JP2003022525A - Manufacturing method for magnetic recording medium - Google Patents

Manufacturing method for magnetic recording medium

Info

Publication number
JP2003022525A
JP2003022525A JP2001206906A JP2001206906A JP2003022525A JP 2003022525 A JP2003022525 A JP 2003022525A JP 2001206906 A JP2001206906 A JP 2001206906A JP 2001206906 A JP2001206906 A JP 2001206906A JP 2003022525 A JP2003022525 A JP 2003022525A
Authority
JP
Japan
Prior art keywords
magnetic
information recording
film
heating
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001206906A
Other languages
Japanese (ja)
Inventor
Kazuya Yoshimoto
和也 吉本
Tatsuro Ishida
達朗 石田
Kiyokazu Toma
清和 東間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001206906A priority Critical patent/JP2003022525A/en
Publication of JP2003022525A publication Critical patent/JP2003022525A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a magnetic recording medium having a structure wherein information recording sections are separately independent and essentially free from rugged part on the surface thereof without using fine working technique. SOLUTION: After a magnetic film 2 consisting of a metastable phase having reduced residual magnetization is deposited on a non-magnetic substrate 1, the information recording sections 4 and separating zones 5 separating the information recording sections are formed by locally heating the areas where the information recording sections for accumulating information are to be formed by a heating means 3 to increase magnetization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク装置
等の磁気記録再生装置に用いられる磁気記録媒体の製造
方法に関し、特に高い記録密度を有する磁気記録媒体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium used in a magnetic recording / reproducing apparatus such as a magnetic disk device, and more particularly to a method for manufacturing a magnetic recording medium having a high recording density.

【0002】[0002]

【従来の技術】近年、ハードディスクドライブは、パー
ソナルコンピュータやワークステーションのみならずA
V機器等にも用いられるようになり、大容量化及び小型
化が必要とされている。そのため、磁気ディスクは更な
る高記録密度化が要求されているが、記録密度の向上の
ためには、トラック幅の短縮あるいは記録ビット長の短
縮が必要である。
2. Description of the Related Art In recent years, hard disk drives have been used not only in personal computers and workstations but also in A
Since it is also used in V equipment and the like, it is required to have a large capacity and a small size. Therefore, the magnetic disk is required to have a higher recording density, but in order to improve the recording density, it is necessary to shorten the track width or the recording bit length.

【0003】しかし、トラック幅があまり狭くなると、
隣接する記録トラックの磁気信号による干渉(クロスト
ーク)が大きくなるので、再生信号の劣化が問題とな
る。また、記録ビット長を短くしすぎると、隣接ビット
間における磁気信号の干渉(パーシャルイレージャ)が
大きくなり、再生信号の劣化が問題となる。
However, if the track width becomes too narrow,
Since interference (crosstalk) due to magnetic signals of adjacent recording tracks becomes large, deterioration of reproduced signals becomes a problem. Further, if the recording bit length is too short, the interference of magnetic signals between adjacent bits (partial erasure) becomes large, and the deterioration of the reproduced signal becomes a problem.

【0004】これらの問題を解決するため、磁性粒子間
の磁気的相互作用を低減するなど磁気記録膜の改善検討
が行われているが、磁気記録媒体全体にわたって連続的
な構造を持っている従来の磁気記録媒体では根本的な解
決はできない。
In order to solve these problems, improvement studies of the magnetic recording film have been conducted such as reducing magnetic interaction between magnetic particles, but the conventional magnetic recording medium has a continuous structure. With the magnetic recording medium of, the fundamental solution cannot be achieved.

【0005】そこで、特開平9−297918号公報に
は、トラック幅と最短ビット規定長とを2辺の長さとす
る矩形領域からなる記録部を複数設け、この複数の記録
部が隙間部により互いに分離して配置された状態で情報
の蓄積を行う磁気記録媒体が提案されている。この磁気
記録媒体では、磁気記録領域が磁気的に分離独立した構
造、すなわちディスクリート構造を有することにより、
クロストークやパーシャルイレージャによる再生信号の
劣化が低減でき、磁気情報の検出が容易になるという利
点がある。しかも高密度に形成した情報トラックに磁気
情報記録再生手段を正確に追従させることができる。
In view of this, Japanese Patent Laid-Open No. 9-297918 provides a plurality of recording portions each having a rectangular area having a track width and a minimum defined bit length of two sides, and the plurality of recording portions are mutually separated by a gap portion. There has been proposed a magnetic recording medium that stores information in a state where they are separately arranged. In this magnetic recording medium, the magnetic recording area has a magnetically separated and independent structure, that is, a discrete structure,
There is an advantage that deterioration of a reproduced signal due to crosstalk or partial erasure can be reduced and magnetic information can be easily detected. Moreover, the magnetic information recording / reproducing device can accurately follow the information tracks formed with high density.

【0006】ここで、上記ディスクリート構造を有する
磁気記録媒体の従来の製造方法の第1の例について、図
4を参照して説明する。
Here, a first example of a conventional method of manufacturing a magnetic recording medium having the above discrete structure will be described with reference to FIG.

【0007】先ず、図4(a)に示すように、非磁性基
板21上にフォトレジスト22を塗布した後、フォトリ
ソグラフィーによりパターニングし、図4(b)に示す
形状とする。次に、図4(c)に示すように、フォトレ
ジスト22をエッチングマスクとして、反応性イオンエ
ッチング等により非磁性基板21をエッチングする。続
いて、非磁性基板21の露出した表面及びフォトレジス
ト22上に磁性膜23をスパッタリング等により成膜
し、図4(d)に示す状態とする。その後、フォトレジ
スト22をレジスト除去液により除去することにより、
その上に付着していた磁性膜23も同時に除去する。こ
れにより、図4(e)に示すように、情報記録部24が
磁気的に分離独立した構造を有する磁気記録媒体25が
得られる。
First, as shown in FIG. 4A, a photoresist 22 is applied on a non-magnetic substrate 21 and patterned by photolithography to obtain a shape shown in FIG. 4B. Next, as shown in FIG. 4C, the nonmagnetic substrate 21 is etched by reactive ion etching or the like using the photoresist 22 as an etching mask. Then, a magnetic film 23 is formed on the exposed surface of the non-magnetic substrate 21 and the photoresist 22 by sputtering or the like, so that the state shown in FIG. After that, by removing the photoresist 22 with a resist removing liquid,
The magnetic film 23 adhered thereon is also removed at the same time. As a result, as shown in FIG. 4E, a magnetic recording medium 25 having a structure in which the information recording portion 24 is magnetically separated and independent is obtained.

【0008】次に、図5を参照して、上記ディスクリー
ト構造を有する磁気記録媒体の製造方法の第2の例につ
いて説明する。
Next, with reference to FIG. 5, a second example of the method of manufacturing the magnetic recording medium having the discrete structure will be described.

【0009】先ず、図5(a)に示すように、非磁性基
板21上にフォトレジスト22を塗布した後、フォトリ
ソグラフィーによりパターニングし、図5(b)に示す
形状とする。次に、図5(c)に示すように、フォトレ
ジスト22をエッチングマスクとして、反応性イオンエ
ッチング等により非磁性基板21をエッチングする。続
いて、フォトレジスト22を除去した後、非磁性基板2
1上に磁性膜23をスパッタリング等により成膜し、図
5(d)に示す状態とする。その後、非磁性基板21の
凸部上の磁性膜23を化学的機械的研磨(CMP)によ
り除去し、非磁性基板21の凸部の高さと磁性膜23の
厚さをほぼ同じにする。これにより、図5(e)に示す
ように、情報記録部24が磁気的に分離独立した構造を
有する磁気記録媒体25が得られる。
First, as shown in FIG. 5 (a), a photoresist 22 is applied on a non-magnetic substrate 21 and then patterned by photolithography to obtain a shape shown in FIG. 5 (b). Next, as shown in FIG. 5C, the nonmagnetic substrate 21 is etched by reactive ion etching or the like using the photoresist 22 as an etching mask. Subsequently, after removing the photoresist 22, the non-magnetic substrate 2
A magnetic film 23 is formed on the magnetic layer 1 by sputtering or the like, so that the state shown in FIG. After that, the magnetic film 23 on the convex portion of the non-magnetic substrate 21 is removed by chemical mechanical polishing (CMP) so that the height of the convex portion of the non-magnetic substrate 21 and the thickness of the magnetic film 23 are made substantially the same. As a result, as shown in FIG. 5E, a magnetic recording medium 25 having a structure in which the information recording unit 24 is magnetically separated and independent is obtained.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述の
ような製造方法では、リソグラフィーやドライエッチン
グといった、いわゆる微細加工技術を必要とし、工程の
増加、複雑化を伴う。また、前記製造方法の第1の例で
は、図4(d)に示すフォトレジスト22を除去した
際、フォトレジスト22の側面に付着していた磁性膜2
3が残留し、磁性膜23の端部にバリとして残り、磁気
ディスク上のゴミの原因となることがある。更に、非磁
性基板21の凸部の高さと磁性膜23の厚さの制御を厳
密に行わなければ磁気記録媒体の表面に凹凸ができてし
まい、スライダの浮上量が不安定になり、信号の記録再
生に悪影響を与えてしまう。
However, the above-described manufacturing method requires so-called fine processing technology such as lithography and dry etching, which causes an increase in the number of steps and a complicated process. In the first example of the manufacturing method, the magnetic film 2 attached to the side surface of the photoresist 22 when the photoresist 22 shown in FIG. 4D is removed.
3 remains and remains as a burr at the end of the magnetic film 23, which may cause dust on the magnetic disk. Furthermore, unless the height of the convex portion of the non-magnetic substrate 21 and the thickness of the magnetic film 23 are strictly controlled, irregularities are formed on the surface of the magnetic recording medium, the flying height of the slider becomes unstable, and the signal level of the signal is reduced. It adversely affects recording and reproduction.

【0011】また、前記製造方法の第2の例では、CM
Pなどの研磨により、図5に示す非磁性基板21の凸部
の高さと磁性膜23の厚さの制御を行うが、この方法に
よると局所的な制御はできても、非磁性基板21の凹凸
の粗密差に伴うディッシングなど、研磨のパターン依存
性により、磁気記録媒体の表面にうねりが生じる。ま
た、研磨を用いる以上、マイクロスクラッチなどの欠陥
は不可避である。更に、磁性膜の厚さが数十nm程度で
ある場合、研磨により膜厚の制御を行うのは困難であ
る。スライダの浮上量が数十nm程度であることを考え
ると、凹凸などの表面形状を制御できないことは、磁気
記録媒体としては致命的である。
In the second example of the manufacturing method, CM
Although the height of the convex portion of the non-magnetic substrate 21 and the thickness of the magnetic film 23 shown in FIG. 5 are controlled by polishing with P or the like, this method allows local control, but Waviness occurs on the surface of the magnetic recording medium due to pattern dependence of polishing, such as dishing due to the difference in the density of irregularities. Further, as long as polishing is used, defects such as micro scratches are unavoidable. Further, when the thickness of the magnetic film is about several tens of nm, it is difficult to control the film thickness by polishing. Considering that the flying height of the slider is about several tens of nm, it is fatal for a magnetic recording medium that the surface shape such as unevenness cannot be controlled.

【0012】上記の2つの例に限らず、従来の方法で
は、磁気記録領域が磁気的に分離独立した構造を形成す
るために、何らかの段差形状を形成する必要があった。
この場合、表面形状の制御に困難が生じるのは、原理的
に避けられない問題であった。
Not only the above-mentioned two examples but also the conventional method, it is necessary to form some step shape in order to form the structure in which the magnetic recording regions are magnetically separated and independent.
In this case, the difficulty in controlling the surface shape has been an unavoidable problem in principle.

【0013】そこで、本発明は前記従来の問題を解決す
るためになされたものであり、情報記録部が分離され、
且つ、表面の凹凸が実質的に無い磁気記録媒体を微細加
工技術を用いることなく作製できる磁気記録媒体の製造
方法を提供するものである。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, in which the information recording section is separated,
Further, the present invention provides a method of manufacturing a magnetic recording medium that can be manufactured without using a microfabrication technique, so that the magnetic recording medium having substantially no surface irregularities can be manufactured.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するた
め、本発明の磁気記録媒体の製造方法は、非磁性基板
と、前記非磁性基板上に設けられた磁気記録層とを少な
くとも備え、前記磁気記録層が、情報の蓄積を行う情報
記録部と、前記情報記録部を分離するための分離帯とか
らなる連続膜で形成された磁気記録媒体の製造方法であ
って、前記非磁性基板上に、加熱により磁化が増加する
磁性膜を形成する工程と、前記磁性膜の情報記録部に相
当する部分を加熱し、加熱部の磁性膜の磁化を増加させ
る工程とを有することを特徴とする。
In order to achieve the above object, a method of manufacturing a magnetic recording medium according to the present invention comprises at least a non-magnetic substrate and a magnetic recording layer provided on the non-magnetic substrate. A method for manufacturing a magnetic recording medium, wherein the magnetic recording layer is formed of a continuous film composed of an information recording portion for accumulating information and a separation zone for separating the information recording portion, the method comprising: And a step of forming a magnetic film whose magnetization increases by heating, and a step of heating a portion of the magnetic film corresponding to the information recording portion to increase the magnetization of the magnetic film of the heating portion. .

【0015】これにより、構造的に連続した磁性膜中に
情報記録領域が分離独立した構造を、微細加工技術を用
いることなく形成することが可能であり、また、磁性膜
表面の凹凸が実質的にない磁気記録媒体を実現すること
ができる。
Thus, it is possible to form a structure in which information recording areas are separated and independent in a structurally continuous magnetic film without using a fine processing technique, and unevenness on the surface of the magnetic film is substantially formed. It is possible to realize a magnetic recording medium that does not exist.

【0016】また、本発明の磁気記録媒体の製造方法
は、前記加熱により磁化が増加する磁性膜が、加熱後の
残留磁化の50%以下の残留磁化を有し、且つ準安定相
からなる磁性膜であることが好ましい。これにより、加
熱により確実に前記磁気記録層上に前記情報記録部と前
記分離帯を形成することができる。
Further, in the method for manufacturing a magnetic recording medium of the present invention, the magnetic film whose magnetization increases by heating has a remanent magnetization of 50% or less of the remanent magnetization after heating, and is composed of a metastable phase. It is preferably a membrane. Thereby, the information recording portion and the separation band can be reliably formed on the magnetic recording layer by heating.

【0017】また、本発明の磁気記録媒体の製造方法
は、前記磁性膜の情報記録部に相当する部分を加熱し、
加熱部の磁性膜の磁化を増加させる工程において、前記
情報記録部への加熱が、光又は電子ビーム又はイオンビ
ームを各情報記録部に相当する部分に照射することによ
り行うことが好ましい。これにより、微小部分の加熱を
正確に且つ容易に行うことができる。
Further, in the method for manufacturing a magnetic recording medium of the present invention, a portion of the magnetic film corresponding to the information recording portion is heated,
In the step of increasing the magnetization of the magnetic film of the heating section, it is preferable that the information recording section is heated by irradiating a portion corresponding to each information recording section with a light, an electron beam or an ion beam. This makes it possible to accurately and easily heat the minute portion.

【0018】また、本発明の磁気記録媒体の製造方法
は、前記磁性膜の情報記録部に相当する部分を加熱し、
加熱部の磁性膜の磁化を増加させる工程において、前記
情報記録部への加熱が、フォトマスクを介して光を各情
報記録部に相当する部分に照射することにより一括して
行うことが好ましい。これにより、微小部分の加熱を一
回の光の照射で短時間に且つ正確に行うことができる。
In the method of manufacturing a magnetic recording medium of the present invention, a portion of the magnetic film corresponding to the information recording portion is heated,
In the step of increasing the magnetization of the magnetic film in the heating section, it is preferable that the information recording sections are collectively heated by irradiating the portions corresponding to the respective information recording sections with light through a photomask. As a result, it is possible to accurately heat the minute portion in a short time by irradiating light once.

【0019】[0019]

【発明の実施の形態】以下、本発明の磁気記録媒体の製
造方法の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for manufacturing a magnetic recording medium of the present invention will be described below.

【0020】本発明の磁気記録媒体の製造方法は、非磁
性基板と、前記非磁性基板上に設けられた磁気記録層と
を少なくとも備え、前記磁気記録層が、情報の蓄積を行
う情報記録部と、前記情報記録部を分離するための分離
帯とからなる連続膜で形成された磁気記録媒体の製造方
法であって、前記非磁性基板上に、加熱により磁化が増
加する磁性膜を形成する工程と、前記磁性膜の情報記録
部に相当する部分を加熱し、加熱部の磁性膜の磁化を増
加させる工程とを有する。
A method of manufacturing a magnetic recording medium according to the present invention comprises at least a non-magnetic substrate and a magnetic recording layer provided on the non-magnetic substrate, and the magnetic recording layer stores information. And a separation film for separating the information recording portion, a method of manufacturing a magnetic recording medium, comprising: forming a magnetic film, the magnetization of which increases on heating, on the non-magnetic substrate. And a step of heating a portion of the magnetic film corresponding to the information recording portion to increase the magnetization of the magnetic film of the heating portion.

【0021】先ず、加熱により磁化が増加する磁性膜に
ついて説明する。このような磁性膜としては、加熱後の
残留磁化の50%以下の残留磁化を有し、且つ準安定相
からなる磁性膜を使用できる。すなわち、互いに非固溶
又は固溶度の低い磁性元素と非磁性元素を冷却基板など
の上にスパッタリング法や真空蒸着法等を用いて強制固
溶させた合金により成膜した場合、非磁性元素のマトリ
ックス中に磁性元素の超微粒子が析出した準安定相が形
成される。磁性粒子は、そのサイズが非常に小さい場
合、超常磁性となり、強磁性を示さなくなる。したがっ
て、上記磁性元素の超微粒子が析出した準安定相では、
粒子のサイズにより、本来の飽和磁化及び残留磁化の値
よりも磁化が減少するか、又は磁化を示さなくなる。
First, a magnetic film whose magnetization increases by heating will be described. As such a magnetic film, a magnetic film having a residual magnetization of 50% or less of the residual magnetization after heating and having a metastable phase can be used. That is, when a magnetic element and a nonmagnetic element having a low solid solubility or a low solid solubility with each other are formed by an alloy in which a solid solution is forcibly solid-dissolved on a cooling substrate or the like by using a sputtering method or a vacuum deposition method, the nonmagnetic element A metastable phase in which ultrafine particles of a magnetic element are deposited is formed in the matrix of. If the size of the magnetic particles is very small, they become superparamagnetic and do not exhibit ferromagnetism. Therefore, in the metastable phase in which the ultrafine particles of the magnetic element are precipitated,
Depending on the size of the particles, the magnetization is reduced or exhibits no magnetization below the original saturation and remanence values.

【0022】ここで、この準安定相を加熱すると、系は
本来の平衡状態に近づき、非固溶又は固溶度の低い磁性
元素と非磁性元素は相分離し始め、結晶粒の凝集により
磁性元素の粒子サイズは増大していく。これに伴い、磁
化の値は本来の飽和磁化及び残留磁化の値に近づいてい
く。本発明では、以上の現象を用いている。
When the metastable phase is heated, the system approaches the original equilibrium state, the non-solid solution or low solid solubility magnetic element and the non-magnetic element start phase separation, and the magnetic grains are agglomerated. The particle size of the elements increases. Along with this, the value of magnetization approaches the original values of saturation magnetization and residual magnetization. The present invention uses the above phenomenon.

【0023】前記情報記録部を分離するための分離帯と
なる準安定相の磁化は、加熱後の残留磁化の50%以下
になっていることが好ましく、非磁性になっていること
がより好ましい。準安定相の磁化をコントロールする方
法としては、成膜時の基板温度、成膜速度、磁性元素の
組成等を変化させる方法がある。
The magnetization of the metastable phase that serves as a separation band for separating the information recording portion is preferably 50% or less of the residual magnetization after heating, and more preferably non-magnetic. . As a method of controlling the magnetization of the metastable phase, there is a method of changing the substrate temperature during film formation, the film formation rate, the composition of magnetic elements, and the like.

【0024】本発明で使用する磁性膜としては、Co−
C、Co−Ag、Co−Bi、Co−Pb、Co−K、
Co−In、Co−Mg、Co−Pb、Co−Au、F
e−In、Fe−Mg、Fe−Cu、Fe−Ag、Fe
−Bi、Fe−Na、Fe−Li、Fe−K、Fe−C
rなどを主たる成分とする膜や、Co又はFeの磁性元
素や、Co−Cr、Co−Pt、Fe−Ptなどの磁性
合金や、Tb−Fe、Tb−Co、Tb−Fe−Coな
どの希土類−遷移金属合金を主たる磁性材料としたカー
ボンやボロン、SiO2などの酸化物、SiNなどの窒
化物、あるいはSiCなどの炭化物とからなるグラニュ
ラー膜などが適している。この中でも特に、Co−P
t、Fe−Pt、Tb−Fe、Tb−Co、Tb−Fe
−Coは、高い保磁力が得られる点で好ましい。
The magnetic film used in the present invention is Co-
C, Co-Ag, Co-Bi, Co-Pb, Co-K,
Co-In, Co-Mg, Co-Pb, Co-Au, F
e-In, Fe-Mg, Fe-Cu, Fe-Ag, Fe
-Bi, Fe-Na, Fe-Li, Fe-K, Fe-C
A film containing r as a main component, a magnetic element of Co or Fe, a magnetic alloy such as Co-Cr, Co-Pt, and Fe-Pt, Tb-Fe, Tb-Co, and Tb-Fe-Co. A granular film made of carbon, boron, an oxide such as SiO 2 , a nitride such as SiN, or a carbide such as SiC, which uses a rare earth-transition metal alloy as a main magnetic material, is suitable. Among these, especially Co-P
t, Fe-Pt, Tb-Fe, Tb-Co, Tb-Fe
-Co is preferable in that a high coercive force can be obtained.

【0025】また、本発明で使用する非磁性基板として
は、アルミニウム合金基板、ガラス基板、シリコン基板
等が挙げられる。
The non-magnetic substrate used in the present invention may be an aluminum alloy substrate, a glass substrate, a silicon substrate or the like.

【0026】次に、本発明の磁気記録媒体の製造方法の
工程を図1に基づき説明する。先ず、洗浄された非磁性
基板1上に、飽和磁化の50%以下の磁化を有し、且つ
準安定相からなる磁性膜2を形成(図1(a))した
後、情報の蓄積を行う情報記録部形成予定領域を、光な
どの加熱手段3により局所的に加熱する(図1
(b))。加熱された領域は強磁性を示し、情報の記録
が可能となり、情報記録部4となる。また、加熱されな
い領域は、非磁性又は磁化が減少した領域であり、情報
記録部4を分離する分離帯5となる。これにより、図1
(c)に示すように、磁気記録領域が磁気的に分離独立
した構造を有する磁気記録媒体6が得られる。
Next, the steps of the method of manufacturing the magnetic recording medium of the present invention will be described with reference to FIG. First, after the magnetic film 2 having a magnetization of 50% or less of the saturation magnetization and having a metastable phase is formed on the washed non-magnetic substrate 1 (FIG. 1A), information is stored. The area where the information recording portion is to be formed is locally heated by the heating means 3 such as light (see FIG. 1).
(B)). The heated region exhibits ferromagnetism, and information can be recorded in the information recording unit 4. The non-heated area is a non-magnetic area or an area where the magnetization is reduced and serves as a separation band 5 for separating the information recording section 4. As a result,
As shown in (c), the magnetic recording medium 6 having a structure in which the magnetic recording regions are magnetically separated and independent is obtained.

【0027】前記情報記録部への加熱は、ビーム径を収
束させたレーザービームや電子ビームやイオンビームな
どを走査して、各情報記録部に相当する部分に照射する
ことにより行う。また、前記情報記録部への加熱の他の
方法として、フォトマスクを介してUV光などを照射す
ることにより一括して行うこともできる。
The heating of the information recording portion is performed by scanning a laser beam, an electron beam, an ion beam, or the like having a converged beam diameter, and irradiating the portion corresponding to each information recording portion. Further, as another method of heating the information recording portion, it is possible to collectively perform the irradiation by irradiating UV light or the like through a photomask.

【0028】この方法によると、構造的に連続した磁気
記録膜中に、情報記録領域が分離独立した構造を、微細
加工技術を用いることなく形成することが可能であり、
また、磁性膜表面の凹凸を実質的になくすことができ
る。
According to this method, it is possible to form a structure in which information recording areas are separated and independent in a structurally continuous magnetic recording film without using a fine processing technique.
Moreover, the unevenness on the surface of the magnetic film can be substantially eliminated.

【0029】また、本発明は、面内磁化媒体にも垂直磁
化媒体にも適用可能であり、基板と磁性膜との間に配向
制御用の下地層や軟磁性膜を設けた構成や、更に、基板
と軟磁性膜との間に軟磁性膜の磁壁を固着する薄膜を設
けた構成においても効果は変わらない。
Further, the present invention is applicable to both in-plane magnetized medium and perpendicular magnetized medium, and has a constitution in which an underlayer for controlling orientation and a soft magnetic film are provided between the substrate and the magnetic film, and The effect does not change even in a configuration in which a thin film for fixing the domain wall of the soft magnetic film is provided between the substrate and the soft magnetic film.

【0030】更に、情報記録部は、同心円状帯形状のみ
ならずスパイラル状、あるいは周方向及び半径方向に間
隔をおいて配置された多数の記録部であってもよい。
Furthermore, the information recording section may be not only concentric circular belt-shaped but also spiral-shaped or a large number of recording sections arranged at intervals in the circumferential direction and the radial direction.

【0031】[0031]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below based on examples.

【0032】(実施例1)図2は本実施例における磁気
記録媒体の製造方法の一例を示す工程断面図である。図
2を参照しながら、本実施例の磁気記録媒体の製造方法
を説明する。
(Embodiment 1) FIG. 2 is a process sectional view showing an example of a method of manufacturing a magnetic recording medium in this embodiment. A method of manufacturing the magnetic recording medium of this embodiment will be described with reference to FIG.

【0033】先ず、図2(a)に示すように、65mm
径のガラス基板7上に、コバルト(Co)及び炭素
(C)ターゲットを用いた同時スパッタ法により、膜厚
30nmのCo−C膜8を成膜した。成膜は、到達真空
度2×10-7Pa、Arガス圧0.13Paの条件で行
った。Cの原子分率は、ターゲットに印加する電力によ
り制御し、65%となるようにした。
First, as shown in FIG. 2A, 65 mm
A Co—C film 8 having a film thickness of 30 nm was formed on the glass substrate 7 having a diameter by a co-sputtering method using a cobalt (Co) and carbon (C) target. The film formation was performed under the conditions of ultimate vacuum of 2 × 10 −7 Pa and Ar gas pressure of 0.13 Pa. The atomic fraction of C was controlled by the electric power applied to the target so as to be 65%.

【0034】成膜したCo−C膜8を、X線回折法によ
り構造評価したところ、明確なピークは見られず、ハロ
ーパターンが見られた。このことから、得られた膜はア
モルファス構造又は微結晶からなる膜であることが示唆
された。また、VSM(振動試料型磁束計)により磁化
測定を行ったところ、強磁性を示さず、残留磁化は0k
A/mであった。
When the structure of the deposited Co-C film 8 was evaluated by an X-ray diffraction method, no clear peak was observed and a halo pattern was observed. From this, it was suggested that the obtained film was a film having an amorphous structure or a microcrystal. When magnetization was measured by a VSM (vibration sample type magnetometer), it showed no ferromagnetism and had a residual magnetization of 0 k.
It was A / m.

【0035】次に、図2(b−1)〜(b−4)に示す
ように、レーザービーム9を用いて、Co−C膜8の情
報記録予定領域を、順次、加熱した。レーザービーム9
は、波長0.68μm、パワー10mWのレーザーを、
直径1μmに収束させて用いた。走査速度は2.8m/
secとした。このときの加熱温度は250℃であっ
た。なお、レーザービーム9は、加熱部幅1μm、非加
熱部幅0.5μm、ピッチ1.5μmの同心円状に走査
した。
Next, as shown in FIGS. 2 (b-1) to 2 (b-4), the laser beam 9 was used to sequentially heat the information recording planned area of the Co—C film 8. Laser beam 9
Is a laser with a wavelength of 0.68 μm and a power of 10 mW,
It was used after converging to a diameter of 1 μm. Scanning speed is 2.8m /
It was set to sec. The heating temperature at this time was 250 ° C. The laser beam 9 was scanned concentrically with a heated portion width of 1 μm, a non-heated portion width of 0.5 μm, and a pitch of 1.5 μm.

【0036】加熱後、Co−C膜8の表面形状をAFM
(原子間力顕微鏡)により観察したところ、加熱部と非
加熱部に段差は確認されなかった。また、Co−C膜8
の磁化状態をMFM(磁気力顕微鏡)により観察したと
ころ、レーザービーム9の走査部に応じた磁性領域と非
磁性領域のパターンが観察された。また、加熱された部
分は、飽和磁化500kA/m、残留磁化350kA/
mの強磁性を示した。
After heating, the surface shape of the Co-C film 8 is AFM.
When observed with an (atomic force microscope), no step was observed between the heated part and the non-heated part. In addition, the Co-C film 8
When the magnetization state of No. 2 was observed by an MFM (magnetic force microscope), a pattern of magnetic regions and non-magnetic regions corresponding to the scanning portion of the laser beam 9 was observed. The heated portion has a saturation magnetization of 500 kA / m and a residual magnetization of 350 kA / m.
It exhibited a ferromagnetism of m.

【0037】これにより、図2(c)に示すように、情
報記録部12が、分離帯13によって分離独立した構造
を有する磁気記録媒体14が得られたことが確認され
た。
As a result, as shown in FIG. 2C, it was confirmed that the magnetic recording medium 14 having a structure in which the information recording section 12 was separated and separated by the separation band 13 was obtained.

【0038】なお、加熱手段としてレーザービームに代
えて電子ビームを用いても、同じ結果が得られた。
The same result was obtained by using an electron beam instead of the laser beam as the heating means.

【0039】(実施例2)図3は本実施例における磁気
記録媒体の製造方法の一例を示す工程断面図である。図
3を参照しながら、本実施例の磁気記録媒体の製造方法
を説明する。
(Embodiment 2) FIG. 3 is a process sectional view showing an example of a method of manufacturing a magnetic recording medium in this embodiment. A method of manufacturing the magnetic recording medium of this embodiment will be described with reference to FIG.

【0040】先ず、図3(a)に示すように、65mm
径のガラス基板7上に、Co及びCターゲットを用いた
同時スパッタ法により、膜厚30nmのCo−C膜8を
成膜した。成膜は、到達真空度2×10-7Pa、Arガ
ス圧0.13Paの条件で行った。Cの原子分率は、タ
ーゲットに印加する電力により制御し、65%となるよ
うにした。
First, as shown in FIG. 3 (a), 65 mm
A Co—C film 8 having a film thickness of 30 nm was formed on the glass substrate 7 having a diameter by the co-sputtering method using Co and C targets. The film formation was performed under the conditions of ultimate vacuum of 2 × 10 −7 Pa and Ar gas pressure of 0.13 Pa. The atomic fraction of C was controlled by the electric power applied to the target so as to be 65%.

【0041】成膜したCo−C膜8を、X線回折法によ
り構造評価したところ、明確なピークは見られず、ハロ
ーパターンが見られた。このことから、得られた膜はア
モルファス構造又は微結晶からなる膜であることが示唆
された。また、VSM(振動試料型磁束計)により磁化
測定を行ったところ、強磁性を示さず、残留磁化は0k
A/mであった。
When the structure of the Co-C film 8 thus formed was evaluated by an X-ray diffraction method, no clear peak was observed and a halo pattern was observed. From this, it was suggested that the obtained film was a film having an amorphous structure or a microcrystal. When magnetization was measured by a VSM (vibration sample type magnetometer), it showed no ferromagnetism and had a residual magnetization of 0 k.
It was A / m.

【0042】次に、図3(b)に示すように、ガラス基
板上にCrでマスクを形成したフォトマスク10を通し
てUV光11を照射し、Co−C膜8の情報記録予定領
域を加熱した。フォトマスク10には、露光部幅1μ
m、非露光部幅0.5μm、ピッチ1.5μmの同心円
状のパターンを配列した。UV光11は、波長0.36
5μm、パワー2500Wとし、Co−C膜8の照射部
を250℃に加熱した。
Next, as shown in FIG. 3B, UV light 11 is irradiated through a photomask 10 having a mask formed of Cr on a glass substrate to heat the information recording planned area of the Co—C film 8. . The photomask 10 has an exposed portion width of 1 μm.
m, the width of the non-exposed portion was 0.5 μm, and the concentric patterns having a pitch of 1.5 μm were arranged. UV light 11 has a wavelength of 0.36
The irradiation part of the Co—C film 8 was heated to 250 ° C. with 5 μm and power of 2500 W.

【0043】加熱後、Co−C膜8の表面形状をAFM
(原子間力顕微鏡)により観察したところ、加熱部と非
加熱部に段差は確認されなかった。また、Co−C膜8
の磁化状態をMFM(磁気力顕微鏡)により観察したと
ころ、UV光11の照射部に応じた磁性領域と非磁性領
域のパターンが観察された。また、加熱された部分は、
飽和磁化500kA/m、残留磁化350kA/mの強
磁性を示した。
After heating, the surface shape of the Co-C film 8 is AFM.
When observed with an (atomic force microscope), no step was observed between the heated part and the non-heated part. In addition, the Co-C film 8
When the magnetization state of No. 1 was observed by MFM (Magnetic Force Microscope), a pattern of magnetic regions and non-magnetic regions corresponding to the UV light 11 irradiation portion was observed. Also, the heated part is
It exhibited ferromagnetism with a saturation magnetization of 500 kA / m and a residual magnetization of 350 kA / m.

【0044】これにより、図3(c)に示すように、情
報記録部12が、分離帯13によって分離独立した構造
を有する磁気記録媒体14が得られたことが確認され
た。
As a result, as shown in FIG. 3C, it was confirmed that the magnetic recording medium 14 having a structure in which the information recording section 12 was separated and separated by the separation band 13 was obtained.

【0045】上述の通り、本発明では、情報記録部12
と分離帯13は同一の膜から形成するので、磁性膜表面
の凹凸は実質的になく、望ましい表面形状が得られる。
As described above, in the present invention, the information recording section 12
Since the separation band 13 and the separation band 13 are formed from the same film, there is substantially no unevenness on the surface of the magnetic film, and a desired surface shape can be obtained.

【0046】[0046]

【発明の効果】以上のように本発明の磁気記録媒体の製
造方法によれば、構造的に連続した磁性膜中に、情報記
録領域が分離独立した構造を、微細加工技術を用いるこ
となく形成することが可能であり、また、磁性膜表面の
凹凸が実質的にない磁気記録媒体を実現することができ
る。
As described above, according to the method of manufacturing a magnetic recording medium of the present invention, a structure in which information recording areas are separated and independent is formed in a structurally continuous magnetic film without using a fine processing technique. It is also possible to realize a magnetic recording medium having substantially no unevenness on the surface of the magnetic film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の製造方法の実施形態を
示す工程断面図である。
FIG. 1 is a process sectional view showing an embodiment of a method for manufacturing a magnetic recording medium of the present invention.

【図2】実施例1における磁気記録媒体の製造方法を示
す工程断面図である。
2A to 2D are process cross-sectional views showing a method of manufacturing a magnetic recording medium in Example 1. FIGS.

【図3】実施例2における磁気記録媒体の製造方法を示
す工程断面図である。
FIG. 3 is a process cross-sectional view showing the method of manufacturing the magnetic recording medium in Example 2.

【図4】従来の磁気記録媒体の製造方法の一例を示す工
程断面図である。
FIG. 4 is a process sectional view showing an example of a conventional method of manufacturing a magnetic recording medium.

【図5】従来の磁気記録媒体の製造方法の一例を示す工
程断面図である。
FIG. 5 is a process cross-sectional view showing an example of a conventional magnetic recording medium manufacturing method.

【符号の説明】[Explanation of symbols]

1 非磁性基板 2 磁性膜 3 加熱手段 4 情報記録部 5 分離帯 6 磁気記録媒体 7 ガラス基板 8 Co−C膜 9 レーザービーム 10 フォトマスク 11 UV光 12 情報記録部 13 分離帯 14 磁気記録媒体 21 非磁性基板 22 フォトレジスト 23 磁性膜 24 情報記録部 25 磁気記録媒体 1 Non-magnetic substrate 2 Magnetic film 3 heating means 4 Information recording section 5 bands 6 Magnetic recording media 7 glass substrate 8 Co-C film 9 laser beam 10 Photomask 11 UV light 12 Information recording section 13 Separators 14 Magnetic recording media 21 Non-magnetic substrate 22 photoresist 23 Magnetic film 24 Information recording section 25 magnetic recording media

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東間 清和 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5D006 BB07 DA03 EA03 5D112 AA05 AA20 BB06 FA04 GA19   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyokazu Toma             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5D006 BB07 DA03 EA03                 5D112 AA05 AA20 BB06 FA04 GA19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板と、前記非磁性基板上に設け
られた磁気記録層とを少なくとも備え、前記磁気記録層
が、情報の蓄積を行う情報記録部と、前記情報記録部を
分離するための分離帯とからなる連続膜で形成された磁
気記録媒体の製造方法であって、前記非磁性基板上に、
加熱により磁化が増加する磁性膜を形成する工程と、前
記磁性膜の情報記録部に相当する部分を加熱し、加熱部
の磁性膜の磁化を増加させる工程とを有することを特徴
とする磁気記録媒体の製造方法。
1. A non-magnetic substrate and at least a magnetic recording layer provided on the non-magnetic substrate, wherein the magnetic recording layer separates the information recording section for storing information from the information recording section. A method of manufacturing a magnetic recording medium formed of a continuous film consisting of a separation zone for, wherein:
Magnetic recording comprising: a step of forming a magnetic film whose magnetization increases by heating; and a step of heating a portion of the magnetic film corresponding to an information recording portion to increase the magnetization of the magnetic film of the heating portion. Medium manufacturing method.
【請求項2】 前記加熱により磁化が増加する磁性膜
が、加熱後の残留磁化の50%以下の残留磁化を有し、
且つ準安定相からなる磁性膜である請求項1に記載の磁
気記録媒体の製造方法。
2. The magnetic film whose magnetization increases by heating has a residual magnetization of 50% or less of the residual magnetization after heating,
The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic film is a magnetic film having a metastable phase.
【請求項3】 前記磁性膜の情報記録部に相当する部分
を加熱し、加熱部の磁性膜の磁化を増加させる工程にお
いて、前記情報記録部への加熱が、光又は電子ビーム又
はイオンビームを各情報記録部に相当する部分に照射す
ることにより行う請求項1又は2に記載の磁気記録媒体
の製造方法。
3. In the step of heating the portion of the magnetic film corresponding to the information recording portion to increase the magnetization of the magnetic film of the heating portion, the information recording portion is heated by light, electron beam or ion beam. 3. The method for manufacturing a magnetic recording medium according to claim 1, which is performed by irradiating a portion corresponding to each information recording portion.
【請求項4】 前記磁性膜の情報記録部に相当する部分
を加熱し、加熱部の磁性膜の磁化を増加させる工程にお
いて、前記情報記録部への加熱が、フォトマスクを介し
て光を各情報記録部に相当する部分に照射することによ
り一括して行う請求項1又は2に記載の磁気記録媒体の
製造方法。
4. In the step of heating a portion of the magnetic film corresponding to the information recording portion to increase the magnetization of the magnetic film of the heating portion, the heating of the information recording portion causes light to pass through a photomask. The method for manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is collectively irradiated by irradiating a portion corresponding to the information recording portion.
JP2001206906A 2001-07-06 2001-07-06 Manufacturing method for magnetic recording medium Withdrawn JP2003022525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206906A JP2003022525A (en) 2001-07-06 2001-07-06 Manufacturing method for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206906A JP2003022525A (en) 2001-07-06 2001-07-06 Manufacturing method for magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2003022525A true JP2003022525A (en) 2003-01-24

Family

ID=19042969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206906A Withdrawn JP2003022525A (en) 2001-07-06 2001-07-06 Manufacturing method for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2003022525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257736A (en) * 2006-03-23 2007-10-04 Fujitsu Ltd Magnetic recording medium manufacturing method and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257736A (en) * 2006-03-23 2007-10-04 Fujitsu Ltd Magnetic recording medium manufacturing method and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP3816911B2 (en) Magnetic recording medium
JP3886802B2 (en) Magnetic patterning method, magnetic recording medium, magnetic random access memory
JP5916985B2 (en) Magnetic recording method for magnetic disk for heat-assisted recording
US6665145B2 (en) Magnetic recording medium with unit minute recording portions
US7141317B2 (en) Perpendicular magnetic recording medium
US6703099B2 (en) Perpendicular magnetic recording media with patterned soft magnetic underlayer
JP4381444B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording apparatus
US7218465B1 (en) Magnetic media patterning via contact printing utilizing stamper having magnetic pattern formed in non-magnetic substrate
JP2004164692A (en) Magnetic recording medium and manufacturing method thereof
JP2006147148A (en) Magnetic recording medium
JP4031456B2 (en) Magnetic recording medium and magnetic storage medium manufacturing method
JP3286291B2 (en) Magnetic recording media
JP4032050B2 (en) Magnetic recording medium and method for manufacturing the same
CN102016987B (en) Magnetic recording medium, magnetic recording/reproducing device and method for manufacturing magnetic recording medium
US8303828B2 (en) Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
JP2004355739A (en) Magnetic recorder
EP1081687B1 (en) Magnetic recording medium and its manufacturing method
JP2003317222A (en) Recording medium
JP2000298823A (en) Magnetic storage medium
JP2003022525A (en) Manufacturing method for magnetic recording medium
WO2003019540A1 (en) Magnetic disk medium and production method thereof and magnetic recording device
JP2003030827A (en) Method of manufacturing magnetic recording medium
JP6374421B2 (en) Magnetic disk for heat-assisted recording and method for manufacturing magnetic disk for heat-assisted recording
JP4082403B2 (en) Master information carrier, manufacturing method thereof, and manufacturing method of magnetic recording medium
JP4550776B2 (en) Patterned magnetic recording medium and magnetic recording apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007