JP2003004343A - Vapor-liquid separator, and air conditioner using it - Google Patents

Vapor-liquid separator, and air conditioner using it

Info

Publication number
JP2003004343A
JP2003004343A JP2001192515A JP2001192515A JP2003004343A JP 2003004343 A JP2003004343 A JP 2003004343A JP 2001192515 A JP2001192515 A JP 2001192515A JP 2001192515 A JP2001192515 A JP 2001192515A JP 2003004343 A JP2003004343 A JP 2003004343A
Authority
JP
Japan
Prior art keywords
gas
liquid
outlet pipe
refrigerant
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001192515A
Other languages
Japanese (ja)
Other versions
JP4248770B2 (en
Inventor
Koichi Yamaguchi
口 広 一 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001192515A priority Critical patent/JP4248770B2/en
Publication of JP2003004343A publication Critical patent/JP2003004343A/en
Application granted granted Critical
Publication of JP4248770B2 publication Critical patent/JP4248770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor-liquid separator for improving the vapor-liquid separator efficiency of a refrigerant in the course of a heat exchange passage of a heat exchanger serving as a vaporizer, and an air conditioner using the same. SOLUTION: A casing 11 is provided, which includes a cylindrical side wall with a substantially vertical shaft core, a top wall 11a for sealing an upper end of the cylindrical side wall, and a bottom wall 11b for sealing a lower end, and a gas outlet pipe 14 is coupled with the top wall 11a or with its neighbourhood, while a liquid outlet pipe 13 is coupled with the bottom wall 11b or with its neighbourhood. Further, a cross sectional area of a pipe line of the liquid outlet pipe 13 is provided above a cross sectional area of a pipe line of a vapor-liquid two phase blow inlet pipe 12, while a cross sectional area of the pipe line of the liquid outlet pipe 13 is set smaller than that of the pipe line of the vapor-liquid two phase-blow inlet pipe 12. A title air conditioning apparatus uses the vapor-liquid separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、蒸発器と
して機能する熱交換器の熱交換路の途中の冷媒を気液分
離し、分離された気相の冷媒を、熱交換器の出口側の管
路に流入させる気液分離装置及びこれを用いた空気調和
装置に関する。
TECHNICAL FIELD The present invention relates to, for example, gas-liquid separation of a refrigerant in a heat exchange path of a heat exchanger functioning as an evaporator, and the separated gas-phase refrigerant is supplied to an outlet side of the heat exchanger. The present invention relates to a gas-liquid separation device that flows into a pipeline and an air conditioning device using the same.

【0002】[0002]

【従来の技術】空気調和装置において、蒸発器として機
能する熱交換器は液相又は気液混合状態の冷媒を気相の
冷媒に変化させて送り出すもので、液相分と気相分とが
混合して流れる熱交換路の流速が高すぎると、圧力損失
が大きくなって熱交換能力が低下する。この圧力損失を
抑制するために、蒸発器として機能する熱交換器の入口
に気液分離装置を設置することが考えられている。この
気液分離装置は、R22の代替冷媒であるR410Aで
の性能向上が顕著であることから種々のものが提案され
ている。
2. Description of the Related Art In an air conditioner, a heat exchanger functioning as an evaporator changes a refrigerant in a liquid phase or a gas-liquid mixed state into a refrigerant in a gas phase and sends it out. If the flow rate of the heat exchange passage mixed and flowing is too high, the pressure loss becomes large and the heat exchange capacity is lowered. In order to suppress this pressure loss, it is considered to install a gas-liquid separator at the inlet of the heat exchanger that functions as an evaporator. Various gas-liquid separators have been proposed because the performance of R410A, which is an alternative refrigerant for R22, is significantly improved.

【0003】この気液分離装置の代表的なものとして、
例えば、図9(a),(b)にその平面図及び縦断面図
で示すものが知られている。この気液分離装置20は、
円筒状側壁の両端を封止したケーシング21の頂部壁
に、気液2相流入口管22、液出口管23及びガス出口
管24を配置して内部に貫入させ、気液2相流入口管2
2及び液出口管23の先端を底部壁の近傍まで延ばし、
ガス出口管24の先端を頂部壁から僅かに内側に突出さ
せる構成になっていた。因みに、気液2相流入口管22
及び液出口管23の各口径は9.52mmで、ガス出口
管24の口径は6.35mmであった。
As a typical example of this gas-liquid separation device,
For example, what is shown by the top view and the longitudinal cross-sectional view in FIG. 9 (a), (b) is known. This gas-liquid separator 20 is
A gas-liquid two-phase inlet pipe is provided by arranging a gas-liquid two-phase inlet pipe 22, a liquid outlet pipe 23, and a gas outlet pipe 24 on the top wall of a casing 21 that seals both ends of a cylindrical side wall. Two
2 and the tip of the liquid outlet pipe 23 is extended to the vicinity of the bottom wall,
The tip of the gas outlet pipe 24 is slightly inwardly projected from the top wall. Incidentally, the gas-liquid two-phase inlet pipe 22
The liquid outlet tube 23 had a diameter of 9.52 mm, and the gas outlet tube 24 had a diameter of 6.35 mm.

【0004】かかる構成により気液分離装置20の内部
に静的な状態で液冷媒を滞留させることが可能となる。
また、気液2相流入口管22を頂部壁より貫入させて底
部壁の近くまで挿入したことにより、液相の冷媒を液出
口管23より確実に流出させることができる。また、ガ
ス出口管24の口径を小さくしたため、液滴のガス出口
管24からの突発的な流入を防ぐことができる。
With this structure, the liquid refrigerant can be retained in the gas-liquid separation device 20 in a static state.
Further, since the gas-liquid two-phase inlet pipe 22 is inserted from the top wall and inserted close to the bottom wall, the liquid-phase refrigerant can be reliably discharged from the liquid outlet pipe 23. Further, since the diameter of the gas outlet pipe 24 is reduced, it is possible to prevent the sudden inflow of liquid droplets from the gas outlet pipe 24.

【0005】ところで、上述したように気液分離装置2
0を、蒸発器として機能する熱交換器の入口に設ける手
法は圧縮機を改造しなければならず、また、制御も複雑
になるため、実際には予期したほど効率を向上させるこ
とができなかった。そのため、理論的な効率向上を図り
得ないものの、冷凍サイクル系統の構成が簡易になこと
から、蒸発器の冷媒流入口と冷媒流出口との間の途中の
冷媒を気液分離し、分離された気相の冷媒を、蒸発器の
出口側の管路に流入させる方法が、例えば、特開平9−
152216号公報に開示されている。
By the way, as described above, the gas-liquid separation device 2
The method of providing 0 at the inlet of the heat exchanger that functions as an evaporator requires modification of the compressor, and the control becomes complicated. Therefore, the efficiency cannot be improved as expected. It was Therefore, although it is not possible to theoretically improve the efficiency, since the refrigeration cycle system configuration is simplified, the refrigerant in the middle between the refrigerant inlet and the refrigerant outlet of the evaporator is separated by gas-liquid separation. A method of causing the gas-phase refrigerant to flow into the pipeline on the outlet side of the evaporator is disclosed in, for example, Japanese Patent Laid-Open No. 9-
It is disclosed in Japanese Patent No. 152216.

【0006】しかしながら、蒸発器の熱交換路の途中に
おける気液2相の冷媒は、気相分の割合が高く、また、
流入速度も高いため、図9に示した気液分離装置20を
用いると、液出口管23への気相分の冷媒流入量、及
び、ガス出口管24への液相分の冷媒流入量が多くなる
ため、気液分離効率がかなり低下してしまうという問題
点があった。
However, the gas-liquid two-phase refrigerant in the middle of the heat exchange passage of the evaporator has a high proportion of the gas phase, and
Since the inflow velocity is also high, when the gas-liquid separation device 20 shown in FIG. 9 is used, the refrigerant inflow amount of the gas phase into the liquid outlet pipe 23 and the refrigerant inflow amount of the liquid phase into the gas outlet pipe 24 are increased. However, there is a problem that the gas-liquid separation efficiency is considerably reduced due to the large number.

【0007】そこで、蒸発器の冷媒流入口と冷媒流出口
との間の冷媒に対する気液分離装置として、例えば、特
開2000−23482号公報に開示されたものがあ
る。この公報に記載の装置の基本的な構成は、ガス出口
管をケーシングの頂部壁に設け、その下部に複数本の液
出口管と気液2相流入口管とを順次に配設し、必要に応
じてガス出口管の近傍に流動抵抗体を設ける構成になっ
ていた。
Therefore, as a gas-liquid separating device for the refrigerant between the refrigerant inflow port and the refrigerant outflow port of the evaporator, there is, for example, one disclosed in Japanese Patent Laid-Open No. 2000-23482. The basic configuration of the device described in this publication is that a gas outlet pipe is provided on the top wall of the casing, and a plurality of liquid outlet pipes and a gas-liquid two-phase inlet pipe are sequentially arranged below the gas outlet pipe. According to the above, the flow resistor is provided near the gas outlet pipe.

【0008】[0008]

【発明が解決しようとする課題】上述したように、特開
2000−23482号公報に開示された気液分離装置
では、ガス出口管を複数本設けることによって、パス間
の偏流を防止することは可能であるが、気液を効率的に
分離することが困難であった。すなわち、液出口管が気
液2相流入口管よりも上部に位置していることに加え
て、複数本設置されているために、気相分の割合の大き
い熱交換路の中間での分離では、ケーシング内を上昇す
る気相分が液出口管に流出することが避けられず、この
ために、気液分離効率が低かった。特に、液出口管が複
数本設置されているために、液出口管の実際の流路断面
積が大きくなるため抵抗が小さくなり、液出口管への気
相冷媒の流入が容易になっていた。
As described above, in the gas-liquid separation device disclosed in Japanese Patent Laid-Open No. 2000-23482, it is possible to prevent uneven flow between the paths by providing a plurality of gas outlet pipes. Although possible, it was difficult to efficiently separate gas and liquid. That is, since the liquid outlet pipe is located above the gas-liquid two-phase inlet pipe and a plurality of liquid outlet pipes are installed, the separation in the middle of the heat exchange path where the proportion of the gas phase is large. However, the gas phase component rising in the casing inevitably flows out to the liquid outlet pipe, which results in low gas-liquid separation efficiency. In particular, since a plurality of liquid outlet pipes are installed, the actual flow passage cross-sectional area of the liquid outlet pipe becomes large, so the resistance becomes small, and the inflow of gas-phase refrigerant into the liquid outlet pipe was facilitated. .

【0009】本発明は、上記の事情を考慮してなされた
もので、蒸発器として機能する熱交換器の熱交換路の途
中の冷媒を気液分離するに当たり、気液分離効率を高め
ることのできる気液分離装置及びこれを用いた空気調和
装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and it is possible to improve the gas-liquid separation efficiency in separating the refrigerant in the middle of the heat exchange passage of the heat exchanger functioning as an evaporator from the liquid into the liquid. An object of the present invention is to provide a gas-liquid separator that can be used and an air conditioner using the same.

【0010】[0010]

【課題を解決するための手段】請求項1に係る発明は、
ケーシングと、ケーシングの壁部に形成された開口にそ
れぞれ結合され、気相分と液相分とが混合して気液2相
流となった冷媒を流入させる気液2相流入口管、冷媒の
液相分を流出させる液出口管及び冷媒の気相分を流出さ
せるガス出口管とを備える気液分離装置において、ケー
シングは、軸芯が略鉛直である筒状側壁、この筒状側壁
の上端を封止する頂部壁及び下端を封止する底部壁を有
し、ガス出口管をケーシングの頂部壁又はその近傍に結
合すると共に、液出口管をケーシングの底部壁又はその
近傍に結合し、かつ、ガス出口管の管路の断面積を気液
2相流入口管の管路の断面積以上とし、液出口管の管路
の断面積を気液2相流入口管の管路の断面積よりも小さ
くした、 ことを特徴とする気液分離装置。
The invention according to claim 1 is
A gas-liquid two-phase inlet pipe, which is connected to the casing and an opening formed in the wall of the casing, and which allows a refrigerant that has become a gas-liquid two-phase flow by mixing the gas phase component and the liquid phase component into the refrigerant, In a gas-liquid separation device comprising a liquid outlet pipe for letting out a liquid phase component and a gas outlet pipe for letting out a gas phase component of the refrigerant, the casing has a cylindrical side wall whose axis is substantially vertical, Having a top wall that seals the upper end and a bottom wall that seals the lower end, while coupling the gas outlet pipe to the top wall of the casing or its vicinity, and coupling the liquid outlet pipe to the bottom wall of the casing or its vicinity, Moreover, the cross-sectional area of the gas outlet pipe is equal to or larger than the cross-sectional area of the gas-liquid two-phase inlet pipe, and the cross-sectional area of the liquid outlet pipe is cut off from the gas-liquid two-phase inlet pipe. A gas-liquid separation device characterized by being smaller than the area.

【0011】請求項2に係る発明は、請求項1に記載の
気液分離装置において、液出口管の近傍のケーシングの
内部に、冷媒の液相分の流動に抵抗を作用させる流動抵
抗板を設けたことを特徴とする。
According to a second aspect of the present invention, in the gas-liquid separation device according to the first aspect, a flow resistance plate is provided inside the casing in the vicinity of the liquid outlet pipe to exert a resistance against the flow of the liquid phase component of the refrigerant. It is characterized by being provided.

【0012】請求項3に係る発明は、請求項1に記載の
気液分離装置において、気液2相流入口管をケーシング
の頂部壁より貫入させると共に、貫入された先端を液出
口管が設けられる底部壁に近接させたことを特徴とす
る。
According to a third aspect of the present invention, in the gas-liquid separator according to the first aspect, the gas-liquid two-phase inlet pipe is made to penetrate from the top wall of the casing, and the penetrated tip is provided with the liquid outlet pipe. It is characterized in that it is close to the bottom wall.

【0013】請求項4に係る発明は、請求項1に記載の
気液分離装置において、ケーシングの筒状側壁を円筒状
に形成し、その軸方向長さが直径の略3倍以上であるこ
とを特徴とする。
According to a fourth aspect of the present invention, in the gas-liquid separation device according to the first aspect, the cylindrical side wall of the casing is formed into a cylindrical shape, and the axial length thereof is approximately three times or more the diameter. Is characterized by.

【0014】請求項5に係る発明は、請求項1に記載の
気液分離装置において、ケーシングの筒状側壁を円筒状
に形成し、気液2相流入口管を筒状側壁より貫入させる
と共に、貫入された先端部を側壁面の接線方向に対して
径方向内側に鋭角をなすように側壁面に近接させ、か
つ、気液2相流入口管をガス出口管よりも液出口管に近
い部位に設けたことを特徴とする。
According to a fifth aspect of the present invention, in the gas-liquid separator according to the first aspect, the tubular side wall of the casing is formed into a cylindrical shape, and the gas-liquid two-phase inlet pipe is inserted through the tubular side wall. , The penetrating tip portion is brought close to the side wall surface at an acute angle radially inward with respect to the tangential direction of the side wall surface, and the gas-liquid two-phase inlet pipe is closer to the liquid outlet pipe than the gas outlet pipe. It is characterized in that it is provided in the part.

【0015】請求項6に係る発明は、請求項1に記載の
気液分離装置において、ガス出口管をケーシングの頂部
壁より貫入させると共に、貫入された先端を内壁面より
内側に突出させたことを特徴とする。
According to a sixth aspect of the present invention, in the gas-liquid separation device according to the first aspect, the gas outlet pipe is made to penetrate from the top wall of the casing, and the penetrated tip is protruded inward from the inner wall surface. Is characterized by.

【0016】請求項7に係る発明は、請求項6に記載の
気液分離装置において、ガス出口管の近傍のケーシング
の内部に、冷媒の液相分の伝達を防止する液伝達防止板
を設けたことを特徴とする。
According to a seventh aspect of the present invention, in the gas-liquid separation device according to the sixth aspect, a liquid transfer prevention plate for preventing the transfer of the liquid phase component of the refrigerant is provided inside the casing near the gas outlet pipe. It is characterized by that.

【0017】請求項8に係る発明は、気相の冷媒を圧送
する圧縮機の吐出側と吸入側の間に、第1の熱交換器と
第2の熱交換器とを直列に管接続し、第1及び第2の熱
交換器のいずれか一方を蒸発器とし、いずれか他方を凝
縮器としてそれぞれ機能させる空気調和装置において、
蒸発器として機能する熱交換器の熱交換路の途中の冷媒
を、請求項1乃至請求項7のいずれか1項に記載された
気液分離装置を用いて気液分離し、分離された気相の冷
媒を蒸発器として機能する熱交換器の出口と圧縮機との
間の接続管路に流入させることを特徴とする。
According to an eighth aspect of the present invention, a first heat exchanger and a second heat exchanger are connected in series between the discharge side and the suction side of a compressor that pumps a gas-phase refrigerant. , An air conditioner in which one of the first and second heat exchangers serves as an evaporator and the other serves as a condenser,
The refrigerant in the middle of the heat exchange path of the heat exchanger functioning as an evaporator is gas-liquid separated using the gas-liquid separator according to any one of claims 1 to 7, and the separated gas is separated. It is characterized in that the refrigerant of the phase is made to flow into a connection pipe between the outlet of the heat exchanger functioning as an evaporator and the compressor.

【0018】[0018]

【発明の実施の形態】以下、本発明を図面に示す好適な
実施形態に基づいて詳細に説明する。図1は本発明に係
る空気調和装置の全体の構成を示す冷凍サイクルであ
る。図1において、圧縮機1はサクションタンク2を付
帯し、圧縮機1の吐出側とサクションタンク2の吸入側
との間に四方切換弁3の一次ポートが接続されている。
この四方切換弁3の二次ポートの間に、室内熱交換器
4、膨張弁5及び室外熱交換器6が順次に管接続されて
いる。このうち、室外熱交換器6の熱交換路は途中で分
離され、一方の分離端が気液分離装置7の気液2相流入
口管に接続され、他方の分離端が気液分離装置7の液出
口管に接続されている。また、気液分離装置7のガス出
口管が、二方電磁弁8を介して、四方切換弁3とサクシ
ョンタンク2との接続管路に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on the preferred embodiments shown in the drawings. FIG. 1 is a refrigeration cycle showing the overall configuration of the air conditioner according to the present invention. In FIG. 1, the compressor 1 is provided with a suction tank 2, and the primary port of the four-way switching valve 3 is connected between the discharge side of the compressor 1 and the suction side of the suction tank 2.
An indoor heat exchanger 4, an expansion valve 5 and an outdoor heat exchanger 6 are sequentially pipe-connected between the secondary ports of the four-way switching valve 3. Of these, the heat exchange path of the outdoor heat exchanger 6 is separated halfway, one separation end is connected to the gas-liquid two-phase inlet pipe of the gas-liquid separation device 7, and the other separation end is separated into the gas-liquid separation device 7 Is connected to the liquid outlet pipe. Further, the gas outlet pipe of the gas-liquid separation device 7 is connected to the connection pipe line between the four-way switching valve 3 and the suction tank 2 via the two-way solenoid valve 8.

【0019】図1に示した冷凍サイクルにおいて、これ
を暖房モードで運転する場合には、冷媒は実線の矢印で
示した方向に循環せしめられ、室内熱交換器4が凝縮器
として機能し、室外熱交換器6が蒸発器として機能す
る。反対に、冷房モード又は除湿モードで運転する場合
には、四方切換弁3により冷媒の循環流路が切替えら
れ、破線の矢印で示した方向に循環せしめられる。
When the refrigerating cycle shown in FIG. 1 is operated in the heating mode, the refrigerant is circulated in the direction indicated by the solid line arrow, and the indoor heat exchanger 4 functions as a condenser, and the outdoor The heat exchanger 6 functions as an evaporator. On the contrary, when operating in the cooling mode or the dehumidifying mode, the circulation passage of the refrigerant is switched by the four-way switching valve 3, and the refrigerant is circulated in the direction indicated by the dashed arrow.

【0020】ここで、気液分離装置7は暖房モードでの
運転時にその機能を発揮するもので、この暖房モードで
の運転時に二方電磁弁8は開放され、冷房モードでの運
転時に二方電磁弁8は閉成される。以下、本発明に直接
的に関係する暖房モードでの運転時についてその動作を
説明する。
Here, the gas-liquid separation device 7 exerts its function during the operation in the heating mode, the two-way solenoid valve 8 is opened during the operation in the heating mode, and the two-way solenoid valve is operated during the operation in the cooling mode. The solenoid valve 8 is closed. The operation will be described below when operating in the heating mode, which is directly related to the present invention.

【0021】先ず、圧縮機1から吐出された気相の冷媒
は四方切換弁3を介して室内熱交換器4に流入し、ここ
での熱交換により大部分が液相の冷媒に変化し、この冷
媒が膨張弁5で減圧されて室外熱交換器6に流入する。
室外熱交換器6は少なくとも上流の熱交換路と下流の熱
交換路とに分離され、上流側の熱交換路にて流入冷媒の
半分程度が気相に変化し、気液分離装置7の気液2相流
入口管に流入する。気液分離装置7で分離された気相の
冷媒は、二方電磁弁8を介して、サクションタンク2に
接続された管路に流入し、気液分離装置7で分離されて
残った液相の冷媒は下流の熱交換路にて気相に変化し、
四方切換弁3を介して、サクションタンク2に吸入され
る。従って、気液分離装置7から流出した気相の冷媒
と、室外熱交換器6から最終的に流出した気相の冷媒は
四方切換弁3とサクションタンク2の間で合流してサク
ションタンク2に吸入される。
First, the gas-phase refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 4 through the four-way switching valve 3, and most of the heat-exchanged refrigerant changes to liquid-phase refrigerant. This refrigerant is decompressed by the expansion valve 5 and flows into the outdoor heat exchanger 6.
The outdoor heat exchanger 6 is separated into at least an upstream heat exchange path and a downstream heat exchange path, and about half of the inflowing refrigerant is changed to a gas phase in the upstream heat exchange path, and the gas of the gas-liquid separation device 7 is changed. The liquid flows into the two-phase inlet pipe. The gas-phase refrigerant separated by the gas-liquid separator 7 flows into the pipeline connected to the suction tank 2 via the two-way solenoid valve 8, and the liquid phase separated by the gas-liquid separator 7 remains. Of the refrigerant changes to the gas phase in the downstream heat exchange path,
It is sucked into the suction tank 2 via the four-way switching valve 3. Therefore, the gas-phase refrigerant flowing out of the gas-liquid separation device 7 and the gas-phase refrigerant finally flowing out of the outdoor heat exchanger 6 are merged between the four-way switching valve 3 and the suction tank 2 to the suction tank 2. Inhaled.

【0022】図2(a),(b)は上述した気液分離装
置の第1の実施形態の構成を示す平面図及び側面図であ
る。ここで、ケーシング11は、軸芯が略鉛直である筒
状側壁、この筒状側壁の上端及び下端を封止する、それ
ぞれ内側が半球面状の頂部壁11a及び下端を封止する
底部壁11bを有し、このうち頂部壁11aに気液2相
流入口管12及びガス出口管14が結合されており、底
部壁11bに液出口管13が結合されている。なお、気
液2相流入口管12として口径d1が9.52mmのも
のが、筒状側壁の中心から偏芯した位置に設けられ、ガ
ス出口管14として口径d3が12.7mmのものが、
筒状側壁の軸芯上に設けられ、さらに、液出口管13と
して口径が8.0mmのものが筒状側壁の軸芯から偏芯
した位置に設けられている。
FIGS. 2 (a) and 2 (b) are a plan view and a side view showing the configuration of the first embodiment of the gas-liquid separation device described above. Here, the casing 11 has a cylindrical side wall whose axis is substantially vertical, a top wall 11a that seals the upper end and the lower end of the cylindrical side wall, and a bottom wall 11b that seals the lower end and has a hemispherical shape inside. The gas-liquid two-phase inlet pipe 12 and the gas outlet pipe 14 are connected to the top wall 11a, and the liquid outlet pipe 13 is connected to the bottom wall 11b. A gas-liquid two-phase inlet pipe 12 having a diameter d1 of 9.52 mm is provided at a position eccentric from the center of the cylindrical side wall, and a gas outlet pipe 14 having a diameter d3 of 12.7 mm is provided.
The liquid outlet pipe 13 is provided on the axis of the tubular side wall, and the liquid outlet pipe 13 having a diameter of 8.0 mm is provided at a position eccentric from the axis of the tubular side wall.

【0023】図2(a),(b)に示した気液分離装置
においては、気液2相流入口管12より流入した高ボイ
ド率の冷媒は、ケーシング11の内部に流入した際、一
部の気相分がその流れから分離してその上部のガス出口
管14に向かうけれども、大部分の冷媒は底部壁11b
の傾斜面に衝突し、そのときに流速が低下して気相分が
さらに冷媒の流れから分離してガス出口管14に向か
う。
In the gas-liquid separation device shown in FIGS. 2A and 2B, the high void fraction refrigerant flowing from the gas-liquid two-phase inlet pipe 12 flows into the casing 11 when Part of the gas phase separates from the flow and heads for the gas outlet pipe 14 at the top, but most of the refrigerant is at the bottom wall 11b.
Of the gas phase, the flow velocity is reduced at that time, and the gas phase component is further separated from the flow of the refrigerant toward the gas outlet pipe 14.

【0024】また、底部壁11bの傾斜面に衝突する冷
媒は、高ボイド率であることと流入速度が大きいため、
衝突後であっても気相分が混じっているが、液出口管1
3の口径が気液2相流入口管12の口径よりも小さいた
め、液相分の流速をさほど低下させずに気相分を分離す
ることができる。このようにして分離された気相の冷媒
量は気液2相流入口管12の近傍での分離量と比較して
かなり多いため、微細な液滴が多量に混じっている。し
かし、ガス出口管14の口径が気液2相流入口管12の
口径より大きいため、気相分の流出速度は低下し、気相
分に伴ってガス出口管14から流出する液相分の割合を
低下させることができる。
Further, the refrigerant colliding with the inclined surface of the bottom wall 11b has a high void fraction and a large inflow velocity, so that
The gas phase is mixed even after the collision, but the liquid outlet pipe 1
Since the diameter of 3 is smaller than the diameter of the gas-liquid two-phase inlet pipe 12, the gas-phase component can be separated without significantly reducing the flow velocity of the liquid-phase component. Since the amount of the refrigerant in the gas phase separated in this way is considerably larger than the amount of separation in the vicinity of the gas-liquid two-phase inlet pipe 12, a large amount of fine droplets are mixed. However, since the diameter of the gas outlet pipe 14 is larger than that of the gas-liquid two-phase inlet pipe 12, the outflow speed of the gas phase component decreases, and the liquid phase component flowing out of the gas outlet pipe 14 with the gas phase component decreases. The rate can be reduced.

【0025】かくして、本発明に係る気液分離装置の第
1の実施形態によれば、蒸発器として機能する室外熱交
換器の熱交換路の入側と出側の中間部に設置しても分離
器内の圧力損失を抑えながら、気液分離効率を高めるこ
とができる。
Thus, according to the first embodiment of the gas-liquid separation device of the present invention, even if it is installed at the intermediate portion between the inlet side and the outlet side of the heat exchange passage of the outdoor heat exchanger functioning as an evaporator. The gas-liquid separation efficiency can be improved while suppressing the pressure loss in the separator.

【0026】なお、上記第1の実施形態では、頂部壁1
1aから鉛直下方に向かう気液2相流入口管12を設け
たが、筒状の側壁の頂部壁11aの近傍から内部に貫入
し、その先端が鉛直下方に向くように構成しても、上述
したと同様な効果が得られる。
In the first embodiment, the top wall 1
Although the gas-liquid two-phase inlet pipe 12 extending vertically downward from 1a is provided, even if it is configured such that it penetrates into the interior from the vicinity of the top wall 11a of the cylindrical side wall and its tip faces vertically downward, The same effect can be obtained.

【0027】図3(a),(b)は本発明に係る気液分
離装置の第2の実施形態の構成を示す横断面図及び縦断
面図である。図中、図2に示した第1の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Bは、ケーシング11の内
部の液出口管13の近傍に、ディスク状に形成された平
面部の複数箇所に孔15aが形成され、これによって冷
媒の液相分の流動に抵抗を作用させる流動抵抗板15を
新たに設けた点が図2に示した第1の実施形態と構成を
異にしている。
3 (a) and 3 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the second embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the gas-liquid separation device 10B shown here, holes 15a are formed in a plurality of locations on the flat portion formed in the shape of a disk in the vicinity of the liquid outlet pipe 13 inside the casing 11, whereby the liquid phase component of the refrigerant is formed. The structure is different from that of the first embodiment shown in FIG. 2 in that a flow resistance plate 15 for causing a resistance to flow is newly provided.

【0028】図3(a),(b)に示した気液分離装置
10Bにおいては、気液2相流入口管12より流入した
高ボイド率の冷媒は、ケーシング11の内部に流入した
際、一部の気相分がその流れから分離してその上部のガ
ス出口管14に向かうけれども、大部分の冷媒は流動抵
抗板15に衝突する。流動抵抗板15に衝突した冷媒は
流動抵抗板15の表面に液膜を形成し、液出口管13へ
の冷媒の気相分の混入を低減することができる。
In the gas-liquid separator 10B shown in FIGS. 3A and 3B, when the high void fraction refrigerant flowing from the gas-liquid two-phase inlet pipe 12 flows into the casing 11, Most of the refrigerant impinges on the flow resistance plate 15, although some of the gas phase separates from the flow and heads to the gas outlet tube 14 above it. The refrigerant that has collided with the flow resistance plate 15 forms a liquid film on the surface of the flow resistance plate 15, and it is possible to reduce the mixture of the gas phase component of the refrigerant into the liquid outlet pipe 13.

【0029】流動抵抗板15の表面に形成される液膜
は、孔15aの直径によってその挙動が変わるが、孔1
5aの直径及びその個数を適切に選択することにより、
低循環流量域において液膜を全面に形成させ、高循環領
域でもその一部に形成させ、これによって、気相分をよ
り多く分離させることができる。なお、高循環領域で流
動抵抗板15の表面全体に液膜を形成させると、流入冷
媒の極端な速度低下が起こり、気液分離器内部の圧力損
失が増大するため、その一部に域膜を形成させるように
孔15aの直径及び個数を適切に選択する。
The behavior of the liquid film formed on the surface of the flow resistance plate 15 varies depending on the diameter of the hole 15a.
By properly selecting the diameter of 5a and its number,
The liquid film is formed on the entire surface in the low circulation flow rate region, and is also formed in a part thereof in the high circulation flow amount region, whereby more gas phase components can be separated. If a liquid film is formed on the entire surface of the flow resistance plate 15 in the high circulation region, an extreme decrease in the velocity of the inflowing refrigerant will occur, and the pressure loss inside the gas-liquid separator will increase. The diameter and number of the holes 15a are appropriately selected so as to form the holes.

【0030】かくして、第2の実施形態によっても、蒸
発器として機能する室外熱交換器の熱交換路の入側と出
側の中間部に設置しても分離器内の圧力損失を抑えなが
ら、気液分離効率を高めることができる。
Thus, also according to the second embodiment, the pressure loss in the separator is suppressed while being installed in the intermediate portion between the inlet side and the outlet side of the heat exchange passage of the outdoor heat exchanger functioning as an evaporator. The gas-liquid separation efficiency can be improved.

【0031】図4(a),(b)は本発明に係る気液分
離装置の第3の実施形態の構成を示す横断面図及び縦断
面図である。図中、図2に示した第1の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Cは気液2相流入口管12
Aをケーシング11の頂部壁11aから貫入させると共
に、貫入された先端を液出口管13が設けられる底部壁
11bに近接させたもので、気液2相流入口管12Aの
先端と液出口管13とは、ケーシング11の軸芯とは互
いに反対側に偏芯した位置に配置されている。
FIGS. 4 (a) and 4 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the third embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. The gas-liquid separator 10C shown here is a gas-liquid two-phase inlet pipe 12
A is penetrated from the top wall 11a of the casing 11, and the penetrated tip is brought close to the bottom wall 11b where the liquid outlet pipe 13 is provided. The tip of the gas-liquid two-phase inlet pipe 12A and the liquid outlet pipe 13 Are arranged at positions eccentric to the opposite sides of the axial center of the casing 11.

【0032】図4(a),(b)に示した気液分離装置
10Cにおいては、気液2相流入口管12Aより流入す
る冷媒噴流は、高ボイド率の環状流であるため、気液2
相流入口管12Aの先端から底部壁11bに向かって流
出する際、底部壁11bの内壁面に沿って広がる性質を
持っている。特に、一つの仕様の気液分離器を能力可変
範囲の大きい空気調和装置に適用する場合、大能力領域
で冷媒が高循環量であるため、噴流の広がりも大きく、
また、気相分の流量も多いため、気液分離装置10Cに
流入した液相の冷媒がそのままガス出口管14へ誘導さ
れてしまう虞れがある。本実施形態はこのことに対処す
るべく、気液2相流入口管12Aの先端を底部壁11b
に近接せしめ、気液2相流入口管12Aから流出した冷
媒が広がる前にその速度を低下させることによってガス
出口管14への液相の冷媒の流入を防ぐことができる。
In the gas-liquid separator 10C shown in FIGS. 4 (a) and 4 (b), since the refrigerant jet flowing from the gas-liquid two-phase inlet pipe 12A is an annular flow having a high void ratio, Two
When flowing out from the tip of the phase inlet pipe 12A toward the bottom wall 11b, it has a property of spreading along the inner wall surface of the bottom wall 11b. In particular, when applying a gas-liquid separator of one specification to an air conditioner with a large capacity variable range, since the refrigerant has a high circulation amount in a large capacity region, the spread of the jet flow is large,
Further, since the flow rate of the gas phase is large, the liquid phase refrigerant flowing into the gas-liquid separation device 10C may be directly guided to the gas outlet pipe 14. In this embodiment, in order to cope with this, the tip of the gas-liquid two-phase inlet pipe 12A is attached to the bottom wall 11b.
It is possible to prevent the inflow of the liquid-phase refrigerant into the gas outlet pipe 14 by reducing the speed of the refrigerant flowing out from the gas-liquid two-phase inlet pipe 12A before it spreads.

【0033】かくして、第3の実施形態によれば、蒸発
器として機能する室外熱交換器の熱交換路の入側と出側
の中間部に設置しても分離器内の圧力損失を抑えなが
ら、気液分離効率を高めることができる。また、能力制
御範囲の広い空気調和装置に適用するのに有利であると
いう効果も得られる。
Thus, according to the third embodiment, the pressure loss in the separator can be suppressed even if it is installed at the intermediate portion between the inlet side and the outlet side of the heat exchange passage of the outdoor heat exchanger functioning as an evaporator. The gas-liquid separation efficiency can be increased. Further, it is possible to obtain an effect that it is advantageous to be applied to an air conditioner having a wide capacity control range.

【0034】図5(a),(b)は本発明に係る気液分
離装置の第4の実施形態の構成を示す横断面図及び縦断
面図である。図中、図2に示した第1の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Dはケーシング11Aの軸
方向長さLを、筒状側壁の直径(内径)Dの略3倍以上
としたものである。
5 (a) and 5 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the fourth embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the gas-liquid separation device 10D shown here, the axial length L of the casing 11A is approximately three times or more the diameter (inner diameter) D of the cylindrical side wall.

【0035】図5(a),(b)に示した気液分離装置
10Dにおいては、筒状側壁を胴長にすることにより、
気液2相流入口管12より流入した冷媒はそのまま広が
り筒状側壁に衝突する。筒状側壁の内面に衝突した冷媒
のうち、液相分は表面張力により壁面に付着し、重力の
作用で下部の液出口管13へと伝わって流出する一方、
気相分はガス出口管14より流出する。むろん、気液2
相流入口管12から流入した冷媒の全てが側壁の壁面に
衝突するわけではなく、残りは底部壁11bの斜壁部に
衝突する。
In the gas-liquid separation device 10D shown in FIGS. 5 (a) and 5 (b), the cylindrical side wall is made to have a body length,
The refrigerant flowing from the gas-liquid two-phase inlet pipe 12 spreads as it is and collides with the cylindrical side wall. Of the refrigerant colliding with the inner surface of the cylindrical side wall, the liquid phase component adheres to the wall surface due to surface tension and is transmitted to the lower liquid outlet pipe 13 by the action of gravity and flows out.
The gas phase component flows out from the gas outlet pipe 14. Of course, gas-liquid 2
Not all of the refrigerant that has flowed in from the phase inlet pipe 12 collides with the wall surface of the side wall, and the rest collides with the inclined wall portion of the bottom wall 11b.

【0036】この場合、ケーシング11Aの側壁部の直
径が小さいため、壁面に衝突して跳ね返った冷媒は他の
近接した壁面に再度衝突し、底部壁11bに液溜まりを
生じさせ、気相分が液出口管13から流出する割合を低
減することができる。また、ケーシング11Aが胴長で
あるため、気相分の気液分離器内部の滞留時間が増加す
るため、気相分に同伴されていた液相分を重力の作用で
分離することができ、簡易な構造でガス分離効率が高め
られる。
In this case, since the diameter of the side wall portion of the casing 11A is small, the refrigerant colliding with the wall surface and bouncing back collides with another adjacent wall surface again, and causes a liquid pool in the bottom wall 11b, so that the gas phase component is generated. The rate of outflow from the liquid outlet pipe 13 can be reduced. Further, since the casing 11A has a long body, the residence time inside the gas-liquid separator for the gas phase increases, so that the liquid phase entrained in the gas phase can be separated by the action of gravity, Gas separation efficiency is improved with a simple structure.

【0037】なお、ケーシング11Aの軸方向長さL
と、筒状側壁の直径(内径)Dの関係は、種々の実験を
通して得られた結果である。
The axial length L of the casing 11A is L.
And the relationship between the diameter (inner diameter) D of the cylindrical side wall are the results obtained through various experiments.

【0038】かくして、第4の実施形態によれば、蒸発
器として機能する室外熱交換器の熱交換路の入側と出側
の中間部に設置しても分離器内の圧力損失を抑えなが
ら、気液分離効率を高めることができる。
Thus, according to the fourth embodiment, the pressure loss in the separator can be suppressed even if it is installed at the intermediate portion between the inlet side and the outlet side of the heat exchange passage of the outdoor heat exchanger functioning as an evaporator. The gas-liquid separation efficiency can be increased.

【0039】図6(a),(b)は本発明に係る気液分
離装置の第5の実施形態の構成を示す横断面図及び縦断
面図である。図中、図2に示した第1の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Eは、ケーシング11の筒
状側壁を円筒状に形成し、気液2相流入口管12Bを筒
状側壁に貫入させると共に、貫入された先端部を側壁面
の接線方向に対して径方向内側に鋭角をなすように側壁
面に近接させ、かつ、気液2相流入口管12Bをガス出
口管14よりも液出口管13Aに近い部位に設置したも
のである。この場合、気液2相流入口管12Bから液出
口管13Aまでの距離をL1、気液2相流入口管12B
からガス出口管14までの距離をL2としたとき、L1
<L2の関係にあり、さらに、液出口管13Aは筒状側
壁の中心軸上に設けられると共に、ケーシング11の内
部に突出する構成になっている。
6 (a) and 6 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the fifth embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the gas-liquid separation device 10E shown here, the tubular side wall of the casing 11 is formed into a cylindrical shape, the gas-liquid two-phase inlet pipe 12B is inserted into the tubular side wall, and the penetrating tip portion of the side wall surface is formed. The gas-liquid two-phase inlet pipe 12B is installed at a position closer to the liquid outlet pipe 13A than the gas outlet pipe 14 so that the gas-liquid two-phase inlet pipe 12B is close to the side wall surface so as to make an acute angle radially inward with respect to the tangential direction. . In this case, the distance from the gas-liquid two-phase inlet pipe 12B to the liquid outlet pipe 13A is L1, and the gas-liquid two-phase inlet pipe 12B is
When the distance from the gas outlet pipe 14 to the gas outlet pipe 14 is L2, L1
<L2, and the liquid outlet pipe 13A is provided on the central axis of the cylindrical side wall and protrudes into the casing 11.

【0040】図6(a),(b)に示した気液分離装置
10Eにおいては、気液2相流入口管12Bより流入し
た冷媒は、円筒状の側壁の内面にその接線に近い鋭角の
角度で衝突するため、遠心力により内壁面を周回しなが
ら重力の作用により次第に降下して液出口管13Aに向
かう。このとき、冷媒の気相分は上部のガス出口管14
に向かう。
In the gas-liquid separator 10E shown in FIGS. 6 (a) and 6 (b), the refrigerant flowing from the gas-liquid two-phase inlet pipe 12B has an acute angle near the tangent line to the inner surface of the cylindrical side wall. Since they collide with each other at an angle, they descend around the inner wall surface by the centrifugal force and gradually descend toward the liquid outlet pipe 13A by the action of gravity. At this time, the gas phase portion of the refrigerant is the upper gas outlet pipe 14
Head to.

【0041】この場合、気液2相流入口管12Bをガス
出口管14に近づけると、冷媒の内側壁での周回運動に
より、ケーシング11の内部での滞在時間が長くされ、
これによって気相の冷媒の分離効率が高められると考え
られる。しかし、液出口管13Aでは冷媒が環状流的に
流出するため、実際には分離効率が低下することがあっ
た。そこで、この実施形態では、ケーシング11の内部
を窺うことができるように可視化し、かつ、気液分離装
置10Bを上下方向の中間点よりも液出口管13A側に
設けると、側壁面の液膜の厚さが増加し、この状態で気
相分が良好に分離されることを確認することができた。
In this case, when the gas-liquid two-phase inlet pipe 12B is brought close to the gas outlet pipe 14, the staying time inside the casing 11 is lengthened due to the circular motion of the refrigerant on the inner wall.
It is considered that this improves the separation efficiency of the gas-phase refrigerant. However, since the refrigerant flows out in the annular flow in the liquid outlet pipe 13A, the separation efficiency may actually decrease. Therefore, in this embodiment, when the inside of the casing 11 is visualized so that it can be seen and the gas-liquid separation device 10B is provided closer to the liquid outlet pipe 13A side than the intermediate point in the vertical direction, the liquid film on the side wall surface is formed. It was confirmed that the gas phase component was satisfactorily separated in this state due to the increase in the thickness.

【0042】かくして、第5の実施形態によっても、蒸
発器として機能する室外熱交換器の熱交換路の入側と出
側の中間部に設置しても分離器内の圧力損失を抑えなが
ら、気液分離効率を高めることができる。
Thus, also according to the fifth embodiment, even if it is installed at the intermediate portion between the inlet side and the outlet side of the heat exchange passage of the outdoor heat exchanger functioning as an evaporator, the pressure loss inside the separator is suppressed, The gas-liquid separation efficiency can be improved.

【0043】図7(a),(b)は本発明に係る気液分
離装置の第6の実施形態の構成を示す横断面図及び縦断
面図である。図中、図6に示した第5の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Fはガス出口管14Aをケ
ーシング11の頂部壁11aより貫入させると共に、貫
入された先端を壁面より内側に突出させた点が図6に示
した第5の実施形態と構成上異なっており、これ以外は
図6に示した第5の実施形態と全く同一に構成されてい
る。
7 (a) and 7 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the sixth embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the fifth embodiment shown in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted. In the gas-liquid separation device 10F shown here, the gas outlet pipe 14A is made to penetrate from the top wall 11a of the casing 11, and the point at which the penetrated tip is projected inward from the wall surface is the fifth embodiment shown in FIG. The configuration is different from that of the fifth embodiment, and otherwise the configuration is exactly the same as that of the fifth embodiment shown in FIG.

【0044】気液2相流入口管12Bより流入した冷媒
の流量が多くなると、周回しながら上昇するガス中に含
まれる液滴は、ガスの圧力により壁面に液膜が形成さ
れ、気相分と共にガス出口管14Aに向かう。しかし、
この実施形態ではガス出口管14の先端を壁面より内側
に突出させているため、液膜が管の突出部を乗り越える
ことができず、これによって、ガス出口管14Aへの液
相分の混入を低減することができる。
When the flow rate of the refrigerant flowing from the gas-liquid two-phase inlet pipe 12B increases, the liquid droplets contained in the gas rising while circling form a liquid film on the wall surface due to the pressure of the gas, and the gas phase component is formed. Along with the gas outlet pipe 14A. But,
In this embodiment, since the tip of the gas outlet pipe 14 is projected inward from the wall surface, the liquid film cannot get over the protruding portion of the pipe, which prevents the liquid phase component from mixing into the gas outlet pipe 14A. It can be reduced.

【0045】かくして、第6の実施形態によれば、蒸発
器として機能する室外熱交換器の熱交換路の入側と出側
の中間部に設置したときに、冷媒の循環流量が多い場合
でも、分離器内の圧力損失を抑えながら、気液分離効率
を高めることができる。
Thus, according to the sixth embodiment, even when the circulating flow rate of the refrigerant is large when the heat exchanger is installed at the intermediate portion between the inlet side and the outlet side of the outdoor heat exchanger functioning as an evaporator. The gas-liquid separation efficiency can be improved while suppressing the pressure loss in the separator.

【0046】図8(a),(b)は本発明に係る気液分
離装置の第7の実施形態の構成を示す横断面図及び縦断
面図である。図中、図6に示した第5の実施形態と同一
の要素には同一の符号を付してその説明を省略する。こ
こに示した気液分離装置10Gはガス出口管14の近傍
のケーシング11の内部に、冷媒の液相分の伝達を防止
する液伝達防止板16を設けた点が図6に示した第5の
実施形態と構成上異なっており、これ以外は図6に示し
た第5の実施形態と全く同一に構成されている。
8 (a) and 8 (b) are a horizontal sectional view and a vertical sectional view showing the configuration of the seventh embodiment of the gas-liquid separator according to the present invention. In the figure, the same elements as those of the fifth embodiment shown in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted. The gas-liquid separation device 10G shown here is provided with a liquid transfer prevention plate 16 for preventing the transfer of the liquid phase component of the refrigerant inside the casing 11 in the vicinity of the gas outlet pipe 14, which is the fifth point shown in FIG. The configuration is different from that of the fifth embodiment, and other than that, the configuration is exactly the same as that of the fifth embodiment shown in FIG.

【0047】ここで、液伝達防止板16は中心部と周縁
部を除いた部位に孔16aを設けた形状を有している。
このような構成によれば、気液2相流入口管12Bより
流入する冷媒の流量がかなり多くなると、壁面を周回し
ながら上昇する液滴の他に、筒状側壁の胴体径の相対的
な縮小により、中心部の強烈な気相の冷媒に乗る形で液
滴がガス出口管14に向かう。この際、液伝達防止板1
6を設けたことによって、2種類の液滴が気相分に混じ
ってガス出口管14へ向かうことを効果的に阻止するこ
とができる。
Here, the liquid transmission preventing plate 16 has a shape in which a hole 16a is provided in a portion excluding the central portion and the peripheral portion.
According to such a configuration, when the flow rate of the refrigerant flowing in from the gas-liquid two-phase inlet pipe 12B becomes considerably large, in addition to the liquid droplets rising while circling the wall surface, the relative body diameter of the tubular side wall is relatively large. Due to the contraction, the droplets travel toward the gas outlet pipe 14 while riding on the intense vapor-phase refrigerant in the central portion. At this time, the liquid transfer prevention plate 1
Providing 6 makes it possible to effectively prevent the two types of liquid droplets from mixing with the vapor phase component and moving toward the gas outlet pipe 14.

【0048】かくして、第7の実施形態によれば、蒸発
器として機能する室外熱交換器の熱交換路の入側と出側
の中間部に設置したときに、冷媒の循環流量が多い場合
でも、あるいは、冷媒の循環量が少ない場合でも、分離
器内の圧力損失を抑えながら、気液分離効率を高めるこ
とができる。
Thus, according to the seventh embodiment, even when the circulating flow rate of the refrigerant is high when the outdoor heat exchanger functioning as an evaporator is installed at the intermediate portion between the inlet side and the outlet side of the heat exchange path. Alternatively, even if the refrigerant circulation amount is small, the gas-liquid separation efficiency can be improved while suppressing the pressure loss in the separator.

【0049】また、第1乃至第7の実施形態に係る気液
分離装置を用いることによって、気液分離効率を高める
ことのできる空気調和装置を提供することができる。
Further, by using the gas-liquid separation device according to the first to seventh embodiments, it is possible to provide the air conditioner capable of enhancing the gas-liquid separation efficiency.

【0050】[0050]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、蒸発器として機能する熱交換器の熱交換
路の途中の冷媒を気液分離するに当たり、気液分離効率
を高めることのできる気液分離装置及びこれを用いた空
気調和装置を提供することができる。
As is apparent from the above description, according to the present invention, the gas-liquid separation efficiency is increased when the refrigerant in the heat exchange passage of the heat exchanger functioning as the evaporator is gas-liquid separated. It is possible to provide a gas-liquid separator that can be used and an air conditioner using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和装置の全体の構成を示す
冷凍サイクル。
FIG. 1 is a refrigeration cycle showing the overall configuration of an air conditioner according to the present invention.

【図2】本発明に係る気液分離装置の第1の実施形態の
構成を示す平面図及び側面図。
FIG. 2 is a plan view and a side view showing the configuration of the first embodiment of the gas-liquid separation device according to the present invention.

【図3】本発明に係る気液分離装置の第2の実施形態の
構成を示す横断面図及び縦断面図。
3A and 3B are a horizontal cross-sectional view and a vertical cross-sectional view showing the configuration of the second embodiment of the gas-liquid separation device according to the present invention.

【図4】本発明に係る気液分離装置の第3の実施形態の
構成を示す横断面図及び縦断面図。
4A and 4B are a horizontal cross-sectional view and a vertical cross-sectional view showing the configuration of a third embodiment of the gas-liquid separation device according to the present invention.

【図5】本発明に係る気液分離装置の第4の実施形態の
構成を示す横断面図及び縦断面図。
5A and 5B are a horizontal sectional view and a vertical sectional view showing the configuration of a fourth embodiment of the gas-liquid separation device according to the present invention.

【図6】本発明に係る気液分離装置の第5の実施形態の
構成を示す横断面図及び縦断面図。
6A and 6B are a horizontal cross-sectional view and a vertical cross-sectional view showing the configuration of a fifth embodiment of the gas-liquid separation device according to the present invention.

【図7】本発明に係る気液分離装置の第6の実施形態の
構成を示す横断面図及び縦断面図。
7A and 7B are a horizontal sectional view and a vertical sectional view showing the configuration of a sixth embodiment of the gas-liquid separation device according to the present invention.

【図8】本発明に係る気液分離装置の第7の実施形態の
構成を示す横断面図及び縦断面図。
8A and 8B are a horizontal cross-sectional view and a vertical cross-sectional view showing a configuration of a seventh embodiment of a gas-liquid separation device according to the present invention.

【図9】空気調和装置に用いられる従来の代表的な気液
分離装置の平面図及び縦断面図。
FIG. 9 is a plan view and a vertical cross-sectional view of a conventional typical gas-liquid separator used in an air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 サクションタンク 3 四方切換弁 4 室内熱交換器 5 膨張弁 6 室外熱交換器 7 気液分離装置 8 二方電磁弁 10A,10B,10C,10D,10E,10F,1
0G 気液分離装置 11,11A ケーシング 11a 頂部壁 11b 底部壁 12,12A,12B 気液2相流入口管 13,13A 液出口管 14,14A ガス出口管 15 流動抵抗板 16 液伝達防止板
1 Compressor 2 Suction tank 3 Four-way switching valve 4 Indoor heat exchanger 5 Expansion valve 6 Outdoor heat exchanger 7 Gas-liquid separator 8 Two-way solenoid valve 10A, 10B, 10C, 10D, 10E, 10F, 1
0G Gas-liquid separator 11, 11A Casing 11a Top wall 11b Bottom wall 12, 12A, 12B Gas-liquid two-phase inlet pipe 13, 13A Liquid outlet pipe 14, 14A Gas outlet pipe 15 Flow resistance plate 16 Liquid transmission prevention plate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ケーシングと、前記ケーシングの壁部に形
成された開口にそれぞれ結合され、気相分と液相分とが
混合して気液2相流となった冷媒を流入させる気液2相
流入口管、冷媒の液相分を流出させる液出口管及び冷媒
の気相分を流出させるガス出口管とを備える気液分離装
置において、 前記ケーシングは、軸芯が略鉛直である筒状側壁、この
筒状側壁の上端を封止する頂部壁及び下端を封止する底
部壁を有し、 前記ガス出口管を前記ケーシングの頂部壁又はその近傍
に結合すると共に、前記液出口管を前記ケーシングの底
部壁又はその近傍に結合し、かつ、前記ガス出口管の管
路の断面積を前記気液2相流入口管の管路の断面積以上
とし、前記液出口管の管路の断面積を前記気液2相流入
口管の管路の断面積よりも小さくした、 ことを特徴とする気液分離装置。
1. A gas-liquid 2 which is respectively coupled to a casing and an opening formed in a wall portion of the casing, and into which a refrigerant that has become a gas-liquid two-phase flow by mixing a gas-phase component and a liquid-phase component is introduced. In a gas-liquid separator comprising a phase inlet pipe, a liquid outlet pipe for letting out a liquid phase component of the refrigerant, and a gas outlet pipe for letting out a gas phase component of the refrigerant, the casing has a cylindrical shape whose axis is substantially vertical. A side wall, a top wall that seals the upper end of the tubular side wall, and a bottom wall that seals the lower end, and the gas outlet pipe is coupled to the top wall of the casing or in the vicinity thereof, and the liquid outlet pipe is The pipe is connected to the bottom wall of the casing or in the vicinity thereof, and the sectional area of the conduit of the gas outlet pipe is equal to or larger than the sectional area of the conduit of the gas-liquid two-phase inlet pipe, and the conduit of the liquid outlet pipe is disconnected. The area is made smaller than the cross-sectional area of the pipeline of the gas-liquid two-phase inlet pipe. Gas-liquid separation device according to claim.
【請求項2】前記液出口管の近傍の前記ケーシングの内
部に、冷媒の液相分の流動に抵抗を作用させる流動抵抗
板を設けたことを特徴とする請求項1に記載の気液分離
装置。
2. A gas-liquid separator according to claim 1, wherein a flow resistance plate for exerting a resistance to the flow of the liquid phase component of the refrigerant is provided inside the casing near the liquid outlet pipe. apparatus.
【請求項3】前記気液2相流入口管を前記ケーシングの
頂部壁より貫入させると共に、貫入された先端を前記液
出口管が設けられる前記底部壁に近接させたことを特徴
とする請求項1に記載の気液分離装置。
3. The gas-liquid two-phase inlet pipe is made to penetrate from the top wall of the casing, and the penetrated tip is brought close to the bottom wall at which the liquid outlet pipe is provided. 1. The gas-liquid separator according to 1.
【請求項4】前記ケーシングの筒状側壁を円筒状に形成
し、その軸方向長さが直径の略3倍以上であることを特
徴とする請求項1に記載の気液分離装置。
4. The gas-liquid separation device according to claim 1, wherein the cylindrical side wall of the casing is formed in a cylindrical shape, and the axial length thereof is approximately three times the diameter or more.
【請求項5】前記ケーシングの筒状側壁を円筒状に形成
し、前記気液2相流入口管を前記筒状側壁より貫入させ
ると共に、貫入された先端部を側壁面の接線方向に対し
て径方向内側に鋭角をなすように前記側壁面に近接さ
せ、かつ、前記気液2相流入口管を前記ガス出口管より
も前記液出口管に近い部位に設けたことを特徴とする請
求項1に記載の気液分離装置。
5. A cylindrical side wall of the casing is formed into a cylindrical shape, the gas-liquid two-phase inlet pipe is penetrated from the cylindrical side wall, and the penetrating tip portion is tangential to the side wall surface. The gas-liquid two-phase inlet pipe is provided closer to the liquid outlet pipe than the gas outlet pipe, and the gas-liquid two-phase inlet pipe is provided close to the side wall surface so as to form an acute angle inward in the radial direction. 1. The gas-liquid separator according to 1.
【請求項6】前記ガス出口管を前記ケーシングの頂部壁
より貫入させると共に、貫入された先端を内壁面より内
側に突出させたことを特徴とする請求項1に記載の気液
分離装置。
6. The gas-liquid separation device according to claim 1, wherein the gas outlet pipe is penetrated from a top wall of the casing, and the penetrated tip is projected inward from an inner wall surface.
【請求項7】前記ガス出口管の近傍の前記ケーシングの
内部に、冷媒の液相分の伝達を防止する液伝達防止板を
設けたことを特徴とする請求項6に記載の気液分離装
置。
7. The gas-liquid separation device according to claim 6, wherein a liquid transfer prevention plate for preventing transfer of a liquid phase component of the refrigerant is provided inside the casing near the gas outlet pipe. .
【請求項8】気相の冷媒を圧送する圧縮機の吐出側と吸
入側の間に、第1の熱交換器と第2の熱交換器とを直列
に管接続し、前記第1及び第2の熱交換器のいずれか一
方を蒸発器とし、いずれか他方を凝縮器としてそれぞれ
機能させる空気調和装置において、 蒸発器として機能する前記熱交換器の熱交換路の途中の
冷媒を、請求項1乃至請求項7のいずれか1項に記載さ
れた気液分離装置を用いて気液分離し、分離された気相
の冷媒を蒸発器として機能する前記熱交換器の出口と前
記圧縮機との間の接続管路に流入させる、 ことを特徴とする空気調和装置。
8. A first heat exchanger and a second heat exchanger are connected in series between a discharge side and a suction side of a compressor that pumps a gas-phase refrigerant, and the first and second heat exchangers are connected in series. In an air conditioner in which one of the two heat exchangers serves as an evaporator and the other serves as a condenser, the refrigerant in the middle of the heat exchange passage of the heat exchanger, which serves as an evaporator, An outlet of the heat exchanger that performs gas-liquid separation using the gas-liquid separator according to any one of claims 1 to 7, and the separated gas-phase refrigerant functions as an evaporator, and the compressor. An air conditioner characterized in that the air conditioner is caused to flow into a connecting pipe between the two.
JP2001192515A 2001-06-26 2001-06-26 Gas-liquid separator and air conditioner using the same Expired - Fee Related JP4248770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192515A JP4248770B2 (en) 2001-06-26 2001-06-26 Gas-liquid separator and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192515A JP4248770B2 (en) 2001-06-26 2001-06-26 Gas-liquid separator and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2003004343A true JP2003004343A (en) 2003-01-08
JP4248770B2 JP4248770B2 (en) 2009-04-02

Family

ID=19030957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192515A Expired - Fee Related JP4248770B2 (en) 2001-06-26 2001-06-26 Gas-liquid separator and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP4248770B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175433A (en) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd Gas-liquid separator for air conditioner, and air conditioner
JP2008241064A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Gas-liquid separator for air conditioner
WO2009001701A1 (en) * 2007-06-25 2008-12-31 Mitsubishi Electric Corporation Gas-liquid separator and air conditioner with the same
KR100992840B1 (en) * 2008-06-19 2010-11-08 김영득 Natural Circulation and Vapor Condensing Type Air Conditioning Apparatus
CN102235783A (en) * 2010-04-26 2011-11-09 日冷工业株式会社 Gas-liquid separating device and refrigerating device provided with the same
KR20120122690A (en) * 2011-04-29 2012-11-07 엘지전자 주식회사 A gas-liquid separator and an air conditioner with the same
EP2695654A2 (en) 2012-08-08 2014-02-12 Hitachi Industrial Equipment Systems Co., Ltd. Gas-liquid separator and inkjet recording apparatus using the same
EP2695737A1 (en) 2012-08-07 2014-02-12 Hitachi Industrial Equipment Systems Co., Ltd. Ink jet recording device
CN103968625A (en) * 2014-05-20 2014-08-06 珠海格力电器股份有限公司 Flash evaporator
CN103992830A (en) * 2014-05-25 2014-08-20 秦家运 Gas-liquid separator for methane
WO2014136501A1 (en) 2013-03-08 2014-09-12 株式会社 日立産機システム Inkjet printing device
EP2287545A3 (en) * 2006-01-06 2015-05-20 LG Electronics, Inc. Air-conditioning system and controlling method thereof
CN109682135A (en) * 2018-12-26 2019-04-26 珠海格力电器股份有限公司 Flash evaporation, heat pump system and its control method
KR20200088275A (en) * 2017-09-14 2020-07-22 차트 에너지 앤드 케미칼즈 인코포레이티드 Mixed refrigerant condenser outlet manifold separator

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287545A3 (en) * 2006-01-06 2015-05-20 LG Electronics, Inc. Air-conditioning system and controlling method thereof
JP2008175433A (en) * 2007-01-17 2008-07-31 Matsushita Electric Ind Co Ltd Gas-liquid separator for air conditioner, and air conditioner
JP2008241064A (en) * 2007-03-26 2008-10-09 Matsushita Electric Ind Co Ltd Gas-liquid separator for air conditioner
JP2009030950A (en) * 2007-06-25 2009-02-12 Mitsubishi Electric Corp Gas-liquid separator and air conditioner with the same
AU2008268226B2 (en) * 2007-06-25 2010-12-23 Mitsubishi Electric Corporation Gas-liquid separator and air conditioner with the same
US8372172B2 (en) 2007-06-25 2013-02-12 Mitsubishi Electric Corporation Gas-liquid separator and air conditioner equipped with the same
WO2009001701A1 (en) * 2007-06-25 2008-12-31 Mitsubishi Electric Corporation Gas-liquid separator and air conditioner with the same
KR100992840B1 (en) * 2008-06-19 2010-11-08 김영득 Natural Circulation and Vapor Condensing Type Air Conditioning Apparatus
CN102235783A (en) * 2010-04-26 2011-11-09 日冷工业株式会社 Gas-liquid separating device and refrigerating device provided with the same
KR20120122690A (en) * 2011-04-29 2012-11-07 엘지전자 주식회사 A gas-liquid separator and an air conditioner with the same
EP2695737A1 (en) 2012-08-07 2014-02-12 Hitachi Industrial Equipment Systems Co., Ltd. Ink jet recording device
CN103568585A (en) * 2012-08-07 2014-02-12 株式会社日立产机*** Inkjet recording apparatus
CN103568585B (en) * 2012-08-07 2015-12-23 株式会社日立产机*** Ink-jet recording apparatus
US9120322B2 (en) 2012-08-07 2015-09-01 Hitachi Industrial Equipment Systems Co., Ltd. Ink jet recording device
US9744769B2 (en) 2012-08-08 2017-08-29 Hitachi Industrial Equipment Systems Co., Ltd. Gas-liquid separator and inkjet recording apparatus using the same
US9308738B2 (en) 2012-08-08 2016-04-12 Hitachi Industrial Equipment Systems Co., Ltd. Gas-liquid separator and inkjet recording apparatus using the same
EP2695654A2 (en) 2012-08-08 2014-02-12 Hitachi Industrial Equipment Systems Co., Ltd. Gas-liquid separator and inkjet recording apparatus using the same
US9481175B2 (en) 2012-08-08 2016-11-01 Hitachi Industrial Equipment Systems Co., Ltd. Gas-liquid separator and inkjet recording apparatus using the same
US9302482B2 (en) 2013-03-08 2016-04-05 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet printing device
WO2014136501A1 (en) 2013-03-08 2014-09-12 株式会社 日立産機システム Inkjet printing device
CN103968625A (en) * 2014-05-20 2014-08-06 珠海格力电器股份有限公司 Flash evaporator
CN103992830A (en) * 2014-05-25 2014-08-20 秦家运 Gas-liquid separator for methane
KR20200088275A (en) * 2017-09-14 2020-07-22 차트 에너지 앤드 케미칼즈 인코포레이티드 Mixed refrigerant condenser outlet manifold separator
JP2020534499A (en) * 2017-09-14 2020-11-26 チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド Mixing Refrigerant Condenser Outlet Manifold Separator
US11566827B2 (en) 2017-09-14 2023-01-31 Chart Energy & Chemicals, Inc. Mixed refrigerant condenser outlet manifold separator
JP7266026B2 (en) 2017-09-14 2023-04-27 チャート・エナジー・アンド・ケミカルズ,インコーポレーテッド Mixed refrigerant condenser outlet manifold separator
KR102624952B1 (en) * 2017-09-14 2024-01-12 차트 에너지 앤드 케미칼즈 인코포레이티드 Mixed Refrigerant Condenser Outlet Manifold Separator
CN109682135A (en) * 2018-12-26 2019-04-26 珠海格力电器股份有限公司 Flash evaporation, heat pump system and its control method

Also Published As

Publication number Publication date
JP4248770B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4356214B2 (en) Oil separator and outdoor unit
JP4248770B2 (en) Gas-liquid separator and air conditioner using the same
WO2015015752A1 (en) Ejector
US11466908B2 (en) Outdoor heat exchanger and air conditioner having the same
CN106461092B (en) Expansion valve and refrigerating circulatory device
JP5757415B2 (en) Refrigeration equipment such as air conditioners
JP4810988B2 (en) Refrigeration cycle equipment
JP2004257727A (en) Expansion valve
JP5072523B2 (en) Gas-liquid separator and air conditioner
JP7012839B2 (en) Oil separator and refrigeration cycle equipment
JP2006284135A (en) Refrigerating cycle device
JP2010078248A (en) Gas-liquid separator and refrigerating cycle device including the same
JP5193630B2 (en) Heat exchanger
KR101785669B1 (en) Oil separator and Air conditioner having it
JP2002130871A (en) Accumulator
JP4561012B2 (en) Air conditioner
JP2015001367A (en) Gas-liquid separator, and air conditioner having the same mounted thereon
JP7130838B2 (en) Gas-liquid separator and refrigeration cycle equipment
JP2002350003A (en) Air conditioner
JP5045252B2 (en) Air conditioner
JP3326930B2 (en) Refrigerant shunt
JP2008175433A (en) Gas-liquid separator for air conditioner, and air conditioner
WO2022215165A1 (en) Heat exchanger and air-conditioning device
WO2024029028A1 (en) Oil separator and refrigeration cycle device
WO2023238234A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees