JP2003022919A - Magnetic element - Google Patents

Magnetic element

Info

Publication number
JP2003022919A
JP2003022919A JP2001208122A JP2001208122A JP2003022919A JP 2003022919 A JP2003022919 A JP 2003022919A JP 2001208122 A JP2001208122 A JP 2001208122A JP 2001208122 A JP2001208122 A JP 2001208122A JP 2003022919 A JP2003022919 A JP 2003022919A
Authority
JP
Japan
Prior art keywords
core
magnetic field
magnetic
coil
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001208122A
Other languages
Japanese (ja)
Inventor
Satoshi Takemoto
聡 武本
Takanobu Saitou
貴伸 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001208122A priority Critical patent/JP2003022919A/en
Publication of JP2003022919A publication Critical patent/JP2003022919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic element wherein permeability is hard to decrease and high DC superposing characteristic is obtained, when a magnetic field applied to a core is increased in accordance with a current applied to a coil. SOLUTION: The magnetic element 1 includes a core 2 having a ring shape, a coil 4 which is wound around the core 2 and excites an internal magnetic field Φ1 containing magnetic flux penetrating the inside of the core 2, and permanent magnets (external magnetic field applying means) 6, 6 for applying an external magnetic field Φ2 containing magnetic flux which is almost rectangular to the magnetic flux of the internal magnetic field Φ1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばスイッチン
グ電源のチョークコイルなどに使用される磁気素子に関
し、特に高い直流重畳特性および低コアロスの磁気素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic element used, for example, in a choke coil of a switching power supply, and more particularly to a magnetic element having a high DC superposition characteristic and a low core loss.

【0002】[0002]

【従来の技術】例えば、スイチッング電源のチョークコ
イルまたはノイズフィルタなどにおいて、インダクタン
スを活用する磁気素子には、金属粉末をプレス成形した
圧粉磁芯、フェライトを成形したフェライトコア、また
はリボン状のアモルファス金属材料を成形したアモルフ
ァスコアなどが用いられている。以上のような磁芯また
はコアは、その周りに導線を巻き付けたコイルと共に用
いられる。即ち、係るコイルに電流を流し、その周囲に
励磁される磁界の磁束を磁芯またはコアに貫通させると
共に、励磁された係る磁界におけるインダクタンスを利
用している。
2. Description of the Related Art For example, in a choke coil of a switching power supply or a noise filter, a magnetic element utilizing inductance is a dust core formed by pressing metal powder, a ferrite core formed by ferrite, or a ribbon-shaped amorphous core. An amorphous core formed by molding a metal material is used. The above magnetic core or core is used together with a coil around which a conductive wire is wound. That is, an electric current is caused to flow through the coil to cause a magnetic flux of a magnetic field excited around the coil to penetrate the magnetic core or core, and the inductance in the excited magnetic field is used.

【0003】上記磁芯やコアは、磁界を印加するに従っ
て、インダクタンス、即ち透磁率が低下する、という磁
気特性を有する。このため、周囲に巻き付けたコイルに
通電すると、透磁率が低下するため、インダクタンスが
確保できなくなる。特に、スタート時にはコイルに大電
流を流してコアなどに強い磁界を印加すると共に、定常
時には小電流で弱い磁界を印加する回路の場合、定常時
では透磁率があまり低下しないが、スタート時には透磁
率が著しく低下する、という問題があった。
The magnetic core or core has a magnetic characteristic that the inductance, that is, the magnetic permeability decreases as a magnetic field is applied. Therefore, when the coil wound around the coil is energized, the magnetic permeability is reduced, and the inductance cannot be secured. In particular, in the case of a circuit in which a large current is applied to the coil at the start to apply a strong magnetic field to the core, etc., and at the time of steady operation, a weak magnetic field is applied at a small current, the magnetic permeability does not decrease so much at the normal time, but the magnetic permeability at the start. However, there is a problem in that

【0004】[0004]

【発明が解決すべき課題】本発明は、以上に説明した従
来の技術における問題点を解決し、コイルに通電する電
流に応じてコアに印加する磁界を強くしても、透磁率が
低下しにくい、即ち高い直流重畳特性を有する磁気素子
を提供する、ことを課題とする。
SUMMARY OF THE INVENTION The present invention solves the problems in the prior art described above, and even if the magnetic field applied to the core is increased according to the current applied to the coil, the magnetic permeability decreases. An object of the present invention is to provide a magnetic element that is difficult, that is, has a high DC superposition characteristic.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、発明者らの研究の結果、内部磁界およびこ
れとほぼ直交する外部磁界を併用することに着想して成
されたものである。即ち、本発明の磁気素子(請求項1)
は、所要の形状を有するコアと、係るコアの周囲に巻き
付けられ且つ当該コアの内部を貫通する磁束を含む内部
磁界を励磁するコイルと、上記磁束とほぼ直交する磁束
を含む外部磁界を印加する外部磁界印加手段と、を含
む、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention was made as a result of research conducted by the inventors, and was conceived to use an internal magnetic field and an external magnetic field almost orthogonal thereto. Is. That is, the magnetic element of the present invention (claim 1)
Applies a core having a required shape, a coil wound around the core and exciting an internal magnetic field including a magnetic flux penetrating the inside of the core, and an external magnetic field including a magnetic flux substantially orthogonal to the magnetic flux. And an external magnetic field applying unit.

【0006】これによれば、予め印加したコアの内部磁
界に直交する方向を含む外部磁界により、内部磁界の方
向におけるコアの反磁界係数が増加する。この結果、コ
アの初透磁率を低下させることができるため、印加磁界
の増加に伴う透磁率の低下を抑制できる。従って、例え
ばスタート時にコイルに大電流を流してコアなどに強い
磁界を印加し且つ定常時に小電流で弱い磁界を印加する
回路において、スタート時における透磁率を抑制できる
ため、優れた電気的特性および磁気的特性を得ることが
可能となる。尚、本明細書において「ほぼ直交する」と
は、一方の磁界における磁束の向きに対し、他方の磁界
における磁束の向きが90度傾くと共に、係る角度に対
し±45度以内に含まれる方向を指す。
According to this, the diamagnetic field coefficient of the core in the direction of the internal magnetic field increases due to the external magnetic field including the direction orthogonal to the internal magnetic field of the core applied in advance. As a result, since the initial magnetic permeability of the core can be reduced, the magnetic permeability can be prevented from being reduced due to the increase of the applied magnetic field. Therefore, for example, in a circuit in which a large current is applied to the coil at the start to apply a strong magnetic field to the core and a weak current is applied at a steady state with a small current, the magnetic permeability at the start can be suppressed, resulting in excellent electrical characteristics and It is possible to obtain magnetic characteristics. In the present specification, “substantially orthogonal” means a direction in which the direction of the magnetic flux in the other magnetic field is inclined by 90 degrees with respect to the direction of the magnetic flux in one magnetic field and is included within ± 45 degrees with respect to the angle. Point to.

【0007】また、本発明には、前記コアがリング形状
を呈し且つ係るコアの周囲に沿って前記コイルが巻き付
けられると共に、上記コアの外周側または内周側の位置
で且つ該コアの半径方向に沿って、あるいは上記コアの
外側の位置で且つ該コアの軸心方向に沿って、前記外部
磁界印加手段が配置されている、磁気素子(請求項2)も
含まれる。これによれば、コイルの内部でその円周方向
に沿って形成される内部磁界に対し、ほぼ直角方向の磁
束成分を含む外部磁界が印加されるため、内部磁界方向
のコアの反磁界係数が増加する。従って、初透磁率を低
下させれることができるため、内部印加磁界の増加に伴
う透磁率の低下を抑制できる。尚、上記「コアの外周側
や内周側」とは、当該コアの外円周面または内円周面に
近接する位置を指す。また、上記「コアの外側」とは、当
該コアの外円周面の外側および内円周面の内側(貫通孔)
を除いた位置を指す。
Further, according to the present invention, the core has a ring shape, and the coil is wound along the periphery of the core, and the core is at an outer peripheral side or an inner peripheral side and in a radial direction of the core. Also included is a magnetic element (claim 2) in which the external magnetic field applying means is arranged along or along the axial direction of the core at a position outside the core. According to this, an external magnetic field including a magnetic flux component in a substantially perpendicular direction is applied to the internal magnetic field formed inside the coil along its circumferential direction, so that the diamagnetic field coefficient of the core in the internal magnetic field direction is To increase. Therefore, since the initial magnetic permeability can be reduced, it is possible to suppress the magnetic permeability from being reduced due to the increase of the internal applied magnetic field. The "outer peripheral side or inner peripheral side of the core" refers to a position close to the outer circumferential surface or the inner circumferential surface of the core. Further, the "outside of the core" means the outside of the outer circumferential surface of the core and the inside of the inner circumferential surface (through hole).
Refers to the position excluding.

【0008】更に、本発明には、前記コアが棒形状を呈
し且つ係るコアの周囲の長手方向に沿って前記コイルが
巻き付けられると共に、上記コアにおける長手方向とほ
ぼ直交する方向に沿って、前記外部磁界印加手段が配置
されている、磁気素子(請求項3)も含まれる。これによ
れば、コアの内部で当該コアの長手方向に沿って形成さ
れる内部磁界に対し、ほぼ直角方向の磁束成分を含む外
部磁界が印加されるため、内部磁界方向のコアの反磁界
係数が増加する。この結果、コアの初透磁率を低下させ
れることができるため、内部印加磁界の増加に伴う透磁
率の低下を抑制することが可能となる。
Further, according to the present invention, the core has a rod shape, and the coil is wound along the longitudinal direction around the core, and the coil is wound along a direction substantially orthogonal to the longitudinal direction of the core. A magnetic element (claim 3) in which the external magnetic field applying means is arranged is also included. According to this, since an external magnetic field including a magnetic flux component in a direction substantially perpendicular to the internal magnetic field formed inside the core along the longitudinal direction of the core is applied, the demagnetizing factor of the core in the internal magnetic field direction is applied. Will increase. As a result, since the initial magnetic permeability of the core can be reduced, it is possible to suppress the magnetic permeability from being reduced due to the increase of the internal applied magnetic field.

【0009】また、本発明には、前記外部磁界印加手段
は、外部コイル、電磁石、または永久磁石である、磁気
素子(請求項4)も含まれる。これによれば、内部磁界が
通過する前記コアに対し、係る内部磁界の磁束とほぼ直
交する磁束成分を含む外部磁界を印加する外部磁界印加
手段を、上記コアの形状やサイズに応じて外部コイル、
電磁石、または永久磁石の何れかで且つ任意の形状や形
態にして容易に選択することが可能となる。
The present invention also includes a magnetic element (claim 4) in which the external magnetic field applying means is an external coil, an electromagnet, or a permanent magnet. According to this, the external magnetic field applying means for applying an external magnetic field including a magnetic flux component substantially orthogonal to the magnetic flux of the internal magnetic field to the core through which the internal magnetic field passes is provided with an external coil according to the shape and size of the core. ,
It is possible to easily select either an electromagnet or a permanent magnet in any shape and form.

【0010】加えて、本発明には、前記外部磁界印加手
段は、前記コアとの距離を変更可能に制御しているか、
あるいは、上記外部磁界印加手段における外部コイルま
たは電磁石の励磁コイルへの通電量を変更可能に制御し
ている、磁気素子(請求項5)も含まれる。これによれ
ば、内部磁界に対する外部磁界の強度を任意に調整でき
るため、コア内における内部磁界方向の反磁界係数が増
加するパターンを適宜選択して、直流重畳特性(透磁率
の低下具合)を、使用目的に応じて自在に設定すること
が可能となる。
In addition, according to the present invention, whether the external magnetic field applying means controls the distance to the core so as to be changeable,
Alternatively, it also includes a magnetic element (claim 5) that controls the amount of electricity to be applied to the external coil or the exciting coil of the electromagnet in the external magnetic field applying means. According to this, since the intensity of the external magnetic field with respect to the internal magnetic field can be arbitrarily adjusted, a pattern in which the diamagnetic field coefficient in the internal magnetic field direction increases in the core is appropriately selected, and the DC superposition characteristic (the degree of decrease in magnetic permeability) is set. , It is possible to freely set according to the purpose of use.

【0011】[0011]

【発明の実施の形態】以下において本発明の実施に好適
な形態を図面と共に説明する。図1(A)は、本発明の磁
気素子の1形態である磁気素子1の斜視図を示す。磁気
素子1は、図1(A)に示すように、円形の貫通孔3を有
するリング形状のコア2、係るコア2の周囲で且つその
円周方向に沿って巻き付けたコイル4、および上記コア
2の外側で且つ当該コア2の軸心方向に沿って配置され
た上下一対の永久磁石(外部磁界印加手段)6,6を備え
ている。コア2は、Fe,Ni,またはCo、あるいは
これらの何れかをベースとする合金からなる軟磁性の金
属粉末をプレスによりリング形状に成形した圧粉磁芯、
あるいは上記金属または合金をリング形状に鋳造したも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments for carrying out the present invention will be described below with reference to the drawings. FIG. 1A shows a perspective view of a magnetic element 1 which is one form of the magnetic element of the present invention. As shown in FIG. 1A, the magnetic element 1 includes a ring-shaped core 2 having a circular through hole 3, a coil 4 wound around the core 2 and along the circumferential direction thereof, and the core. It is provided with a pair of upper and lower permanent magnets (external magnetic field applying means) 6 and 6 arranged outside the core 2 and along the axial direction of the core 2. The core 2 is a dust core formed by pressing soft magnetic metal powder made of Fe, Ni, Co, or an alloy based on any of these into a ring shape,
Alternatively, the above metal or alloy is cast into a ring shape.

【0012】また、永久磁石6,6は、例えばフェライ
トまたはSm−Coを棒形状に成形したもので、図1
(A)に示すように、コア2を挟んで互いの軸心が一致す
るように配置されている。尚、永久磁石6,6は、図示
しない公知のスライド機構により、コア2に対し、それ
ぞれ接近または離脱可能に支持され、係るコア2との距
離を変更可能に制御することもできる。図1(B),(C)
に示すように、コア2の外側に永久磁石(外部磁界印加
手段)6,6をその長手方向をコア2の軸心と平行に配
置すると、図1(B),(C)中の破線の矢印で示す外部磁
界Φ2が、磁石6、コア2、および磁石6の順で貫通す
る。この結果、永久磁石6,6に接近したコア2の内部
では、図1(C)中において多数の矢印で示すように、磁
化の方向は外部磁界Φ2の方向に沿うになる。尚、図1
(C)中の符号gは磁区を示す。
The permanent magnets 6 and 6 are made of, for example, ferrite or Sm-Co in a rod shape.
As shown in (A), the cores 2 are arranged so that their axes coincide with each other. The permanent magnets 6, 6 are supported by a known slide mechanism (not shown) so that they can approach or separate from the core 2, and the distance from the core 2 can be controlled to be changeable. 1 (B), (C)
As shown in Fig. 1, when the permanent magnets (external magnetic field applying means) 6 and 6 are arranged outside the core 2 in the longitudinal direction parallel to the axial center of the core 2, the broken lines in Figs. An external magnetic field Φ2 indicated by an arrow penetrates the magnet 6, the core 2, and the magnet 6 in this order. As a result, inside the core 2 that is close to the permanent magnets 6 and 6, the direction of magnetization is along the direction of the external magnetic field Φ2, as shown by the large number of arrows in FIG. Incidentally, FIG.
The symbol g in (C) indicates a magnetic domain.

【0013】次に、コイル4に通電すると、図1(B),
(C)に示すように、コア2の内部にはその円周方向に沿
った内部磁界Φ1が印加される。係る内部磁界Φ1は、
上記外部磁界Φ2とほぼ直交する向きの磁束からなる。
この際、内部磁界Φ1が外部磁界Φ2よりもかなり強い
と、図1(D)に示すように、コア2内の各磁区gの磁化
容易軸は、内部磁界Φ1の磁束と平行になる。尚、内部
磁界Φ1と外部磁界Φ2とがほぼ同じ強さであると、図
1(E)に示すように、コア2内の各磁区gの磁化容易軸
は、内部磁界Φ1と外部磁界Φ2との合成ベクトルの向
きに沿ったほぼ斜め45度に沿った状態となる。
Next, when the coil 4 is energized, as shown in FIG.
As shown in (C), an internal magnetic field Φ1 along the circumferential direction is applied inside the core 2. The internal magnetic field Φ1 is
It is composed of a magnetic flux in a direction substantially orthogonal to the external magnetic field Φ2.
At this time, when the internal magnetic field Φ1 is considerably stronger than the external magnetic field Φ2, the easy axis of magnetization of each magnetic domain g in the core 2 becomes parallel to the magnetic flux of the internal magnetic field Φ1, as shown in FIG. When the internal magnetic field Φ1 and the external magnetic field Φ2 have almost the same strength, the easy axis of magnetization of each magnetic domain g in the core 2 is the internal magnetic field Φ1 and the external magnetic field Φ2, as shown in FIG. 1 (E). The state is approximately 45 degrees along the direction of the composite vector of.

【0014】以上の何れの場合においても、外部磁界Φ
2により内部磁界Φ1の方向におけるコア2の反磁界係
数が増加し、内部磁界Φ1の方向の磁化は抑制される。
この結果、コア2の初透磁率(μ)を低下させることがで
きるため、外部磁界Φ2の増加に伴う透磁率(μ)の低下
を抑制することができる。従って、以上のような磁気素
子1を、スタート時にコイルに大電流を流してコアなど
に強い磁界を印加し且つ定常時に小電流で弱い磁界を印
加する回路に用いた場合、スタート時における初透磁率
(μ)を低下させることができる。このため、内部印加磁
界Φ1の増加に伴う透磁率(μ)の低下を抑制できるの
で、優れた電気的特性および磁気的特性を発揮させるこ
とが可能となる。尚、図1(A)において、永久磁石6
は、左右の何れか1カ所に1個のみ配置した形態にして
も良い。また、永久磁石6の磁極N,Sの向きは、図1
(A)と逆向きでも良く、個別の磁石6間で異なっていて
も良い。
In any of the above cases, the external magnetic field Φ
2 increases the diamagnetic field coefficient of the core 2 in the direction of the internal magnetic field Φ1 and suppresses the magnetization in the direction of the internal magnetic field Φ1.
As a result, since the initial magnetic permeability (μ) of the core 2 can be reduced, it is possible to prevent the magnetic permeability (μ) from decreasing with the increase of the external magnetic field Φ2. Therefore, when the magnetic element 1 as described above is used in a circuit in which a large current is applied to the coil at the start to apply a strong magnetic field to the core and a small current is applied to the core in a steady state, a weak magnetic field is applied at the start. Magnetic susceptibility
(μ) can be reduced. Therefore, it is possible to suppress a decrease in magnetic permeability (μ) due to an increase in the internal applied magnetic field Φ1, and it is possible to exhibit excellent electrical characteristics and magnetic characteristics. In FIG. 1A, the permanent magnet 6
May be arranged in any one of the left and right positions. In addition, the directions of the magnetic poles N and S of the permanent magnet 6 are as shown in FIG.
The direction may be opposite to that of (A), or the individual magnets 6 may be different.

【0015】図2(A)は、前記コイル4を巻き付けたリ
ング形状のコア2と、係るコア2の外側で且つ当該コア
2の軸心方向に沿って配置された上下一対の外部コイル
(外部磁界印加手段)7,7と、を備えた磁気素子1aを
示す。外部コイル7,7に通電すると、図2(A)中の破
線の矢印で示す外部磁界Φ2が外部コイル7,7の内側
を通り且つコア2を貫通する。この状態で、コイル4に
通電して、図2(A)に示すように、コア2内に内部磁界
Φ1を励磁する。このため、コア2中では、予め外部磁
界Φ2により、コア2の初透磁率(μ)を低下させること
ができるので、内部印加磁界Φ1の増加に伴う透磁率
(μ)の低下を抑制できる。尚、図2(A)で、外部コイル
7は、上下一対のうち何れか一方のみにした形態にして
も良い。
FIG. 2A shows a ring-shaped core 2 around which the coil 4 is wound, and a pair of upper and lower external coils arranged outside the core 2 and along the axial direction of the core 2.
(External magnetic field applying means) 7, 7 is shown. When the external coils 7 and 7 are energized, the external magnetic field Φ2 indicated by the dashed arrow in FIG. 2A passes through the inside of the external coils 7 and 7 and penetrates the core 2. In this state, the coil 4 is energized to excite the internal magnetic field Φ1 in the core 2 as shown in FIG. For this reason, in the core 2, the initial magnetic permeability (μ) of the core 2 can be lowered in advance by the external magnetic field Φ2, so that the magnetic permeability accompanying the increase of the internal applied magnetic field Φ1
The decrease in (μ) can be suppressed. In FIG. 2 (A), the external coil 7 may have only one of the upper and lower pairs.

【0016】また、図2(B)は、コイル4を巻き付けた
リング形状のコア2と、係るコア2の外側で且つ当該コ
ア2の軸心方向に沿って配置された上下一対の電磁石
(外部磁界印加手段)M,Mと、を備えた磁気素子1bを
示す。電磁石Mは、棒状の磁芯8の周囲に励磁コイル9
を巻き付けたもので、係るコイル9に通電すると磁芯8
を長手方向に沿って貫通する外部磁界Φ2が励磁され
る。このため、コイル4に通電し、図2(B)に示すよう
に、コア2内に内部磁界Φ1を励磁すると、コア2中で
は、予め外部磁界Φ2により、上記磁気素子1aと同様
に、コア2の初透磁率(μ)を低下させることができるた
め、内部印加磁界Φ1の増加に伴う透磁率(μ)の低下を
抑制できる。尚、図2(B)で、電磁石Mは、上下一対の
うち何れか一方のみにした形態にしても良い。
FIG. 2B shows a ring-shaped core 2 around which a coil 4 is wound, and a pair of upper and lower electromagnets arranged outside the core 2 and along the axial direction of the core 2.
(External magnetic field applying means) A magnetic element 1b including M and M is shown. The electromagnet M includes an exciting coil 9 around the rod-shaped magnetic core 8.
When the coil 9 is energized, the magnetic core 8
An external magnetic field Φ2 that penetrates along the longitudinal direction is excited. Therefore, when the coil 4 is energized and the internal magnetic field Φ1 is excited in the core 2 as shown in FIG. 2B, the core 2 is previously tuned by the external magnetic field Φ2 in the same manner as the magnetic element 1a. Since the initial magnetic permeability (μ) of No. 2 can be decreased, the decrease of the magnetic permeability (μ) due to the increase of the internal applied magnetic field Φ1 can be suppressed. Note that, in FIG. 2B, the electromagnet M may have only one of the upper and lower pairs.

【0017】更に、図2(C)は、コイル4を巻き付けた
リング形状のコア2と、係るコア2の外周側および内周
側で且つ当該コア2の半径方向に沿った一対の永久磁石
(外部磁界印加手段)6,6と、を備えた磁気素子1cを
示す。磁気素子1cでも、永久磁石6,6をその長手方
向に沿って通過し且つコア2を貫通する外部磁界Φ2
は、コア2中をその円周方向に沿って印加される内部磁
界Φ1ととほぼ直交する。このため、前記磁気素子1と
同様に、コア2の初透磁率(μ)を低下させることができ
るので、内部印加磁界Φ1の増加に伴う透磁率(μ)の低
下を抑制できる。尚、図2(C)で、永久磁石6は、内外
一対のうち何れか一方のみにした形態にしても良い。ま
た、永久磁石6に替えて、前記外部コイル7または電磁
石Mを一対またはコア2の内外何れか一方のみに配置し
も良い。更に、永久磁石6の磁極N,Sの向きは、図2
(C)と逆向きでも良い。加えて、図2(A)〜(C)におい
て、外部コイル7、電磁石M、または永久磁石6を、コ
ア2に対し接近または離脱可能に支持し、当該コア2と
の距離を変更可能に制御することもできる。
Further, FIG. 2C shows a ring-shaped core 2 around which a coil 4 is wound, and a pair of permanent magnets on the outer and inner peripheral sides of the core 2 and along the radial direction of the core 2.
A magnetic element 1c including (external magnetic field applying means) 6 and 6 is shown. Also in the magnetic element 1c, an external magnetic field Φ2 that passes through the permanent magnets 6 and 6 along its longitudinal direction and penetrates the core 2
Is substantially orthogonal to the internal magnetic field Φ1 applied in the core 2 along its circumferential direction. Therefore, similarly to the magnetic element 1, the initial magnetic permeability (μ) of the core 2 can be reduced, so that the magnetic permeability (μ) can be suppressed from decreasing with the increase of the internal applied magnetic field Φ1. In FIG. 2C, the permanent magnet 6 may have only one of the inner and outer pairs. Further, instead of the permanent magnet 6, the external coil 7 or the electromagnet M may be arranged only in one of the pair or the inside and outside of the core 2. Further, the directions of the magnetic poles N and S of the permanent magnet 6 are as shown in FIG.
It may be reversed from (C). In addition, in FIGS. 2A to 2C, the external coil 7, the electromagnet M, or the permanent magnet 6 is supported so as to be close to or away from the core 2, and the distance from the core 2 can be changed. You can also do it.

【0018】図3(A)は、棒形状のコア12と、係るコ
ア12の周囲に沿って巻き付けたコイル14と、上記コ
ア12の長手方向と直交する方向に沿って配置した棒状
の永久磁石(外部磁界印加手段)16,16とを備えた磁
気素子10aを示す。図3(A)に示すように、コア12
に永久磁石16,16を接近させると、外部磁界Φ2が
コア12を貫通する。このため、コイル14に通電し、
図3(A)に示すように、コア2内に内部磁界Φ1を励磁
すると、コア2中では、予め外部磁界Φ2により、コア
12の初透磁率(μ)を低下させることができるので、内
部印加磁界Φ1の増加に伴う透磁率(μ)の低下を抑制で
きる。尚、図3(A)で、永久磁石16は、上下一対のう
ち何れか一方のみにした形態にしても良い。
FIG. 3A shows a rod-shaped core 12, a coil 14 wound around the core 12, and a rod-shaped permanent magnet arranged along a direction orthogonal to the longitudinal direction of the core 12. A magnetic element 10a including (external magnetic field applying means) 16 and 16 is shown. As shown in FIG. 3 (A), the core 12
When the permanent magnets 16 and 16 are brought close to each other, the external magnetic field Φ2 penetrates the core 12. Therefore, the coil 14 is energized,
As shown in FIG. 3 (A), when the internal magnetic field Φ1 is excited in the core 2, the initial magnetic permeability (μ) of the core 12 can be lowered in advance in the core 2 by the external magnetic field Φ2. It is possible to suppress a decrease in magnetic permeability (μ) due to an increase in applied magnetic field Φ1. It should be noted that in FIG. 3A, the permanent magnet 16 may be in the form of only one of the upper and lower pairs.

【0019】また、図3(B)は、棒形状のコア12と、
係るコア12の周囲に長手方向に沿って巻き付けたコイ
ル14と、上記コア12の長手方向と直交する方向に沿
って配置した電磁石(外部磁界印加手段)17,17と、
を備えた磁気素子10bを示す。上記電磁石17は、棒
状の磁芯18に励磁コイル19を巻き付けたもので、係
るコイル19に通電すると、磁芯18の長手方向に沿っ
て外部磁界Φ2が励磁され且つコア12を貫通する。こ
のため、コイル14に通電し、コア2内に内部磁界Φ1
を励磁すると、磁気素子10aと同様に、コア2の初透
磁率(μ)を低下させることができるので、内部印加磁界
Φ1の増加に伴う透磁率(μ)の低下を抑制できる。尚、
図3(B)で、電磁石17は、上下一対のうち何れか一方
のみにした形態にしても良い。また、電磁石17に替え
て、外部コイルを上下一対または何れか一方に配置した
形態としても良い。更に、永久磁石12の磁極N,Sの
向きは、図3(A)と逆向きであっても良い。
FIG. 3B shows a rod-shaped core 12 and
A coil 14 wound around the core 12 along the longitudinal direction, electromagnets (external magnetic field applying means) 17, 17 arranged along a direction orthogonal to the longitudinal direction of the core 12,
The magnetic element 10b provided with is shown. The electromagnet 17 is formed by winding an exciting coil 19 around a rod-shaped magnetic core 18. When the coil 19 is energized, an external magnetic field Φ2 is excited along the longitudinal direction of the magnetic core 18 and penetrates the core 12. Therefore, the coil 14 is energized, and the internal magnetic field Φ1 is generated in the core 2.
When the magnetic field is excited, the initial magnetic permeability (μ) of the core 2 can be reduced similarly to the magnetic element 10a, so that it is possible to suppress the magnetic permeability (μ) from decreasing with the increase of the internal applied magnetic field Φ1. still,
In FIG. 3B, the electromagnet 17 may have only one of the upper and lower pairs. Further, instead of the electromagnet 17, the external coils may be arranged in a pair in the upper and lower sides or in either one. Furthermore, the directions of the magnetic poles N and S of the permanent magnet 12 may be opposite to those in FIG.

【0020】[0020]

【実施例】以下において、本発明の具体的な実施励につ
いて、比較例と併せて説明する。Fe−9.5wt%S
i−5.5Alwt%の軟磁性合金からなり、外径28m
m×内径20mm×軸心方向の厚み5mmのサイズを有
すると共に、初透磁率μが約160であるリング形状の
コア2を用意した。係るコア2の周囲にエナメルで絶縁
された線径0.45mmの銅線からなるコイル4を10
0ターンで巻き付けた。一方、上記コア2の外側の位置
で且つ当該コア2の軸心方向と平行な姿勢にして、Sm
−Co合金からなり一辺が15mmずつの立方体を呈す
る永久磁石(外部磁界印加手段)6を配置可能とした。
[Examples] In the following, specific examples of the implementation of the present invention will be described together with comparative examples. Fe-9.5 wt% S
i-5.5Alwt% soft magnetic alloy, outer diameter 28m
A ring-shaped core 2 having a size of m × inner diameter 20 mm × thickness 5 mm in the axial direction and having an initial permeability μ of about 160 was prepared. A coil 4 made of a copper wire having a wire diameter of 0.45 mm, which is insulated with enamel, is provided around the core 2.
Wrapped in 0 turns. On the other hand, at a position outside the core 2 and in a posture parallel to the axial direction of the core 2, Sm
A permanent magnet (external magnetic field applying means) 6 made of a Co alloy and having a cubic shape with sides of 15 mm each can be arranged.

【0021】先ず、永久磁石6を配置せず、コイル4に
通電してコア2に印加する内部磁界Φ1を0〜8000
(A/m)まで変化させたベースサンプルにおけるコア2
の透磁率μを測定した。また、初透磁率μが160のベ
ースサンプルに磁束密度(B)が0.15T(テスラ)の永
久磁石6を上記のように配置し、コイル4に通電して上
記コア2に励磁する内部磁界Φ1を0〜8000(A/
m)まで変化させた実施例1におけるコア2の透磁率μ
を測定した。尚、実施例1の初透磁率μは90であっ
た。更に、実施例1と同じく初透磁率μが約90の初透
磁率μを有するコア2を別途用意し、永久磁石6を用い
ない比較例1とした。コイル4に通電してコア2に励磁
する内部磁界Φ1を0〜8000(A/m)まで変化させ
た比較例1におけるコア2の透磁率μを測定した。以上
のようなベースサンプル、実施例1、および比較例1の
結果を表1および図4のグラフに示した。
First, without arranging the permanent magnet 6, the coil 4 is energized and the internal magnetic field Φ 1 applied to the core 2 is 0 to 8000.
Core 2 in the base sample changed to (A / m)
The magnetic permeability μ was measured. In addition, a permanent magnet 6 having a magnetic flux density (B) of 0.15 T (tesla) is arranged as described above on a base sample having an initial magnetic permeability μ of 160, and an internal magnetic field for exciting the core 2 by energizing the coil 4 is provided. Φ1 from 0 to 8000 (A /
m), the magnetic permeability μ of the core 2 in Example 1
Was measured. The initial magnetic permeability μ of Example 1 was 90. Further, as in Example 1, a core 2 having an initial magnetic permeability μ of about 90 was prepared separately, and Comparative Example 1 was obtained in which the permanent magnet 6 was not used. The magnetic permeability μ of the core 2 in Comparative Example 1 in which the internal magnetic field Φ1 for energizing the coil 4 and exciting the core 2 was changed from 0 to 8000 (A / m) was measured. The results of the above base sample, Example 1, and Comparative Example 1 are shown in Table 1 and the graph of FIG.

【0022】次に、磁束密度(B)が0.25Tの永久磁
石6を配置し、初透磁率μが160のベースサンプルの
コア2を用意し、そのコイル4に通電して係るコア2に
励磁する内部磁界Φ1を0〜8000(A/m)まで変化
させた実施例2におけるコア2の透磁率μを測定した。
尚、実施例2の初透磁率μは56であった。また、永久
磁石6を配置せず、実施例2と同様の初透磁率μを有す
るコア2に励磁する内部磁界Φ1を上記と同じく変化さ
せた比較例2におけるコア2の透磁率μを測定した。更
に、磁束密度(B)が0.15Tの永久磁石6を、初透磁
率μが160のベースサンプルのコア2の半径方向に沿
って配置し、そのコイル4に通電して係るコア2に励磁
する内部磁界Φ1を0〜8000(A/m)まで変化させ
た実施例3におけるコア2の透磁率μを測定した。実施
例3の初透磁率μは89であった。また、永久磁石6を
配置せず実施例3と同様の初透磁率μを有するコア2に
励磁する内部磁界Φ1を上記と同じく変化させた比較例
3におけるコア2の透磁率μを測定した。実施例2,3
および比較例2,3の結果も表1と図4のグラフとに示
した。
Next, a permanent magnet 6 having a magnetic flux density (B) of 0.25T is arranged, a core 2 of a base sample having an initial magnetic permeability μ of 160 is prepared, and the coil 4 is energized. The magnetic permeability μ of the core 2 in Example 2 in which the internal magnetic field Φ1 to be excited was changed from 0 to 8000 (A / m) was measured.
The initial magnetic permeability μ of Example 2 was 56. Further, without arranging the permanent magnet 6, the magnetic permeability μ of the core 2 in Comparative Example 2 in which the internal magnetic field Φ1 excited in the core 2 having the same initial magnetic permeability μ as in Example 2 was changed in the same manner as above was measured. . Further, a permanent magnet 6 having a magnetic flux density (B) of 0.15T is arranged along the radial direction of the core 2 of the base sample having an initial permeability μ of 160, and the coil 4 is energized to excite the core 2. The magnetic permeability μ of the core 2 in Example 3 in which the internal magnetic field Φ1 is changed from 0 to 8000 (A / m) was measured. The initial magnetic permeability μ of Example 3 was 89. Further, the magnetic permeability μ of the core 2 in Comparative Example 3 in which the internal magnetic field Φ1 for exciting the core 2 having the same initial magnetic permeability μ as in Example 3 was changed in the same manner as described above without arranging the permanent magnet 6 was measured. Examples 2 and 3
The results of Comparative Examples 2 and 3 are also shown in Table 1 and the graph of FIG.

【0023】[0023]

【表1】 [Table 1]

【0024】図4のグラフおよび表1に示すように、ベ
ースサンプルの透磁率μは、印加磁界が0〜3200
(A/m)の領域は実施例1を上回った反面、4000
(A/m)以上の領域では実施例1よりも下回り、且つ急
激な低下傾向を示した。一方、実施例1は初透磁率μが
約90と低下するものの、内部磁界Φ1を印加した際の
透磁率μは比較的緩やかに低下した。更に、比較例1の
透磁率μは、印加磁界が800〜8000(A/m)の領
域で実施例1よりも下回った。これらの結果、永久磁石
6をコア2の付近に配置し、コア2内の内部磁界Φ1に
ほぼ直交する外部磁界Φ2を印加する実施例1によれ
ば、コア2の透磁率μが低下しにくくなり、高い直流重
畳特性が得られることが判明した。
As shown in the graph of FIG. 4 and Table 1, the magnetic permeability μ of the base sample is such that the applied magnetic field is 0 to 3200.
The area (A / m) exceeded that of Example 1, but was 4000.
In the range of (A / m) or more, it was lower than that of Example 1 and showed a sharp decreasing tendency. On the other hand, in Example 1, although the initial magnetic permeability μ decreased to about 90, the magnetic permeability μ when the internal magnetic field Φ1 was applied decreased relatively moderately. Further, the magnetic permeability μ of Comparative Example 1 was lower than that of Example 1 in the region where the applied magnetic field was 800 to 8000 (A / m). As a result, according to the first embodiment in which the permanent magnet 6 is arranged in the vicinity of the core 2 and the external magnetic field Φ2 substantially orthogonal to the internal magnetic field Φ1 in the core 2 is applied, the magnetic permeability μ of the core 2 is less likely to decrease. It was found that a high DC superposition characteristic can be obtained.

【0025】更に、図4のグラフおよび表1に示すよう
に、実施例2の透磁率μは、印加磁界が800〜800
0(A/m)の領域で比較例2よりも上回り、実施例3の
透磁率μも、印加磁界が800〜8000(A/m)の領
域で比較例3よりも上回っていた。これらの結果、永久
磁石6をコア2の付近に配置し、コア2内の内部磁界Φ
1にほぼ直交する外部磁界Φ2を印加する実施例2,3
によっても、コア2の透磁率μが低下しにくくなり、高
い直流重畳特性が得られることが判明した。
Further, as shown in the graph of FIG. 4 and Table 1, the magnetic permeability μ of Example 2 is such that the applied magnetic field is 800 to 800.
In the region of 0 (A / m), it was higher than that of Comparative Example 2, and the magnetic permeability μ of Example 3 was also higher than that of Comparative Example 3 in the region where the applied magnetic field was 800 to 8000 (A / m). As a result, the permanent magnet 6 is arranged near the core 2 and the internal magnetic field Φ in the core 2 is reduced.
Examples 2 and 3 in which an external magnetic field Φ2 substantially orthogonal to 1 is applied
Also, it was found that the magnetic permeability μ of the core 2 is less likely to decrease and a high DC superposition characteristic can be obtained.

【0026】更に、前記と同じ軟磁性合金で且つ同じサ
イズを有し初透磁率μが約160のコア2を用意し、こ
れに前記と同じコイル4を同じ巻き数で巻き付けた。一
方、ソフトフェライトからなり直径20mm×軸心方向
の長さ10mmの棒状の磁芯8に励磁コイル9を巻き付
けた一対の電磁石Mを、それらの磁芯8の軸心が上記コ
ア2の軸心と平行になるように、係るコア2を挟んだ位
置に対称に配置可能した。係る電磁石Mにより形成する
外部磁界Φ2は、励磁コイル9に流す電流値を変更する
ことにより、磁束密度(B)が0〜0.3Tとなるように
変化させた。尚、励磁コイル9に流す電流値は、磁芯8
に印加される外部磁界Φ2を検出し且つこれをフィード
バックすることにより、当該外部磁界Φ2において最も
高い透磁率μが得られるように制御した。
Further, a core 2 made of the same soft magnetic alloy as above and having the same size and an initial magnetic permeability μ of about 160 was prepared, and the same coil 4 as above was wound around the core 2 at the same number of turns. On the other hand, a pair of electromagnets M each made of soft ferrite and having a diameter of 20 mm and a length of 10 mm in the axial direction and a magnet coil 8 wound around a rod-shaped magnetic core 8 are arranged such that the magnetic core 8 has the axial center of the core 2. The core 2 can be symmetrically arranged so as to be parallel to the core 2. The external magnetic field Φ2 formed by the electromagnet M is changed so that the magnetic flux density (B) is 0 to 0.3T by changing the value of the current passed through the exciting coil 9. The value of the current passed through the exciting coil 9 is
The external magnetic field Φ2 applied to the sensor is detected and fed back to control so that the highest magnetic permeability μ can be obtained in the external magnetic field Φ2.

【0027】一対の電磁石Mを配置し且つコイル4に通
電して、コア2に0〜8000(A/m)の内部磁界Φ1
を印加した実施例4におけるコア2の透磁率μと、電磁
石Mを配置せずにコイル4に通電し、上記と同じ範囲の
内部磁界Φ1を印加した比較例4におけるコア2の透磁
率μと、をそれぞれ測定した。その結果を示す図5(A)
のグラフによれば、内部磁界Φ1が大きくなるに連れ
て、実施例4の透磁率μは比較例4の透磁率μよりも高
くなった。
An internal magnetic field Φ1 of 0 to 8000 (A / m) is applied to the core 2 by disposing a pair of electromagnets M and energizing the coil 4.
And the magnetic permeability μ of the core 2 in the comparative example 4 in which the coil 4 was energized without applying the electromagnet M and the internal magnetic field Φ1 in the same range as above was applied. , Were respectively measured. Figure 5 (A) showing the result
According to the graph, the magnetic permeability μ of Example 4 became higher than the magnetic permeability μ of Comparative Example 4 as the internal magnetic field Φ1 increased.

【0028】また、初透磁率μが約160のコア2を用
意し、これにコイル4を同様に巻き付けると共に、上記
と同じ一対の電磁石Mを同様に配置した実施例5におけ
るコイル4に通電し、上記コア2中に0〜8000(A
/m)の内部磁界Φ1を印加した当該コア2の透磁率μ
を測定した。この際の初透磁率μは約125であった。
これに対し、電磁石Mを配置せずに初透磁率μが約12
5のコア2に巻き付けたコイル4に通電し、上記と同じ
範囲の内部磁界Φ1を印加した比較例5における上記コ
ア2の透磁率μを測定した。それらの結果を図5(B)の
グラフに示した。このグラフに示ように、0〜8000
(A/m)の全領域において、実施例5の透磁率μは比較
例5のそれよりも高くなった。
Further, a core 2 having an initial magnetic permeability μ of about 160 is prepared, a coil 4 is wound around the core 2 in the same manner, and the coil 4 in the fifth embodiment in which the same pair of electromagnets M as described above are similarly arranged is energized. , 0 to 8000 (A in the core 2
Permeability of the core 2 to which an internal magnetic field Φ1 of
Was measured. The initial permeability μ at this time was about 125.
On the other hand, the initial permeability μ is about 12 without disposing the electromagnet M.
The coil 4 wound around the core 2 of No. 5 was energized, and the magnetic permeability μ of the core 2 in Comparative Example 5 in which the internal magnetic field Φ1 in the same range as above was applied was measured. The results are shown in the graph of FIG. As shown in this graph, 0-8000
In the entire area of (A / m), the magnetic permeability μ of Example 5 was higher than that of Comparative Example 5.

【0029】更に、初透磁率μが約160でその他が前
記と同じコア2を用意し、これにコイル4を前記同様に
巻き付けた。これに対して、一対の電磁石Mを上記コア
2を内外から挟み且つその半径方向に沿って配置した実
施例6において、コイル4に通電し、上記コア2中に0
〜8000(A/m)の内部磁界Φ1を印加した該コア2
の透磁率μを測定した。この際の初透磁率μは約95で
あった。
Further, a core 2 having an initial magnetic permeability μ of about 160 and the same as the others except for the above was prepared, and a coil 4 was wound around the core 2 in the same manner as described above. On the other hand, in Example 6 in which a pair of electromagnets M sandwiches the core 2 from inside and outside and is arranged along the radial direction thereof, the coil 4 is energized and 0 is inserted in the core 2.
The core 2 to which an internal magnetic field Φ1 of ˜8000 (A / m) is applied
The magnetic permeability μ was measured. The initial permeability μ at this time was about 95.

【0030】これに対し、電磁石Mを配置せずに初透磁
率μが約95のコア2に巻き付けたコイル4に通電し、
上記と同じ範囲の内部磁界Φ1を印加した比較例6にお
ける上記コア2の透磁率μを測定した。その結果を示し
た図5(C)のグラフによれば、0〜8000(A/m)の
領域において、実施例6の透磁率μは比較例6のそれよ
りも高くなった。以上の実施例4〜6によっても、コア
2の透磁率μが低下しにくく、高い直流重畳特性が得ら
れることが判明し、本発明の効果が裏付けられた。
On the other hand, the coil 4 wound around the core 2 having the initial magnetic permeability μ of about 95 without passing the electromagnet M is energized,
The magnetic permeability μ of the core 2 in Comparative Example 6 to which the internal magnetic field Φ1 in the same range as above was applied was measured. According to the graph of FIG. 5 (C) showing the results, the magnetic permeability μ of Example 6 was higher than that of Comparative Example 6 in the range of 0 to 8000 (A / m). The above Examples 4 to 6 also proved that the magnetic permeability μ of the core 2 did not easily decrease and that a high DC superposition characteristic was obtained, and the effect of the present invention was confirmed.

【0031】本発明は、以上のような実施の形態および
実施例に限定されるものではない。例えば、コアは前記
リング形状や棒形状に限らず、全体がC字形や馬蹄形状
の形態にしても良い。係る形状のコアにコイルを巻き付
けたものに対し、電磁石、永久磁石、または外部コイル
を、これらが印加する外部磁界が上記コア中を貫通する
内部磁界とほぼ直交するような位置および姿勢にして配
置しても良い。また、前記実施例4〜6では、電磁石M
の励磁コイル9への通電量を変化させたが、電磁石Mと
コイル4を巻き付けたコア2との距離を変更可能に制御
して、電磁石Mにより印加する外部磁界Φ2の磁束密度
(B)を変化させても良い。更に、コイルを巻き付けた1
つのコアに対し、係るコア中を貫通する内部磁界とほぼ
直交するような位置および姿勢にして、複数の外部磁界
印加手段を互いに異なる位置で且つ異なる姿勢にして配
置することも可能である。
The present invention is not limited to the above embodiments and examples. For example, the core is not limited to the ring shape or the rod shape, but may have a C shape or a horseshoe shape as a whole. An electromagnet, a permanent magnet, or an external coil is placed in a position and orientation such that the external magnetic field applied by these is substantially orthogonal to the internal magnetic field penetrating through the core, with respect to the coil wound around the core of such shape. You may. Moreover, in the said Examples 4-6, the electromagnet M is carried out.
Of the external magnetic field Φ2 applied by the electromagnet M is controlled by changing the distance between the electromagnet M and the core 2 around which the coil 4 is wound.
(B) may be changed. In addition, the coil is wrapped around 1
It is also possible to arrange a plurality of external magnetic field applying means in different positions and in different postures such that the positions and postures are substantially orthogonal to the internal magnetic field penetrating the core with respect to one core.

【0032】[0032]

【発明の効果】以上に説明した本発明の磁気素子(請求
項1)によれば、予め印加したコアの内部磁界(磁路方
向)と直交する方向を含む外部磁界により、内部磁界方
向のコアの反磁界係数増加する。この結果、コアの初透
磁率を低下させることができるため、印加磁界の増加に
伴う透磁率の低下を抑制することができる。また、請求
項2または請求項3の磁気素子によれば、コイルの内部
でコアの円周方向または長手方向に沿って形成される内
部磁界に対し、ほぼ直角方向の磁束を含む外部磁界が印
加されるため、内部磁界方向のコアの反磁界係数が増加
する。従って、コアの初透磁率を低下させることができ
るため、内部印加磁界の増加に伴う透磁率の低下を抑制
することも可能となる。
According to the magnetic element of the present invention described above (claim 1), the core in the internal magnetic field direction is generated by the external magnetic field including the direction orthogonal to the internal magnetic field (magnetic path direction) of the core applied in advance. The diamagnetic field coefficient of increases. As a result, since the initial magnetic permeability of the core can be reduced, it is possible to suppress the magnetic permeability from being reduced due to the increase of the applied magnetic field. Further, according to the magnetic element of claim 2 or 3, an external magnetic field including a magnetic flux in a direction substantially perpendicular to the internal magnetic field formed inside the coil along the circumferential direction or the longitudinal direction of the core is applied. Therefore, the diamagnetic field coefficient of the core in the internal magnetic field direction increases. Therefore, since the initial magnetic permeability of the core can be reduced, it is also possible to suppress the magnetic permeability from being reduced due to the increase of the internal applied magnetic field.

【0033】更に、請求項4の磁気素子によれば、内部
磁界が通過するコアに対し、係る内部磁界の磁束とほぼ
直交する磁束成分を含む外部磁界印加手段を、上記コア
の形状やサイズに応じて外部コイル、電磁石、または永
久磁石の何れかで且つ任意の形状や形態にして容易に選
択可能となる。加えて、請求項5の磁気素子によれば、
内部磁界に対する外部磁界の強度を任意に調整できるた
め、制御パターンを適宜選択することにより、透磁率の
重畳特性やコアロスを、使用目的に応じて自在に設定可
能となる。
Further, according to the magnetic element of claim 4, the external magnetic field applying means including a magnetic flux component substantially orthogonal to the magnetic flux of the internal magnetic field is applied to the core through which the internal magnetic field passes, in the shape and size of the core. Accordingly, any one of the external coil, the electromagnet, and the permanent magnet can be easily selected in any shape and form. In addition, according to the magnetic element of claim 5,
Since the strength of the external magnetic field with respect to the internal magnetic field can be adjusted arbitrarily, the superposed characteristics of the magnetic permeability and the core loss can be freely set by appropriately selecting the control pattern.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の磁気素子の1形態を示す概略
図、(B)は(A)中の部分拡大断面図、(C)〜(E)は(A)
中のコアにおける磁気的挙動を示す模式的説明図。
FIG. 1A is a schematic view showing one form of a magnetic element of the present invention, FIG. 1B is a partially enlarged cross-sectional view of FIG. 1A, and FIGS.
The schematic explanatory view which shows the magnetic behavior in the inside core.

【図2】(A)〜(C)は異なる形態の磁気素子を示す概略
図。
2A to 2C are schematic views showing magnetic elements having different forms.

【図3】(A),(B)は更に異なる形態の磁気素子を示す
概略図。
3 (A) and 3 (B) are schematic views showing magnetic elements of different forms.

【図4】本発明の磁気素子の実施例および比較例におけ
る透磁率と内部印加磁界との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the magnetic permeability and the internal applied magnetic field in Examples and Comparative Examples of the magnetic element of the present invention.

【図5】(A)〜(C)は本発明の磁気素子の異なる実施例
および比較例における透磁率と内部印加磁界との関係を
示すグラフ。
5A to 5C are graphs showing the relationship between magnetic permeability and internal applied magnetic field in different examples and comparative examples of the magnetic element of the present invention.

【符号の説明】[Explanation of symbols]

1,1a〜1c,10a,10b…磁気素子 2,12………………………………コア 4,14………………………………コイル 6,16………………………………永久磁石(外部磁界
印加手段) 7………………………………………外部コイル(外部磁
界印加手段) 9,19………………………………励磁コイル M,17………………………………電磁石(外部磁界印
加手段) Φ1……………………………………内部磁界 Φ2……………………………………外部磁界
1, 1a to 1c, 10a, 10b ... Magnetic element 2, 12 ……………………………… Core 4, 14 ……………………………… Coil 6, 16 ………… ………………………… Permanent magnet (external magnetic field applying means) 7 ………………………………………… External coil (external magnetic field applying means) 9, 19 ……………… ……………… Exciting coil M, 17 ……………………………… Electromagnet (external magnetic field applying means) Φ1 …………………………………… Internal magnetic field Φ2 …… …………………………………… External magnetic field

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】所要の形状を有するコアと、 上記コアの周囲に巻き付けられ且つ当該コアの内部を貫
通する磁束を含む内部磁界を励磁するコイルと、 上記磁束とほぼ直交する磁束を含む外部磁界を印加する
外部磁界印加手段と、 を含む、ことを特徴とする磁気素子。
1. A core having a required shape, a coil wound around the core to excite an internal magnetic field containing a magnetic flux penetrating the inside of the core, and an external magnetic field containing a magnetic flux substantially orthogonal to the magnetic flux. An external magnetic field applying means for applying a magnetic field, the magnetic element comprising:
【請求項2】前記コアがリング形状を呈し且つ係るコア
の周囲に沿って前記コイルが巻き付けられると共に、 上記コアの外周側または内周側の位置で且つ該コアの半
径方向に沿って、あるいは上記コアの外側の位置で且つ
該コアの軸心方向に沿って、前記外部磁界印加手段が配
置されている、ことを特徴とする請求項1に記載の磁気
素子。
2. The core has a ring shape, and the coil is wound along the periphery of the core, and at the outer or inner peripheral side of the core and in the radial direction of the core, or The magnetic element according to claim 1, wherein the external magnetic field applying unit is arranged at a position outside the core and along an axial direction of the core.
【請求項3】前記コアが棒形状を呈し且つ係るコアの周
囲の長手方向に沿って前記コイルが巻き付けられると共
に、 上記コアにおける長手方向とほぼ直交する方向に沿っ
て、前記外部磁界印加手段が配置されている、ことを特
徴とする請求項1に記載の磁気素子。
3. The core has a rod shape and the coil is wound along a longitudinal direction around the core, and the external magnetic field applying means is provided along a direction substantially orthogonal to the longitudinal direction of the core. The magnetic element according to claim 1, wherein the magnetic element is arranged.
【請求項4】前記外部磁界印加手段は、外部コイル、電
磁石、または永久磁石である、ことを特徴とする請求項
1乃至3の何れか一項に記載の磁気素子。
4. The magnetic element according to claim 1, wherein the external magnetic field applying means is an external coil, an electromagnet, or a permanent magnet.
【請求項5】前記外部磁界印加手段は、前記コアとの距
離を変更可能に制御しているか、あるいは、上記外部磁
界印加手段における外部コイルまたは電磁石の励磁コイ
ルへの通電量を変更可能に制御している、 ことを特徴とする請求項1乃至4の何れか一項に記載の
磁気素子。
5. The external magnetic field applying means controls the distance to the core so as to be changeable, or the external magnetic field applying means so as to change the amount of electricity supplied to an external coil or an exciting coil of an electromagnet. The magnetic element according to any one of claims 1 to 4, wherein:
JP2001208122A 2001-07-09 2001-07-09 Magnetic element Pending JP2003022919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001208122A JP2003022919A (en) 2001-07-09 2001-07-09 Magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001208122A JP2003022919A (en) 2001-07-09 2001-07-09 Magnetic element

Publications (1)

Publication Number Publication Date
JP2003022919A true JP2003022919A (en) 2003-01-24

Family

ID=19043999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001208122A Pending JP2003022919A (en) 2001-07-09 2001-07-09 Magnetic element

Country Status (1)

Country Link
JP (1) JP2003022919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086335A (en) * 2004-09-16 2006-03-30 Sumida Corporation Magnetic element, coil part, antenna coil and variable power inductor
DE102006022438A1 (en) * 2006-05-13 2007-11-15 Robert Bosch Gmbh Choke coil for e.g. multiple mains filter drive system, has primary winding, where choke coil is coupled with coupling coil and choke coil inductivity is adjusted by coupling coil that is realized as air core coil, which does not have core
JP2019138868A (en) * 2018-02-15 2019-08-22 東北電力株式会社 Dc current detection method for photovoltaic facility and dc current detection device therefor, and dc circuit breaker for photovoltaic facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189143A (en) * 1974-12-20 1976-08-04
JPS5241865A (en) * 1975-09-29 1977-03-31 Tokyo Shibaura Electric Co Cross magnetic field type reactor
JPH04354310A (en) * 1991-05-31 1992-12-08 Stanley Electric Co Ltd Adjustment of inductance of derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189143A (en) * 1974-12-20 1976-08-04
JPS5241865A (en) * 1975-09-29 1977-03-31 Tokyo Shibaura Electric Co Cross magnetic field type reactor
JPH04354310A (en) * 1991-05-31 1992-12-08 Stanley Electric Co Ltd Adjustment of inductance of derivative

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086335A (en) * 2004-09-16 2006-03-30 Sumida Corporation Magnetic element, coil part, antenna coil and variable power inductor
DE102006022438A1 (en) * 2006-05-13 2007-11-15 Robert Bosch Gmbh Choke coil for e.g. multiple mains filter drive system, has primary winding, where choke coil is coupled with coupling coil and choke coil inductivity is adjusted by coupling coil that is realized as air core coil, which does not have core
JP2019138868A (en) * 2018-02-15 2019-08-22 東北電力株式会社 Dc current detection method for photovoltaic facility and dc current detection device therefor, and dc circuit breaker for photovoltaic facility

Similar Documents

Publication Publication Date Title
JP3548240B2 (en) Magnetic resonance imaging (MRI) magnet
KR100199216B1 (en) Magnetic field generating device for use in mri
KR20070074059A (en) Magnetic core and inductor, transformer comprising the same
US20100102917A1 (en) Inductor
JP2009004670A (en) Drum-type inductor and its manufacturing method
US6885270B2 (en) Wire core inductive devices having a biassing magnet and methods of making the same
JP2002158124A (en) Inductance component
JP2006332245A (en) Coil component
JP4559176B2 (en) Method and apparatus for magnetizing a permanent magnet
JPH07503359A (en) ferromagnetic wire electromagnetic actuator
JP2003022919A (en) Magnetic element
JPH05283251A (en) Pot type inductor
TW521285B (en) Transformer, core for transformer and manufacturing method of core for transformer
JPS6076110A (en) Assembling and magnetizing method for magnetic circuit
RU2018134176A (en) ELECTROMAGNETIC INDUCTION DEVICE AND METHOD FOR ITS MANUFACTURE
KR101082576B1 (en) Controllable inductive device
JP2002083724A (en) Magnetic core and magnetic element
JPH0729755A (en) Common mode choke coil
JP2006086335A (en) Magnetic element, coil part, antenna coil and variable power inductor
JP2003197436A (en) Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element
JPH1131613A (en) Coil
JPH0237705A (en) Ignition coil
JP2000032730A (en) Electromagnetic actuator
JP2006032663A (en) Inductor and its manufacturing method
JPH1022145A (en) Amorphous transformer and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116