JP2003010657A - Inorganic separation membrane, method for producing the same, and ultrafiltration membrane - Google Patents

Inorganic separation membrane, method for producing the same, and ultrafiltration membrane

Info

Publication number
JP2003010657A
JP2003010657A JP2001197632A JP2001197632A JP2003010657A JP 2003010657 A JP2003010657 A JP 2003010657A JP 2001197632 A JP2001197632 A JP 2001197632A JP 2001197632 A JP2001197632 A JP 2001197632A JP 2003010657 A JP2003010657 A JP 2003010657A
Authority
JP
Japan
Prior art keywords
separation membrane
inorganic separation
membrane
sol
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001197632A
Other languages
Japanese (ja)
Other versions
JP4968990B2 (en
Inventor
Hitohide Oshima
仁英 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001197632A priority Critical patent/JP4968990B2/en
Publication of JP2003010657A publication Critical patent/JP2003010657A/en
Application granted granted Critical
Publication of JP4968990B2 publication Critical patent/JP4968990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic separation membrane that can remove e.g. a polymer having a fractionation molecular weight of 100-10,000 and dissolved in a solvent at a high separation accuracy and has a high solvent permeation rate, to provide a method for producing the same, and to provide an ultrafiltration membrane. SOLUTION: The inorganic separation membrane is characterized in that it is formed by forming an alumina membrane on the outer surface and/or inner surface of a porous support pipe, and the alumina membrane has a total pore volume of at least 0.2 ml/g, a mean pore diameter D of 1.5-20 nm, and the volume of pores having a pore size of at most 2D accounts for at least 90% of the total pore volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、限外濾過、精密濾
過等に利用される分離性能に優れた無機分離膜及びその
製造方法並びに限外濾過膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic separation membrane used in ultrafiltration, microfiltration and the like and having excellent separation performance, a method for producing the same, and an ultrafiltration membrane.

【0002】[0002]

【従来技術】従来から、限外濾過、精密濾過等には有機
材料を始め各種材料からなる多孔質体からなる濾過膜、
分離膜が用いられてきた。
2. Description of the Related Art Conventionally, a filtration membrane made of a porous material made of various materials including organic materials has been used for ultrafiltration and microfiltration.
Separation membranes have been used.

【0003】近年、フォトエッチング廃液等のポリマー
を含む廃液の処理の簡便化、溶剤の再利用等の要求が高
まり、溶剤中に溶解したポリマーを除去するための濾過
膜の必要性が高まっている。
In recent years, there has been an increasing demand for simplifying the treatment of waste liquid containing a polymer such as photoetching waste liquid and reusing a solvent, and the need for a filtration membrane for removing the polymer dissolved in the solvent has increased. .

【0004】しかし、前記多孔質体には耐薬品性、耐圧
性、耐磨耗性、耐熱性等の諸要求が次第に高くなるにつ
れ、化学的、機械的、熱的安定性に優れたセラミックス
からなる各種無機多孔質分離膜が注目され種々検討され
るようになってきた。
However, as the requirements for chemical resistance, pressure resistance, abrasion resistance, heat resistance and the like have gradually increased in the porous body, ceramics having excellent chemical, mechanical and thermal stability have been used. Various inorganic porous separation membranes have been noticed and various studies have been made.

【0005】その結果、前記従来の多孔質体からなる濾
過膜、分離膜で得られていた諸性能が、無機多孔質分離
膜においても要求が高まり、特に高い分離精度、濾過精
度、透過流速が要求されている。
As a result, various performances obtained by the conventional porous filtration membrane and separation membrane are also required for the inorganic porous separation membrane, and particularly high separation accuracy, filtration accuracy, and permeation flow rate are obtained. Is required.

【0006】この種の無機多孔質体からなる分離膜、濾
過膜はとしては、例えば特開平5−146648号公報
において金属酸化物、金属炭化物または金属窒化物また
はその混合物を電子ビームによる熱蒸発により支持材料
上に無機膜を作製し、この無機膜の細孔の少なくとも9
0%が1.2nmまたはそれ以下の細孔径を有する無機
膜が記載されている。
Examples of the separation membrane and the filtration membrane made of this kind of inorganic porous material include, for example, in JP-A-5-146648, a metal oxide, a metal carbide, a metal nitride or a mixture thereof obtained by thermal evaporation of an electron beam. An inorganic film is prepared on a support material, and at least 9 of the pores of the inorganic film are prepared.
Inorganic membranes with 0% having a pore size of 1.2 nm or less are described.

【0007】また、また特開平4−160073号公報
においてはセラミック成形品を焼成して作製される最大
細孔径Rと平均細孔径rとの比R/rが5以下であり、
かつ最大気孔径が0.1μm以下である多孔質セラミッ
クスからなる濾過器が記載されている。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 4-160073, the ratio R / r of the maximum pore diameter R and the average pore diameter r produced by firing a ceramic molded article is 5 or less,
A filter made of porous ceramics having a maximum pore diameter of 0.1 μm or less is described.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
5−146648号公報のように、細孔径が1.2nm
以下の細孔が90%以上を有する無機膜は非常に狭い細
孔径分布を有するものであるが、ポリマー除去を目的と
する限外濾過膜として利用するには、細孔径が小さす
ぎ、また一般に細孔容積も小さくなることから、透過流
速が著しく低下してしまい、また場合によっては透過す
べき溶媒までもが透過し得ないという問題があった。
However, as disclosed in JP-A-5-146648, the pore size is 1.2 nm.
The following inorganic membranes having 90% or more pores have a very narrow pore size distribution, but the pore size is too small to be used as an ultrafiltration membrane for polymer removal, and generally Since the pore volume is also small, the permeation flow rate is significantly reduced, and in some cases even the solvent to be permeated cannot be permeated.

【0009】一方、特開平4−160073号公報のよ
うに、無機セラミック粉末を成形、焼成して作製される
濾過器においては、細孔径の分布を狭くする技術は存在
するものの、比R/rが5以下と細孔径分布を狭く制御
することが出来ず、また、細孔径が大きくなり、微細に
制御されたとしても0.01μm程度が限界であるた
め、分画分子量100〜10000のポリマー除去を目
的とする限外濾過膜としては機能せず、ポリマーの除去
性能を表す阻止率がほとんど得られないという問題があ
った。
On the other hand, in the filter manufactured by molding and firing the inorganic ceramic powder as in Japanese Patent Laid-Open No. 4-160073, there is a technique for narrowing the distribution of pore diameters, but the ratio R / r. Of 5 or less, the pore size distribution cannot be narrowly controlled, and the pore size becomes large, and even if finely controlled, the limit is about 0.01 μm. Therefore, removal of a polymer having a molecular weight cutoff of 100 to 10,000 is possible. However, there is a problem in that it does not function as an ultrafiltration membrane for the purpose of, and the blocking rate that indicates the removal performance of the polymer is hardly obtained.

【0010】本発明の目的は、溶剤中に溶け込んだ分画
分子量100〜10000のポリマー等を高い分離精度
で除去でき、溶剤の透過流速が高い無機分離膜及びその
製造方法並びに限外濾過膜を提供することにある。
An object of the present invention is to provide an inorganic separation membrane having a high solvent permeation flow rate, a method for producing the same and an ultrafiltration membrane capable of removing a polymer having a molecular weight cut off of 100 to 10,000 dissolved in a solvent with high separation accuracy. To provide.

【0011】[0011]

【課題を解決するための手段】本発明は、低温で加水分
解を行うことにより凝集がなく均一なゾルを作製するこ
とができるという知見に基づくもので、これを用いて作
製した無機分離膜はポリマーの分離除去に好適で、耐薬
品性、耐圧性に優れかつ高い透過流速が得られる。
The present invention is based on the finding that a uniform sol can be produced without aggregation by performing hydrolysis at a low temperature. An inorganic separation membrane produced using this is It is suitable for separation and removal of polymers, has excellent chemical resistance and pressure resistance, and has a high permeation flow rate.

【0012】即ち、多孔質支持管の外表面及び/又は内
表面にアルミナ膜が形成されてなり、該アルミナ膜の全
細孔容積が0.2ml/g以上、平均細孔径Dが1.5
〜20nm、2D以下の細孔を有する細孔容積が全細孔
容積の90%以上であることを特徴とするものである。
これにより、無機分離膜の細孔は非常に狭い細孔径分布
を有し、分画分子量100〜10000のポリマー等を
精度良く、高い透過流速で分離除去することが可能とな
る。
That is, an alumina film is formed on the outer surface and / or the inner surface of the porous support tube, the total pore volume of the alumina film is 0.2 ml / g or more, and the average pore diameter D is 1.5.
The pore volume having pores of ˜20 nm and 2D or less is 90% or more of the total pore volume.
As a result, the pores of the inorganic separation membrane have a very narrow pore size distribution, and it becomes possible to separate and remove a polymer having a cutoff molecular weight of 100 to 10,000 with high accuracy and a high permeation flow rate.

【0013】また、本発明の無機分離膜の製造方法は、
アルミニウムのアルコキシドを溶解したアルコールとカ
ルボン酸無水物との混合物を、60℃以下の温度で加水
分解を行ってゾルを作製し、得られたゾルを多孔質支持
管の外表面及び/又は内表面に被着し、乾燥した後に4
00〜1000℃の温度で焼成することを特徴とするも
のである。これにより、アルコキシドの水への分散性を
向上し、かつ均一な加水分解反応を促進できるために、
形成されるアルミニウム水酸化物(AlOOH)からな
るベーマイトゾルの粒子径分布を狭くでき、焼成後に得
られるアルミナにおいても狭いアルミナ粒子径分布を有
し、結果として細孔径分布を非常に狭くすることができ
る。
The method for producing an inorganic separation membrane of the present invention is
A mixture of an alcohol in which an aluminum alkoxide is dissolved and a carboxylic acid anhydride is hydrolyzed at a temperature of 60 ° C. or lower to prepare a sol, and the obtained sol is formed on the outer surface and / or inner surface of the porous support tube. After applying to and drying 4
It is characterized by firing at a temperature of 00 to 1000 ° C. Thereby, in order to improve the dispersibility of the alkoxide in water and to promote a uniform hydrolysis reaction,
The particle size distribution of the boehmite sol formed of aluminum hydroxide (AlOOH) can be narrowed, and the alumina obtained after firing also has a narrow alumina particle size distribution, resulting in a very narrow pore size distribution. it can.

【0014】特に、前記アルコキシドに対するカルボン
酸無水物のモル比が0.1〜6となるように前記混合物
を作製することが好ましい。これによりアルコキシドの
水との反応性を低下せしめ、カルボン酸無水物を無駄な
く利用できる。
Particularly, it is preferable to prepare the mixture so that the molar ratio of the carboxylic acid anhydride to the alkoxide is 0.1 to 6. This reduces the reactivity of the alkoxide with water, and the carboxylic acid anhydride can be used without waste.

【0015】また、前記加水分解において、前記アルコ
キシドに対する水のモル比が100以上であることが好
ましい。これにより、アルコキシド混合物を水に添加す
る際の分散性を向上でき、アルコキシド混合物の凝集、
加水分解後のアルミニウム水酸化物(AlOOH)粒子
の凝集を抑制できる。
In the hydrolysis, the molar ratio of water to the alkoxide is preferably 100 or more. Thereby, the dispersibility when adding the alkoxide mixture to water can be improved, and the alkoxide mixture aggregates,
Aggregation of aluminum hydroxide (AlOOH) particles after hydrolysis can be suppressed.

【0016】さらに、pHが0.5〜5となるように前
記ゾルを作製することが好ましい。これにより、加水分
解後に得られるアルミニウム水酸化物(AlOOH)粒
子同士の凝集を抑制し、単分散状態の粒子径の揃ったア
ルミニウム水酸化物(AlOOH)のゾル粒子を得るこ
とが容易になるさらにまた、前記カルボン酸無水物が、
R−CO−O−CO−R’で表わされるカルボン酸無水
物(但しRがCnm、R’がCab、a及びnが1〜5
の整数、b及びmが3〜11の整数)であることが好ま
しい。これによりアルミニウムのアルコキシド、アルコ
ールとの溶解性が高く、均一なアルコキシド混合物を作
製することができる。
Further, it is preferable to prepare the sol so that the pH is 0.5 to 5. This suppresses aggregation of aluminum hydroxide (AlOOH) particles obtained after hydrolysis and facilitates obtaining monosol-dispersed aluminum hydroxide (AlOOH) sol particles having a uniform particle size. In addition, the carboxylic acid anhydride,
R-CO-O-CO- R ' carboxylic acid anhydride represented by (wherein R is C n H m, R' is C a H b, the a and n 1 to 5
And b and m are integers of 3 to 11). This makes it possible to prepare a uniform alkoxide mixture which has a high solubility in aluminum alkoxide and alcohol.

【0017】さらに、本発明の限外濾過膜は、分子数1
00〜10000のポリマーを分離するための限外濾過
膜であって、ハウジングと、該ハウジング内に支持体に
よって保持された請求項1記載の無機分離膜と、少なく
とも2種類の混合流体の供給口と、該混合流体が前記無
機分離膜に接触する通路と、前記無機分離膜を通過した
流体の透過出口と、前記無機分離膜を通過せずに排出さ
れる排出口とを具備することを特徴とするものである。
このような構成を採用することによって、分子数100
〜10000のポリマーを効率よく分離することができ
る。
Further, the ultrafiltration membrane of the present invention has a molecular number of 1
An ultrafiltration membrane for separating 00 to 10000 polymers, the housing, the inorganic separation membrane according to claim 1 held by a support in the housing, and a supply port for a mixed fluid of at least two types. And a passage through which the mixed fluid contacts the inorganic separation membrane, a permeation outlet for the fluid that has passed through the inorganic separation membrane, and an outlet for discharging the fluid without passing through the inorganic separation membrane. It is what
By adopting such a configuration, the number of molecules is 100
It is possible to efficiently separate 10,000 to 10,000 polymers.

【0018】[0018]

【発明の実施の形態】本発明のアルミナ多孔質体からな
る無機分離膜は、平均細孔径Dが1.5nm〜20nm
でかつ全細孔容積が0.2ml/g以上であるとともに
前記平均細孔径Dに対して2D以下の細孔を有する細孔
容積が全細孔容積の90%以上を占めることが重要であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The inorganic separation membrane made of the porous alumina material of the present invention has an average pore diameter D of 1.5 nm to 20 nm.
It is important that the total pore volume is 0.2 ml / g or more and the pore volume having pores of 2D or less with respect to the average pore diameter D accounts for 90% or more of the total pore volume. .

【0019】ここで、平均細孔径が1.5nmより小さ
いとポリマー除去を目的とする限外濾過膜としては細孔
径が小さすぎ溶媒の透過までも妨げてしまい、また一般
に細孔容積も小さくなることから、透過流速が著しく低
下してしまう。
Here, if the average pore diameter is smaller than 1.5 nm, the pore diameter is too small for an ultrafiltration membrane for the purpose of polymer removal, which hinders the permeation of a solvent, and generally the pore volume also becomes small. Therefore, the permeation flow rate is significantly reduced.

【0020】一方、平均細孔径が20nmより大きいと
限外濾過膜としてポリマー除去を目的とする場合、分離
精度が著しく低下する。特に、分画分子量が100〜1
0000のポリマー除去を目的とする限外濾過膜として
は、分離精度、ポリマー阻止率向上の点より平均細孔径
Dは1.5〜10nmであることが望ましい。
On the other hand, when the average pore diameter is larger than 20 nm, the separation accuracy is significantly lowered when the polymer is intended to be removed as an ultrafiltration membrane. In particular, the molecular weight cutoff is 100 to 1
As an ultrafiltration membrane for the purpose of removing polymer of 0000, the average pore diameter D is preferably 1.5 to 10 nm from the viewpoint of separation accuracy and improvement of polymer rejection.

【0021】また、全細孔容積が0.2ml/gより低
いと透過流速が低下し、分離膜モジュールの膜面積が増
大するため0.2ml/g以上であることが必要であ
り、特に0.3ml/g以上であることが望ましい。
If the total pore volume is lower than 0.2 ml / g, the permeation flow rate will decrease and the membrane area of the separation membrane module will increase. It is preferably 0.3 ml / g or more.

【0022】また平均細孔径Dに対して2D以下の細孔
を有する細孔容積が全細孔容積の90%より低いと限外
濾過膜としての分離性能が低下し、90%以上の高いポ
リマー阻止率を得ることが出来ない。特に高い分離性
能、ポリマー阻止率の向上の点より前記2D以下の細孔
を有する細孔容積は全細孔容積の95%以上であること
が望ましい。
If the volume of pores having pores of 2D or less with respect to the average pore diameter D is lower than 90% of the total pore volume, the separation performance as an ultrafiltration membrane deteriorates, and high polymer of 90% or more is obtained. You can't get a blocking rate. From the viewpoints of particularly high separation performance and improvement of polymer rejection, it is desirable that the pore volume having the pores of 2D or less is 95% or more of the total pore volume.

【0023】この構成にすることにより、溶剤中に溶け
込んだ分画分子量数100〜10000のポリマー等を
高い分離精度で除去でき、溶剤の透過流速が高く、限外
濾過、精密濾過等に好適に使用できる無機分離膜を実現
することができる。
With this structure, a polymer having a molecular weight cutoff of 100 to 10,000 dissolved in a solvent can be removed with high separation accuracy, the solvent permeation flow rate is high, and it is suitable for ultrafiltration, microfiltration and the like. It is possible to realize an inorganic separation membrane that can be used.

【0024】次に、本発明の無機分離膜を作製する方法
について説明する。
Next, a method for producing the inorganic separation membrane of the present invention will be described.

【0025】まず、アルミニウムのアルコキシドとカル
ボン酸無水物とアルコールとを準備する。これらの純度
は、それぞれ95%以上、97%以上、99.5%以上
であることが、微細粒子を形成するベーマイト(AlO
OH)ゾルを形成するために好ましい。純度が低いと、
Al(OH)3やAlの塩等が形成し、AlOOH粒子
の均一な形成を阻害し、沈殿等が起こり、均一なゾルを
作製することが難しい。
First, an aluminum alkoxide, a carboxylic acid anhydride and an alcohol are prepared. These purities are 95% or more, 97% or more, and 99.5% or more, respectively, indicating that boehmite (AlO) forming fine particles is formed.
OH) preferred for forming a sol. If the purity is low,
Al (OH) 3 or a salt of Al is formed, which hinders the uniform formation of AlOOH particles and causes precipitation or the like, which makes it difficult to produce a uniform sol.

【0026】アルミニウムのアルコキシドは、例えばエ
トキシド、isoプロポキシド、n−プロポキシド、n
−ブトキシド、sec−ブトキシド、t−ブトキシド等
を用いることができ、特に、アルコールとの溶解性、加
水分解後に生じるアルコールの水との相溶性からiso
プロポキシド、n−プロポキシド、n−ブトキシド、s
ec−ブトキシドであることが望ましい。
Aluminum alkoxides include, for example, ethoxide, isopropoxide, n-propoxide, n.
-Butoxide, sec-butoxide, t-butoxide and the like can be used, and in particular, due to the solubility with alcohol and the compatibility of alcohol generated after hydrolysis with water,
Propoxide, n-propoxide, n-butoxide, s
It is preferably ec-butoxide.

【0027】また、アルコールとしては水との相溶性の
良いメタノール、エタノール、プロパノール、ブタノー
ル、2メトキシエタノール、2エトキシエタノールを例
示でき、特に、分離膜として被着形成した後の乾燥工程
を考慮すると沸点の低い低級アルコールであることが望
ましい。
Examples of alcohols include methanol, ethanol, propanol, butanol, 2methoxyethanol, and 2ethoxyethanol, which have good compatibility with water. Particularly, considering the drying step after deposition as a separation membrane. A lower alcohol having a low boiling point is desirable.

【0028】また、カルボン酸無水物は、RをCnm
R’をCnm、nを1〜5の整数、mを3〜11の整数
としたとき、一般式R−CO−O−CO−R’で表され
るものである。具体的には、カルボン酸無水物として、
無水酢酸、無水2ブテン酸、無水イソペンタン酸、無水
マレイン酸等を例示できる。
In the carboxylic acid anhydride, R is C n H m ,
When R ′ is C n H m , n is an integer of 1 to 5 and m is an integer of 3 to 11, it is represented by the general formula R—CO—O—CO—R ′. Specifically, as a carboxylic acid anhydride,
Examples thereof include acetic anhydride, 2-butenoic anhydride, isopentanoic anhydride, maleic anhydride and the like.

【0029】次に、アルミニウムのアルコキシドとカル
ボン酸無水物とアルコールとを混合する。このとき、ア
ルミニウムのアルコキシド1モルに対して0.1〜6モ
ル、特に1〜5モル、更には2〜4モルのカルボン酸無
水物を加えることが好ましい。このようにアルコキシド
とカルボン酸無水物との比を調製することにより、アル
コキシドの反応性を低下せしめ加水分解時の分散性を向
上させることが容易になる。
Next, the alkoxide of aluminum, the carboxylic acid anhydride and the alcohol are mixed. At this time, it is preferable to add 0.1 to 6 mol, particularly 1 to 5 mol, and further 2 to 4 mol of carboxylic acid anhydride to 1 mol of alkoxide of aluminum. By thus adjusting the ratio of the alkoxide to the carboxylic acid anhydride, it becomes easy to reduce the reactivity of the alkoxide and improve the dispersibility during hydrolysis.

【0030】次いで、上記の混合物に水を加えて加水分
解を行ない、アルミニウム水酸化物からなるゾルを作製
する。この加水分解の温度を60℃以下にすることが重
要であり、特に均一な加水分解反応を進行させる点より
50℃以下が好ましい。60℃を超えると急激に加水分
解が進行し、生成するアルミニウム水酸化物粒子からな
るゾル粒子が凝集し、均一なゾル粒子の形成を妨げる。
従って、60℃以下にすることにより、アルコキシドの
急激な加水分解を抑制し、かつ分散性を向上させること
ができる。
Next, water is added to the above mixture to perform hydrolysis to prepare a sol made of aluminum hydroxide. It is important to set the hydrolysis temperature to 60 ° C. or lower, and particularly preferably 50 ° C. or lower from the viewpoint of promoting a uniform hydrolysis reaction. When the temperature exceeds 60 ° C., hydrolysis rapidly progresses, and the sol particles formed of aluminum hydroxide particles are aggregated to prevent the formation of uniform sol particles.
Therefore, by setting the temperature to 60 ° C. or lower, the rapid hydrolysis of the alkoxide can be suppressed and the dispersibility can be improved.

【0031】なお、アルミニウム水酸化物からなるゾル
は、ベーマイト(AlOOH)ゾルであることが好まし
い。ベーマイトゾルは可溶性で、微細な粒子が凝集する
ことなく均一に分散することが可能であり、ベーマイト
ゾルから多孔質膜を形成した場合、微細で均一な細孔を
容易に形成することができるためである。
The sol made of aluminum hydroxide is preferably boehmite (AlOOH) sol. Boehmite sol is soluble, it is possible to disperse fine particles uniformly without agglomeration, when forming a porous film from boehmite sol, it is possible to easily form fine and uniform pores Is.

【0032】また、加水分解時に用いられる水はアルミ
ニウムのアルコキシド1モルに対して100モル以上、
特に150モル以上、更には200モル以上であること
が好ましい。これにより、アルコキシドの急激な加水分
解を抑制し、かつ凝集を防止して分散性を向上させるこ
とがさらに容易となる。
The water used during the hydrolysis is 100 mol or more per 1 mol of the alkoxide of aluminum,
It is particularly preferably 150 mol or more, and further preferably 200 mol or more. This makes it easier to suppress rapid hydrolysis of the alkoxide, prevent aggregation, and improve dispersibility.

【0033】さらに、該アルコキシドの反応性を低下せ
しめ加水分解時の分散性を向上させるためにアルミニウ
ムのアルコキシド1モルに対してカルボン酸無水物を
0.1〜6モル、特に1〜5モル、更には2〜4の割合
で混合することが好ましい。0.1モルより少ないと分
散性を向上させる効果が小さくなる傾向があり、また、
6モルより多いと、アルミニウムのアルコキシドの反応
性が著しく低下し加水分解反応が進まず均一なゾルが得
られにくくなる傾向がある。
Further, in order to reduce the reactivity of the alkoxide and improve the dispersibility at the time of hydrolysis, 0.1 to 6 mol, particularly 1 to 5 mol of carboxylic acid anhydride is used per 1 mol of the alkoxide of aluminum. Furthermore, it is preferable to mix them in a ratio of 2 to 4. If it is less than 0.1 mol, the effect of improving the dispersibility tends to be small, and
If it is more than 6 moles, the reactivity of the aluminum alkoxide is remarkably lowered, the hydrolysis reaction does not proceed, and it tends to be difficult to obtain a uniform sol.

【0034】また、前記アルミニウムのアルコキシドの
加水分解により作製したゾルのpHはゾルの安定性、ゾ
ル粒子間の凝集を抑制する点より0.5〜5であること
が重要であり、特に2〜5、更には3〜5であることが
望ましい。pHが5を超える場合ゾル粒子の凝集が進行
し沈殿が生じ、均一なゾルが得られない傾向があり、ま
たpHが0.5より低い場合もゾル粒子の凝集が進行し
ゾルの粘性の増加、ゲル化が進行し安定なゾルが得られ
ない傾向がある。
Further, it is important that the pH of the sol prepared by hydrolysis of the aluminum alkoxide is 0.5 to 5 from the viewpoint of stability of the sol and suppression of aggregation between sol particles, and particularly 2 to 5. 5 and more preferably 3-5. If the pH exceeds 5, aggregation of sol particles will proceed and precipitation will occur, and a uniform sol will not be obtained. Also, if the pH is lower than 0.5, aggregation of sol particles will proceed and viscosity of the sol will increase. However, there is a tendency that gelation proceeds and a stable sol cannot be obtained.

【0035】得られたゾルの粒子径は、光散乱光度計を
利用した粒径解析装置により測定することができる。ア
ルミナ膜の平均細孔径を考慮すると、ゾル粒子径が10
nm〜100nmの粒径であることが望ましい。
The particle size of the obtained sol can be measured by a particle size analyzer using a light scattering photometer. Considering the average pore size of the alumina film, the sol particle size is 10
A particle size of nm to 100 nm is desirable.

【0036】次に、多孔質支持管を用意する。多孔質支
持管は、平均細孔径が0.01〜10μm程度の多孔質
であるとともに、上記アルミナ膜を形成する基体となる
ものであり、耐薬品性及び耐圧性に優れることが好まし
く、この点でのα−アルミナ、ジルコニア、シリカ、窒
化ケイ素、ガラス等からなるものが用いられる。これら
の中で、アルミナ膜との熱膨張が近い点でα−アルミナ
が特に望ましい。
Next, a porous support tube is prepared. The porous support tube is porous with an average pore diameter of about 0.01 to 10 μm and serves as a substrate for forming the alumina film, and is preferably excellent in chemical resistance and pressure resistance. In the above, those made of α-alumina, zirconia, silica, silicon nitride, glass, etc. are used. Of these, α-alumina is particularly desirable because it has a thermal expansion close to that of the alumina film.

【0037】この多孔質支持管の少なくとも片方の表面
にゾルを被着形成する。被着方法としては、ディップコ
ーティング、スプレーコーティング等の方法を利用する
ことができる。
A sol is deposited on at least one surface of this porous support tube. As the deposition method, a method such as dip coating or spray coating can be used.

【0038】分離膜前駆体は乾燥後、400℃〜100
0℃の温度で焼成することが重要であり、特に細孔容積
が大きく透過流速を増加させる点からは400℃〜80
0℃での焼成が望ましい。なお、400℃より低い焼成
温度ではアルミナの結晶化が低く、耐薬品性の低下が見
られるとともに、有機物が残留して均一な細孔が形成さ
れない。また、1000℃を超える焼成温度においては
アルミナがα相に転移するとともに、アルミナ粒子の焼
結が進行して細孔容積の著しい低下が起き、透過流速が
著しく低下する。
The separation membrane precursor is dried and then dried at 400 ° C. to 100 ° C.
It is important to calcine at a temperature of 0 ° C., and particularly 400 ° C. to 80 ° C. from the viewpoint that the pore volume is large and the permeation flow rate is increased.
Baking at 0 ° C is desirable. At a firing temperature lower than 400 ° C., crystallization of alumina is low, chemical resistance is deteriorated, and organic substances remain so that uniform pores are not formed. Further, at a firing temperature of higher than 1000 ° C., the alumina is transformed into the α phase, the sintering of the alumina particles proceeds, the pore volume is significantly reduced, and the permeation flow rate is significantly reduced.

【0039】このようにして製造された分離膜は、全細
孔容積が0.2ml/g以上、平均細孔径Dが1.5〜
20nm、2D以下の細孔を有する細孔容積が全細孔容
積の90%以上とすることができる。
The separation membrane thus produced has a total pore volume of 0.2 ml / g or more and an average pore diameter D of 1.5 to.
The pore volume having pores of 20 nm and 2D or less can be 90% or more of the total pore volume.

【0040】図1に示すように、本発明の限外濾過膜1
1は、本発明の無機分離膜12が支持体13に保持され
るようにハウジング14内に設けられ、少なくとも2種
類の混合流体、例えば水とポリマーとの混合流体が供給
口15から流入し、無機分離膜12に接触して分子数1
00〜10000のポリマーは排出口16からそのまま
排出されるが、水は無機分離膜12を通過して透過出口
17から取り出すことができる。このように、本発明の
限外濾過膜11は、分子数100〜10000のポリマ
ーを効率よく分離することができる。
As shown in FIG. 1, the ultrafiltration membrane 1 of the present invention.
No. 1 is provided in the housing 14 so that the inorganic separation membrane 12 of the present invention is held by the support 13, and at least two kinds of mixed fluid, for example, mixed fluid of water and polymer, flow in from the supply port 15. The number of molecules is 1 in contact with the inorganic separation membrane 12.
The polymer of 00 to 10,000 is discharged as it is from the discharge port 16, but the water can be taken out from the permeation outlet 17 through the inorganic separation membrane 12. As described above, the ultrafiltration membrane 11 of the present invention can efficiently separate a polymer having a molecular number of 100 to 10,000.

【0041】[0041]

【実施例】先ず、アルミニウムのアルコキシド、アルコ
ール、カルボン酸無水物、イオン交換蒸留水を準備し
た。N2フローのグローブボックス中で、アルミニウム
のアルコキシドにアルコール、カルボン酸無水物を表1
の比率で混合し、アルコキシド混合物を作製した。
Example First, aluminum alkoxide, alcohol, carboxylic acid anhydride, and ion-exchange distilled water were prepared. Alcohols and carboxylic acid anhydrides were added to aluminum alkoxides in a N 2 flow glove box.
To produce an alkoxide mixture.

【0042】このアルコキシド混合物をグローブボック
ス中から取り出した後、表1に示す温度に保った水を強
く攪拌しながら、前記アルコキシド混合物を一度に添加
し、表1に示す条件で加水分解を行ってアルミナ前駆体
ゾルを得た。
After the alkoxide mixture was taken out of the glove box, the alkoxide mixture was added all at once with vigorous stirring of water kept at the temperature shown in Table 1, and hydrolysis was carried out under the conditions shown in Table 1. An alumina precursor sol was obtained.

【0043】次いで、各ゾルを少量採取し、膜を付与す
る同条件で乾燥、焼成し、N2吸着法(マイクロメリテ
ィックス社製 ASAP2000)により平均細孔径
D、全細孔容積Vを測定するとともに、全細孔容積Vに
対する2D以下の細孔を有する細孔容積の割合を算出し
た。
Then, a small amount of each sol was sampled, dried and baked under the same conditions for forming a film, and the average pore diameter D and the total pore volume V were measured by the N 2 adsorption method (ASAP2000 manufactured by Micromeritics). At the same time, the ratio of the pore volume having 2D or smaller pores to the total pore volume V was calculated.

【0044】また、分離膜評価試料を作製した。即ち、
平均細孔径0.15μm、気孔率38%、長さ200m
m、外径3mm、内径2.2mmのα−アルミナ多孔質
管をアルミナ前駆体ゾルに30秒間浸漬し、室温で1時
間乾燥した後、引き続き500℃で1時間保持し、その
後、室温まで冷却した。この浸漬、乾燥、焼成の一連の
操作を4回繰り返し、α−アルミナ多孔質管上にアルミ
ナ膜を被着形成し無機分離膜を作製した。
Further, a separation membrane evaluation sample was prepared. That is,
Average pore diameter 0.15 μm, porosity 38%, length 200 m
m, outer diameter 3 mm, and inner diameter 2.2 mm, an α-alumina porous tube was immersed in the alumina precursor sol for 30 seconds, dried at room temperature for 1 hour, and subsequently kept at 500 ° C. for 1 hour, and then cooled to room temperature. did. This series of operations of dipping, drying and firing was repeated 4 times to form an alumina membrane on the α-alumina porous tube to form an inorganic separation membrane.

【0045】次に、図2に示すように、得られた管状の
各評価用試料21を透過流速測定装置22に取り付け、
供給入口23よりポリエチレングリコール(PEG)を
溶解した水溶液を導入し、無機分離膜24外側に1MP
aの圧力がかかるよう供給出口25に背圧弁を設けて、
無機分離膜24内側に透過する水量を透過出口26で計
測して透過流速(ml/(m2・h・kPa))を求め
た。
Next, as shown in FIG. 2, each of the obtained tubular evaluation samples 21 was attached to a permeation velocity measuring device 22,
An aqueous solution in which polyethylene glycol (PEG) is dissolved is introduced from the supply inlet 23, and 1MP is applied to the outside of the inorganic separation membrane 24.
A back pressure valve is provided at the supply outlet 25 so as to apply the pressure a.
The amount of water permeating the inside of the inorganic separation membrane 24 was measured at the permeation outlet 26 to determine the permeation flow rate (ml / (m 2 · h · kPa)).

【0046】なお、PEGは、分子量が400、200
0、6000のポリエチレングリコールを用いた。ま
た、阻止率は、透過した溶液の水のポリエチレングリコ
ール濃度を測定し、これを阻止率とした。結果を表1に
示した。
PEG has a molecular weight of 400, 200
0,6000 polyethylene glycol was used. The inhibition rate was determined by measuring the polyethylene glycol concentration of water in the permeated solution and using this as the inhibition rate. The results are shown in Table 1.

【0047】[0047]

【表1】 [Table 1]

【0048】本発明の試料No.2〜6、8〜17、1
9〜21及び24は、水の透過流速が43ml/(m2
・h・kPa)以上、阻止率が61%以上であった。
Sample No. of the present invention. 2-6, 8-17, 1
9 to 21 and 24 have a water permeation flow rate of 43 ml / (m 2
・ H · kPa) or higher, and the rejection rate was 61% or higher.

【0049】一方、焼成温度が300℃と低く、最高容
積が0.12ml/gと小さい本発明の範囲外の試料N
o.1は、水の透過流速が13ml/(m2・h・kP
a)と低い値であった。
On the other hand, the sample N, which has a low firing temperature of 300 ° C. and a maximum volume of 0.12 ml / g, is outside the range of the present invention.
o. 1 has a water permeation flow rate of 13 ml / (m 2 · h · kP
It was a low value as a).

【0050】また、焼成温度が1100℃と高く、最高
容積が0.03ml/gと小さい本発明の範囲外の試料
No.7は、水の透過流速が4.4ml/(m2・h・
kPa)と低い値であった。
Further, the firing temperature was as high as 1100 ° C. and the maximum volume was as small as 0.03 ml / g. No. 7 has a water permeation flow rate of 4.4 ml / (m 2 · h ·
kPa) and a low value.

【0051】さらに、溶媒に水を用いた本発明の範囲外
の試料No.18は、アルコキシド混合物を作製する際
に沈殿が生じ、加水分解工程を行えず、ゾルを作製する
ことが出来なかった。
Further, sample No. 1 using water as a solvent and falling outside the scope of the present invention. In No. 18, precipitation occurred during the preparation of the alkoxide mixture, the hydrolysis step could not be performed, and the sol could not be prepared.

【0052】さらにまた、カルボン酸無水物を入れない
本発明の範囲外の試料No.22は、2D以下の細孔を
有する細孔容積が全容積の72%であり、PEG400
の阻止率が48%、PEG2000の阻止率が59%と
低い値であった。
Furthermore, the sample No. out of the scope of the present invention containing no carboxylic acid anhydride was used. No. 22 had a pore volume of 2% or less and 72% of the total volume, and PEG400
The inhibition rate was 48%, and the inhibition rate of PEG2000 was 59%, which were low values.

【0053】また、カルボン酸無水物の代わりにN,N
ジメチルエタノールアミンを加えた本発明の範囲外の試
料No.23及び加水分解温度が80℃と高い本発明の
範囲外の試料No.25は、ゾルの合成段階で白濁し、
沈殿物が生じ、均一なゾルの作製が出来ず膜を付与する
ことが出来なかった。
Further, instead of the carboxylic acid anhydride, N, N
Sample No. outside the scope of the present invention with the addition of dimethylethanolamine. 23 and sample No. 23 having a hydrolysis temperature as high as 80 ° C. outside the range of the present invention. 25 became cloudy in the sol synthesis stage,
Precipitates were generated, and a uniform sol could not be prepared, and a film could not be applied.

【0054】さらに、粉末を用いて成膜した本発明の範
囲外の試料No.26は、平均細孔径が23nmと大き
く、PEG阻止率が59%以下と低かった。
Further, the sample No. formed outside the scope of the present invention by using powder was used. No. 26 had a large average pore diameter of 23 nm and a low PEG inhibition rate of 59% or less.

【0055】[0055]

【発明の効果】本発明の無機分離膜は、アルコールに溶
解したアルコキシド及びカルボン酸無水物を加水分解す
る温度を制御することにより、平均細孔径、細孔容積及
び細孔容積の分布を制御した無機分離膜が得られ、この
ような無機分離膜は、ポリマー除去を高い分離精度で行
うことができ、耐薬品性、耐圧性に優れかつ高い透過、
分離(阻止率)の両性能を有する無機分離膜として用い
ることができる。
INDUSTRIAL APPLICABILITY The inorganic separation membrane of the present invention controls the distribution of average pore diameter, pore volume and pore volume by controlling the temperature at which alkoxides and carboxylic acid anhydrides dissolved in alcohol are hydrolyzed. An inorganic separation membrane is obtained, and such an inorganic separation membrane can perform polymer removal with high separation accuracy, and has excellent chemical resistance and pressure resistance and high permeation,
It can be used as an inorganic separation membrane having both the performance of separation (rejection rate).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の限外濾過膜の構造を示す概略断面図で
ある。
FIG. 1 is a schematic sectional view showing the structure of an ultrafiltration membrane of the present invention.

【図2】実施例で用いた透過流速測定装置の構造を示す
概略断面図である。
FIG. 2 is a schematic cross-sectional view showing the structure of a permeation velocity measuring device used in Examples.

【符号の説明】[Explanation of symbols]

11・・・限外濾過膜 12・・・無機分離膜 13・・・支持体 14・・・ハウジング 15・・・供給口 16・・・排出口 17・・・透過出口 11 ... Ultrafiltration membrane 12 ... Inorganic separation membrane 13 ... Support 14 ... Housing 15 ... Supply port 16 ... Discharge port 17 ... permeation exit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】多孔質支持管の外表面及び/又は内表面に
アルミナ膜が形成されてなり、該アルミナ膜の全細孔容
積が0.2ml/g以上、平均細孔径Dが1.5〜20
nm、2D以下の細孔を有する細孔容積が全細孔容積の
90%以上であることを特徴とする無機分離膜。
1. An alumina membrane is formed on the outer surface and / or the inner surface of a porous support tube, the total pore volume of the alumina membrane is 0.2 ml / g or more, and the average pore diameter D is 1.5. ~ 20
The inorganic separation membrane is characterized in that the pore volume having pores of 2 nm or less is 90% or more of the total pore volume.
【請求項2】アルミニウムのアルコキシドを溶解したア
ルコールとカルボン酸無水物との混合物を、60℃以下
の温度で加水分解を行ってゾルを作製し、得られたゾル
を多孔質支持管の外表面及び/又は内表面に被着し、乾
燥した後に400〜1000℃の温度で焼成することを
特徴とする無機分離膜の製造方法。
2. A sol is prepared by hydrolyzing a mixture of an alcohol in which an aluminum alkoxide is dissolved and a carboxylic acid anhydride at a temperature of 60 ° C. or lower, and the obtained sol is formed on the outer surface of a porous support tube. And / or a method for producing an inorganic separation membrane, which comprises depositing on an inner surface, drying and then firing at a temperature of 400 to 1000 ° C.
【請求項3】前記アルコキシドに対するカルボン酸無水
物のモル比が0.1〜6となるように前記混合物を作製
することを特徴とする請求項2記載の無機分離膜の製造
方法。
3. The method for producing an inorganic separation membrane according to claim 2, wherein the mixture is prepared so that the molar ratio of the carboxylic acid anhydride to the alkoxide is 0.1 to 6.
【請求項4】前記加水分解において、前記アルコキシド
に対する水のモル比が100以上であることを特徴とす
る請求項2又は3記載の無機分離膜の製造方法。
4. The method for producing an inorganic separation membrane according to claim 2, wherein in the hydrolysis, the molar ratio of water to the alkoxide is 100 or more.
【請求項5】pHが0.5〜5となるように前記ゾルを
作製することを特徴とする請求項2乃至4のうちいずれ
かに記載の無機分離膜の製造方法。
5. The method for producing an inorganic separation membrane according to claim 2, wherein the sol is produced so as to have a pH of 0.5 to 5.
【請求項6】前記カルボン酸無水物が、R−CO−O−
CO−R’で表わされるカルボン酸無水物(但しRがC
nm、R’がCab、a及びnが1〜5の整数、b及び
mが3〜11の整数)であることを特徴とする請求項2
乃至5のうちいずれかに記載の無機分離膜の製造方法。
6. The carboxylic acid anhydride is R—CO—O—
A carboxylic acid anhydride represented by CO-R '(where R is C
n H m , R ′ is C a H b , a and n are integers of 1 to 5, and b and m are integers of 3 to 11).
6. The method for producing an inorganic separation membrane according to any one of 5 to 5.
【請求項7】分子数100〜10000のポリマーを分
離するための限外濾過膜であって、ハウジングと、該ハ
ウジング内に支持体によって保持された請求項1記載の
無機分離膜と、少なくとも2種類の混合流体の供給口
と、該混合流体が前記無機分離膜に接触する通路と、前
記無機分離膜を通過した流体の透過出口と、前記無機分
離膜を通過せずに排出される排出口とを具備することを
特徴とする限外濾過膜。
7. An ultrafiltration membrane for separating a polymer having a molecular number of 100 to 10,000, wherein the housing and the inorganic separation membrane according to claim 1 are held by a support in the housing, and at least 2. A mixed fluid supply port, a passage through which the mixed fluid comes into contact with the inorganic separation membrane, a permeation outlet for the fluid that has passed through the inorganic separation membrane, and an outlet for discharging the fluid without passing through the inorganic separation membrane. An ultrafiltration membrane comprising:
JP2001197632A 2001-06-29 2001-06-29 Manufacturing method of inorganic separation membrane Expired - Fee Related JP4968990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197632A JP4968990B2 (en) 2001-06-29 2001-06-29 Manufacturing method of inorganic separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197632A JP4968990B2 (en) 2001-06-29 2001-06-29 Manufacturing method of inorganic separation membrane

Publications (2)

Publication Number Publication Date
JP2003010657A true JP2003010657A (en) 2003-01-14
JP4968990B2 JP4968990B2 (en) 2012-07-04

Family

ID=19035198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197632A Expired - Fee Related JP4968990B2 (en) 2001-06-29 2001-06-29 Manufacturing method of inorganic separation membrane

Country Status (1)

Country Link
JP (1) JP4968990B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001240A1 (en) * 2005-06-29 2007-01-04 National University Of Singapore Surface treatment of alumina films
JP2008174418A (en) * 2007-01-19 2008-07-31 Shinshu Univ Alumina microporous membrane and its production method
JP2009226306A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Ceramic filter and manufacturing method of nanofiltration membrane
JP2009226307A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Ceramic filter and manufacturing method of nanofiltration membrane
JP2010254553A (en) * 2009-03-31 2010-11-11 Canon Inc Precursor sol of aluminum oxide and method for producing optical member
JP2012501286A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Preparation method of inorganic membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839689A (en) * 1981-08-17 1983-03-08 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Manufacture of transparent partially hydrolyzed aluminum alkoxide solution
JPS6071007A (en) * 1983-09-06 1985-04-22 セラヴエール Production of fine filtration, ultrafiltration or reverse osmosis element
JPH05238845A (en) * 1991-10-08 1993-09-17 Wisconsin Alumni Res Found Microporous alumina ceramic membrane
JPH09142964A (en) * 1995-11-28 1997-06-03 Kyocera Corp Production of porous alumina membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839689A (en) * 1981-08-17 1983-03-08 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Manufacture of transparent partially hydrolyzed aluminum alkoxide solution
JPS6071007A (en) * 1983-09-06 1985-04-22 セラヴエール Production of fine filtration, ultrafiltration or reverse osmosis element
JPH05238845A (en) * 1991-10-08 1993-09-17 Wisconsin Alumni Res Found Microporous alumina ceramic membrane
JPH09142964A (en) * 1995-11-28 1997-06-03 Kyocera Corp Production of porous alumina membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001240A1 (en) * 2005-06-29 2007-01-04 National University Of Singapore Surface treatment of alumina films
JP2008174418A (en) * 2007-01-19 2008-07-31 Shinshu Univ Alumina microporous membrane and its production method
JP2009226306A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Ceramic filter and manufacturing method of nanofiltration membrane
JP2009226307A (en) * 2008-03-21 2009-10-08 Ngk Insulators Ltd Ceramic filter and manufacturing method of nanofiltration membrane
JP2012501286A (en) * 2008-08-29 2012-01-19 コーニング インコーポレイテッド Preparation method of inorganic membrane
JP2010254553A (en) * 2009-03-31 2010-11-11 Canon Inc Precursor sol of aluminum oxide and method for producing optical member

Also Published As

Publication number Publication date
JP4968990B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5676448B2 (en) Preparation method of inorganic membrane
Sekulić et al. Microporous silica and doped silica membrane for alcohol dehydration by pervaporation
US20060237361A1 (en) Ceramic nanofiltration membrane for use in organic solvents and method for the production thereof
US20090282983A1 (en) Hydrothermally-stable silica-based composite membranes for hydrogen separation
JP2008246304A (en) Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter
JP6830503B2 (en) A method for producing a composite porous structure and a composite porous structure produced thereby.
JP2003010657A (en) Inorganic separation membrane, method for producing the same, and ultrafiltration membrane
JP2005503261A (en) Novel inorganic nanofiltration membrane
JP2955062B2 (en) Hydrogen gas separation membrane
JP2000157853A (en) Gas separating filter and its manufacture
JPH09142964A (en) Production of porous alumina membrane
JP6413283B2 (en) Method for producing porous support-zeolite membrane composite
JP4693267B2 (en) Inorganic porous material for gas separation filter, gas separation filter and method for producing the same
JP2000279773A (en) Gas separation filter and its production
Krell et al. Performance of alumina membranes from new nanosynthesis in ultrafiltration and nanofiltration
EP0586745B1 (en) Manufacturing a ceramic membrane
JP6696805B2 (en) Fluid separation material and manufacturing method thereof
JP3757110B2 (en) Method for producing zeolite membrane
EP1980314A1 (en) Process for production of zeolite separation membrane
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
JP3659469B2 (en) Organic gas separation filter and manufacturing method thereof
CN113574017A (en) Method for producing zeolite membrane complex and zeolite membrane complex
JP3285715B2 (en) Method for producing porous body using metal oxide sol
JP4384540B2 (en) Hydrogen separation material and method for producing the same
Bonekamp et al. Sol-gel approaches in the synthesis of membrane materials for nanofiltration and pervaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees