.

【0009】(4) 前記分散媒体又はその前駆物質とし
て、アルカリ金属ハロゲン化物、アルカリ土類金属ハロ
ゲン化物、ハロゲン化亜鉛、及びアルカリ金属硫化物の
群から選ばれる少なくとも一種の化合物を使用すること
を特徴とする前記(1) 〜(3) のいずれか一つに記載の蛍
光体粒子の製造方法。 (5) 前記分散媒体又はその前駆物質として、アルカリ金
属ハロゲン化物、ベリリウムを除くアルカリ土類金属の
塩化物、臭化マグネシウム、フッ化亜鉛、硫化リチウ
ム、硫化ナトリウム、及び硫化カリウムの群から選ばれ
る少なくとも一種の化合物を使用することを特徴とする
前記(4) 記載の蛍光体粒子の製造方法。
(4) Use of at least one compound selected from the group of alkali metal halides, alkaline earth metal halides, zinc halides, and alkali metal sulfides as the dispersion medium or its precursor. The method for producing phosphor particles according to any one of the above (1) to (3), which is characterized. (5) The dispersion medium or its precursor is selected from the group of alkali metal halides, chlorides of alkaline earth metals excluding beryllium, magnesium bromide, zinc fluoride, lithium sulfide, sodium sulfide, and potassium sulfide. The method for producing phosphor particles according to (4) above, wherein at least one compound is used.

【0010】(6) 前記分散媒体の使用量は、前記蛍光体
の体積に対して1〜100倍の範囲とすることを特徴と
する前記(1) 〜(5) のいずれか一つに記載の蛍光体粒子
の製造方法。 (7) 前記蛍光体粒子の生成温度を前記分散媒体の融点以
上で、前記融点より200℃高い温度以下に調整するこ
とを特徴とする前記(1) 〜(6) のいずれか一つに記載の
蛍光体粒子の製造方法。
(6) The use amount of the dispersion medium is in the range of 1 to 100 times the volume of the phosphor, as described in any one of (1) to (5) above. The method for producing phosphor particles according to claim 1. (7) In any one of the above (1) to (6), the generation temperature of the phosphor particles is adjusted to a temperature equal to or higher than the melting point of the dispersion medium and equal to or lower than a temperature 200 ° C. higher than the melting point. The method for producing phosphor particles according to claim 1.

【0011】(8) 前記蛍光体粒子を生成させた後、前記
分散媒体を水に溶解して除去することを特徴とする前記
(1) 〜(7) のいずれか一つに記載の蛍光体粒子の製造方
法。 (9) 前記蛍光体粒子を生成させた後、前記分散媒体を加
熱し、蒸発させて除去することを特徴とする前記(1) 〜
(7) のいずれか一つに記載の蛍光体粒子の製造方法。
(8) After the phosphor particles are generated, the dispersion medium is dissolved in water and removed.
(1) to (7), the method for producing the phosphor particles according to any one of (1) to (7). (9) After generating the phosphor particles, the dispersion medium is heated and evaporated to remove (1) to
The method for producing phosphor particles according to any one of (7).

【0012】(10)前記蛍光体粒子の最大径が1〜500
nmの範囲にあることを特徴とする前記(1) 〜(9) のい
ずれか一つに記載の蛍光体粒子の製造方法。 (11)前記最大径が1〜100nmの範囲にあることを特
徴とする前記(10)記載の蛍光体粒子の製造方法。 (12)前記最大径が1〜10nmの範囲にあることを特徴
とする前記(11)記載の蛍光体粒子の製造方法。
(10) The maximum diameter of the phosphor particles is 1 to 500
The method for producing phosphor particles according to any one of (1) to (9) above, wherein the phosphor particles are in the range of nm. (11) The method for producing phosphor particles according to (10), wherein the maximum diameter is in the range of 1 to 100 nm. (12) The method for producing phosphor particles according to (11), wherein the maximum diameter is in the range of 1 to 10 nm.

【0013】[0013]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の蛍光体粒子の製造方法において、蛍光体の
構成金属元素を含有する蛍光体原料は、水に可溶性を有
し、高温に加熱するときに酸化物や硫化物を生成し得る
無機塩や有機金属化合物などを使用することができる。
また、蛍光体の構成金属元素の酸化物を酸に溶解して使
用することも可能である。本発明では、蛍光体の合成を
容易にするために、蛍光体の構成金属元素の硝酸塩を使
用することが好ましい。硝酸塩粒子は、加熱により容易
に分解して蛍光体を生成するからである。それ故、溶液
に溶解されている金属塩の少なくとも10重量%が硝酸
塩であることが好ましい。また、溶液に溶解されている
金属塩の少なくとも50重量%が硝酸塩であることがよ
り好ましい。なお、良好な発光特性を得るためには、キ
ラーセンターとなる鉄やニッケルなどの不純物元素の含
有量の少ない蛍光体原料を使用することが好ましい。
The present invention will be described in more detail below. In the method for producing the phosphor particles of the present invention, the phosphor raw material containing the constituent metal element of the phosphor is soluble in water, an inorganic salt capable of forming an oxide or a sulfide when heated to a high temperature, Organometallic compounds and the like can be used.
Further, it is also possible to use the oxide of the constituent metal element of the phosphor dissolved in an acid. In the present invention, in order to facilitate the synthesis of the phosphor, it is preferable to use the nitrate of the constituent metal element of the phosphor. This is because the nitrate particles are easily decomposed by heating to produce a phosphor. Therefore, it is preferred that at least 10% by weight of the metal salt dissolved in the solution is nitrate. It is more preferable that at least 50% by weight of the metal salt dissolved in the solution is nitrate. In order to obtain good emission characteristics, it is preferable to use a phosphor raw material having a small content of an impurity element such as iron or nickel, which serves as a killer center.

【0014】蛍光体原料溶液のpHは7以下に調整する
ことが好ましく、特に5以下に調整することがより好ま
しい。この溶液のpHを7以下に適切に調整すると、均
質な水溶液が形成され、噴霧により均質な液滴を形成す
ることができるため、均質な蛍光体粒子を合成すること
ができるからである。溶液のpHが7を越えると、水酸
化物が多量に沈殿する。その結果、噴霧する水溶液中の
沈殿物の含有量が低下し、微液滴中の蛍光体原料の組成
が変動するため、蛍光体結晶核が均一に発生せず蛍光体
の組成が変動したり、粒径が変動する要因となり、均質
で発光特性の高い蛍光体粒子を得ることができない。溶
液に固形分が混在する場合でも、その混在割合は10重
量%以下であることが好ましく、1重量%以下がより好
ましい。
The pH of the phosphor raw material solution is preferably adjusted to 7 or less, more preferably 5 or less. This is because when the pH of this solution is appropriately adjusted to 7 or less, a homogeneous aqueous solution is formed, and homogeneous droplets can be formed by spraying, so that homogeneous phosphor particles can be synthesized. When the pH of the solution exceeds 7, a large amount of hydroxide precipitates. As a result, the content of the precipitate in the sprayed aqueous solution decreases, and the composition of the phosphor raw material in the microdroplets fluctuates, so the phosphor crystal nuclei do not occur uniformly and the phosphor composition fluctuates. As a result, the particle size varies, and it is not possible to obtain uniform phosphor particles having high emission characteristics. Even when the solid content is mixed in the solution, the mixing ratio is preferably 10% by weight or less, more preferably 1% by weight or less.

【0015】本発明の蛍光体の製造方法の特徴は、蛍光
体の構成金属元素を含有する蛍光体原料が溶解された溶
液の微細な液滴を乾燥させて得た固体粒子(以下、「固
体状蛍光体原料粒子」という)を同伴気体と共に熱分解
合成炉に導入して、ここで加熱し、熱分解して所望の蛍
光体を合成する際、その熱分解合成反応系内に生成する
蛍光体粒子の分散媒体となる化合物を共存させておき、
前記固体状蛍光体原料粒子を加熱してこれを熱分解し、
生成する該蛍光体の前駆体(以下、固体状蛍光体原料粒
子の熱分解によって生成され、これが所望の蛍光体の結
晶核となるまでに存在する種々の中間体を総称して「蛍
光体前駆体」という)に溶融状態の前記分散媒体を接触
させた状態で熱分解に続く加熱を継続することによっ
て、前記蛍光体前駆体から生成した複数の蛍光体粒子
を、粒子状の前記分散媒体に内包させて同伴気体と共に
反応系外に取り出すもので、蛍光体前駆体から蛍光体結
晶核が生成する際、その周囲に介在する液状の分散媒体
のために蛍光体前駆体の相互が直接接触することが妨げ
られ、蛍光体結晶核の結晶成長の過程での粒子同志の凝
集を防止し、個々の粒子が実質的に独立した粒子形態を
保持した蛍光体粒子を得ることができるため、その結
果、高純度で化学組成の均一な、微小かつ分散性の極め
て良好な蛍光体粒子を製造することを可能にする。
The feature of the method for producing a phosphor of the present invention is that solid particles (hereinafter referred to as "solid") obtained by drying fine droplets of a solution in which a phosphor raw material containing a constituent metal element of the phosphor is dissolved. Fluorescent material raw material particles ") are introduced together with an entrained gas into a pyrolysis synthesis furnace, where they are heated and pyrolyzed to synthesize a desired phosphor, and fluorescence generated in the pyrolysis synthesis reaction system. A compound that serves as a dispersion medium for body particles is allowed to coexist,
The solid phosphor raw material particles are heated to thermally decompose the particles,
Precursor of the phosphor to be produced (hereinafter, various intermediates which are produced by thermal decomposition of solid-state phosphor raw material particles and exist until they become crystal nuclei of a desired phosphor are collectively referred to as “phosphor precursor”. (Hereinafter referred to as "body"), the plurality of phosphor particles produced from the phosphor precursor are dispersed in the particulate dispersion medium by continuing the thermal decomposition and the subsequent heating while the molten dispersion medium is in contact with the dispersion medium. It is encapsulated and taken out of the reaction system together with the entrained gas. When the phosphor crystal nuclei are generated from the phosphor precursor, the phosphor precursors are in direct contact with each other due to the liquid dispersion medium around them. As a result, the phosphor particles can be prevented from aggregating during the crystal growth of the phosphor crystal nuclei, and the phosphor particles in which the individual particles have substantially independent particle morphologies can be obtained. Of high purity and chemical composition In a flat, it makes it possible to produce very good phosphor particles of the fine and dispersible.

【0016】本発明で使用する分散媒体は、熱分解合成
時に溶融して、蛍光体前駆体を経由して生成してくる蛍
光体粒子の分散系を構成する物質であればよく、蛍光体
粒子と化学的に反応しにくい物質を使用することが好ま
しい。また、分散媒体の前駆物質を添加して熱分解合成
時に前記分散媒体と同様に機能する物質を使用すること
も可能である。
The dispersion medium used in the present invention may be any substance as long as it is a substance that constitutes a dispersion system of phosphor particles that are melted during pyrolysis synthesis and are generated via the phosphor precursor. It is preferable to use a substance that is difficult to chemically react with. It is also possible to add a precursor of the dispersion medium and use a substance that functions similarly to the dispersion medium during the thermal decomposition synthesis.

【0017】そして、分散媒体又はその前駆物質は、予
め蛍光体原料溶液中に添加して両者を含有する微液滴を
形成する方法と、蛍光体の構成金属元素を含有する溶液
を同伴気体中に噴霧して微液滴を形成し、乾燥して固体
状蛍光体原料粒子とした後に、高温に加熱して溶融状態
又は気体状態にした分散媒体を、前記同伴気体中の前記
固体状蛍光体原料粒子表面上に噴霧して、前記固体状蛍
光体原料粒子を内包若しくはこれに付着する分散媒体粒
子を形成する方法のいずれを選択してもよい。要は、熱
分解合成時に溶融した分散媒体中に固体状蛍光体原料粒
子が熱分解し、生成した蛍光体前駆体から生成した蛍光
体粒子を分散させることが重要である。いずれの方法に
おいても、蛍光体の結晶を成長させた後に前記分散媒体
を除去して微小蛍光体粒子を得ることが好ましい。
Then, the dispersion medium or its precursor is added in advance to the phosphor raw material solution to form fine droplets containing both, and the solution containing the constituent metal elements of the phosphor is entrained in the gas. After spraying to form fine droplets and drying to form solid phosphor raw material particles, the dispersion medium heated to a high temperature to be in a molten state or a gas state is used as the solid phosphor in the entrained gas. Any method of spraying onto the surface of the raw material particles to form the dispersion medium particles containing or adhering the solid phosphor raw material particles may be selected. In short, it is important to disperse the phosphor particles produced from the phosphor precursor, which is produced by the pyrolysis of the solid phosphor raw material particles in the dispersion medium melted during the pyrolysis synthesis. In either method, it is preferable to obtain the fine phosphor particles by growing the crystal of the phosphor and then removing the dispersion medium.

【0018】分散媒体又はその前駆物質としては、アル
カリ金属ハロゲン化物、アルカリ土類金属ハロゲン化
物、ハロゲン化亜鉛、及びアルカリ金属硫化物の群から
選ばれる少なくとも一種の化合物を使用することがで
き、その中でもアルカリ金属ハロゲン化物、ベリリウム
を除くアルカリ土類金属の塩化物、臭化マグネシウム、
フッ化亜鉛、硫化リチウム、硫化ナトリウム、及び硫化
カリウムの群から選ばれる少なくとも一種の化合物を使
用することが好ましい。
As the dispersion medium or its precursor, at least one compound selected from the group consisting of alkali metal halides, alkaline earth metal halides, zinc halides, and alkali metal sulfides can be used. Among them, alkali metal halides, chlorides of alkaline earth metals except beryllium, magnesium bromide,
It is preferable to use at least one compound selected from the group consisting of zinc fluoride, lithium sulfide, sodium sulfide, and potassium sulfide.

【0019】熱分解合成時に蛍光体粒子を内包して生成
してくる分散媒体粒子中の分散媒体の使用量は、蛍光体
の体積に対して1〜100倍の分散媒体を使用すること
が好ましい。分散媒体の使用量が上記比率より低いと、
蛍光体の結晶性を十分に向上させることができず、合成
蛍光体粒子の凝集を回避することができない。上記比率
より高いと、蛍光体の結晶性は十分に向上するものの、
分散媒体粒子中に生成する蛍光体単結晶の量が少なくな
り、生産性が低下する。分散媒体の使用量の好ましい範
囲は1〜20倍である。
The amount of the dispersion medium used in the dispersion medium particles generated by encapsulating the phosphor particles during the thermal decomposition synthesis is preferably 1 to 100 times the volume of the phosphor. . When the amount of the dispersion medium used is lower than the above ratio,
The crystallinity of the phosphor cannot be sufficiently improved, and the agglomeration of the synthetic phosphor particles cannot be avoided. When it is higher than the above ratio, the crystallinity of the phosphor is sufficiently improved,
The amount of the phosphor single crystal produced in the particles of the dispersion medium decreases, and the productivity decreases. The preferred range of the amount of the dispersion medium used is 1 to 20 times.

【0020】蛍光体原料は水や酸に投入して攪拌して十
分に溶解する。溶液内の蛍光体原料構成金属元素濃度
は、水溶液内の金属元素の溶質濃度Cが0.01≦C≦
5の範囲にあることが好ましい。ここで、Cは、水溶液
1リットルに含有される全ての金属元素の合計のモル数
である。溶質濃度が0.01より低いと、乾燥除去され
る水分量に対して合成できる蛍光体量が少ないために生
産性が低くなる。一方、溶質濃度が5より高いと、液滴
が生成しにくくなる。
The phosphor raw material is poured into water or acid and stirred to sufficiently dissolve it. The solute concentration C of the metal element in the aqueous solution is 0.01 ≦ C ≦
It is preferably in the range of 5. Here, C is the total number of moles of all metal elements contained in 1 liter of the aqueous solution. If the solute concentration is lower than 0.01, the amount of fluorescent substance that can be synthesized is small with respect to the amount of water removed by drying, resulting in low productivity. On the other hand, if the solute concentration is higher than 5, it becomes difficult to generate droplets.

【0021】同伴気体中で蛍光体原料溶液を微液滴にす
る方法としては、以下の方法を採用できる。例えば、加
圧空気で液体を吸い上げながら噴霧して1〜50μmの
液滴を形成する方法、圧電結晶からの2MHz程度の超
音波を利用して4〜10μmの液滴を形成する方法、穴
径が10〜20μmのオリフィスが振動子により振動
し、そこへ一定の速度で供給される液体が振動数に応じ
て一定量ずつ穴から放出され5〜50μmの液滴を形成
する方法、回転している円板上に液を一定速度で落下さ
せて遠心力によって20〜100μmの液滴を形成する
方法、液体表面に高い電圧を引加して0.5〜10μm
の液滴を発生する方法などが挙げられる。
The following method can be adopted as a method for forming the phosphor raw material solution into fine droplets in the accompanying gas. For example, a method of forming a droplet of 1 to 50 μm by sucking the liquid with pressurized air to form a droplet of 1 to 50 μm, a method of forming a droplet of 4 to 10 μm using an ultrasonic wave of about 2 MHz from a piezoelectric crystal, a hole diameter The orifice of 10 to 20 μm vibrates by the oscillator, and the liquid supplied to the orifice at a constant speed is discharged from the hole at a constant amount according to the frequency of vibration to form a droplet of 5 to 50 μm. A method of dropping a liquid on a circular plate at a constant speed to form droplets of 20 to 100 μm by centrifugal force, 0.5 to 10 μm by applying a high voltage to the liquid surface.
And the like.

【0022】形成された微液滴は、同伴気体流により乾
燥器内に導入され加熱されて固体状蛍光体原料粒子とな
る。溶液の種類、気体の種類、気体流量、熱分解合成炉
内の温度などの加熱速度に影響を与える因子の調整によ
り、中空の球、ポーラス、中の詰まった粒子、破砕され
た粒子など、生成する固体状蛍光体原料粒子の形態及び
表面状態を制御することができる。
The formed fine droplets are introduced into the dryer by the entrained gas flow and heated to become solid phosphor raw material particles. By adjusting factors that affect the heating rate such as the type of solution, type of gas, gas flow rate, temperature in the pyrolysis synthesis furnace, etc., hollow spheres, pores, clogged particles inside, crushed particles, etc. are generated. It is possible to control the morphology and surface condition of the solid-state phosphor raw material particles.

【0023】同伴気体としては、空気、酸素、窒素、水
素、少量の一酸化炭素や水素や硫化水素を含む窒素やア
ルゴンなどが使用できる。良好な発光特性を得るために
は、蛍光体の化学組成と発光に関与する付活剤イオンの
種類により気体を選択することが重要である。例えば、
酸化雰囲気で原子価を保ちやすいEu3+等を付活イオン
とする酸化物を主相とする蛍光体を合成する場合には、
空気や酸素などの酸化性ガスが好ましく、還元雰囲気で
原子価を保ちやすいEu2+等を付活イオンとする酸化物
を主相とする蛍光体を合成する場合には、水素、少量の
水素を含む窒素やアルゴンなどの還元性ガスが好まし
い。また、硫化物蛍光体や酸硫化物蛍光体を合成する際
には、硫化水素を含有する同伴気体を使用することが好
ましい。
As the accompanying gas, air, oxygen, nitrogen, hydrogen, a small amount of carbon monoxide, nitrogen containing hydrogen or hydrogen sulfide, argon, or the like can be used. In order to obtain good light emission characteristics, it is important to select a gas depending on the chemical composition of the phosphor and the kind of activator ions involved in light emission. For example,
When synthesizing a phosphor whose main phase is an oxide having Eu 3+ or the like as an activating ion, which easily maintains valence in an oxidizing atmosphere,
Oxidizing gas such as air or oxygen is preferable, and hydrogen or a small amount of hydrogen is used when synthesizing a phosphor whose main phase is an oxide having Eu 2+ or the like as an activating ion, which easily maintains the valence in a reducing atmosphere. Reducing gases such as nitrogen and argon containing are preferred. Further, when synthesizing the sulfide phosphor or the oxysulfide phosphor, it is preferable to use an entrained gas containing hydrogen sulfide.

【0024】熱分解合成炉での蛍光体の生産効率を上げ
るために、分級器を使用して液滴同伴気体の単位体積当
たりの液滴体積を濃縮することが好ましい。分級器とし
ては、重力分級器、遠心分級器、慣性分級器などが使用
し得る。しかし、微液滴を同伴した気体から、気体の一
部と共に上記の液滴径の下限未満の微液滴を除去して、
液滴同伴気体の単位体積当たりの液滴体積を濃縮するた
めには、慣性分級器が好適である。
In order to increase the production efficiency of the phosphor in the pyrolysis synthesis furnace, it is preferable to use a classifier to concentrate the droplet volume per unit volume of the droplet entrained gas. As the classifier, a gravity classifier, a centrifugal classifier, an inertial classifier, or the like can be used. However, from the gas accompanied by the fine droplets, by removing a part of the gas and the fine droplets having a diameter smaller than the above lower limit,
An inertial classifier is suitable for concentrating the droplet volume per unit volume of the droplet entrained gas.

【0025】微液滴の乾燥方法としては、凍結乾燥、減
圧乾燥、拡散乾燥、加熱乾燥などが採用できる。しか
し、凍結乾燥や減圧乾燥などと比較して加熱乾燥が工業
的生産性において優れている。乾燥して得られる固体状
蛍光体原料粒子の温度は、熱分解前に100℃以上に保
持することが好ましい。この温度が熱分解前に100℃
未満になると乾燥時に発生した水蒸気が凝縮して固体状
蛍光体原料を部分的に再溶解するため、所望の形状や粒
径の蛍光体粒子を得ることができない。
As the method for drying the fine droplets, freeze drying, reduced pressure drying, diffusion drying, heat drying and the like can be adopted. However, heat drying is superior in industrial productivity as compared with freeze-drying or vacuum drying. The temperature of the solid-state phosphor raw material particles obtained by drying is preferably maintained at 100 ° C. or higher before thermal decomposition. This temperature is 100 ℃ before pyrolysis
If the amount is less than the above, the steam generated during drying is condensed and the solid-state phosphor raw material is partially redissolved, so that phosphor particles having a desired shape and particle size cannot be obtained.

【0026】本発明において、固体状蛍光体原料の熱分
解合成は、分散媒体を溶融状態で使用するため、少なく
とも該固体状蛍光体原料の熱分解により生じた蛍光体前
駆体の加熱時には分散媒体の融点以上の温度で行う必要
があり、好ましくは融点より200℃高い温度以下の温
度範囲で熱分解合成を行うことが望ましい。融点以上で
しかも融点より200℃高い温度以下とすることによ
り、熱分解合成時に蛍光体前駆体を分散媒体粒子中に内
包させ、溶融状態の分散媒体で周囲を包まれた蛍光体前
駆体から蛍光体の結晶核を生成し成長させることがきる
ので、合成後の蛍光体粒子が凝集することもない。その
結果、蛍光体の結晶性を著しく向上させ、かつ、高純度
で化学組成の均一な微小蛍光体粒子を得ることができる
ようになった。
In the present invention, since the dispersion medium is used in a molten state in the thermal decomposition synthesis of the solid state phosphor raw material, the dispersion medium is heated at least when the phosphor precursor generated by the thermal decomposition of the solid state phosphor raw material is heated. It is necessary to carry out the thermal decomposition synthesis at a temperature above the melting point of, and preferably within the temperature range of 200 ° C. higher than the melting point. By setting the temperature above the melting point and below 200 ° C. higher than the melting point, the phosphor precursor is included in the dispersion medium particles during the thermal decomposition synthesis, and fluorescence is emitted from the phosphor precursor surrounded by the molten dispersion medium. Since crystal nuclei of the body can be generated and grown, the phosphor particles after synthesis do not aggregate. As a result, it has become possible to remarkably improve the crystallinity of the phosphor and obtain fine phosphor particles having a high purity and a uniform chemical composition.

【0027】蛍光体前駆体から生成した蛍光体粒子を包
囲する分散媒体は、蛍光体の合成を終了した後に除去す
ることが発光特性を確保するために好ましい。分散媒体
の存在は、蛍光体を励起する際に使用する入射電子や紫
外線を吸収したり、蛍光体からの発光を吸収するため、
発光特性を低下させる要因となる場合があるからであ
る。
The dispersion medium surrounding the phosphor particles produced from the phosphor precursor is preferably removed after the synthesis of the phosphor is completed in order to secure the light emission characteristics. The presence of the dispersion medium absorbs incident electrons or ultraviolet rays used when exciting the phosphor, or absorbs light emitted from the phosphor,
This is because it may cause deterioration of the light emission characteristics.

【0028】分散媒体として水溶性の無機塩を使用する
ときには、分散媒体中で蛍光体を合成した後、水で分散
媒体を溶解して容易に除去することができ、微小蛍光体
粒子の回収が容易となる。なお、使用可能な分散媒体の
融点は蛍光体の融点より低いので、分散媒体を加熱して
蒸発させ、蛍光体粒子を分離回収することも可能であ
る。
When a water-soluble inorganic salt is used as the dispersion medium, after the phosphor is synthesized in the dispersion medium, the dispersion medium can be dissolved and easily removed with water, and the fine phosphor particles can be recovered. It will be easy. Since the melting point of the usable dispersion medium is lower than the melting point of the phosphor, it is also possible to heat and evaporate the dispersion medium to separate and collect the phosphor particles.

【0029】熱分解合成は、熱分解炉中の滞留時間を
0.1秒間〜1分間の範囲で実施することが好ましく、
0.5秒間〜5秒間の範囲で実施することがより好まし
い。熱分解合成の滞留時間が短すぎると、蛍光体原料が
十分に熱分解せず、蛍光体が生成しないことがある。ま
た、結晶性が低い上に、付活剤イオンが結晶内部まで確
実に付活させることができず発光特性が低くなる。一
方、熱分解合成時の滞留時間が長すぎると、分散媒体が
蒸発して、結晶核の周囲を分散媒体で確実に包むことが
できず、凝集粒子を発生するおそれがある。また、不要
なエネルギーを浪費することにもなる。
The pyrolysis synthesis is preferably carried out with a residence time in the pyrolysis furnace in the range of 0.1 seconds to 1 minute,
It is more preferable to carry out in the range of 0.5 seconds to 5 seconds. If the residence time of the pyrolysis synthesis is too short, the phosphor raw material may not be sufficiently decomposed by heat, and the phosphor may not be produced. In addition, the crystallinity is low, and the activator ions cannot be surely activated to the inside of the crystal, so that the light emitting property is deteriorated. On the other hand, if the residence time during pyrolysis synthesis is too long, the dispersion medium evaporates, and the periphery of the crystal nucleus cannot be reliably wrapped with the dispersion medium, which may cause agglomerated particles. It also wastes unnecessary energy.

【0030】分散媒体粒子内に含有される蛍光体粒子の
最大径は、1〜500nmの範囲とすることが好まし
く、1〜100nmの範囲とすることがより好ましく、
1〜10nmの範囲とすることが更に好ましい。蛍光体
粒子の最大径が、1nmより小さいと付活剤を結晶内に
均一に導入することが難しい。一方、蛍光体粒子の最大
径が大きすぎると、分散媒体の粒子内に空間的に独立す
る複数の蛍光体粒子を合成することが困難となる。ま
た、最大径が10nm以下の場合には、蛍光体の発光特
性を顕著に向上させることができる。
The maximum diameter of the phosphor particles contained in the dispersion medium particles is preferably in the range of 1 to 500 nm, more preferably in the range of 1 to 100 nm.
The range of 1 to 10 nm is more preferable. If the maximum diameter of the phosphor particles is smaller than 1 nm, it is difficult to uniformly introduce the activator into the crystal. On the other hand, if the maximum diameter of the phosphor particles is too large, it becomes difficult to synthesize a plurality of spatially independent phosphor particles in the particles of the dispersion medium. Moreover, when the maximum diameter is 10 nm or less, the emission characteristics of the phosphor can be remarkably improved.

【0031】[0031]

【実施例】以下、本発明を実施例により更に詳細に説明
する。 (実施例1)蛍光体の化学組成が(Y0.94, Eu0.06
2 2 Sとなるように硝酸イットリウムと硝酸ユーロピ
ウムをそれぞれ水に溶解し、(Y0.94, Eu0.062
2 S蛍光体の体積に対し、分散媒体である硫化ナトリウ
ムの体積が10倍となるように分散媒体の前駆物質であ
る硝酸ナトリウムを添加し、硝酸を添加して硝酸イット
リウムユーロピウムとして溶質濃度Cが0.03モル/
リットルの均質な水溶液を調製した。
EXAMPLES The present invention will now be described in more detail with reference to examples. (Example 1) The chemical composition of the phosphor is (Y 0.94 , Eu 0.06 ).
Yttrium nitrate and europium nitrate are each dissolved in water so as to become 2 O 2 S, and (Y 0.94 , Eu 0.06 ) 2 O
Sodium nitrite, which is a precursor of the dispersion medium, is added so that the volume of sodium sulfide that is the dispersion medium is 10 times the volume of the 2 S phosphor, and nitric acid is added to the solute concentration C as yttrium europium nitrate. 0.03 mol /
A liter of a homogeneous aqueous solution was prepared.

【0032】同伴気体として硫化水素を20体積%含む
窒素を使用し、この水溶液を1.7MHzの振動子を有
する超音波噴霧器に入れて微液滴を形成した。この微液
滴を加熱乾燥して固体状蛍光体原料粒子を得た。この固
体状蛍光体原料粒子を200℃に保持しながら熱分解合
成炉に搬送して、最高温度が650℃の電気炉内で3秒
間だけ滞留させて熱分解合成を行い、熱分解合成炉から
生成し同伴気体中に浮遊する、硫化ナトリウムと蛍光体
粒子からなる分散媒体粒子を電気集塵器で捕集した。得
られた分散媒体粒子の破断面を観察したところ、その粒
子内に多数の(Y0.94, Eu0.062 2 S蛍光体結晶
の分散粒子が観察された。また、得られた上記の硫化ナ
トリウムからなる分散媒体粒子を希塩酸及び水で洗浄し
て、硫化ナトリウムを除去して(Y0.94, Eu0.062
2 S蛍光体粒子を得た。
Nitrogen containing 20% by volume of hydrogen sulfide was used as a companion gas, and this aqueous solution was put into an ultrasonic atomizer having a vibrator of 1.7 MHz to form fine droplets. The fine droplets were heated and dried to obtain solid phosphor raw material particles. The solid phosphor raw material particles are conveyed to a pyrolysis synthesis furnace while being kept at 200 ° C., and retained for 3 seconds in an electric furnace having a maximum temperature of 650 ° C. to perform pyrolysis synthesis, and then from the pyrolysis synthesis furnace. Dispersion medium particles composed of sodium sulfide and phosphor particles, which were generated and suspended in the accompanying gas, were collected by an electrostatic precipitator. When the fracture surface of the obtained dispersion medium particles was observed, a large number of dispersed particles of (Y 0.94 , Eu 0.06 ) 2 O 2 S phosphor crystals were observed in the particles. The obtained dispersion medium particles made of sodium sulfide are washed with dilute hydrochloric acid and water to remove sodium sulfide (Y 0.94 , Eu 0.06 ) 2
O 2 S phosphor particles were obtained.

【0033】この蛍光体の粉末X線回折パターンを調べ
たところ、不純物相の存在しない単相の酸硫化物蛍光体
が生成していることが分かった。また、この蛍光体粒子
の形状と結晶性を電子顕微鏡下で観察したところ、平均
粒子径が10nmの結晶性の良好な単結晶が多数観察さ
れた。この蛍光体について25kVの電子線照射下での
発光スペクトルを測定したところ、良好な赤色発光を示
した。
When the powder X-ray diffraction pattern of this phosphor was examined, it was found that a single-phase oxysulfide phosphor having no impurity phase was produced. When the shape and crystallinity of the phosphor particles were observed under an electron microscope, many single crystals with an average particle diameter of 10 nm and good crystallinity were observed. When the emission spectrum of this phosphor was measured under irradiation with an electron beam of 25 kV, good red emission was shown.

【0034】(実施例2)蛍光体の化学組成が
(Y0.94, Eu0.062 3 となるように硝酸イットリ
ウムと硝酸ユーロピウムをそれぞれ水に溶解し、(Y
0.94, Eu0.062 3 蛍光体の体積に対して4倍の体
積となるように分散媒体である塩化ナトリウムを添加し
少量の硝酸を添加して硝酸イットリウムユーロピウムと
して溶質濃度Cが0.1モル/リットルの均質な水溶液
を調製した。得られた水溶液のpHは1.0であり、固
形分の混在はなかった。同伴気体として空気を使用し、
この水溶液を1.7MHzの振動子を有する超音波噴霧
器に入れて平均粒径5μmの微液滴を形成した。
(Example 2) Yttrium nitrate and europium nitrate were dissolved in water so that the chemical composition of the phosphor would be (Y 0.94 , Eu 0.06 ) 2 O 3, and (Y
0.94 , Eu 0.06 ) 2 O 3 The sodium chloride as a dispersion medium and a small amount of nitric acid are added so that the volume becomes 4 times the volume of the phosphor, and the solute concentration C is 0.1 as yttrium europium nitrate. A homogeneous aqueous solution of mol / l was prepared. The pH of the obtained aqueous solution was 1.0, and solids were not mixed. Use air as a companion gas,
This aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets having an average particle size of 5 μm.

【0035】この微液滴を加熱乾燥して固体状蛍光体原
料粒子を得た。この固体状蛍光体原料粒子を200℃に
保持しながら熱分解合成炉に搬送して、最高温度が85
0℃の電気炉内に1秒間だけ滞留させて熱分解合成し
て、熱分解合成炉から生成してきた同伴気体中に浮遊す
る、塩化ナトリウムと蛍光体粒子とからなる分散媒体粒
子を電気集塵器で捕集した。このようにして得られた分
散媒体粒子の破断面を観察したところ、その分散媒体粒
子内に多数の(Y0.94, Eu0.062 3 蛍光体結晶か
らなる分散粒子が観察された。また、得られた上記の塩
化ナトリウムの分散媒体粒子を希塩酸及び水で洗浄し
て、塩化ナトリウムを除去して(Y0.94, Eu0.062
3 蛍光体粒子を得た。
The fine droplets were heated and dried to obtain solid phosphor raw material particles. The solid phosphor raw material particles were conveyed to a pyrolysis synthesis furnace while being kept at 200 ° C., and the maximum temperature was 85
Electrolytic dust collection of dispersion medium particles consisting of sodium chloride and phosphor particles suspended in entrained gas generated from the pyrolysis synthesis furnace by allowing it to stay in an electric furnace at 0 ° C for only 1 second for pyrolysis synthesis I collected it with a vessel. When the fracture surface of the dispersion medium particles thus obtained was observed, dispersed particles composed of a large number of (Y 0.94 , Eu 0.06 ) 2 O 3 phosphor crystals were observed in the dispersion medium particles. Further, the obtained dispersion medium particles of sodium chloride are washed with dilute hydrochloric acid and water to remove sodium chloride (Y 0.94 , Eu 0.06 ) 2
O 3 phosphor particles were obtained.

【0036】この蛍光体の粉末X線回折パターンを調べ
たところ、不純物相の存在しない単相の酸化物蛍光体が
生成していることが分かった。また、この蛍光体粒子の
形状と結晶性を電子顕微鏡下で観察したところ、平均粒
子径40nmの結晶性の良好な単結晶が多数観察され
た。この蛍光体について波長254nmの紫外線照射下
での発光スペクトルを測定したところ、良好な赤色発光
を示した。
When the powder X-ray diffraction pattern of this phosphor was examined, it was found that a single-phase oxide phosphor having no impurity phase was produced. When the shape and crystallinity of the phosphor particles were observed under an electron microscope, a large number of single crystals with an average particle diameter of 40 nm and good crystallinity were observed. When the emission spectrum of this phosphor was measured under irradiation with ultraviolet light having a wavelength of 254 nm, favorable red emission was shown.

【0037】(実施例3)蛍光体の化学組成がZn
0.9998Ag0.0002Cl0.00020.9998となるように硝酸
亜鉛と塩化銀とチオ尿素をそれぞれ水に溶解し、Zn
0.9998Ag0.0002Cl0. 00020.9998蛍光体の体積に対
して5倍の体積となるように分散媒体である臭化カリウ
ムを添加して硝酸亜鉛と塩化銀の溶質濃度Cが0.05
モル/リットルの均質な水溶液を調製した。同伴気体と
して硫化水素を5体積%含む窒素を使用し、この水溶液
を1.7MHzの振動子を有する超音波噴霧器に入れて
微液滴を形成した。
Example 3 The chemical composition of the phosphor is Zn
0.9998 Ag 0.0002 Cl 0.0002 S 0.9998 Zinc nitrate, silver chloride, and thiourea were dissolved in water to obtain Zn.
0.9998 Ag 0.0002 Cl 0. 0002 S 0.9998 The solute concentration C of zinc nitrate and silver chloride is 0.05 by adding potassium bromide as a dispersion medium so that the volume becomes 5 times the volume of the phosphor.
A homogeneous aqueous solution of mol / l was prepared. Nitrogen containing 5% by volume of hydrogen sulfide was used as an entrained gas, and this aqueous solution was put into an ultrasonic atomizer having a 1.7 MHz oscillator to form fine droplets.

【0038】この微液滴を加熱乾燥して固体状蛍光体原
料粒子を得た。この固体状蛍光体原料粒子を150℃に
保持しながら熱分解合成炉に搬送して、最高温度が60
0℃の熱分解合成炉内で1.2秒間だけ滞留させて熱分
解合成を行い、Zn0.9998Ag0.0002Cl0.0002
0.9998蛍光体を合成し、熱分解合成炉から生成してき
た、同伴気体中に浮遊する硫化カリウムと臭化カリウム
の混合体と蛍光体粒子からなる固体状の分散媒体粒子を
電気集塵器で捕集した。得られた分散媒体粒子の破断面
を観察したところ、その分散媒体粒子内に多数の蛍光体
結晶の分散粒子が観察された。また、得られた上記の硫
化カリウムと臭化カリウムの混合体と蛍光体粒子からな
る分散媒体粒子を希塩酸及び水で洗浄して、分散媒体の
硫化カリウムと臭化カリウムを除去してZn0.9998Ag
0.0002Cl0.00020.9998蛍光体粒子を得た。
The fine droplets were heated and dried to obtain solid phosphor raw material particles. While maintaining the raw material particles of the solid-state phosphor at 150 ° C., the raw material particles were conveyed to a pyrolysis synthesis furnace and the maximum temperature was 60
Zn 0.9998 Ag 0.0002 Cl 0.0002 S was carried out by allowing it to stay in a pyrolysis synthesis furnace at 0 ° C for 1.2 seconds.
0.9998 A fluorescent substance was synthesized, and a solid dispersion medium particle composed of a phosphor particle and a mixture of potassium sulfide and potassium bromide suspended in an entrained gas generated from a pyrolysis synthesis furnace was collected by an electrostatic precipitator. Gathered. When the fracture surface of the obtained dispersion medium particles was observed, a large number of dispersed particles of phosphor crystals were observed in the dispersion medium particles. Further, the obtained dispersion medium particles consisting of a mixture of potassium sulfide and potassium bromide and phosphor particles are washed with dilute hydrochloric acid and water to remove potassium sulfide and potassium bromide in the dispersion medium to obtain Zn 0.9998 Ag.
0.0002 Cl 0.0002 S 0.9998 phosphor particles were obtained.

【0039】この蛍光体の粉末X線回折パターンを調べ
たところ、不純物相の存在しない単相の硫化物蛍光体が
生成していることが分かった。また、この蛍光体粒子の
形状と結晶性を電子顕微鏡下で観察したところ、平均粒
子径9nmの結晶性の良好な単結晶が多数観察された。
この蛍光体について25kVの電子線照射下での発光ス
ペクトルを測定したところ、良好な青色発光を示した。
When the powder X-ray diffraction pattern of this phosphor was examined, it was found that a single-phase sulfide phosphor in which an impurity phase did not exist was produced. When the shape and crystallinity of the phosphor particles were observed under an electron microscope, many single crystals having an average particle diameter of 9 nm and good crystallinity were observed.
When the emission spectrum of this phosphor was measured under irradiation with an electron beam of 25 kV, good blue emission was shown.

【0040】(比較例1)実施例1において、熱分解合
成炉の最高温度を650℃から200℃に変更して、分
散媒体の硫化ナトリウムを固体状態で使用した以外は実
施例1と同様にして蛍光体粒子を得た。得られた蛍光体
の粉末X線回折パターンを調べたところ、非晶質に近い
物資が生成していて所望の結晶性を得ることができず、
実施例1と同様に蛍光体を励起したが発光を認めること
はできなかった。
Comparative Example 1 The same as Example 1 except that the maximum temperature of the pyrolysis synthesis furnace was changed from 650 ° C. to 200 ° C. and sodium sulfide as a dispersion medium was used in a solid state. Thus, phosphor particles were obtained. When the powder X-ray diffraction pattern of the obtained phosphor was examined, a material close to an amorphous substance was generated and desired crystallinity could not be obtained.
The phosphor was excited in the same manner as in Example 1, but no emission could be observed.

【0041】(比較例2)実施例2において、熱分解合
成炉の最高温度を850℃から600℃に変更して、分
散媒体の塩化ナトリウムを固体状態で使用した以外は実
施例2と同様にして蛍光体粒子を得た。得られた蛍光体
の粉末X線回折パターンを調べたところ、不純物相の存
在しない単相の酸化物蛍光体が生成していることが分か
った。しかし、蛍光体粒子の形状と結晶性を電子顕微鏡
下で観察したところ、結晶性が不良で不定形結晶が凝集
した粒子であり、粒度分布が広かった。この蛍光体に波
長254nm紫外線照射下での発光スペクトルを測定し
たところ、弱い赤色発光を示した。
Comparative Example 2 The same as Example 2 except that the maximum temperature of the pyrolysis synthesis furnace was changed from 850 ° C. to 600 ° C. and sodium chloride as a dispersion medium was used in a solid state. Thus, phosphor particles were obtained. When the powder X-ray diffraction pattern of the obtained phosphor was examined, it was found that a single-phase oxide phosphor having no impurity phase was formed. However, when the shape and crystallinity of the phosphor particles were observed under an electron microscope, they were particles having poor crystallinity and agglomerated with amorphous crystals, and the particle size distribution was wide. When the emission spectrum of this phosphor was measured under irradiation with ultraviolet light having a wavelength of 254 nm, it showed weak red emission.

【0042】(比較例3)実施例2において、分散媒体
の塩化ナトリウムの添加を省略した以外は実施例2と同
様にして蛍光体粒子を得た。得られた蛍光体の粉末X線
回折パターンを調べたところ、不純物相の存在しない単
相の酸化物蛍光体が生成していることが分かった。しか
し蛍光体粒子の形状と結晶性を電子顕微鏡下で観察した
ところ、平均粒子径が1μmと大きく結晶性が不良で不
定形結晶が凝集した粒子であった。この蛍光体について
波長254nm紫外線照射下での発光スペクトルを測定
したところ、弱い赤色発光を示した。
(Comparative Example 3) Phosphor particles were obtained in the same manner as in Example 2 except that the addition of sodium chloride as the dispersion medium was omitted. When the powder X-ray diffraction pattern of the obtained phosphor was examined, it was found that a single-phase oxide phosphor having no impurity phase was formed. However, when the shape and crystallinity of the phosphor particles were observed under an electron microscope, it was found that the average particle diameter was as large as 1 μm and the crystallinity was poor and the amorphous crystals were aggregated. When the emission spectrum of this phosphor was measured under irradiation with ultraviolet light having a wavelength of 254 nm, it showed weak red light emission.

【0043】(比較例4)実施例2において、熱分解合
成炉の最高温度を850℃から1600℃に変更して、
分散媒体を気体状態で作用させた以外は実施例2と同様
にして蛍光体粒子を得た。この蛍光体の粉末X線回折パ
ターンを調べたところ、不純物相の存在しない単相の酸
化物蛍光体が生成していることが分かった。しかし、蛍
光体粒子の形状と結晶性を電子顕微鏡下で観察したとこ
ろ、平均粒子径が1μmと大きく結晶性が良好な多結晶
の粒子が一個だけ観察された。この蛍光体について波長
254nm紫外線照射下での発光スペクトルを測定した
ところ赤色発光を示した。
(Comparative Example 4) In Example 2, the maximum temperature of the pyrolysis synthesis furnace was changed from 850 ° C to 1600 ° C,
Phosphor particles were obtained in the same manner as in Example 2 except that the dispersion medium was allowed to act in a gas state. When the powder X-ray diffraction pattern of this phosphor was examined, it was found that a single-phase oxide phosphor having no impurity phase was produced. However, when the shape and crystallinity of the phosphor particles were observed under an electron microscope, only one polycrystalline particle having a large average particle diameter of 1 μm and good crystallinity was observed. When the emission spectrum of this phosphor was measured under irradiation with ultraviolet light having a wavelength of 254 nm, red emission was observed.

【0044】[0044]

【発明の効果】本発明は、上記の構成を採用することに
より、結晶性が良好であり、凝集粒子が少なく、高純度
で化学組成が均一で、発光特性の優れた微小蛍光体粒子
を得ることが可能となり、ブラウン管、蛍光ランプやP
DPなどに適用するときに均質で緻密な高輝度蛍光膜を
安価に提供できるようになった。
EFFECTS OF THE INVENTION By adopting the above constitution, the present invention provides fine phosphor particles having good crystallinity, few aggregated particles, high purity and uniform chemical composition, and excellent emission characteristics. It becomes possible to use cathode ray tubes, fluorescent lamps and P
When applied to DP and the like, it has become possible to inexpensively provide a homogeneous and dense high-brightness fluorescent film.

フロントページの続き (72)発明者 奥山 喜久夫 広島県東広島市鏡山2−365 広大ががら 第一職員宿舎 (72)発明者 下村 康夫 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社内 (72)発明者 木島 直人 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 Fターム(参考) 4H001 CA01 CA06 CF01 XA00 XA20 XA38 XA39 XA56 XA57 XA59 XA60 XA63 XA64 XA66 Continued front page    (72) Inventor Kikuo Okuyama             Hiroshima Prefecture Higashihiroshima City Kagamiyama 2-365             First staff dormitory (72) Inventor Yasuo Shimomura             1060 Narita, Odawara-shi, Kanagawa Kasei Op             Tonics Co., Ltd. (72) Inventor Naoto Kijima             1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa             Mitsubishi Chemical Corporation Yokohama Research Institute F-term (reference) 4H001 CA01 CA06 CF01 XA00 XA20                       XA38 XA39 XA56 XA57 XA59                       XA60 XA63 XA64 XA66

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蛍光体の構成金属元素を含有する溶液を
同伴気体中に噴霧して微液滴を形成した後、前記微液滴
を乾燥して固体状蛍光体原料粒子となし、該固体状蛍光
体原料粒子を加熱することにより前記蛍光体の前駆体を
生成させ、該蛍光体前駆体を経由して前記蛍光体の結晶
相を主相とする蛍光体粒子を製造する方法において、前
記蛍光体と化学的に反応しにくい溶融状態の分散媒体と
前記蛍光体前駆体とを接触させながら前記加熱を継続
し、前記同伴気体中に浮遊する前記分散媒体の粒子内に
前記蛍光体前駆体から複数の蛍光体粒子を分散させた状
態で生成させること特徴とする蛍光体粒子の製造方法。
1. A solution containing a constituent metal element of a phosphor is sprayed into an entrained gas to form fine droplets, and the fine droplets are dried to form solid phosphor raw material particles. A precursor of the phosphor is generated by heating the phosphor-like raw material particles, and a method for producing phosphor particles having a crystal phase of the phosphor as a main phase via the phosphor precursor, Continuing the heating while contacting the dispersion medium in a molten state that is difficult to chemically react with the phosphor and the phosphor precursor, and the phosphor precursor in the particles of the dispersion medium suspended in the accompanying gas And a method for producing phosphor particles, wherein a plurality of phosphor particles are produced in a dispersed state.
【請求項2】 前記分散媒体の原料として、前記蛍光体
粒子の生成時に請求項1記載の溶融状態の分散媒体を生
成し得る前記分散媒体の前駆物質を使用することを特徴
とする蛍光体粒子の製造方法。
2. A phosphor particle characterized in that a precursor of the dispersion medium capable of forming the dispersion medium in a molten state according to claim 1 is used as a raw material of the dispersion medium when the phosphor particle is formed. Manufacturing method.
【請求項3】 前記蛍光体の構成金属元素を含有する前
記溶液に、前記分散媒体又はその前駆物質を予め含有さ
せることを特徴とする請求項1又は2記載の蛍光体粒子
の製造方法。
3. The method for producing phosphor particles according to claim 1, wherein the dispersion medium or its precursor is previously contained in the solution containing a constituent metal element of the phosphor.
【請求項4】 前記分散媒体又はその前駆物質として、
アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン
化物、ハロゲン化亜鉛、及びアルカリ金属硫化物の群か
ら選ばれる少なくとも一種の化合物を使用することを特
徴とする請求項1〜3のいずれか一項に記載の蛍光体粒
子の製造方法。
4. The dispersion medium or the precursor thereof,
4. At least one compound selected from the group of alkali metal halides, alkaline earth metal halides, zinc halides, and alkali metal sulfides is used. The method for producing phosphor particles according to claim 1.
【請求項5】 前記蛍光体粒子を生成させた後、前記分
散媒体を水に溶解して除去することを特徴とする請求項
1〜4のいずれか一項に記載の蛍光体粒子の製造方法。
5. The method for producing phosphor particles according to claim 1, wherein after the phosphor particles are generated, the dispersion medium is dissolved and removed in water. .
【請求項6】 前記蛍光体粒子の最大径が1〜500n
mの範囲にすることを特徴とする請求項1〜5のいずれ
か一項に記載の蛍光体粒子の製造方法。
6. The maximum diameter of the phosphor particles is 1 to 500 n.
The method for producing phosphor particles according to any one of claims 1 to 5, characterized in that the range is m.
JP2001218181A 2001-04-27 2001-07-18 Method for producing phosphor particle Pending JP2003027050A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001218181A JP2003027050A (en) 2001-07-18 2001-07-18 Method for producing phosphor particle
EP02722857A EP1298183A1 (en) 2001-04-27 2002-04-26 Phosphor and production method therefor
KR1020027017568A KR20040002393A (en) 2001-04-27 2002-04-26 Phosphor and production method therefor
CN02801419A CN1462304A (en) 2001-04-27 2002-04-26 Phosphor and production method therefor
PCT/JP2002/004265 WO2002088275A1 (en) 2001-04-27 2002-04-26 Phosphor and production method therefor
US10/325,826 US6712993B2 (en) 2001-04-27 2002-12-23 Phosphor and its production process
US10/701,449 US7001537B2 (en) 2001-04-27 2003-11-06 Phosphor and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218181A JP2003027050A (en) 2001-07-18 2001-07-18 Method for producing phosphor particle

Publications (1)

Publication Number Publication Date
JP2003027050A true JP2003027050A (en) 2003-01-29

Family

ID=19052401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218181A Pending JP2003027050A (en) 2001-04-27 2001-07-18 Method for producing phosphor particle

Country Status (1)

Country Link
JP (1) JP2003027050A (en)

Similar Documents

Publication Publication Date Title
US6712993B2 (en) Phosphor and its production process
JPH0745655B2 (en) Method for manufacturing phosphor
TW200914581A (en) Oxide light emission body
US7001537B2 (en) Phosphor and its production process
JP2000336353A (en) Production of fluorescent aluminate
KR20010038293A (en) Process for Preparing Oxidized Phosphor Particles by Spray Pyrolysis Employing Flux
JP2000087033A (en) Production of phosphor
KR100481618B1 (en) Preparation method of a nano-size red phosphor
JP2003027050A (en) Method for producing phosphor particle
EP1236784A1 (en) Method for producing phosphor
JP2004277543A (en) Method for producing phosphor particle
KR100390775B1 (en) Preparation of red phosphor particles for PDP by spray pyrolysis
JP2002322472A (en) Fluorophor and method for producing the same
JP2002069441A (en) Method of producing acid sulfide fluorescent substance
JP2005002157A (en) Method for producing phosphor
JP2004256763A (en) Method for producing phosphor
US20020182140A1 (en) Method for producing phosphor
JP4266488B2 (en) Phosphor made of hollow particles, method for producing the same, and phosphor slurry
JP2000109825A (en) Preparation of terbium-activated yttrium aluminate fluorescent substance
JP2001152144A (en) Preparation process of fluorescent body
JP2002322470A (en) Fluorophor and method for producing the same
JPH03207787A (en) Rare earth metal silicate salt fluorescent substance and preparation thereof
KR100411176B1 (en) Preparation method of blue and green emitting Barium-Magnesium-aluminate phosphor particles by spray pyrolysis using non-organic polymer solution
JP2002322469A (en) Fluorophor and method for producing the same
JP2000096048A (en) Production of terbium-activated yttrium silicate fluorescent substance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070904