JP2003003423A - Composite floor-slab light-weight concrete structure for bridge upper-section work - Google Patents

Composite floor-slab light-weight concrete structure for bridge upper-section work

Info

Publication number
JP2003003423A
JP2003003423A JP2001187975A JP2001187975A JP2003003423A JP 2003003423 A JP2003003423 A JP 2003003423A JP 2001187975 A JP2001187975 A JP 2001187975A JP 2001187975 A JP2001187975 A JP 2001187975A JP 2003003423 A JP2003003423 A JP 2003003423A
Authority
JP
Japan
Prior art keywords
concrete
floor slab
lightweight
light
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001187975A
Other languages
Japanese (ja)
Other versions
JP4050012B2 (en
Inventor
Hiroshi Mitamura
浩 三田村
Kenji Ikeda
憲二 池田
Yoshinobu Shinoda
佳延 信田
Noboru Sakata
昇 坂田
Shuji Yanai
修司 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CIVIL ENGINEERING RES INST OF
Kajima Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
CIVIL ENGINEERING RES INST OF
Kajima Corp
Civil Engineering Research Institute of Hokkaido
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CIVIL ENGINEERING RES INST OF, Kajima Corp, Civil Engineering Research Institute of Hokkaido filed Critical CIVIL ENGINEERING RES INST OF
Priority to JP2001187975A priority Critical patent/JP4050012B2/en
Publication of JP2003003423A publication Critical patent/JP2003003423A/en
Application granted granted Critical
Publication of JP4050012B2 publication Critical patent/JP4050012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light-weight composite floor-slab concrete structure having thin thickness for bridge upper-section works. SOLUTION: In the composite floor-slab light-weight concrete structure for the bridge upper-section works, a panel-shaped floor slab having a cavity on the inside and being made of a steel plate is installed to a pier, and the inside of the cavity of the floor slab made of steel is filled with light-weight and high superplasticized concrete, to which light-weight aggregate is blended so that the mass of unit volume after curing reaches 2000 Kg/m<3> or less and materials are blended so as to have a slump flow of 500 mm or more. In the light-weight high superplasticized concrete, light-weight aggregate having density of 1.3 to 1.7 in saturated surface-dry conditions in the case of prewetting and a maximum size of 15 mm is used as coarse aggregate, and fly-ash is blended as an admixture and a high-performance AE water reducing agent and a thickener as additives.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,施工が容易で低コ
スト化を図った橋梁上部工としての合成床版軽量コンク
リート構造物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic concrete slab lightweight concrete structure as a bridge superstructure, which is easy to construct and is cost effective.

【0002】[0002]

【従来の技術】近年の橋梁は長大化,大規模化の傾向に
あり,特に,自重の影響が卓越するコンクリート橋の場
合には,死荷重をいかにして軽減するかが課題となる。
このような場合には,軽量コンクリートを適用すること
が有効である。
2. Description of the Related Art In recent years, bridges have tended to become longer and larger, and in particular, in the case of concrete bridges where the effect of their own weight is predominant, how to reduce the dead load becomes an issue.
In such cases, applying lightweight concrete is effective.

【0003】しかし,軽量コンクリートを適用する場合
には,その高強度化を図るために,使用する軽量骨材自
身の高強度化,低吸水率化および高耐久化が要求される
ことになる。このような要求を満たす軽量骨材が最近開
発されつつあるが,高価であるものが多い。
However, in the case of applying lightweight concrete, in order to increase its strength, it is required that the lightweight aggregate itself to be used has high strength, low water absorption and high durability. Recently, lightweight aggregates that satisfy such requirements are being developed, but most of them are expensive.

【0004】このため,上部工用のコンクリートとして
従来から使用されている高強度コンクリートに代わるほ
どの高強度で且つ軽量なコンクリート構造物を安価に構
築することは一般に困難である。
For this reason, it is generally difficult to inexpensively construct a concrete structure that is as strong and lightweight as the high-strength concrete conventionally used as superstructure concrete.

【0005】他方,橋梁上部工構造物ではコンクリート
露出面が下向きの箇所が必然的に多くなるので,たとえ
高強度コンクリートで構成されたものでも,この下向き
面からのコンクリート剥落が問題視されることもあり,
このようなコンクリート剥落を防止できることも必要と
なる。
On the other hand, in the bridge superstructure, the number of places where the concrete exposed surface is downward is inevitably large, so that even if it is made of high-strength concrete, concrete peeling from this downward surface is considered a problem. There is also
It is also necessary to be able to prevent such concrete peeling.

【0006】このような問題を解決するものとして,例
えば鋼コンクリートサンドイッチ合成床版がある。これ
は,内部に空洞をもつ鋼板製のパネル状床版(予め工場
で製造されたもの)を,橋脚に架け渡したあと,その鋼
板製床版の空洞内にコンクリートを充填することによっ
て鋼コンクリートサンドイッチ合成床版を完成するもの
である。この場合,鋼板製床版の狭い隙間にコンクリー
トを密に充填することは困難を伴うので,いきおいその
空洞の厚みも大きくならざるを得ず,空洞厚みは通常は
300mmを超える。このため,重量増となって死荷重
の低減にはあまり寄与できなくなる。
As a means for solving such a problem, there is a steel concrete sandwich composite floor slab, for example. This is a steel-concrete method in which a panel-shaped floor slab made of steel plate with a cavity inside (manufactured in advance at the factory) is laid over a bridge pier, and then the cavity of the steel plate floor slab is filled with concrete. The sandwich composite floor slab is completed. In this case, since it is difficult to densely fill the narrow gaps in the steel plate floor slab with concrete, the thickness of the cavity is inevitably increased, and the cavity thickness usually exceeds 300 mm. As a result, the weight increases and it cannot contribute much to the reduction of dead load.

【0007】その空洞内に充填するコンクリートとして
軽量コンクリートを用いることも考えられるが,軽量コ
ンクリートを前記の狭い内部空洞に密に充填することは
必ずしも容易でなく,その成果には未知なところが多
い。従来の高流動化した軽量コンクリートを使用する場
合には前記のように高価であることから,コトス高とな
らざるを得ないといった問題も伴う。
Although it is conceivable to use lightweight concrete as the concrete to be filled in the cavity, it is not always easy to densely fill the narrow inner cavity with the lightweight concrete, and the results thereof are unknown. When the conventional highly fluidized lightweight concrete is used, it is expensive as described above, and there is a problem that the cost becomes high.

【0008】[0008]

【発明が解決しようとする課題】したがって,本発明は
このような課題の解決を目的としたものであり,施工が
容易でしかも低コストでありながら,厚みが薄く軽量な
橋梁上部工の合成床版軽量コンクリート構造物を得よう
とするものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to solve such a problem, and is a composite floor for a bridge superstructure which is thin and lightweight while being easy to construct and low in cost. It is intended to obtain a version lightweight concrete structure.

【0009】[0009]

【課題を解決するための手段】本発明によれば,内部に
空洞をもつ鋼板製のパネル状床版を橋脚に据え付けたあ
と,硬化後の単位容積質量が2000Kg/m3以下と
なるように軽量骨材を配合し且つスランプフロー500
mm以上を有するように材料配合した軽量・高流動コン
クリートを前記の鋼床版の空洞内に充填してなる橋梁上
部工の合成床版軽量コンクリート構造物を提供する。
According to the present invention, after the panel-like floor slab made of a steel plate having a cavity inside is installed on a pier, the unit volume mass after curing is 2000 kg / m 3 or less. Blended with lightweight aggregate and Slumpflow 500
Provided is a synthetic floor slab lightweight concrete structure for a bridge superstructure, which is obtained by filling the cavity of the steel floor slab with a lightweight, high-fluidity concrete compounded so as to have a size of not less than mm.

【0010】ここで,該空洞内に充填する軽量高流動コ
ンクリートを得るには,粗骨材としてプレウェッティン
グしたときの表乾密度が1.3〜1.7で最大寸法15m
mの軽量骨材を使用し,混和材としてフライアッシュ
を,そして,混和剤として高性能AE減水剤と増粘剤を
配合する。また,この合成床版は,上下の鋼板の間に単
位容積質量2000Kg/m3以下の軽量コンクリート
が密に充填された鋼版とコンクリートとのサンドイッチ
構造を有し,このサンドイッチ構造の全体の厚みが20
0mm以下,好ましくは170mm以下である。
Here, in order to obtain the lightweight high-fluidity concrete to be filled in the cavity, the surface dry density when pre-wetting as coarse aggregate is 1.3 to 1.7 and the maximum dimension is 15 m.
m lightweight aggregate, fly ash as admixture, and high performance AE water reducing agent and thickener as admixture. In addition, this composite floor slab has a sandwich structure of a steel plate and concrete in which light weight concrete having a unit volume mass of 2000 Kg / m 3 or less is densely packed between upper and lower steel plates, and the total thickness of the sandwich structure. Is 20
It is 0 mm or less, preferably 170 mm or less.

【0011】[0011]

【発明の実施の形態】内部に空洞をもつ鋼板製のパネル
状床版を予め製作し,その空洞内にコンクリートを充填
してなる鋼板とコンクリートとのサンドイッチ合成床版
(以下,単に“鋼板/コンクリート合成床版”と呼ぶこ
とがある)を橋梁上部工に採用するさいには,その施工
性と作業性を考慮すると,内部空洞をもつ鋼板製床版を
工場で製作し,これを現場に搬入して橋脚に据え付けて
から,この鋼板製床版の上面に設けた注入口から内部空
洞内にコンクリートを注入するという施工順序を採用す
ることが有利である。この場合,床版内部の空洞はコン
クリート注入口,空気抜孔およびコンクリート吹出口な
どを有する以外は,開口を持たない閉塞空間となるか
ら,バイブレータ等での締め固めはできない。このた
め,注入するコンクリートは,内部空洞の隅々までコン
クリートが流動して充填する自己充填性の高流動コンク
リートでなければならない。
BEST MODE FOR CARRYING OUT THE INVENTION A sandwich composite floor slab of steel plate and concrete in which a panel-like floor slab made of a steel plate having a cavity inside is manufactured in advance and concrete is filled in the cavity (hereinafter, simply referred to as "steel plate / When adopting a "composite concrete floor slab" as a bridge superstructure, considering the workability and workability, a steel plate floor slab with an internal cavity was manufactured at the factory, and this was used on site. It is advantageous to adopt a construction sequence in which the concrete is poured into the internal cavity from the pouring port provided on the upper surface of the steel plate floor slab after it is loaded and installed on the pier. In this case, the cavity inside the floor slab is a closed space having no opening except for the concrete inlet, the air vent, the concrete outlet, and the like, and therefore cannot be compacted with a vibrator or the like. For this reason, the injected concrete must be self-filling, high-fluidity concrete in which the concrete flows and fills every corner of the internal cavity.

【0012】しかし,軽量骨材を用いた軽量コンクリー
トに流動性を付与したとしても,このような鋼製床版内
部の狭い閉塞空間内に密に且つ材料分離を起こすことな
く充填できるか否かは未知な点が多い。軽量骨材が内部
で分離すると部分的に重量が異なることになり,構造上
問題を生ずることになる。
However, even if the lightweight concrete using the lightweight aggregate is provided with fluidity, whether or not it is possible to densely fill the narrow closed space inside the steel floor slab without causing material separation. Has many unknown points. If the lightweight aggregate is separated inside, the weight will be partially different, causing structural problems.

【0013】軽量骨材はその比重と吸水率が一般骨材と
は大きく異なることから,高流動化すると材料分離を起
こし易くなり,また軽量骨材の気泡に浸入した水分によ
って凍結融解抵抗が低くなるという周知の現象がある。
本発明者らは,これまでも軽量骨材を用いた高流動コン
クリートの開発を手掛けてきたが,独立気泡型の軽量骨
材(例えば,真珠岩系の軽量骨材)を使用することによ
って凍結融解抵抗を高め,また適切な混和材や混和剤を
使用することによって,材料分離を抑制しながら高流動
化を図ることができることを知ったが,その分,費用が
嵩むことは否めない。したがって,これまでの高流動・
軽量コンクリートでは,コストの面で,橋梁上部工に鋼
板/コンクリート合成床版を使用する場合の最大のメリ
ットであるコスト縮減の目的が損なわれることにもなり
かねない。
Since the specific gravity and the water absorption rate of the lightweight aggregate are significantly different from those of the general aggregate, the material becomes easy to be separated when it is highly fluidized, and the freezing and thawing resistance is low due to the water entering the bubbles of the lightweight aggregate. There is a well-known phenomenon that
The inventors of the present invention have been working on the development of high-fluidity concrete using lightweight aggregates. However, the use of closed-cell lightweight aggregates (for example, perlite-based lightweight aggregates) freezes them. We have found that it is possible to achieve high fluidity while suppressing material separation by increasing the melting resistance and by using an appropriate admixture or admixture, but it cannot be denied that the cost will increase accordingly. Therefore, the high flow rate
In terms of cost, lightweight concrete may impair the purpose of cost reduction, which is the greatest merit when using steel plate / concrete composite floor slabs for bridge superstructure.

【0014】本発明によれば,安価な軽量骨材として知
られている通常の連続気泡型の軽量骨材例えば膨張頁岩
系のメサライトやアサノライト等を用いても,配合を適
切にすれば,橋梁上部工としての鋼板/コンクリート合
成床版を有利に製作できることがわかった。以下にその
内容を説明する。
According to the present invention, even if an ordinary open-cell type lightweight aggregate known as an inexpensive lightweight aggregate, such as an expanded shale-based mesalite or asanolite, is used, if the composition is properly adjusted, It was found that a steel plate / concrete composite floor slab as a bridge superstructure can be advantageously manufactured. The contents will be described below.

【0015】通常の連続気泡型の軽量骨材は,プレウエ
ッティングあるいはプレソーキングした場合の表乾密度
が1.3〜1.7,好ましくは1.4〜1.6程度である。
鋼板/コンクリート合成床版では,鋼板で囲まれた閉塞
空間にコンクリートが打設されているので凍結融解作用
を受けることはないから,凍結融解抵抗性を高めた高価
な独立気泡型の高性能軽量骨材を使用する必要はなく,
前記のような表乾密度をもつ連続気泡型の軽量骨材の使
用が可能であるが,これを粗骨材として使用した場合
に,軽量骨材とモルタルとの密度差が大きいと,軽量骨
材が浮き上がる分離を生じ,特に空洞内を長距離にわた
って流動させると,その傾向がより顕著となる。そこ
で,本発明によれば,まず,モルタルの密度を小さくす
るために混和材として安価なフライアッシュを比較的多
量に使用する。具体的には密度が2.1ないし2.3のフ
ライアッシュをコンクリート1m3あたり200〜30
0Kg程度配合する。
The ordinary open-cell type lightweight aggregate has a surface dry density of 1.3 to 1.7, preferably 1.4 to 1.6 when pre-wetting or pre-soaking.
In the steel plate / concrete composite floor slab, concrete is placed in a closed space surrounded by steel plates, so it is not affected by freeze-thaw action, so it is an expensive closed-cell high-performance lightweight that has improved freeze-thaw resistance. No need to use aggregates,
Although it is possible to use the open-cell type lightweight aggregate having the surface dry density as described above, when this is used as the coarse aggregate, if the difference in the density between the lightweight aggregate and the mortar is large, the lightweight aggregate can be used. This tendency becomes more noticeable when the material undergoes a floating separation and is caused to flow over a long distance in the cavity. Therefore, according to the present invention, first, a relatively large amount of inexpensive fly ash is used as an admixture in order to reduce the density of the mortar. Specifically, fly ash with a density of 2.1 to 2.3 is added to 200 to 30 per 1 m 3 of concrete.
Add about 0 kg.

【0016】そのうえ,材料分離抵抗性を更に向上させ
るために混和剤として増粘剤を配合する。増粘剤として
はMC(メチルセルロース),HPMC(ヒドロキシプ
ロピルメチルセルロース),HEC(ヒドロシキエチル
セルロース)等のセルロースエーテル類が使用できる
が,ウエランガムやデュータンガムなどのバイオガムの
使用が特に好ましい。ウエランガムの場合,その配合量
はコンクリートの単位水量に対して0.01〜0.2重量
%が適当である。デュータンガムの場合には,コンクリ
ートの単位水量に対して0.005〜0.1重量%が適当
である。
In addition, a thickener is added as an admixture to further improve the material separation resistance. As the thickener, cellulose ethers such as MC (methyl cellulose), HPMC (hydroxypropyl methyl cellulose) and HEC (hydroxyethyl cellulose) can be used, but biogum such as welan gum and deutan gum is particularly preferable. In the case of welan gum, it is suitable that the compounding amount thereof be 0.01 to 0.2% by weight with respect to the unit water amount of concrete. In the case of deutan gum, 0.005 to 0.1% by weight is suitable for the unit water amount of concrete.

【0017】そして,適量の高性能AE減水剤を添加す
ることにより,スランプフロー500〜700mmにす
ることで自己充填性に優れ且つ軽量骨材の分離が殆んど
生じない軽量・高流動性コンクリートが得られる。この
軽量・高流動コンクリートは前記の鋼板製床版の空洞に
良好に充填することができることがわかった。例えば後
記の実施例に示すように,コンクリートを充填するため
の空洞の厚さが150mm程度の狭い空間で且つ流動距
離が5m以上の施工条件下でも密に充填することができ
る。これにより,鋼板/コンクリート合成床版の全体の
厚さ自体も200mm以下,場合によっては170mm
以下,さらには150mm程度まで薄くすることが可能
となり,死荷重の低減に大きく寄与できると共に,施工
性よく橋梁上部工の鋼板/コンクリート合成床版を安価
に製作できるようになった。前記の高性能AE減水剤と
しては,ポリカルボン酸系,ポリエーテル系,ナフタレ
ン系,メラミンスルホン酸系,アミノスルホン酸系等の
ものが使用できるが,とくにポリカルボン酸系もしくは
ナフタレン系のものが好ましい。
By adding an appropriate amount of high-performance AE water reducing agent, the slump flow is 500 to 700 mm, which is excellent in self-filling property and lightweight and high fluidity concrete which hardly causes separation of lightweight aggregate. Is obtained. It was found that this lightweight, high-fluidity concrete can satisfactorily fill the cavity of the steel plate floor slab. For example, as shown in Examples described later, it is possible to densely fill a concrete in a narrow space having a thickness of about 150 mm and a flow distance of 5 m or more. As a result, the total thickness of the steel plate / concrete composite floor slab itself is 200 mm or less, and in some cases 170 mm.
After that, the thickness can be further reduced to about 150 mm, which can greatly contribute to the reduction of dead load, and the steel plate / concrete composite floor slab for bridge superstructure can be manufactured at low cost with good workability. As the above-mentioned high-performance AE water reducing agent, polycarboxylic acid type, polyether type, naphthalene type, melamine sulfonic acid type, amino sulfonic acid type and the like can be used, but especially polycarboxylic acid type or naphthalene type preferable.

【0018】実際の施工にあたっては,橋梁の床面積を
複数のブロックに区分けし,単位ブロックの面積を満た
す大きさの鋼製ユニットを必要数製作し,そのユニット
の必要数を橋脚(桁)上に連接して据え付けることによ
って必要な床面積を橋脚の上で確保するのが便宜であ
る。そして,工場製作の段階で,各ユニットごとにコン
クリート打設口,空気抜孔およびコンクリート吹出口以
外には開口を持たない閉塞空間を形成しておき,現場に
据え付けられた各ユニットの該閉塞空間に,コンクリー
ト打設口から,前記の軽量・高流動コンクリートを注入
打設すればよい。
In actual construction, the floor area of the bridge is divided into a plurality of blocks, a required number of steel units of a size that satisfies the area of the unit block are manufactured, and the required number of the units is set on the pier (girder). It is convenient to secure the required floor area on the pier by installing it on the pier. Then, at the stage of factory production, a closed space having no openings other than the concrete pouring port, the air vent hole and the concrete outlet was formed for each unit, and the closed space of each unit installed at the site was formed. The above-mentioned lightweight and high-fluidity concrete may be poured from the concrete pouring port.

【0019】コンクリート打設口はユニットの大きさに
応じて必要数作製するが,コンクリートの流動距離が4
〜10m程度となるようにすればよい。コンクリート吹
出口は,鋼製ユニットの上面鋼板に適当な大きさの孔
(直径100〜200mm程度)をほぼ等ピッチで複数
個形成しておき,各孔に高さが30〜80cm程度の縦
パイプを立ち上げる構成とするのがよい。この縦パイプ
を立ち上げておくことにより,吹出口から吹出すコンク
リートに対してヘッドをかけることができ,このヘッド
を付与することで空洞内部ではより密実な充填が達成で
きる。空気抜孔も該ユニットの上面鋼板の適切な位置に
複数設けておくが,この空気抜孔は粗骨材(軽量骨材)
寸法より小さめの口径(例えば10〜15mm程度)と
し,各孔にも前記同様に縦パイプを立ち上げておくのが
よい。
The required number of concrete pouring openings is made according to the size of the unit, but the concrete flow distance is 4
It may be about 10 m. As for the concrete outlet, a plurality of holes (diameter 100 to 200 mm) of appropriate size are formed in the upper surface steel plate of the steel unit at substantially equal pitches, and a vertical pipe with a height of 30 to 80 cm is formed in each hole. It is better to have a configuration that starts up. By starting up this vertical pipe, a head can be applied to the concrete blown out from the outlet, and by providing this head, more dense filling can be achieved inside the cavity. A plurality of air vent holes are also provided at appropriate positions on the upper surface steel plate of the unit, but the air vent holes are coarse aggregate (light weight aggregate).
It is preferable to make the diameter smaller than the size (for example, about 10 to 15 mm) and to set up the vertical pipe in each hole in the same manner as described above.

【0020】コンクリートの注入打設にさいしては,コ
ンクリート打設口にポンプ筒先を直結して前記の軽量・
高流動コンクリートを注入し,コンクリート吹出口や空
気抜孔から打設したコンクリートが流出してくるのを確
認してから,各孔を閉塞して注入を完了する。
When pouring and pouring concrete, the pump cylinder tip is directly connected to the concrete pouring port to reduce the weight and weight.
After pouring high-fluidity concrete and confirming that the concrete placed through the concrete outlet and air vent flows out, the holes are closed and pouring is completed.

【0021】[0021]

【実施例】厚みが6mmのSS400の鋼板によって,
図1の(A)に示したように,幅2500mm×長さ8
400mmで,厚みが162mmの中空床版(空洞の厚
み150mm)を6枚工場製作し,これを現場に搬入
し,図1の(B)に示すように,2列に長手方向に3枚
づつ連接した状態で(A〜Fの合計6ブロックとして)
橋長26m(桁長25.6m),幅員5mの単純桁橋に
設置した。
[Example] Using a SS400 steel plate having a thickness of 6 mm,
As shown in FIG. 1A, a width of 2500 mm and a length of 8
6 pieces of hollow floor slabs with a thickness of 162 mm and a thickness of 162 mm (cavity thickness of 150 mm) were manufactured in a factory, and then loaded into the site, and as shown in FIG. In a connected state (as a total of 6 blocks A to F)
It was installed on a simple girder bridge with a bridge length of 26 m (girder length of 25.6 m) and a width of 5 m.

【0022】各ブロックの中空床版には,図1(A)の
平面図に示した位置に, 直径120mmの2ヵ所の打設
口(縦パイプ) A-1と A-2が設けられ,コンクリート吹
出口(短い縦パイプ取付用)の同径の孔が900mmピ
ッチで合計8個,そして空気抜(同縦パイプ取付用)の
直径12mmの孔が同ピッチで同数設けられている。ま
た各ブロックとも多数の貫通ボルトを用いて上下板およ
び側板が強固に支持されている。
The hollow floor slab of each block is provided with two pouring ports (vertical pipes) A-1 and A-2 having a diameter of 120 mm at the positions shown in the plan view of FIG. 1 (A). There are a total of eight holes of the same diameter for the concrete outlet (for mounting a short vertical pipe) at a 900 mm pitch, and the same number of holes of 12 mm for removing air (for mounting the same vertical pipe) at the same pitch. Further, in each block, the upper and lower plates and the side plates are firmly supported by using a large number of through bolts.

【0023】各ブロックの空洞内に打設したコンクリー
トの仕様を表1に,使用材料の明細を表2に,コンクリ
ートの配合を表3に,そして,製造したコンクリートの
試験結果を表4に示した。
Table 1 shows the specifications of the concrete cast in the cavities of the blocks, Table 2 shows the details of the materials used, Table 3 shows the concrete mix, and Table 4 shows the test results of the produced concrete. It was

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】コンクリートの製造は,レデイーミクスト
コンクリート工場の強制二軸式ミキサ(容量3.0m3
を用いて行い,1バッチの練混ぜ量を2.25m3として
2バッチ分4.5m3を1台のアジテータ車に積載した。
練混ぜ時間はモルタル先練り30秒,粗骨材(軽量骨
材)を投入してさらに150秒とした。
The concrete is manufactured by a forced mixed concrete mixer (capacity 3.0 m 3 ) at a ready-mixed concrete plant.
The mixing amount of one batch was 2.25 m 3, and 4.5 m 3 for 2 batches was loaded on one agitator vehicle.
The kneading time was 30 seconds for mortar kneading, and 150 seconds after adding coarse aggregate (lightweight aggregate).

【0029】コンクリートの打ち込みは,最大理論吐出
圧力7N/mm2のコンクリートポンプにより,各ブロ
ックに設けられた打設口(縦パイプ)にホース筒先を接
続して行った。そのさい,各ブロックのコンクリート吹
出口や空気抜孔から充填状況を確認しながら筒先を A-1
から A-2に移動した。コンクリートの最大流動距離は約
8mであった。この打ち込みによって,設置した全ての
吹出口(縦パイプ)の孔から材料分離が生じていない均
質なコンクリートが溢れ出した。また全ての空気抜(縦
パイプ)からモルタルの流出が確認され,良好な充填性
が得られた。なお,1ブロック(3.2m3)の打ち込み
に要したピストン稼働時間は平均15分であり,圧送速
度は13m3/hであった。
Concrete injection was carried out by connecting a hose cylinder tip to a setting port (vertical pipe) provided in each block by a concrete pump having a maximum theoretical discharge pressure of 7 N / mm 2 . At that time, while checking the filling status from the concrete outlet and air vent of each block, place the tip of the cylinder at A-1.
Moved to A-2. The maximum flow distance of concrete was about 8 m. As a result of this driving, homogeneous concrete with no material separation overflowed from the holes in all the installed outlets (vertical pipes). Also, mortar was confirmed to flow out from all air vents (vertical pipes), and good filling properties were obtained. The piston operating time required to drive one block (3.2 m 3 ) was 15 minutes on average, and the pumping speed was 13 m 3 / h.

【0030】施工後,打音検査とコア抜き検査により鋼
板とコンクリートの一体性を検証した。その結果,未充
填部が皆無であること,鋼板とコンクリートが完全に一
体化していること,粗骨材(軽量骨材)の分布が均一で
あることが確認された。すなわち,表4のように単位容
積質量が2000Kg/m3以下の軽量コンクリートで
あっても隙間が150mmの狭い空洞内に良好に充填さ
れ,軽量で薄い高品質の鋼板/コンクリート合成床版が
作業性良く施工できた。
After the construction, the integrity of the steel plate and the concrete was verified by a tapping sound inspection and a core removal inspection. As a result, it was confirmed that there was no unfilled part, that the steel plate and concrete were completely integrated, and that the coarse aggregate (lightweight aggregate) was evenly distributed. That is, as shown in Table 4, even in the case of lightweight concrete having a unit volume mass of 2000 Kg / m 3 or less, a lightweight and thin high-quality steel plate / concrete composite floor slab is well filled in a narrow cavity with a gap of 150 mm. It was constructed with good performance.

【0031】[0031]

【発明の効果】以上説明したように,本発明によると,
厚みが薄く且つ軽量な橋梁上部工用の鋼板/コンクリー
ト合成床版が作業性よく施工できる。そして,使用する
軽量骨材も安価な連続気泡型のものが使用できるので材
料コストも低廉となり,厚みが薄いことから全体のコス
ト低減と荷重低減に大きく寄与できる。
As described above, according to the present invention,
A thin and lightweight steel plate / concrete composite floor slab for bridge superstructure can be installed with good workability. Also, since the lightweight aggregate used can be an inexpensive open-cell type, the material cost is low, and the thin thickness contributes greatly to the overall cost reduction and load reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた鋼板/コンクリート合成床版の
鋼製床版の形状と寸法を示す図である。
FIG. 1 is a diagram showing the shape and dimensions of a steel slab of a steel plate / concrete composite floor slab used in Examples.

フロントページの続き (72)発明者 池田 憲二 北海道札幌市豊平区平岸1条3丁目1番34 号 独立行政法人北海道開発土木研究所内 (72)発明者 信田 佳延 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 坂田 昇 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 柳井 修司 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2D059 AA17 Continued front page    (72) Inventor Kenji Ikeda             34-1, Hiragishi 1-chome, Toyohira-ku, Sapporo-shi, Hokkaido             Incorporated administrative agency Hokkaido Institute of Civil Engineering (72) Inventor Yoshinobu Shinoda             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation (72) Inventor Noboru Sakata             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation (72) Inventor Shuji Yanai             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation F-term (reference) 2D059 AA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に空洞をもつ鋼板製のパネル状床版
を橋脚に据え付けたあと,硬化後の単位容積質量が20
00Kg/m3以下となるように軽量骨材を配合し且つ
スランプフロー500mm以上を有するように材料配合
した軽量・高流動コンクリートを該鋼製床版の空洞内に
充填してなる橋梁上部工の合成床版軽量コンクリート構
造物。
1. A unit volume mass after curing of a panel-like floor slab made of steel plate having a cavity inside is set to 20
A bridge superstructure constructed by filling the cavity of the steel floor slab with a lightweight, high-fluidity concrete compounded with a lightweight aggregate so as to have a pressure of 00 kg / m 3 or less and with a material having a slump flow of 500 mm or more. Synthetic floor slab lightweight concrete structure.
【請求項2】 軽量高流動コンクリートは,粗骨材とし
てプレウェッティングしたときの表乾密度が1.3〜1.
7で最大寸法15mmの軽量骨材が使用され,混和材と
してフライアッシュが,そして,混和剤として高性能A
E減水剤と増粘剤が配合されたものである請求項1に記
載の橋梁上部工の合成床版軽量コンクリート構造物。
2. The lightweight high-fluidity concrete has a surface dry density of 1.3 to 1. 1 when prewetting as coarse aggregate.
7, lightweight aggregate with a maximum size of 15 mm is used, fly ash as admixture, and high performance A as admixture
The synthetic floor slab lightweight concrete structure for a bridge superstructure according to claim 1, wherein the water reducing agent and the thickener are mixed.
【請求項3】 合成床版は,上下の鋼板の間に単位容積
質量2000Kg/m3以下の軽量コンクリートが密に
充填された鋼コンクリートサンドイッチ構造を有し,該
合成床版の全体の厚みが200mm以下である請求項1
または2に記載の橋梁上部工の合成床版軽量コンクリー
ト構造物。
3. The composite floor slab has a steel concrete sandwich structure in which lightweight concrete having a unit volume mass of 2000 kg / m 3 or less is densely packed between upper and lower steel plates, and the total thickness of the synthetic floor slab is It is 200 mm or less.
Alternatively, the composite floor slab lightweight concrete structure of the bridge superstructure described in 2.
【請求項4】 鋼製床版の内部空洞は,コンクリート打
設口,コンクリート吹出口および空気抜孔以外には開口
を持たない閉塞空間であり,この閉塞空間に前記のコン
クリート打設口から軽量・高流動コンクリートを注入す
る請求項1ないし3のいずれかに記載の橋梁上部工の合
成床版軽量コンクリート構造物。
4. The internal cavity of the steel floor slab is a closed space that has no openings other than the concrete pouring port, the concrete outlet and the air vent hole, and this closed space is lighter than the concrete pouring port. The synthetic floor slab lightweight concrete structure for a bridge superstructure according to any one of claims 1 to 3, wherein high-fluidity concrete is injected.
JP2001187975A 2001-06-21 2001-06-21 Composite floor slab lightweight concrete structure for bridge superstructure Expired - Fee Related JP4050012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187975A JP4050012B2 (en) 2001-06-21 2001-06-21 Composite floor slab lightweight concrete structure for bridge superstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187975A JP4050012B2 (en) 2001-06-21 2001-06-21 Composite floor slab lightweight concrete structure for bridge superstructure

Publications (2)

Publication Number Publication Date
JP2003003423A true JP2003003423A (en) 2003-01-08
JP4050012B2 JP4050012B2 (en) 2008-02-20

Family

ID=19027181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187975A Expired - Fee Related JP4050012B2 (en) 2001-06-21 2001-06-21 Composite floor slab lightweight concrete structure for bridge superstructure

Country Status (1)

Country Link
JP (1) JP4050012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048421A (en) * 2017-09-11 2019-03-28 太平洋セメント株式会社 Method of producing concrete
JP2019171679A (en) * 2018-03-28 2019-10-10 太平洋セメント株式会社 Manufacturing method of concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048421A (en) * 2017-09-11 2019-03-28 太平洋セメント株式会社 Method of producing concrete
JP2019171679A (en) * 2018-03-28 2019-10-10 太平洋セメント株式会社 Manufacturing method of concrete
JP7050548B2 (en) 2018-03-28 2022-04-08 太平洋セメント株式会社 How to make concrete

Also Published As

Publication number Publication date
JP4050012B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4916076B2 (en) Lightweight wall construction material
JP2003516302A5 (en)
CN110903056A (en) High-strength self-compacting fair-faced concrete and preparation method thereof
CN100398480C (en) High-strength cement mortar and construction process for pouring said mortar thereof
CN110981278A (en) Concrete admixture and use method thereof
CN101143771B (en) Light aggregate concrete pumping agent
Tao et al. Adhesion properties of printable polymer-modified concrete for rock tunnel linings
US11168449B2 (en) Method for batch casting high-fluidity high-performance concrete and low-fluidity high-performance concrete
JP2003003423A (en) Composite floor-slab light-weight concrete structure for bridge upper-section work
CN112031458A (en) Concrete structure repairing construction method
CN116136107A (en) Waterproof construction method for roof of underground structure
JP3946517B2 (en) Seismic reinforcement method for existing steel arch bridge
KR101314799B1 (en) Management Method of Ultra High Strength Concrete for Maximizing Strength Properties
JP2015006977A (en) Fiber-reinforced flowable high strength concrete
JPH1193184A (en) Placing method of concrete
JP2002284551A (en) Admixture for lightweight concrete and light weight concrete
JP3551017B2 (en) Grout material filling concrete gap
JP2011042987A (en) Steel-concrete composite structure utilizing concrete mass
JP3258141B2 (en) How to cast foam concrete by spraying
CN109180099A (en) It is a kind of for pouring the concrete material, additive and application method of pier stud
JP2642159B2 (en) Foundation installation method
US20150368155A1 (en) High carbon cellular concrete
Hela Durability of self-compacting concrete (SCC)
CN114046047A (en) Energy-saving concrete pouring method for reducing concrete vibration pitted surface
AU774869B2 (en) Lightweight wall construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4050012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees