JP2003022926A - Surface-treating nickel powder for laminated ceramic capacitor inner electrode and its manufacturing method - Google Patents

Surface-treating nickel powder for laminated ceramic capacitor inner electrode and its manufacturing method

Info

Publication number
JP2003022926A
JP2003022926A JP2001205747A JP2001205747A JP2003022926A JP 2003022926 A JP2003022926 A JP 2003022926A JP 2001205747 A JP2001205747 A JP 2001205747A JP 2001205747 A JP2001205747 A JP 2001205747A JP 2003022926 A JP2003022926 A JP 2003022926A
Authority
JP
Japan
Prior art keywords
nickel
treated
nickel powder
powder
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001205747A
Other languages
Japanese (ja)
Other versions
JP4683598B2 (en
Inventor
Takayuki Araki
隆之 荒木
Yoshiharu Toyoshima
義治 豊島
Taku Fujimoto
卓 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001205747A priority Critical patent/JP4683598B2/en
Publication of JP2003022926A publication Critical patent/JP2003022926A/en
Application granted granted Critical
Publication of JP4683598B2 publication Critical patent/JP4683598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide surface-treating nickel powder which is excellent in oxidation prevention property and heat resistance of nickel during binder removal and is suitable for manufacturing of a compact multilayer lamination ceramic capacitor of thin ceramic dielectric and inner electrode, and its manufacturing method. SOLUTION: In the surface-treating nickel powder for a laminated ceramic capacitor inner electrode, a nickel alloy plating layer, which contains phosphorus and/or boron or furthermore tungsten as an additive element in a nickel particle surface, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサの内部電極材料として好適な特性を有し、特
に、脱バインダー時の金属ニッケルの酸化防止性及び耐
熱性に優れ、セラミック誘電体及び内部電極の厚みの薄
い小型多層の積層セラミックコンデンサ製造に適した表
面処理ニッケル粉及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has suitable properties as an internal electrode material for a monolithic ceramic capacitor, and in particular, is excellent in the oxidation resistance and heat resistance of metallic nickel during debinding, and has excellent ceramic dielectric and internal electrodes The present invention relates to a surface-treated nickel powder suitable for manufacturing a small-sized multilayer ceramic capacitor having a small thickness, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、セラミッ
ク誘電体と内部電極とを交互に層状に重ねて圧着し、焼
成して一体化させたものであり、このような積層セラミ
ックコンデンサの内部電極を形成する際には、内部電極
材料である金属微粉末をペースト化し、該ペーストを用
いてセラミック基材上に印刷し、該印刷した基材を複数
枚重ねて加熱圧着して一体化した後、還元性雰囲気中で
加熱焼成を行うのが一般的である。この内部電極材料と
して、従来は白金、パラジウムが使用されていたが、近
年においては、これら白金、パラジウム等の貴金属の代
わりにニッケル等の卑金属を用いる技術が開発され、進
歩している。
2. Description of the Related Art A monolithic ceramic capacitor is one in which ceramic dielectrics and internal electrodes are alternately laminated in layers, pressure-bonded, fired and integrated to form the internal electrodes of such a monolithic ceramic capacitor. In this case, the fine metal powder as the internal electrode material is made into a paste, and the paste is used to print on a ceramic base material. Generally, heating and firing are performed in an atmosphere. Conventionally, platinum and palladium have been used as the internal electrode material, but in recent years, a technique of using a base metal such as nickel instead of the noble metal such as platinum and palladium has been developed and advanced.

【0003】一般的に、積層セラミックコンデンサを作
製する際には、デラミネーション、クラック等の欠陥発
生を抑制するために、大気中での脱バインダー熱処理が
約200〜500℃にて実施される。その後の焼成温度
はセラミック誘電体の構成成分に依存して変化するが、
チタン酸バリウム系セラミック誘電体では、通常120
0〜1400℃程度の還元性雰囲気中において高温焼成
が施される。
Generally, when manufacturing a monolithic ceramic capacitor, in order to suppress the occurrence of defects such as delamination and cracks, a binder removal heat treatment in the atmosphere is carried out at about 200 to 500 ° C. The subsequent firing temperature changes depending on the constituent components of the ceramic dielectric,
For barium titanate-based ceramic dielectrics, typically 120
High temperature firing is performed in a reducing atmosphere of about 0 to 1400 ° C.

【0004】上記工程において脱バインダー熱処理の際
にニッケル粉の酸化が進むと、後工程の高温焼成が還元
性雰囲気中で行われたとしても容易に還元されなかった
りする弊害が生じる。また、セラミック基材と金属とを
接触させた状態で焼成すると、金属ニッケルが酸化さ
れ、その金属酸化物はセラミック基材と比較して拡散係
数が大きいため、固相粒界において拡散係数の大きな金
属酸化物相から拡散係数の小さいセラミック相への拡散
が進む傾向がある。
If the nickel powder is oxidized during the heat treatment for removing the binder in the above process, there is a problem that the high temperature firing in the subsequent process is not easily reduced even if it is performed in a reducing atmosphere. Further, when firing is performed in a state where the ceramic base material and the metal are in contact with each other, metallic nickel is oxidized, and the metal oxide has a large diffusion coefficient as compared with the ceramic base material. Diffusion tends to proceed from the metal oxide phase to the ceramic phase having a small diffusion coefficient.

【0005】このことは、特開平5−287305号公
報の開示内容から判断すると次のことが考えられる。特
開平5−287305号公報には、Niが高温で酸化さ
れやすく、非常に低い酸素濃度の雰囲気もしくは水素を
含む還元性雰囲気中での焼成が必要であることが示され
ており、そのために使用できる誘電体が限られてくると
いうことが記載されている。そして、このような誘電体
の限定は、製品性能の面で満足できるものでなく、誘電
体の組成選定の自由度を広くとれるように、より酸素濃
度の高い雰囲気で焼成可能な低コストの内部電極材料が
望まれているということも記載されている。つまり、こ
の特開平5−287305号公報の開示内容から、従来
のニッケル粉を積層セラミックコンデンサの内部電極材
料に用いた場合には、脱バインダー熱処理や焼成の際に
約400〜800℃での酸化が著しく、酸化されたニッ
ケル成分がセラミック誘電体中へ拡散する現象を惹き起
こしていることが予想される。
This can be considered as follows, judging from the disclosure of Japanese Patent Laid-Open No. 5-287305. Japanese Unexamined Patent Publication No. 5-287305 discloses that Ni is easily oxidized at a high temperature and requires firing in an atmosphere having a very low oxygen concentration or in a reducing atmosphere containing hydrogen. It is described that the dielectrics that can be formed are limited. In addition, such a limitation of the dielectric is not satisfactory in terms of product performance, and a low-cost internal that can be fired in an atmosphere with a higher oxygen concentration so that the dielectric composition can be selected more freely. It is also stated that an electrode material is desired. That is, according to the disclosure of Japanese Patent Laid-Open No. 5-287305, when conventional nickel powder is used as an internal electrode material of a monolithic ceramic capacitor, it is oxidized at about 400 to 800 ° C. during debinder heat treatment or firing. It is expected that this causes a phenomenon in which the oxidized nickel component diffuses into the ceramic dielectric.

【0006】即ち、従来のニッケル粉を含有するペース
トを用いた場合には、脱バインダー時に微粉末中の金属
ニッケルの一部が酸化され、生成した酸化ニッケルがセ
ラミック誘電体中に拡散するために、生成すべき内部電
極の一部が消失して内部電極に欠損が生じ、且つフェラ
イトの生成によりセラミック誘電体層の一部がその機能
を失う傾向となるのである。従って、セラミック誘電体
及び内部電極の厚みの薄い小型多層の積層セラミックコ
ンデンサを誘電特性、電気特性を損なうことなく製造す
ることは極めて困難であった。
That is, when a conventional paste containing nickel powder is used, a part of metallic nickel in the fine powder is oxidized at the time of debinding, and the generated nickel oxide diffuses into the ceramic dielectric. However, a part of the internal electrode to be generated disappears and a defect occurs in the internal electrode, and the generation of ferrite tends to cause a part of the ceramic dielectric layer to lose its function. Therefore, it has been extremely difficult to manufacture a small-sized multi-layer laminated ceramic capacitor having a thin ceramic dielectric and internal electrodes without impairing the dielectric and electrical characteristics.

【0007】[0007]

【発明が解決しようとする課題】要するに、従来の高純
度ニッケル粉をペーストに用いた場合、上述のような不
具合が生じるため、酸化を開始する温度が低いこと(耐
酸化性)と、温度上昇に対して、酸化率の増大が抑制さ
れていること(耐熱性)がニッケル粉の特性として要求
されているのが現状である。
In summary, when the conventional high-purity nickel powder is used in the paste, the above-mentioned problems occur, so that the temperature at which oxidation starts is low (oxidation resistance) and the temperature rises. On the other hand, under the present circumstances, it is required as a characteristic of the nickel powder that the increase in the oxidation rate is suppressed (heat resistance).

【0008】本発明は、脱バインダー時のニッケルの酸
化防止性及び耐熱性に優れる、セラミック誘電体及び内
部電極の厚みの薄い小型多層の積層セラミックコンデン
サ製造に適した表面処理ニッケル粉及びその製造方法を
提供することを目的としている。
The present invention provides a surface-treated nickel powder which is excellent in oxidation resistance and heat resistance of nickel at the time of debinding, and which is suitable for manufacturing a small-sized multilayer ceramic capacitor having a thin ceramic dielectric and internal electrodes, and a method for manufacturing the same. Is intended to provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の課題
を達成するために鋭意研究を重ねた結果、ニッケル粒子
表面に、添加元素としてリン及び/又はホウ素を含むニ
ッケル合金メッキ層を有する表面処理ニッケル粉とする
ことが、積層セラミックコンデンサ内部電極用のニッケ
ル粉として耐酸化性及び耐熱性に非常に優れていること
を見出した。また、このニッケル合金メッキ層における
添加元素として、タングステンを更に含ませることによ
り、さらに優れた耐酸化性及び耐熱性を実現できること
を見出した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, have a nickel alloy plating layer containing phosphorus and / or boron as an additive element on the surface of nickel particles. It has been found that the surface-treated nickel powder is very excellent in oxidation resistance and heat resistance as a nickel powder for an internal electrode of a laminated ceramic capacitor. Further, it has been found that further excellent oxidation resistance and heat resistance can be realized by further including tungsten as an additional element in the nickel alloy plating layer.

【0010】上記ニッケル合金メッキ層は、汎用される
ニッケル無電解メッキ液によりニッケル粒子表面に緻密
に析出形成されたもので、このニッケル合金メッキ層を
有する表面処理ニッケル粉であると、脱バインダー時に
おける耐酸化性や耐熱性が極めて向上するものである。
The nickel alloy plating layer is densely formed on the surface of nickel particles by a commonly used nickel electroless plating solution. When the surface-treated nickel powder having the nickel alloy plating layer is used for debinding. And the oxidation resistance and heat resistance are extremely improved.

【0011】本発明の積層セラミックコンデンサ内部電
極用の表面処理ニッケル粉は、あくまで、ニッケル粒子
表面にのみニッケル合金メッキ層を有したものであり、
粒子のそれ全体が全てニッケル合金となっているもので
はない。粒子の全部、即ち、内部を含めその全てがニッ
ケル合金で構成された粒子からなるニッケル合金粉であ
ると、電気伝導率が低下して電気特性を低下させる傾向
となり、発熱する原因にもなることがある。しかし、本
発明の表面処理ニッケル粉では、耐熱性を向上するため
のニッケル合金メッキ層を有してはいるものの、このニ
ッケル合金メッキ層中の添加元素は、焼成により内部に
拡散してしまい、焼成後の粒子全体で見た際には、非常
に含有濃度の低い状態となる。そのため、本発明の表面
処理ニッケル粉は、全体がニッケル合金からなる粒子と
異なり、発熱も無く、ニッケルのみで構成されるニッケ
ル粉と、実質的に大差のない電気伝導率を維持できるも
のとなる。
The surface-treated nickel powder for an internal electrode of a monolithic ceramic capacitor according to the present invention has a nickel alloy plating layer only on the surface of nickel particles.
Not all of the particles are nickel alloys. If all of the particles, that is, all of the particles including the inside thereof are nickel alloy powders composed of particles composed of a nickel alloy, the electric conductivity tends to decrease and the electrical characteristics tend to deteriorate, which may cause heat generation. There is. However, in the surface-treated nickel powder of the present invention, although it has a nickel alloy plating layer for improving heat resistance, the additive element in this nickel alloy plating layer diffuses inside by firing, When viewed as a whole after firing, the content concentration is extremely low. Therefore, the surface-treated nickel powder of the present invention does not generate heat unlike particles made entirely of a nickel alloy, and can maintain substantially the same electrical conductivity as the nickel powder composed of only nickel. .

【0012】添加元素としてリン及びホウ素を含むニッ
ケル合金メッキ層、或いは、リン及び/又はホウ素と、
更にタングステンを含むニッケル合金メッキ層によって
ニッケル粒子表面を処理した表面処理ニッケル粉である
と、なぜ耐酸化性や耐熱性が向上するかについて、明確
な理論は定かでない。しかし、本発明者等の推測による
と、これら添加元素を含むニッケル合金メッキ層がニッ
ケル粒子表面へ緻密に析出し、この緻密な析出のニッケ
ル合金メッキ層が、核であるニッケル粒子の酸化防止壁
として有効に機能するためだと考えている。そして、本
発明者等の研究によると、リン及び/又はホウ素に更に
加える添加元素として、モリブデンがタングステンと同
様な効果を示すことを確認している。
A nickel alloy plating layer containing phosphorus and boron as additional elements, or phosphorus and / or boron,
Furthermore, a definite theory is not clear as to why the surface-treated nickel powder obtained by treating the surface of nickel particles with a nickel alloy plating layer containing tungsten improves the oxidation resistance and heat resistance. However, according to the estimation by the present inventors, the nickel alloy plating layer containing these additional elements is densely deposited on the surface of the nickel particles, and the nickel alloy plating layer of the dense deposition is the oxidation preventing wall of the nickel particles serving as nuclei. I think that is because it works effectively. According to the research conducted by the present inventors, it has been confirmed that molybdenum has the same effect as tungsten as an additional element to be added to phosphorus and / or boron.

【0013】ここで、本発明に係る表面処理ニッケル粉
のニッケル合金メッキ層中における添加元素含有量を測
定する方法について説明する。本発明に係る表面処理ニ
ッケル粉において、ニッケル合金メッキ層中の添加元素
の含有量は、メッキ条件、メッキ浴組成等をコントロー
ルすることにより、様々な組成のものが実現可能であ
る。しかし、本発明の表面処理ニッケル粉は、核となる
粒子がニッケルであり、メッキ層の主成分もニッケルで
あることから、ニッケル合金メッキ層中の添加元素含有
量のみを直接測定することは、非常に難しい。
Here, a method for measuring the additive element content in the nickel alloy plating layer of the surface-treated nickel powder according to the present invention will be described. In the surface-treated nickel powder according to the present invention, the content of the additive element in the nickel alloy plating layer can be realized in various compositions by controlling the plating conditions, plating bath composition and the like. However, the surface-treated nickel powder of the present invention has a core particle of nickel, and since the main component of the plating layer is also nickel, it is possible to directly measure only the additive element content in the nickel alloy plating layer. very hard.

【0014】そこで、本発明者等は、ニッケル合金メッ
キ層中における添加元素の含有量を簡易的に特定すべ
く、種々の測定法を検討し、蛍光X線による表面分析法
と、表面処理ニッケル粉を溶解してその溶液を化学分析
する溶解分析法との2つの測定法を併用することを考え
た。
Therefore, the present inventors examined various measuring methods in order to easily specify the content of the additive element in the nickel alloy plating layer, and performed the surface analysis method by fluorescent X-ray and the surface-treated nickel. It was considered to use two measurement methods in combination with a dissolution analysis method of dissolving powder and chemically analyzing the solution.

【0015】本発明に係る表面処理ニッケル粉のニッケ
ル合金メッキ層中における添加元素は、まず、一定量の
表面処理ニッケル粉を全溶解し、その溶液を分析するこ
とにより、一定量の表面処理ニッケル粉における添加元
素の総含有量を測定することができる。また、蛍光X線
により表面処理ニッケル粉を分析すると、表面処理ニッ
ケル粉の各粒子の表面情報に基づく添加元素の含有量が
定量できる。この2つの測定法、つまり、溶解分析法に
より得られた添加元素含有量値(以下、全溶解分析値と
する)と、蛍光X線の表面分析法により得られた添加元
素含有量値(以下、表面分析値とする)とを比較した結
果、所定の関係を示すものが、耐熱性、耐酸化性に優れ
ることが判ったのである。
The additive element in the nickel alloy plating layer of the surface-treated nickel powder according to the present invention is obtained by first completely dissolving a certain amount of surface-treated nickel powder and analyzing the solution to obtain a certain amount of surface-treated nickel powder. The total content of additional elements in the powder can be measured. Further, when the surface-treated nickel powder is analyzed by fluorescent X-rays, the content of the additional element based on the surface information of each particle of the surface-treated nickel powder can be quantified. These two measuring methods, that is, the additive element content value obtained by the dissolution analysis method (hereinafter referred to as total dissolution analysis value) and the additive element content value obtained by the fluorescent X-ray surface analysis method (below , And surface analysis values), it was found that those exhibiting a predetermined relationship were excellent in heat resistance and oxidation resistance.

【0016】具体的には、蛍光X線による表面分析した
際の添加元素の含有量値が1〜20質量%であり、表面
処理ニッケル粉の添加元素の総含有量値が、蛍光X線に
よる表面分析の添加元素含有量値の10%以下となるこ
とが好ましい。つまり、蛍光X線による表面分析値が1
〜20質量%の範囲にあり、全溶解分析値が、表面分析
値の10%以下であると、優れた耐酸化性及び耐熱性を
実現できるものとなることが判明したのである。
Specifically, the content value of the additive element in the surface analysis by fluorescent X-ray is 1 to 20% by mass, and the total content value of the additive element in the surface-treated nickel powder is determined by the fluorescent X-ray. It is preferably 10% or less of the additive element content value of the surface analysis. That is, the surface analysis value by fluorescent X-ray is 1
It was found that excellent oxidation resistance and heat resistance can be realized when the total dissolution analysis value is within the range of 20 mass% and the total dissolution analysis value is 10% or less of the surface analysis value.

【0017】つまり、この2つの測定法により添加元素
を特定される表面処理ニッケル粉は、表面処理ニッケル
粉の各粒子単位で見ると、その表層、即ち、ニッケル合
金メッキ層に添加元素がリッチに存在しているものであ
ることが特定でき、優れた耐酸化性及び耐熱性を実現で
きるものとなるのである。
That is, in the surface-treated nickel powder whose additive element is specified by these two measuring methods, when viewed in terms of each particle of the surface-treated nickel powder, the additive element is rich in the surface layer, that is, the nickel alloy plating layer. It can be specified that it is present, and excellent oxidation resistance and heat resistance can be realized.

【0018】蛍光X線による表面分析値が1質量%未満
であると、核であるニッケル粒子の表面に緻密なニッケ
ル合金メッキ層を形成されていないため、所望の特性を
実現できなくなり、特に、熱に対する安定性の低い表面
処理ニッケル粉となる傾向がある。また、20質量%を
超える添加元素があると、電極形成後、誘電体としたと
きの悪影響、例えば、内部電極の導電率の低下や、添加
元素の誘電体への拡散による導電率の低下を惹き起こす
恐れがある。そして、全溶解分析値が、表面分析値の1
0%を超えるものとなると、耐熱性等の熱特性は良好に
なるが、処理時に粉体が凝集しやすくなるうえ、導電性
を低下させる傾向が強くなるからである。尚、この全溶
解分析値と表面分析値とを比較した際の10%という境
界値は、表面処理ニッケル粉の平均粒径が0.2〜0.
6μmのものにおいて確認された結果である。平均粒径
が0.1μm以下の粒子の場合においては、この10%
よりも大きな値となる可能性が有ると推測している。な
ぜなら、この蛍光X線による表面分析値は、表面処理ニ
ッケル粉の各粒子の粒径に依存して変動するからであ
る。
If the surface analysis value by fluorescent X-rays is less than 1% by mass, the desired characteristics cannot be realized because a dense nickel alloy plating layer is not formed on the surface of the nickel particles that are the cores. It tends to be a surface-treated nickel powder having low heat stability. In addition, if there is an additive element in excess of 20% by mass, it may have a bad effect when it is used as a dielectric after forming the electrode, for example, the conductivity of the internal electrode may be reduced, or the conductivity may be reduced due to diffusion of the additive element into the dielectric. May cause agitation. And the total dissolution analysis value is 1 of the surface analysis value.
If it exceeds 0%, the thermal properties such as heat resistance will be good, but the powder will tend to agglomerate during processing and the conductivity will tend to be reduced. The boundary value of 10% when the total dissolution analysis value and the surface analysis value were compared, the average particle size of the surface-treated nickel powder was 0.2 to 0.
It is the result confirmed in the case of 6 μm. If the average particle size is 0.1 μm or less, this 10%
It is speculated that there is a possibility that it will be a larger value. This is because the surface analysis value by this fluorescent X-ray changes depending on the particle size of each particle of the surface-treated nickel powder.

【0019】本発明の表面処理ニッケル粉に係るニッケ
ル合金メッキ層は、より具体的な好ましい組成を示すと
次のようなものとなる。なお、以下に示す組成におい
て、ニッケル合金メッキ層の各組成数値範囲(質量比)
は、以下に示す各添加元素の量を加えた際に100%と
なるように示しており、ニッケルや各添加元素に含まれ
る微量不純物及びメッキの際に混入する不可避不純物に
ついては上記数値には含まないものとして記載したもの
である。まず、ニッケル合金メッキ層がリン及び/又は
ホウ素である場合、ニッケル80〜99.5%−リン2
0〜0.5%、ニッケル80〜99.5%−ホウ素20
〜0.5%、ニッケル80〜99%−リン19〜0.5
%−ホウ素残部であることが好ましい。リン或いはホウ
素は、20%を超えると導電率を低下させる傾向とな
り、0.5%未満では耐酸化性及び耐熱性の向上が望め
なくなる。リン及びホウ素を同時に含有する場合も、リ
ン及びホウ素の合計含有量が20%を超えると導電率を
低下させる傾向となり、0.5%未満では耐酸化性及び
耐熱性の向上が望めなくなる。
The nickel alloy plating layer relating to the surface-treated nickel powder of the present invention has the following specific composition. In addition, in the composition shown below, each composition numerical range (mass ratio) of the nickel alloy plating layer
Indicates 100% when the amount of each additive element shown below is added. For the trace impurities contained in nickel and each additive element and the unavoidable impurities mixed during plating, It is described as not including. First, when the nickel alloy plating layer is phosphorus and / or boron, nickel 80 to 99.5% -phosphorus 2
0-0.5%, nickel 80-99.5% -boron 20
~ 0.5%, nickel 80-99% -phosphorus 19-0.5
% -Boron balance is preferred. When phosphorus or boron exceeds 20%, the conductivity tends to decrease, and when it is less than 0.5%, improvement in oxidation resistance and heat resistance cannot be expected. Even when phosphorus and boron are contained at the same time, if the total content of phosphorus and boron exceeds 20%, the electrical conductivity tends to decrease, and if it is less than 0.5%, improvement in oxidation resistance and heat resistance cannot be expected.

【0020】また、タングステンを更に含むニッケル合
金メッキ層である場合は、ニッケル80〜98.5%−
リン10〜1%−タングステン10〜0.5%、ニッケ
ル80〜98.5%−ホウ素10〜1%−タングステン
5〜0.5%、ニッケル80〜97%−リン10〜1%
−ホウ素5〜1%−タングステン5〜1%であることが
望ましい。ここに示したような一定量のタングステンを
含有させた組成とすることで、前述したタングステンを
含まない組成を越える耐酸化性及び耐熱性の確保が可能
となるのである。ここで各組成において含有させたタン
グステンの上限値を越えてタングステンの含有量を増加
させると材質が脆くなり、しかも、電気的抵抗を増加さ
せることになるのである。これに対し、下限値未満のタ
ングステン含有量であると、タングステンを含有させる
効果として耐酸化性及び耐熱性の向上に寄与しないので
ある。以上のようなニッケル合金メッキの組成である
と、内部電極にした際の導電率の低下や、各添加元素の
誘電体への拡散も生じず、優れた耐酸化性及び耐熱性を
実現できるものとなる。
In the case of a nickel alloy plating layer further containing tungsten, nickel 80 to 98.5%-
Phosphorus 10 to 1% -Tungsten 10 to 0.5%, Nickel 80 to 98.5% -Boron 10 to 1% -Tungsten 5 to 0.5%, Nickel 80 to 97% -Phosphorus 10 to 1%
-Boron 5 to 1% -Tungsten 5 to 1% is desirable. By using the composition containing a certain amount of tungsten as shown here, it becomes possible to secure the oxidation resistance and the heat resistance exceeding the above-mentioned composition not containing tungsten. Here, if the content of tungsten is increased beyond the upper limit of the content of tungsten in each composition, the material becomes brittle and the electrical resistance is increased. On the other hand, when the content of tungsten is less than the lower limit, the effect of containing tungsten does not contribute to the improvement of oxidation resistance and heat resistance. With the nickel alloy plating composition as described above, it is possible to achieve excellent oxidation resistance and heat resistance without lowering the conductivity when used as an internal electrode or diffusing each additive element into the dielectric. Becomes

【0021】次に、本発明の表面処理ニッケル粉は、耐
酸化性、耐熱性を向上させるために必要なニッケル合金
メッキ層の厚さを特定することは可能であると考えられ
る。しかし、核となるニッケル粒子表面上に存在するニ
ッケル合金メッキ層の厚みを特定することは、上記した
添加元素含有量と同様に、非常に困難なものである。
Next, it is considered that the surface-treated nickel powder of the present invention can specify the thickness of the nickel alloy plating layer necessary for improving the oxidation resistance and heat resistance. However, it is very difficult to specify the thickness of the nickel alloy plating layer existing on the surface of the nickel particles serving as nuclei, similarly to the content of the additional element described above.

【0022】そのため、本発明者等は、脱バインダー時
の耐酸化性、耐熱性を向上するために必要な、表面処理
ニッケル粉におけるニッケル合金メッキ層の存在状態を
特定するために、酸溶液に表面処理ニッケル粉を溶解
し、その酸溶液中の添加元素濃度を測定した。その結
果、所定条件下における酸溶液中の添加元素溶解量が所
定量以上であれば、耐酸化性、耐熱性の向上に対応する
ことを見出した。
Therefore, the present inventors have decided to use an acid solution in order to specify the state of existence of the nickel alloy plating layer in the surface-treated nickel powder, which is necessary for improving the oxidation resistance and heat resistance during debinding. The surface-treated nickel powder was dissolved, and the concentration of added elements in the acid solution was measured. As a result, it was found that if the amount of the additional element dissolved in the acid solution under a predetermined condition is a predetermined amount or more, improvement in oxidation resistance and heat resistance can be dealt with.

【0023】つまり、一定量の表面処理ニッケル粉を酸
溶液に投入した際に、表面処理ニッケル粉の総ニッケル
量の10%ニッケル量を溶解した酸溶液での添加元素溶
解量が、表面処理ニッケル粉の総添加元素量に対して2
0mol%以上であると、脱バインダー時の耐酸化性、
耐熱性に優れた積層セラミックコンデンサ内部電極用の
表面処理ニッケル粉となるのである。
That is, when a certain amount of the surface-treated nickel powder is added to the acid solution, the amount of additional elements dissolved in the acid solution in which 10% of the total nickel amount of the surface-treated nickel powder is dissolved is the surface-treated nickel powder. 2 based on the total amount of added elements in the powder
When it is 0 mol% or more, oxidation resistance at the time of debinding,
The surface-treated nickel powder for the internal electrodes of the monolithic ceramic capacitor has excellent heat resistance.

【0024】ニッケル合金メッキ層における添加元素の
含有量が、投入する表面処理ニッケル粉の総ニッケル量
に対し10%相当のニッケル量を溶解した酸溶液中の添
加元素溶解量が、表面処理ニッケル粉の総添加元素量の
20mol%未満であると、添加元素の効果が期待でき
なくなり、耐酸化性、耐熱性が向上できなくなる。つま
り、投入する表面処理ニッケル粉の総ニッケル量に対し
10%相当のニッケル量が溶解した酸溶液中の添加元素
溶解量が20mol%以上であると、耐酸化性、耐熱性
を向上できるように、ニッケル合金メッキ層が有効な厚
みで粒子表面に析出していると考えられるのである。従
って、前記酸溶液中の添加元素溶解量は、表面処理ニッ
ケル粉の総添加元素量に対して、好ましくは30mol
%以上、より好ましくは50mol%以上であると、耐
酸化性、耐熱性がより向上できるものとなる。
When the content of the additional element in the nickel alloy plating layer is 10% of the total amount of nickel in the surface-treated nickel powder to be added, the amount of the additional element dissolved in the acid solution is the surface-treated nickel powder. If it is less than 20 mol% of the total amount of the additional element, the effect of the additional element cannot be expected, and the oxidation resistance and heat resistance cannot be improved. That is, when the amount of the additional element dissolved in the acid solution in which 10% of the total amount of nickel in the surface-treated nickel powder is dissolved is 20 mol% or more, the oxidation resistance and heat resistance can be improved. It is considered that the nickel alloy plating layer is deposited on the particle surface with an effective thickness. Therefore, the amount of additional elements dissolved in the acid solution is preferably 30 mol with respect to the total amount of additional elements of the surface-treated nickel powder.
% Or more, and more preferably 50 mol% or more, the oxidation resistance and heat resistance can be further improved.

【0025】また、本発明に係る表面処理ニッケル粉
は、大気中の熱重量測定における金属ニッケル酸化率5
%の温度が400℃以上であることが好ましい。大気中
での熱重量測定において、表面処理ニッケル粉の金属ニ
ッケルが、その5%を酸化する時の温度が400℃以上
であると、脱バインダー時の耐酸化性、耐熱性に優れた
ものとなる。物質の酸化特性は、熱重量測定により、そ
の重量変化で簡単に読み取ることができ、この重量変化
量より得られる指標が酸化率となる。ここでいう酸化率
とは、表面処理ニッケル粉の金属ニッケルのみの酸化率
を指すもので、具体的には、対象試料を大気中において
1000℃以上で保持し、金属ニッケルが完全に酸化ニ
ッケルに変化した状態での重量変化量を100%として
相対評価するものである。
The surface-treated nickel powder according to the present invention has a metal nickel oxidation rate of 5 in thermogravimetric measurement in the atmosphere.
% Temperature is preferably 400 ° C. or higher. In thermogravimetric measurement in air, when the temperature of the metallic nickel of the surface-treated nickel powder at the time of oxidizing 5% thereof is 400 ° C. or higher, it is considered to have excellent oxidation resistance and heat resistance during debinding. Become. The oxidation characteristics of a substance can be easily read by thermogravimetric measurement by its weight change, and the index obtained from this weight change amount is the oxidation rate. The term "oxidation rate" as used herein refers to the rate of oxidation of only the metallic nickel of the surface-treated nickel powder. Specifically, the target sample is kept at 1000 ° C or higher in the atmosphere to completely convert the metallic nickel into nickel oxide. Relative evaluation is performed by setting the amount of weight change in the changed state as 100%.

【0026】上記金属ニッケル酸化率5%時の温度は、
好ましくは420℃以上、より好ましくは450℃以上
であり、5%酸化率の温度が高いほど耐酸化性、耐熱性
に優れ、脱バインダー処理による金属ニッケルの酸化が
進行しないからである。この温度が400℃未満の表面
処理ニッケル粉の場合、酸化開始温度が低く過ぎて、耐
酸化性が著しく劣るものとなる。
When the metal nickel oxidation rate is 5%, the temperature is
It is preferably 420 ° C. or higher, more preferably 450 ° C. or higher, and the higher the temperature of the 5% oxidation rate is, the more excellent the oxidation resistance and heat resistance are, and the oxidation of metallic nickel due to the binder removal treatment does not proceed. In the case of the surface-treated nickel powder having a temperature of less than 400 ° C., the oxidation start temperature is too low and the oxidation resistance becomes extremely poor.

【0027】そしてさらに、本発明の表面処理ニッケル
粉は、大気中の熱重量測定における金属ニッケル酸化率
5%の温度と、金属ニッケル酸化率95%の温度との差
が100℃以上であることが好ましい。この温度差が1
00℃未満の場合、積層セラミックコンデンサを作製す
る際、特に脱バインダー加熱時にニッケル粉が急速に酸
化されてしまい、耐熱性に劣るものとなるからである。
この熱重量分析において、前記金属ニッケル酸化率5%
の温度と95%の温度との差がより大きいほど、酸化が
緩やかで耐熱性に優れている。この温度差は好ましくは
120℃以上、より好ましくは170℃以上であると、
金属ニッケルの酸化が非常に緩やかで、耐熱性に極めて
優れたものとなる。
Further, in the surface-treated nickel powder of the present invention, the difference between the temperature at which the metal nickel oxidation rate is 5% and the temperature at which the metal nickel oxidation rate is 95% in thermogravimetric measurement in air is 100 ° C. or more. Is preferred. This temperature difference is 1
If the temperature is lower than 00 ° C., the nickel powder is rapidly oxidized during the production of the monolithic ceramic capacitor, especially when the binder is heated, and the heat resistance is deteriorated.
In this thermogravimetric analysis, the metal nickel oxidation rate was 5%.
The larger the difference between the temperature of 100% and the temperature of 95%, the slower the oxidation and the better the heat resistance. When this temperature difference is preferably 120 ° C. or higher, more preferably 170 ° C. or higher,
Oxidation of metallic nickel is extremely gradual, resulting in extremely excellent heat resistance.

【0028】次に、本発明の表面処理ニッケル粉の製造
方法について述べる。本発明の表面処理ニッケル粉は、
ニッケル粒子表面に、リン及び/又はホウ素を含むニッ
ケル合金メッキ層を有した積層セラミックコンデンサ内
部電極用の表面処理ニッケル粉の場合、ニッケル粒子又
はニッケル粒子分散水性スラリーと、リン及び/又はホ
ウ素の添加元素を含むニッケル無電解メッキ液とを接触
させ、ニッケル粒子表面にニッケル合金メッキ層を形成
させて製造する。また、ニッケル粒子表面に、リン及び
/又はホウ素と、更にタングステンを含むニッケル合金
メッキ層を有した積層セラミックコンデンサ内部電極用
の表面処理ニッケル粉の場合は、ニッケル粒子又はニッ
ケル粒子分散水性スラリーと、リン及び/又はホウ素の
添加元素を含み、更にタングステンを含むニッケル無電
解メッキ液とを接触させ、ニッケル粒子表面にニッケル
合金メッキ層を形成させて製造するものである。
Next, a method for producing the surface-treated nickel powder of the present invention will be described. The surface-treated nickel powder of the present invention,
In the case of surface-treated nickel powder for a laminated ceramic capacitor internal electrode having a nickel alloy plating layer containing phosphorus and / or boron on the surface of nickel particles, nickel particles or an aqueous slurry in which nickel particles are dispersed and addition of phosphorus and / or boron are added. It is manufactured by contacting with a nickel electroless plating solution containing an element to form a nickel alloy plating layer on the surface of nickel particles. Further, in the case of surface-treated nickel powder for a laminated ceramic capacitor internal electrode having a nickel alloy plating layer containing phosphorus and / or boron and further tungsten on the nickel particle surface, nickel particles or a nickel particle-dispersed aqueous slurry, It is manufactured by contacting with a nickel electroless plating solution containing an additive element of phosphorus and / or boron and further containing tungsten to form a nickel alloy plating layer on the surface of nickel particles.

【0029】出発原料としてのニッケル粒子は、一般的
な液相還元析出法、気相化学反応法、ガス中蒸発法等、
混式、乾式何れの製法で製造したものを用いることがで
きる。
Nickel particles as a starting material can be prepared by the general liquid phase reduction precipitation method, gas phase chemical reaction method, gas evaporation method, etc.
What was manufactured by the mixed method and the dry method can be used.

【0030】上記出発原料であるニッケル粒子は、リン
及び/又はホウ素、或いは、更に、タングステンの添加
元素を含むニッケル無電解メッキ液に、直接添加してメ
ッキ処理を施しても良いが、予めニッケル粒子を水中に
分散させ、このような分散水性スラリーを、上記ニッケ
ル無電解メッキ液に添加して、ニッケル粒子表面にニッ
ケル合金メッキ層を形成させることができる。
The nickel particles as the starting material may be directly added to a nickel electroless plating solution containing phosphorus and / or boron, or an additive element of tungsten, and may be subjected to plating treatment in advance. The particles can be dispersed in water and such a dispersed aqueous slurry can be added to the nickel electroless plating solution to form a nickel alloy plating layer on the surface of the nickel particles.

【0031】このニッケル合金メッキ層を形成させるた
めのニッケル無電解メッキ液は、一般に知られているも
のを使用することでき、予めリンやホウ素等を含有され
たニッケル無電解メッキ液を選択するか、リン、ホウ
素、タングステンのうち、本発明に係る表面処理ニッケ
ル粉とするために必要な添加元素を加えたニッケル無電
解メッキ液を調製して使用してもよいものである。具体
的には、ホウ素含有のニボロンM(ワールドメタル社
製)、リン含有のNl−426(メルテックス社製)等
を使用することができる。
As the nickel electroless plating solution for forming the nickel alloy plating layer, a generally known one can be used, and a nickel electroless plating solution containing phosphorus, boron or the like in advance may be selected. It is also possible to prepare and use a nickel electroless plating solution in which any one of phosphorus, boron, and tungsten, which is an additive element necessary for forming the surface-treated nickel powder according to the present invention, is added. Specifically, boron-containing Niboron M (manufactured by World Metal Co., Ltd.), phosphorus-containing Nl-426 (manufactured by Meltex Co., Ltd.) and the like can be used.

【0032】本発明に係る表面処理ニッケル粉の製造方
法においては、ニッケル無電解メッキ液とニッケル粒子
分散水性スラリーを混合後、10〜30分撹拌後、メッ
キ反応促進のために混合スラリーを30〜70℃に昇温
し、再び30〜120分撹拌することが好ましい。そし
て、この表面処理ニッケル粉を含むスラリーを常法の脱
水、水洗、濾過、乾燥を経て、本発明に係る表面処理ニ
ッケル粉を得ることができる。このようにして得られた
表面処理ニッケル粉は、ニッケル粉粒子表面にニッケル
合金メッキ層が緻密に形成されており、耐酸化性や耐熱
性に優れたものとなる。
In the method for producing the surface-treated nickel powder according to the present invention, the nickel electroless plating solution and the nickel particle-dispersed aqueous slurry are mixed, stirred for 10 to 30 minutes, and then mixed slurry for 30 to accelerate the plating reaction. It is preferable to raise the temperature to 70 ° C. and stir again for 30 to 120 minutes. The surface-treated nickel powder according to the present invention can be obtained by subjecting the slurry containing the surface-treated nickel powder to conventional dehydration, washing, filtration and drying. The surface-treated nickel powder thus obtained has a fine nickel alloy plating layer formed on the surface of the nickel powder particles, and has excellent oxidation resistance and heat resistance.

【0033】[0033]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、実施例及び比較例に基づき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below based on Examples and Comparative Examples.

【0034】[0034]

【実施例】以下で説明する実施例1〜4及び比較例によ
り得られた各ニッケル粉の特性については、下記(1)
〜(3)の方法にて評価した。
EXAMPLES The characteristics of the nickel powders obtained in Examples 1 to 4 and Comparative Example described below are as follows (1)
It evaluated by the method of- (3).

【0035】(1)表面処理ニッケル粉の蛍光X線によ
る表面分析 蛍光X線分析装置(理学電機RIX−3000)を用
い、各試料から得られる波長及びX線強度から、添加元
素の定量分析を行った。
(1) Surface analysis of surface-treated nickel powder by fluorescent X-ray Fluorescent X-ray analyzer (Rigaku Denki RIX-3000) was used to quantitatively analyze the additive element from the wavelength and X-ray intensity obtained from each sample. went.

【0036】(2)表面処理ニッケル粉の溶解分析 純水中に試料を分散させたスラリー(試料濃度5g/
L)を3L用意し、このスラリー中に液中濃度が3規定
となるように特級塩酸を加え、ニッケル粉表面の溶解を
開始する。溶解の際の温度を40℃に保持しながら、5
分毎に溶解液20mLをサンプリングし、0.1μmメ
ンブランフィルターで濾過し、採取した濾液をICPに
よって、ニッケル、及びリン、ホウ素等の添加元素を分
析した。この操作を表面処理ニッケル粉が全て溶解する
まで行い、各時間における溶解液中の添加元素濃度を測
定し、この測定濃度値より各ニッケル溶解率における添
加元素含有量を算出した。
(2) Dissolution analysis of surface-treated nickel powder Slurry (sample concentration 5 g /
3 L of L) is prepared, and special grade hydrochloric acid is added to this slurry so that the concentration in the liquid becomes 3 N, and the dissolution of the nickel powder surface is started. While maintaining the melting temperature at 40 ° C, 5
20 mL of the solution was sampled every minute, filtered through a 0.1 μm membrane filter, and the collected filtrate was analyzed for added elements such as nickel and phosphorus and boron by ICP. This operation was repeated until all the surface-treated nickel powder was dissolved, the concentration of the additional element in the solution at each time was measured, and the content of the additional element at each nickel dissolution rate was calculated from the measured concentration value.

【0037】(3)熱重量測定評価 試料0.5gを熱重量測定装置TG/DTA6300型
(セイコー電子工業製)を用いて、大気中で常温より1
000℃まで昇温させた。こうして得られた重量変化曲
線において、(重量飽和値−0.5g)を表面処理ニッ
ケル粉の酸化率100%として、酸化率5%時及び95
%時の温度、400℃時及び600℃時の酸化率を読み
取った。
(3) Thermogravimetric measurement 0.5 g of the evaluation sample was used in a thermogravimetric measuring apparatus TG / DTA6300 type (manufactured by Seiko Denshi Kogyo Co., Ltd.) at room temperature to 1
The temperature was raised to 000 ° C. In the weight change curve thus obtained, (weight saturation value-0.5 g) was taken as the oxidation rate of the surface-treated nickel powder being 100%, and when the oxidation rate was 5% and 95%.
The temperature at%, the oxidation rate at 400 ° C. and at 600 ° C. were read.

【0038】実施例1:硫酸ニッケル・六水和物(ニッ
ケル品位22.2質量%)4.48kgを純水8Lに溶
解して得た水溶液を、水酸化ナトリウム濃度200g/
Lの水溶液10Lにその液温を60℃に維持しながらゆ
っくりと滴下して、ニッケルの水酸化物を析出させた。
Example 1 : An aqueous solution obtained by dissolving 4.48 kg of nickel sulfate hexahydrate (nickel grade 22.2% by mass) in 8 L of pure water was used to obtain a sodium hydroxide concentration of 200 g /
While maintaining the liquid temperature at 60 ° C., the solution was slowly added dropwise to 10 L of an aqueous solution of L to precipitate nickel hydroxide.

【0039】この懸濁液にその液温を60℃に維持しな
がらヒドラジン・一水和物3kgを30分間にわたって
添加してニッケルの水酸化物をニッケルに還元した。こ
の生成ニッケル粒子含有スラリーを洗浄液のpHが9以
下になるまで純水で洗浄した後、8.5Lとなるよう純
水でスラリー化した。このスラリーをニッケル無電解メ
ッキ浴(ワールドメタル社製、ニボロンM)6Lに入
れ、10分間撹拌後、温度を40℃まで上げ、30分間
撹拌した後、常法の濾過、洗浄、乾燥を行い、ニッケル
−ホウ素合金メッキ層を有した表面処理ニッケル粉を得
た。
While maintaining the liquid temperature at 60 ° C., 3 kg of hydrazine monohydrate was added to this suspension over 30 minutes to reduce the nickel hydroxide to nickel. The produced nickel particle-containing slurry was washed with pure water until the pH of the cleaning liquid was 9 or less, and then slurried with pure water to 8.5 L. This slurry was placed in 6 L of a nickel electroless plating bath (manufactured by World Metal Co., Niboron M), stirred for 10 minutes, heated to 40 ° C., stirred for 30 minutes, filtered, washed and dried by a conventional method. A surface-treated nickel powder having a nickel-boron alloy plating layer was obtained.

【0040】実施例2:硫酸ニッケル・六水和物(ニッ
ケル品位22.2質量%)4.48kgを純水8Lに溶
解して得た水溶液を、水酸化ナトリウム濃度200g/
Lの水溶液10Lにその液温を60℃に維持しながらゆ
っくりと滴下して、ニッケルの水酸化物を析出させた。
Example 2 : An aqueous solution obtained by dissolving 4.48 kg of nickel sulfate hexahydrate (nickel grade 22.2% by mass) in 8 L of pure water was used to obtain a sodium hydroxide concentration of 200 g /
While maintaining the liquid temperature at 60 ° C., the solution was slowly added dropwise to 10 L of an aqueous solution of L to precipitate nickel hydroxide.

【0041】この懸濁液にその液温を60℃に維持しな
がらヒドラジン・一水和物3kgを30分間にわたって
添加してニッケルの水酸化物をニッケルに還元した。こ
の生成ニッケル粒子含有スラリーを洗浄液のpHが9以
下になるまで純水で洗浄した後、10Lとなるよう純水
でスラリー化した。このスラリーをニッケル無電解メッ
キ液(メルテックス社製、Ni−426)6.5Lに入
れ、10分間撹拌後、温度を70℃まで上げ、30分間
撹拌した後、常法の濾過、洗浄、乾燥を行い、ニッケル
−リン合金メッキ層を有した表面処理ニッケル粉を得
た。
While maintaining the liquid temperature at 60 ° C., 3 kg of hydrazine monohydrate was added to this suspension over 30 minutes to reduce nickel hydroxide to nickel. The produced nickel particle-containing slurry was washed with pure water until the pH of the washing liquid became 9 or less, and then slurried with pure water to 10 L. This slurry was placed in 6.5 L of nickel electroless plating solution (Ni-426, manufactured by Meltex Co.), stirred for 10 minutes, heated to 70 ° C. and stirred for 30 minutes, and then filtered, washed and dried by a conventional method. Then, a surface-treated nickel powder having a nickel-phosphorus alloy plating layer was obtained.

【0042】実施例3:硫酸ニッケル・六水和物(ニッ
ケル品位22.2質量%)4.48kgを純水8Lに溶
解して得た水溶液を、水酸化ナトリウム濃度200g/
Lの水溶液10Lにその液温を60℃に維持しながらゆ
っくりと滴下して、ニッケルの水酸化物を析出させた。
Example 3 : An aqueous solution obtained by dissolving 4.48 kg of nickel sulfate hexahydrate (nickel grade 22.2% by mass) in 8 L of pure water was used to obtain a sodium hydroxide concentration of 200 g /
While maintaining the liquid temperature at 60 ° C., the solution was slowly added dropwise to 10 L of an aqueous solution of L to precipitate nickel hydroxide.

【0043】この懸濁液にその液温を60℃に維持しな
がらヒドラジン・一水和物3kgを30分間にわたって
添加してニッケルの水酸化物をニッケルに還元した。こ
の生成ニッケル粒子含有スラリーを洗浄液のpHが9以
下になるまで純水で洗浄した後、8.5Lとなるよう純
水でスラリー化した。このスラリーをニッケル無電解メ
ッキ浴(ワールドメタル社製「リンデン−NPW」3L
を混合調製)6Lに入れ、30分間撹拌後、温度を40
℃まで上げ、30分間撹拌した後、常法の濾過、洗浄、
乾燥を行い、ニッケル−リン-タングステン合金メッキ
層を有した表面処理ニッケル粉を得た。
While maintaining the liquid temperature at 60 ° C., 3 kg of hydrazine monohydrate was added to this suspension over 30 minutes to reduce nickel hydroxide to nickel. The produced nickel particle-containing slurry was washed with pure water until the pH of the cleaning liquid was 9 or less, and then slurried with pure water to 8.5 L. Nickel electroless plating bath (World Metal "Linden-NPW" 3L
Mix and prepare) 6 L and stir for 30 minutes,
After raising to ℃ and stirring for 30 minutes, filtration, washing,
It was dried to obtain a surface-treated nickel powder having a nickel-phosphorus-tungsten alloy plating layer.

【0044】実施例4:実施例3と同様にして、ニッケ
ルの水酸化物を析出させ、そのニッケルの水酸化物をニ
ッケルに還元した。この生成したニッケル粒子含有スラ
リーを洗浄液のpHが9以下になるまで純水で洗浄し、
これを濾過、乾燥した。乾燥して得られたニッケル粉8
00gを、60℃の水1Lに加えて十分に撹拌した後、
60℃に加熱されたニッケル無電解メッキ浴(ワールド
メタル社製「ニボフラム」)5Lにゆっくり滴下した。
メッキ液を30分間撹拌後、常法の濾過、洗浄、乾燥を
行い、ニッケル−ホウ素-タングステン合金メッキ層を
有した表面処理ニッケル粉を得た。
Example 4 In the same manner as in Example 3, a nickel hydroxide was deposited and the nickel hydroxide was reduced to nickel. The resulting nickel particle-containing slurry is washed with pure water until the pH of the washing liquid becomes 9 or less,
This was filtered and dried. Nickel powder 8 obtained by drying
After adding 00 g to 1 L of water at 60 ° C. and thoroughly stirring,
The mixture was slowly added dropwise to 5 L of nickel electroless plating bath ("Nivofrum" manufactured by World Metal Co.) heated to 60 ° C.
After the plating solution was stirred for 30 minutes, it was filtered, washed and dried by a conventional method to obtain a surface-treated nickel powder having a nickel-boron-tungsten alloy plating layer.

【0045】[0045]

【比較例】生成ニッケル粒子含有スラリーを洗浄後、常
法の濾過、乾燥を行った以外は、実施例1と同様の方法
でニッケル粉を得た。以上説明した実施例1〜9及び比
較例のニッケル粉について、前記(1)〜(3)に基づ
いて評価した。その結果を表1及び表2に示す。
[Comparative Example] Nickel powder was obtained in the same manner as in Example 1, except that the produced nickel particle-containing slurry was washed and then filtered and dried in the usual manner. The nickel powders of Examples 1 to 9 and Comparative Example described above were evaluated based on (1) to (3) above. The results are shown in Tables 1 and 2.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】表1に示したように、実施例1〜4までの
表面処理ニッケル粉は、蛍光X線による表面分析値と、
全溶解分析によって得られた全溶解分析値とを比較する
と、表面分析値の10質量%以下であることが確認され
た。また、ニッケル溶解率10%時における添加元素品
位は、全溶解分析値と比較した場合、20mol%以上
であることが判明した。
As shown in Table 1, the surface-treated nickel powders of Examples 1 to 4 had surface analysis values by fluorescent X-ray,
Comparison with the total dissolution analysis value obtained by the total dissolution analysis confirmed that it was 10% by mass or less of the surface analysis value. It was also found that the additive element quality at a nickel dissolution rate of 10% was 20 mol% or more when compared with the total dissolution analysis value.

【0049】そして、表2に示すように、いずれの実施
例による表面処理ニッケル粉も、比較例の未処理粉に較
べ、酸化開始温度が高く、耐酸化性に優れていることが
判明した。また、金属ニッケル粉の酸化率5〜95%に
おける温度範囲が広く、酸化度合いが緩やかで耐熱性に
も優れていることが判明した。また、400〜600℃
間での金属ニッケル酸化率が小さいことから、金属ニッ
ケルの酸化が著しい温度範囲での酸化が進みにくい特徴
を示している。特に、ホウ素やタングステンを添加した
場合には、5%酸化温度が高温へシフトするうえ、5%
と95%との酸化温度の温度差は200℃以上あり、酸
化しにくくなっていることが判明した。
As shown in Table 2, it was found that the surface-treated nickel powder according to any of the examples had a higher oxidation starting temperature and excellent oxidation resistance than the untreated powder of the comparative example. It was also found that the temperature range is wide when the oxidation rate of the metallic nickel powder is 5 to 95%, the degree of oxidation is gentle, and the heat resistance is excellent. Also, 400 to 600 ° C
Since the oxidation rate of metallic nickel between the two is small, it shows that the oxidation of metallic nickel is difficult to proceed in a remarkable temperature range. In particular, when boron or tungsten is added, the 5% oxidation temperature shifts to a high temperature and
It was found that the temperature difference between the oxidization temperatures of 100% and 95% was 200 ° C. or more, and oxidation was difficult.

【0050】[0050]

【発明の効果】以上説明したように、本発明による表面
処理ニッケル粉は、耐酸化性、特に脱バインダー時のニ
ッケルの酸化防止性及び耐熱性に優れ、セラミック誘電
体及び内部電極の厚みの薄い小型多層の積層セラミック
コンデンサ製造に好適なものである。
As described above, the surface-treated nickel powder according to the present invention is excellent in oxidation resistance, particularly nickel oxidation resistance and heat resistance during debinding, and the ceramic dielectric and the internal electrode are thin. It is suitable for manufacturing a small-sized multilayered multilayer ceramic capacitor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊島 義治 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 (72)発明者 藤本 卓 東京都品川区大崎1丁目11番1号 三井金 属鉱業株式会社機能材料事業本部機能粉事 業部内 Fターム(参考) 5E001 AB03 AC09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiharu Toyoshima             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department (72) Inventor Takashi Fujimoto             1-11-1 Osaki, Shinagawa-ku, Tokyo Mitsui Kin             Functional Mineral Co., Ltd.             Within the department F-term (reference) 5E001 AB03 AC09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル粒子表面に、添加元素としてリ
ン及び/又はホウ素を含むニッケル合金メッキ層を有し
たものからなることを特徴とする積層セラミックコンデ
ンサ内部電極用の表面処理ニッケル粉。
1. A surface-treated nickel powder for an internal electrode of a multilayer ceramic capacitor, comprising a nickel alloy plating layer containing phosphorus and / or boron as an additive element on the surface of nickel particles.
【請求項2】 添加元素としてタングステンを更に含む
ものである請求項1に記載の積層セラミックコンデンサ
内部電極用の表面処理ニッケル粉。
2. The surface-treated nickel powder for an internal electrode of a multilayer ceramic capacitor according to claim 1, which further contains tungsten as an additive element.
【請求項3】 蛍光X線による表面分析した際の添加元
素の含有量値が1〜20質量%であり、 表面処理ニッケル粉の添加元素の総含有量値が、蛍光X
線による表面分析の添加元素含有量値の10%以下とな
る請求項1又は請求項2に記載の積層セラミックコンデ
ンサ内部電極用の表面処理ニッケル粉。
3. The content value of the additional element in the surface analysis by fluorescent X-ray is 1 to 20% by mass, and the total content value of the additional element of the surface-treated nickel powder is fluorescent X
The surface-treated nickel powder for an internal electrode of a monolithic ceramic capacitor according to claim 1 or 2, which has a content of 10% or less of an additive element content value of a surface analysis by a line.
【請求項4】 添加元素の含有量は、一定量の表面処理
ニッケル粉を酸溶液に投入した際に、表面処理ニッケル
粉の総ニッケル量の10%ニッケル量を溶解した酸溶液
中での添加元素溶解量が、表面処理ニッケル粉の添加元
素の総含有量に対して20mol%以上である請求項1
〜請求項3いずれかに記載の積層セラミックコンデンサ
内部電極用の表面処理ニッケル粉。
4. The content of the additional element is such that when a certain amount of the surface-treated nickel powder is added to the acid solution, 10% of the total nickel content of the surface-treated nickel powder is dissolved in the acid solution. The element dissolution amount is 20 mol% or more with respect to the total content of additive elements of the surface-treated nickel powder.
A surface-treated nickel powder for an internal electrode of the multilayer ceramic capacitor according to claim 3.
【請求項5】 大気中の熱重量測定における金属ニッケ
ル酸化率5%の温度が400℃以上である請求項1〜4
いずれかに記載の積層セラミックコンデンサ内部電極用
の表面処理ニッケル粉。
5. The temperature at a metal nickel oxidation rate of 5% in thermogravimetric measurement in the atmosphere is 400 ° C. or higher.
A surface-treated nickel powder for an internal electrode of a monolithic ceramic capacitor according to any one of claims.
【請求項6】 大気中の熱重量測定における金属ニッケ
ル酸化率5%の温度と、金属ニッケル酸化率95%の温
度との差が100℃以上である請求項5に記載の積層セ
ラミックコンデンサ内部電極用の表面処理ニッケル粉。
6. The laminated ceramic capacitor internal electrode according to claim 5, wherein the difference between the temperature of the metal nickel oxidation rate of 5% and the temperature of the metal nickel oxidation rate of 95% in the thermogravimetric measurement in the atmosphere is 100 ° C. or more. Nickel powder for surface treatment.
【請求項7】 ニッケル粒子表面に、リン及び/又はホ
ウ素を含むニッケル合金メッキ層を有した積層セラミッ
クコンデンサ内部電極用の表面処理ニッケル粉の製造方
法であって、 ニッケル粒子又はニッケル粒子分散水性スラリーと、リ
ン及び/又はホウ素の添加元素を含むニッケル無電解メ
ッキ液とを接触させ、 ニッケル粒子表面にニッケル合金メッキ層を形成させる
ことを特徴とする積層セラミックコンデンサ内部電極用
の表面処理ニッケル粉の製造方法。
7. A method for producing a surface-treated nickel powder for a laminated ceramic capacitor internal electrode, comprising a nickel alloy plating layer containing phosphorus and / or boron on the surface of nickel particles, the method comprising: nickel particles or a nickel particle-dispersed aqueous slurry. And a nickel electroless plating solution containing an additive element of phosphorus and / or boron are brought into contact with each other to form a nickel alloy plating layer on the surface of nickel particles. Production method.
【請求項8】 ニッケル粒子表面に、リン及び/又はホ
ウ素と、更にタングステンを含むニッケル合金メッキ層
を有した積層セラミックコンデンサ内部電極用の表面処
理ニッケル粉の製造方法であって、 ニッケル粒子又はニッケル粒子分散水性スラリーと、リ
ン及び/又はホウ素の添加元素を含み、更に、タングス
テンを含むニッケル無電解メッキ液とを接触させ、 ニッケル粒子表面にニッケル合金メッキ層を形成させる
ことを特徴とする積層セラミックコンデンサ内部電極用
の表面処理ニッケル粉の製造方法。
8. A method for producing a surface-treated nickel powder for a multilayer ceramic capacitor internal electrode, comprising a nickel alloy plating layer containing phosphorus and / or boron and tungsten on the surface of nickel particles, which comprises nickel particles or nickel. A laminated ceramic characterized in that a particle-dispersed aqueous slurry is contacted with a nickel electroless plating solution containing tungsten and an additive element of phosphorus and / or boron to form a nickel alloy plating layer on the surface of nickel particles. Manufacturing method of surface-treated nickel powder for capacitor internal electrodes.
JP2001205747A 2001-07-06 2001-07-06 Surface-treated nickel powder for multilayer ceramic capacitor internal electrode and manufacturing method thereof Expired - Fee Related JP4683598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205747A JP4683598B2 (en) 2001-07-06 2001-07-06 Surface-treated nickel powder for multilayer ceramic capacitor internal electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205747A JP4683598B2 (en) 2001-07-06 2001-07-06 Surface-treated nickel powder for multilayer ceramic capacitor internal electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003022926A true JP2003022926A (en) 2003-01-24
JP4683598B2 JP4683598B2 (en) 2011-05-18

Family

ID=19042002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205747A Expired - Fee Related JP4683598B2 (en) 2001-07-06 2001-07-06 Surface-treated nickel powder for multilayer ceramic capacitor internal electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4683598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124414A (en) * 2006-10-20 2008-05-29 Hitachi Chem Co Ltd Capacitor layer forming material, its manufacturing method, and printed wiring board
EP3210696A4 (en) * 2014-10-24 2018-05-09 Hitachi Metals, Ltd. Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
US10085343B2 (en) 2016-11-04 2018-09-25 Tdk Corporation Thin-film capacitor and electronic component embedded substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208363A (en) * 1999-01-08 2000-07-28 Hokuriku Electric Ind Co Ltd Circuit board equipped with capacitor and manufacture of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327567A (en) * 1986-07-18 1988-02-05 Mitsubishi Electric Corp Electrically conductive paste
JPH05287305A (en) * 1992-04-15 1993-11-02 Showa Denko Kk Nickel powder for internal electrode of multilayered ceramic capacitor
JPH07118866A (en) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JP3475749B2 (en) * 1997-10-17 2003-12-08 昭栄化学工業株式会社 Nickel powder and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208363A (en) * 1999-01-08 2000-07-28 Hokuriku Electric Ind Co Ltd Circuit board equipped with capacitor and manufacture of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124414A (en) * 2006-10-20 2008-05-29 Hitachi Chem Co Ltd Capacitor layer forming material, its manufacturing method, and printed wiring board
EP3210696A4 (en) * 2014-10-24 2018-05-09 Hitachi Metals, Ltd. Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
US10085343B2 (en) 2016-11-04 2018-09-25 Tdk Corporation Thin-film capacitor and electronic component embedded substrate

Also Published As

Publication number Publication date
JP4683598B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
KR100743844B1 (en) Copper powder and process for producing copper powder
JP5574154B2 (en) Nickel powder and method for producing the same
TW504415B (en) Nickel powder, method for preparing the same and paste for use in making electrodes for electronic parts
KR20150090032A (en) Silver-coated copper powder, and method for producing same
WO2010021202A1 (en) Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2010053409A (en) Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor
JP4100244B2 (en) Nickel powder and method for producing the same
JP6746321B2 (en) Ni powder, method of manufacturing Ni powder, internal electrode paste, and electronic component
JP2003022926A (en) Surface-treating nickel powder for laminated ceramic capacitor inner electrode and its manufacturing method
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP5590289B2 (en) Method for producing silver paste
JP2018150607A (en) Nickel powder water slurry and method for producing same
JP4578996B2 (en) Method for refining ultrafine metal powder
JP2005097729A (en) Method for preparation of nickel powder
JPS5868918A (en) Electronic part with electrode layer and method of producing same
JPH0543921A (en) Production of nickel fine powder
JP2014005491A (en) Method for producing metal powder, metal powder, conductive paste and laminated ceramic electronic component
JP2017122252A (en) Surface-treated copper powder and production method therefor
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP2013067865A (en) Metal powder, electroconductive paste and multilayer ceramic capacitor
JP4229566B2 (en) Surface coating nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees