JP2002343577A - Electroluminescence element - Google Patents

Electroluminescence element

Info

Publication number
JP2002343577A
JP2002343577A JP2002083871A JP2002083871A JP2002343577A JP 2002343577 A JP2002343577 A JP 2002343577A JP 2002083871 A JP2002083871 A JP 2002083871A JP 2002083871 A JP2002083871 A JP 2002083871A JP 2002343577 A JP2002343577 A JP 2002343577A
Authority
JP
Japan
Prior art keywords
hole transport
transport layer
group
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083871A
Other languages
Japanese (ja)
Other versions
JP3745296B2 (en
Inventor
Mutsumi Suzuki
睦美 鈴木
Masao Fukuyama
正雄 福山
Mutsuaki Murakami
睦明 村上
Hiromitsu Tomiyama
裕光 富山
Ikuko Ihara
郁子 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2002083871A priority Critical patent/JP3745296B2/en
Publication of JP2002343577A publication Critical patent/JP2002343577A/en
Application granted granted Critical
Publication of JP3745296B2 publication Critical patent/JP3745296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve emission stability and preservation stability of an organic EL element. SOLUTION: A hexaamine compound of the formula (I) is used as a material of the hole transport layer. Provided that, R1 , R2 express hydrogen atom, lower alkyl group, lower alkoxy group, and substituted or unsubstituted aryl group, and R3 expresses hydrogen atom, methyl group, methoxy group, and chlorine atom. And X expresses a substituted group having the structure as the formula (II). In the formula (II), R4 expresses hydrogen atom, methyl group, methoxy group and chlorine atom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の表示装置と
して広範囲に利用される発光素子であって、低い印加電
圧、高輝度、かつ安定性にも優れた有機電界発光素子
(有機EL素子)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device widely used as various display devices, and an organic electroluminescent device (organic EL device) having a low applied voltage, high luminance and excellent stability. About.

【0002】[0002]

【従来の技術】電界発光素子は、自己発光のために液晶
素子にくらべて明るく、鮮明な表示が可能であるため古
くから多くの研究者によって研究されてきた。現在実用
レベルに達した電界発光素子としては、無機蛍光体であ
るZnSを用いた素子がある。しかし、この様な無機の
電界発光素子は、発光のための印加電圧として200V
以上が必要で広く使用されるには至っていない。
2. Description of the Related Art An electroluminescent device has been studied by many researchers for a long time because it can emit light more clearly and sharply than a liquid crystal device due to self-emission. As an electroluminescent element that has reached a practical level at present, there is an element using ZnS, which is an inorganic phosphor. However, such an inorganic electroluminescent element has an applied voltage of 200 V for light emission.
The above is necessary and has not been widely used.

【0003】これに対して有機材料を用いた電界発光素
子である有機EL素子は、従来実用的なレベルからは遠
いものであったが、1987年にコダック社のC.W.
Tangらによって開発された積層構造素子によりその
特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で
電子を輸送することのできる蛍光体と、正孔を輸送する
ことのできる有機物を積層し、両方のキャリヤーを蛍光
体中に注入して発光させることに成功した。これによっ
て有機EL素子の発光効率が向上し、10V以下の電圧
で1000cd/m2 以上の発光が得られる様になっ
た。その後多くの研究者によってその特性向上のための
研究が行われ、現在では10000cd/m2 以上の発
光特性が得られている。
On the other hand, an organic EL device, which is an electroluminescent device using an organic material, has been far from a practical level in the past. W.
The characteristics have been drastically improved by the laminated structure element developed by Tang et al. They stacked a phosphor that can transport electrons with a stable structure of the deposited film and an organic substance that can transport holes, and succeeded in emitting light by injecting both carriers into the phosphor. . As a result, the luminous efficiency of the organic EL element was improved, and luminescence of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less. Since then, many researchers have studied to improve the characteristics, and at present, luminescence characteristics of 10,000 cd / m 2 or more have been obtained.

【0004】この様な有機EL素子の基本的な発光特性
は、すでに十分実用範囲にあり、現在その実用化を妨げ
ている最も大きな原因は、(1)その駆動時の発光特性
の安定性の不足、(2)保存安定性の不足にある。ここ
で言う駆動時の劣化とは、素子に電流を印加して駆動し
た時に発光輝度が低下したり、ダークスポットと呼ばれ
る発光しない領域が発生したり、素子の短絡により破壊
が起こる現象を言い、保存時の安定性とは作製した素子
を保存しているだけでも発光特性が低下する現象を言
う。
The basic light emitting characteristics of such an organic EL device are already in a practically usable range, and the most significant obstacles to the practical use at present are (1) the stability of the light emitting characteristics at the time of driving. Shortage, and (2) lack of storage stability. The term “deterioration during driving” as used herein refers to a phenomenon in which light emission luminance is reduced when a current is applied to the element to drive the element, a non-light-emitting area called a dark spot occurs, or destruction occurs due to a short circuit of the element. The stability at the time of storage refers to a phenomenon in which light emission characteristics are deteriorated just by storing the manufactured device.

【0005】本発明者らはこの様な有機EL素子の発光
の安定性、保存安定性に関する問題点を解決するためそ
の劣化の機構を検討した。その結果、特性劣化の大きな
原因の一つがその正孔輸送層にあることが分かった。即
ち、正孔輸送層として一般に利用される(化3:略称T
PD)、(化4:略称TPAC)の様な正孔輸送材料
は、(1)湿度、温度、電流により結晶化して薄膜形状
が一様でなくなる、(2)正孔輸送層が通電により変質
する、などの変化を起こし、それによって発光特性が著
しく劣化することが分かった。
The present inventors have studied the mechanism of deterioration of the organic EL device in order to solve such problems relating to the stability of light emission and storage stability. As a result, it was found that one of the major causes of the property deterioration was the hole transport layer. That is, it is generally used as a hole transport layer (Chemical Formula 3: Abbreviation T)
Hole transport materials such as PD) and (Chemical Formula 4: TPAC) are (1) crystallized by humidity, temperature, and electric current to make the thin film shape non-uniform, and (2) the hole transport layer is deteriorated by electric current. It was found that the light emission characteristics were significantly degraded.

【0006】[0006]

【化3】 Embedded image

【0007】[0007]

【化4】 Embedded image

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、この
様な知見に基づき、発光安定性、保存安定性に優れた有
機EL素子を実現できる新しい正孔輸送材料を提供する
ことにある。この様な正孔輸送材料の具備しなければな
らない条件としては、(1)優れた正孔輸送能力を持つ
こと、(2)熱的に安定で、ガラス状態が安定であるこ
と、(3)薄膜を形成できること、(4)電気的、化学
的に安定であること、等を挙げることができる。
An object of the present invention is to provide a new hole transport material which can realize an organic EL device having excellent luminescence stability and storage stability based on such findings. The conditions that such a hole transport material must have are (1) excellent hole transport ability, (2) thermally stable and stable glass state, and (3) (4) Electrically and chemically stable.

【0009】[0009]

【課題を解決するための手段】上記課題を達成するため
に、本発明者らは、ITO電極、正孔輸送層、発光層お
よびマグネシュウム/銀電極からなる有機EL素子を試
作し、新たに合成した数多くの正孔輸送材料の評価を行
なった。発光層としては、おもに電子輸送層を兼ねるア
ルミキノリン3量体を用いた。上記正孔輸送層の材料と
して、(化5)で記述されるヘキサアミン化合物を使用
した。
Means for Solving the Problems In order to achieve the above object, the present inventors prototyped an organic EL device comprising an ITO electrode, a hole transport layer, a light emitting layer and a magnesium / silver electrode, and newly synthesized an organic EL device. Numerous hole transport materials were evaluated. As the light emitting layer, an aluminum quinoline trimer mainly serving also as an electron transport layer was used. As the material of the hole transport layer, a hexaamine compound described in Chemical Formula 5 was used.

【0010】[0010]

【化5】 Embedded image

【0011】ただし、(化5)におけるR1 、R2 は水
素原子、低級アルキル基、低級アルコキシ基、置換また
は無置換のアリール基を表し、R3 は水素原子、メチル
基、メトキシ基、塩素原子を表す。また(化5)におけ
るXは以下の構造を有する置換基を表し、R4 は水素原
子、メチル基、メトキシ基、塩素原子を表す。
Wherein R 1 and R 2 in the chemical formula 5 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, a substituted or unsubstituted aryl group, and R 3 represents a hydrogen atom, a methyl group, a methoxy group, a chlorine atom. Represents an atom. X in (Chemical Formula 5) represents a substituent having the following structure, and R 4 represents a hydrogen atom, a methyl group, a methoxy group, or a chlorine atom.

【0012】[0012]

【化6】 Embedded image

【0013】本発明は、上記のような正孔輸送材料を使
用した結果、それらが優れた正孔輸送能力を有している
ばかりでなく、良好な薄膜を形成し、さらに熱的にも安
定であることが分かった。この結果、優れた発光安定
性、保存安定性を有する有機EL素子が実現できること
が明らかになり、表示素子として広範囲に利用すること
ができた。
According to the present invention, as a result of using the above-described hole transporting materials, not only do they have excellent hole transporting ability, but also they form good thin films and are thermally stable. It turned out to be. As a result, it was clarified that an organic EL device having excellent luminescence stability and storage stability could be realized, and could be widely used as a display device.

【0014】[0014]

【実施例】以下、本発明の実施例について、合成につい
ての実施例と素子についての実施例とに分けて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below by dividing into an embodiment relating to synthesis and an embodiment relating to elements.

【0015】本発明の正孔輸送材料であるヘキサアミン
化合物は、新規な化合物であり、これらは例えば相当す
るハロゲン化ビフェニリルジフェニルアミン4当量と相
当するジアミン化合物1当量を縮合反応させることによ
り合成することができる。これら縮合反応はウルマン反
応として知られる方法である。
The hexaamine compound which is the hole transporting material of the present invention is a novel compound, and can be synthesized, for example, by subjecting 4 equivalents of the corresponding biphenylyldiphenylamine halide to 1 equivalent of the corresponding diamine compound to a condensation reaction. Can be. These condensation reactions are methods known as the Ullmann reaction.

【0016】上記化合物の同定は、元素分析、赤外吸収
スペクトル測定により行ない、さらに再結晶法、真空昇
華法により精製し、純度を99.8%以上とした。純度
の確認はTLCスキャナー、TG−DTA、融点測定に
より行った。融点、分解点は正孔輸送層の熱安定性の目
安となり、ガラス転移点はガラス状態の安定性の目安と
なる。
The above compound was identified by elemental analysis and infrared absorption spectrum measurement, and further purified by a recrystallization method and a vacuum sublimation method to have a purity of 99.8% or more. The purity was confirmed by TLC scanner, TG-DTA, and melting point measurement. The melting point and the decomposition point are indicators of the thermal stability of the hole transport layer, and the glass transition point is an indicator of the stability of the glassy state.

【0017】(合成実施例1)ジフェニルアミン20.
3g(0.12モル)と4,4'−ジヨードビフェニル
60.9g(0.15モル)、無水炭酸カリウム19.
3g(0.14モル)、銅粉1.52g(0.024モ
ル)、ニトロベンゼン20mlを混合し、190〜20
5℃で21時間反応させた。反応生成物をトルエン20
0mlで抽出し、不溶分をろ別除去後、濃縮乾固した。
これをカラムクロマトにより精製して(担体;シリカゲ
ル、溶離液;トルエン/n−ヘキサン=1/3)、N−
(4'−ヨード−4ビフェニリル)−N,N−ジフェニ
ルアミン29.0g(収率54.1%)を得た。融点
は、139.5〜140.5℃であった。
Synthesis Example 1 Diphenylamine 20.
3 g (0.12 mol), 60.9 g (0.15 mol) of 4,4'-diiodobiphenyl and anhydrous potassium carbonate 19.
3 g (0.14 mol), 1.52 g (0.024 mol) of copper powder and 20 ml of nitrobenzene were mixed,
The reaction was performed at 5 ° C. for 21 hours. The reaction product was converted to toluene 20
The mixture was extracted with 0 ml, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness.
This was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/3), and N-
(4′-Iodo-4biphenylyl) -N, N-diphenylamine was obtained in an amount of 29.0 g (yield: 54.1%). The melting point was 139.5-140.5 ° C.

【0018】続いてN−(4'−ヨード−4−ビフェニ
リル)−N,N−ジフェニルアミン22.8g(0.0
51モル)、o−トリジン2.55g(0.012モ
ル)、無水炭酸カリウム6.91g(0.050モル)
及び銅粉0.64g(0.001モル)、ニトロベンゼ
ン10mlを混合し、200〜212℃で28時間反応
させた。反応生成物をトルエン160mlで抽出し、不
溶分をろ別除去後、濃縮乾固した。得られた固形物はカ
ラムクロマトにより精製して(担体;シリカゲル、溶離
液;トルエン/n−ヘキサン=1/1)、N,N,
N',N'−テトラキス(4'−ジフェニルアミノ−4−
ビフェニリル)−o−トリジン9.94g(収率;5
5.6%)を得た。得られた物は196〜203℃で融
解し明瞭な融点を示さなかった。元素分析値及び赤外線
吸収特性は以下の通りである。
Subsequently, 22.8 g of N- (4'-iodo-4-biphenylyl) -N, N-diphenylamine (0.0
51 mol), 2.55 g (0.012 mol) of o-tolidine, 6.91 g (0.050 mol) of anhydrous potassium carbonate
And 0.64 g (0.001 mol) of copper powder and 10 ml of nitrobenzene were mixed and reacted at 200 to 212 ° C. for 28 hours. The reaction product was extracted with 160 ml of toluene, the insolubles were removed by filtration, and the mixture was concentrated to dryness. The obtained solid was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/1), and N, N,
N ', N'-tetrakis (4'-diphenylamino-4-
9.94 g of biphenylyl) -o-tolidine (yield; 5
5.6%). The resulting product melted at 196-203 ° C and did not show a clear melting point. Elemental analysis values and infrared absorption characteristics are as follows.

【0019】元素分析値; 炭素:測定値88.67%
(理論値88.68%)、水素:測定値5.78%(理
論値5.68%)、窒素:測定値5.56%(理論値
5.64%)。
Elemental analysis value; carbon: measured value 88.67%
(Theoretical value 88.68%), hydrogen: measured value 5.78% (theoretical value 5.68%), nitrogen: measured value 5.56% (theoretical value 5.64%).

【0020】赤外線吸収特性;3026cm-1、158
9cm-1、1486cm-1、1314cm-1、1270
cm-1、1176cm-1、816cm-1、752c
-1、696cm-1
Infrared absorption characteristics: 3026 cm -1 , 158
9cm -1, 1486cm -1, 1314cm -1 , 1270
cm -1, 1176cm -1, 816cm -1 , 752c
m −1 , 696 cm −1 .

【0021】(合成実施例2)ジフェニルアミン20.
3g(0.12モル)と3,3'−ジメチル−4,4'−
ジヨードビフェニル65.1g(0.15モル)、無水
炭酸カリウム19.3g(0.14モル)、銅粉1.5
2g(0.024モル)、ニトロベンゼン20mlを混
合し、190〜205℃で21時間反応させた。反応生
成物をトルエン200mlで抽出し、不溶分をろ別除去
後、濃縮乾固した。これをカラムクロマトにより精製し
て(担体;シリカゲル、溶離液;トルエン/n−ヘキサ
ン=2/7)、N−(3,3'−ジメチル−4'−ヨード
−4ビフェニリル)−N,N−ジフェニルアミン32.
6g(収率57.2%)を得た。
(Synthesis Example 2) Diphenylamine 20.
3 g (0.12 mol) and 3,3′-dimethyl-4,4′-
65.1 g (0.15 mol) of diiodobiphenyl, 19.3 g (0.14 mol) of anhydrous potassium carbonate, 1.5 parts of copper powder
2 g (0.024 mol) and 20 ml of nitrobenzene were mixed and reacted at 190 to 205 ° C. for 21 hours. The reaction product was extracted with 200 ml of toluene, the insolubles were removed by filtration, and the mixture was concentrated to dryness. This was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 2/7), and N- (3,3′-dimethyl-4′-iodo-4biphenylyl) -N, N- Diphenylamine 32.
6 g (57.2% yield) was obtained.

【0022】続いてN−(3,3'−ジメチル−4'−ヨ
ード−4ビフェニリル)−N,N−ジフェニルアミン2
4.2g(0.051モル)、o−トリジン2.55g
(0.012モル)、無水炭酸カリウム6.91g
(0.050モル)及び銅粉0.64g(0.001モ
ル)、ニトロベンゼン10mlを混合し、200〜21
2℃で30時間反応させた。反応生成物をトルエン15
0mlで抽出し、不溶分をろ別除去後、濃縮乾固した。
得られた固形物はカラムクロマトにより精製して(担
体;シリカゲル、溶離液;トルエン/n−ヘキサン=3
/4)、N,N,N',N'−テトラキス(3,3'−ジ
メチル−4'−ジフェニルアミノ−4−ビフェニリル)
−o−トリジン9.48g(収率;49.3%)を得
た。得られた物は196〜212℃で融解し、明瞭な融
点を示さなかった。元素分析値及び赤外線吸収特性は以
下の通りである。
Subsequently, N- (3,3'-dimethyl-4'-iodo-4biphenylyl) -N, N-diphenylamine 2
4.2 g (0.051 mol), 2.55 g of o-tolidine
(0.012 mol), 6.91 g of anhydrous potassium carbonate
(0.050 mol), 0.64 g (0.001 mol) of copper powder, and 10 ml of nitrobenzene,
The reaction was performed at 2 ° C. for 30 hours. The reaction product was converted to toluene 15
The mixture was extracted with 0 ml, the insoluble matter was removed by filtration, and the mixture was concentrated to dryness.
The obtained solid is purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 3).
/ 4), N, N, N ', N'-tetrakis (3,3'-dimethyl-4'-diphenylamino-4-biphenylyl)
9.48 g (yield; 49.3%) of -o-tolidine was obtained. The resulting material melted at 196-212 ° C and did not show a distinct melting point. Elemental analysis values and infrared absorption characteristics are as follows.

【0023】元素分析値; 炭素:測定値88.53%
(理論値88.46%)、水素:測定値6.23%(理
論値6.29%)、窒素:測定値5.33%(理論値
5.25%)。
Elemental analysis value; carbon: measured value 88.53%
(Theoretical value 88.46%), hydrogen: measured value 6.23% (theoretical value 6.29%), nitrogen: measured value 5.33% (theoretical value 5.25%).

【0029】赤外線吸収特性;3020cm-1、295
0cm-1、2920cm -1、1587cm-1、1482
cm-1、1376cm-1、1267cm-1、1124c
-1、877cm-1、818cm-1、752cm-1、6
95cm-1
Infrared absorption characteristics: 3020 cm-1, 295
0cm-1, 2920cm -1, 1587cm-1, 1482
cm-1, 1376cm-1, 1267cm-1, 1124c
m-1, 877cm-1, 818cm-1, 752cm-1, 6
95cm-1.

【0024】次に、これらを実際に有機EL素子として
評価し、その素子の発光特性、発光特性の安定性、保存
安定性を検討した。有機EL素子は、図1に示すよう
に、ガラス基板1上に透明電極2としてITO電極をあ
らかじめ形成したものの上に、正孔輸送層3、電子輸送
層兼発光層4、Mg/Ag電極5の順に蒸着して作製し
た。まず、十分に洗浄したガラス基板(ITO電極は成
膜済み)、正孔輸送材、電子輸送性発光材として精製し
たアルミキノリン3量体を蒸着装置にセットした。10
-6torrまで排気した後、0.1nm/秒の速度で正
孔輸送層を蒸着した。膜厚は50nmとした。アルミキ
ノリン3量体の蒸着は同じく0.1nm/秒の速度で行
い、その膜厚は50nmとした。Mg/Ag電極は0.
4nm/秒の速度で行い、その厚さを100nmとし
た。これらの蒸着はいずれも真空を破らずに連続して行
った。また膜厚は水晶振動子によってモニターした。素
子作製後、直ちに乾燥窒素中で電極の取り出しを行い、
引続き特性測定を行った。
Next, these were actually evaluated as organic EL devices, and the light emitting characteristics, stability of the light emitting characteristics, and storage stability of the devices were examined. As shown in FIG. 1, the organic EL device has a hole transport layer 3, an electron transport layer / light emitting layer 4, and a Mg / Ag electrode 5 on a glass substrate 1 on which an ITO electrode is formed in advance as a transparent electrode 2. In this order. First, a sufficiently cleaned glass substrate (the ITO electrode had been formed), a hole transport material, and an aluminum quinoline trimer purified as an electron transport light emitting material were set in a vapor deposition apparatus. 10
After evacuation to -6 torr, a hole transport layer was deposited at a rate of 0.1 nm / sec. The film thickness was 50 nm. The deposition of the aluminum quinoline trimer was also performed at a rate of 0.1 nm / sec, and the film thickness was 50 nm. Mg / Ag electrode is 0.1mm.
The operation was performed at a speed of 4 nm / sec, and the thickness was set to 100 nm. All of these depositions were performed continuously without breaking vacuum. The film thickness was monitored by a quartz oscillator. Immediately after device fabrication, take out the electrodes in dry nitrogen,
Subsequently, the characteristics were measured.

【0025】得られた素子の発光特性は100mA/c
2 の電流を印加した場合の発光輝度で定義した。ま
た、発光の安定性は200cd/m2 の発光が得られる
電流を連続で印加し、その時の発光輝度の変化を測定し
た。発光の寿命を輝度が半分の100cd/m2 になる
までの時間と定義した。保存安定性は室温、乾燥空気中
に一定時間素子を放置後、20mA/cm2 の電流を印
加し、輝度が初期発光特性の半分になるまでの時間で定
義した。
The emission characteristics of the obtained device are 100 mA / c.
It was defined as the emission luminance when a current of m 2 was applied. In addition, the stability of light emission was measured by applying a current for obtaining light emission of 200 cd / m 2 continuously, and measuring a change in light emission luminance at that time. The lifetime of light emission was defined as the time required for the luminance to decrease to 100 cd / m 2 . The storage stability was defined as the time required for the device to stand for a certain period of time in dry air at room temperature, applying a current of 20 mA / cm 2 until the luminance became half of the initial light emission characteristics.

【0026】本発明の正孔輸送材料の評価のために発光
層としてアルミキノリン3量体を用いたが、むろん本発
明では発光層の材料として各種の希土類錯体、オキサゾ
ール誘導体、ポリパラフェニレンビニレンなどの各種の
材料を用いることができる。また、発光層にキナクリド
ンやクマリンなどのドーパントを添加することによりさ
らに高性能の有機EL素子を作製することができる。さ
らに電子輸送層、発光層、正孔輸送層の3層からなる有
機EL素子とすることもできる。また、本発明の正孔輸
送材料と適当な電子輸送材料とを組み合わせることによ
り、正孔輸送層を発光層として用いることもできる。
Although an aluminum quinoline trimer was used as the light emitting layer for evaluation of the hole transport material of the present invention, various rare earth complexes, oxazole derivatives, polyparaphenylene vinylene, etc. were used as the material of the light emitting layer in the present invention. Can be used. Further, by adding a dopant such as quinacridone or coumarin to the light emitting layer, an organic EL device with higher performance can be manufactured. Further, an organic EL device including three layers of an electron transport layer, a light emitting layer, and a hole transport layer can be provided. Further, by combining the hole transporting material of the present invention with an appropriate electron transporting material, the hole transporting layer can be used as a light emitting layer.

【0027】この様な検討の結果、正孔輸送材料が13
0℃以上の融点、300℃以上の分解点を有する場合に
は優れた発光の安定性、保存安定性が得られることが分
かった。したがって、上記化合物の置換基は本発明の置
換基に限らず、上記以上の融点、分解点を持つものであ
れば使用できる。
As a result of such examination, it was found that the hole transport material was 13
It was found that when the resin had a melting point of 0 ° C. or more and a decomposition point of 300 ° C. or more, excellent luminescence stability and storage stability were obtained. Therefore, the substituent of the above compound is not limited to the substituent of the present invention, and any compound having the above melting point and decomposition point can be used.

【0028】本発明の正孔輸送材料は単独で用いること
もできるが、2種類以上を共蒸着法などで蒸着して混合
状態で用いることができる。また、本発明の正孔輸送材
を従来の正孔輸送材であるTPACやTPDとの共蒸着
によって使用することができる。2種類以上を同時蒸着
して用いると、しばしばその結晶化を起こし難くする効
果がある。
The hole transport material of the present invention can be used alone, but two or more kinds can be used in a mixed state by vapor deposition by a co-evaporation method or the like. The hole transport material of the present invention can be used by co-evaporation with a conventional hole transport material such as TPAC or TPD. When two or more kinds are used by vapor deposition at the same time, there is an effect that crystallization often hardly occurs.

【0029】(素子実施例1)十分に洗浄したガラス基
板(ITO電極は成膜済み)、正孔輸送材としてヘキサ
アミン化合物(1)(R1 =H、R2 =H、R3 =H、
X=(A))、電子輸送性発光材として精製したアルミ
キノリン3量体を蒸着装置にセットした。0.1nm/
秒の速度で化合物(1)を50nmの厚さで蒸着した。
なお膜厚は水晶振動子によってモニターした。アルミキ
ノリンの蒸着は同じく0.1nm/秒の速度で行い、そ
の膜厚は50nmとした。Mg/Ag電極は0.4nm
/秒の速度で行い、その厚さを100nmとした。これ
らの蒸着はいずれも真空を破らずに連続して行った。素
子作製後、直ちに乾燥窒素中で電極の取り出しを行い、
引続き特性測定を行った。発光特性は1400cd/m
2 、発光の寿命は700Hr、保存安定性は2100H
rであった。
(Embodiment 1) A sufficiently cleaned glass substrate (ITO electrode is already formed), a hexaamine compound (1) (R 1 = H, R 2 = H, R 3 = H,
X = (A)), an aluminum quinoline trimer purified as an electron transporting luminescent material was set in a vapor deposition apparatus. 0.1 nm /
Compound (1) was deposited to a thickness of 50 nm at a rate of seconds.
The film thickness was monitored using a quartz oscillator. The deposition of aluminum quinoline was also performed at a rate of 0.1 nm / sec, and the film thickness was 50 nm. 0.4 nm for Mg / Ag electrode
/ Sec at a rate of 100 nm. All of these depositions were performed continuously without breaking vacuum. Immediately after the device fabrication, take out the electrode in dry nitrogen,
Subsequently, the characteristics were measured. Light emission characteristics are 1400 cd / m
2 、 Emission life is 700Hr, storage stability is 2100H
r.

【0030】比較のために正孔輸送材として(化3:略
称TPD)、(化4:略称TPAC)を用いて同じ条件
で有機EL素子を作製しその特性を調べた。TPDでの
発光特性、発光の寿命特性、保存安定性はそれぞれ、2
200cd/m2 、220Hr、460Hrであった。
一方、TPACでの発光特性、発光の寿命特性、保存安
定性はそれぞれ、2500cd/m2 、280Hr、5
60Hrであった。このことから本実施例によるヘキサ
アミン化合物(1)は発光寿命、保存安定性に優れてい
ることが分かった。
For comparison, an organic EL device was manufactured under the same conditions using (Chem. 3: TPD for short) and (Chem. 4: TPAC for short) as a hole transport material, and the characteristics thereof were examined. The emission characteristics, emission lifetime characteristics, and storage stability of TPD are 2
200 cd / m 2 , 220 Hr and 460 Hr.
On the other hand, the light emission characteristics, light emission lifetime characteristics, and storage stability in TPAC are 2500 cd / m 2 , 280 Hr, 5
It was 60 hours. From this, it was found that the hexaamine compound (1) according to the present example was excellent in light emission life and storage stability.

【0031】上記と同様の方法でそれぞれ、ヘキサアミ
ン化合物(2)(R1 =H、R2 =H、R3=H、X=
(B))、(3)(R1 =H、R2 =H、R3 =Cl、
X=(B))、(4)(R1 =H、R2 =H、R3
H、X=(C))、(5)(R 1=H、R2 =H、R3
=H、X=(D)、R4 =H)、(6)(R1 =4−t
−Bu、R2 =4−t−Bu、R3 =H、X=(D)、
4 =H)、(7)(R 1=4−t−Bu、R2 =4−
t−Bu、R3 =H、X=(E))、(8)(R1 =4
−C6 4 、R2 =4−C6 4 、R3 =H、X=
(F))、(9)(R1=4−(p−CH3 −C
6 4 )、R2 =4−(p−CH3 −C6 4 )、R3
=H、X=(G))、(10)(R1 =4−OCH3
2 =4−OCH3 、R 3=H、X=(H))、(1
1)(R1 =H、R2 =H、R3 =Cl、X=
(I))、(12)(R1 =4−CH3 、R2 =4−C
3 、R3 =H、X=(J))を正孔輸送材として使用
した有機EL素子を作製し、その特性を評価した。その
結果を図2に示す。このことから本実施例によるヘキサ
アミン化合物(1)〜(12)は発光寿命、保存安定性
に優れていることが分かった。
In the same manner as described above,
Compound (2) (R1= H, RTwo= H, RThree= H, X =
(B)), (3) (R1= H, RTwo= H, RThree= Cl,
X = (B)), (4) (R1= H, RTwo= H, RThree=
H, X = (C)), (5) (R 1= H, RTwo= H, RThree
= H, X = (D), RFour= H), (6) (R1= 4-t
-Bu, RTwo= 4-t-Bu, RThree= H, X = (D),
RFour= H), (7) (R 1= 4-t-Bu, RTwo= 4-
t-Bu, RThree= H, X = (E)), (8) (R1 = 4
-C6HFour, RTwo= 4-C6HFour, RThree= H, X =
(F)), (9) (R1= 4- (p-CHThree-C
6HFour), RTwo= 4- (p-CHThree-C6HFour), RThree
= H, X = (G)), (10) (R1= 4-OCHThree,
RTwo= 4-OCHThree, R Three= H, X = (H)), (1
1) (R1= H, RTwo= H, RThree= Cl, X =
(I)), (12) (R1= 4-CHThree, RTwo= 4-C
HThree, RThree= H, X = (J)) as hole transport material
An organic EL device was produced and its characteristics were evaluated. That
The results are shown in FIG. This indicates that the hexa-
Amine compounds (1) to (12) have emission lifetime and storage stability
It turned out to be excellent.

【0032】(素子実施例2)素子実施例1と同様の方
法でそれぞれ、(化7)で記述されるテトラアミン化合
物(13)(R1 =H、R2 =H、R3 =H)とヘキサ
アミン化合物(5)(R1 =H、R2 =H、R3 =H、
4 =H、X=(D))を共蒸着し、正孔輸送材として
使用した有機EL素子を作製し、その特性を評価した。
発光特性は1900cd/m2 、発光の寿命は1100
Hr、保存安定性は3500Hrであった。その結果か
ら本実施例によるテトラアミン化合物(13)とヘキサ
アミン化合物(5)の共蒸着によって形成された正孔輸
送層は発光寿命、保存安定性に優れていることが分かっ
た。
(Embodiment 2) In the same manner as in Embodiment 1, each of the tetraamine compound (13) (R 1 = H, R 2 = H, R 3 = H) described in Chemical Formula 7 was used. Hexaamine compound (5) (R 1 = H, R 2 = H, R 3 = H,
R 4 = H, X = (D)) were co-evaporated to produce an organic EL device used as a hole transport material, and its characteristics were evaluated.
The light emission characteristic is 1900 cd / m 2 and the light emission lifetime is 1100.
Hr and storage stability were 3500 Hr. From the results, it was found that the hole transport layer formed by co-evaporation of the tetraamine compound (13) and the hexaamine compound (5) according to the present example was excellent in light emission lifetime and storage stability.

【0033】[0033]

【化7】 Embedded image

【0034】[0034]

【発明の効果】以上の様に本発明は、正孔輸送層の材料
として、ヘキサアミン化合物を用いたことを特徴とする
電界発光素子であり、本発明の材料を用いることによ
り、従来の有機EL素子の最も大きな問題点であった発
光安定性、保存安定性を格段に改良したEL素子を実現
することができる。
As described above, the present invention relates to an electroluminescent device characterized by using a hexaamine compound as the material of the hole transport layer. It is possible to realize an EL device in which luminescence stability and storage stability, which are the most serious problems of the device, are significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における電界発光素子の構成
を示す部分断面拡大斜視図
FIG. 1 is an enlarged partial cross-sectional perspective view showing a configuration of an electroluminescent device according to an embodiment of the present invention.

【図2】本発明の別の実施例における正孔輸送層として
ヘキサアミン化合物を用いた電界発光素子の特性を示す
一覧図
FIG. 2 is a list showing characteristics of an electroluminescent device using a hexaamine compound as a hole transport layer according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 正孔輸送層 4 電子輸送層兼発光層 5 Mg/Ag電極 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3 Hole transport layer 4 Electron transport layer and light emitting layer 5 Mg / Ag electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福山 正雄 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 村上 睦明 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 富山 裕光 茨城県つくば市御幸が丘45番地 保土谷化 学工業株式会社筑波研究所内 (72)発明者 伊原 郁子 茨城県つくば市御幸が丘45番地 保土谷化 学工業株式会社筑波研究所内 Fターム(参考) 3K007 AB02 AB06 AB11 AB14 DB03 4H006 AA03 AB91  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masao Fukuyama 3-10-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa Prefecture Inside Matsushita Giken Co., Ltd. (72) Mutsuaki Murakami 3-chome, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa No. 10 Matsushita Giken Co., Ltd. (72) Inventor Hiromitsu Toyama 45 Miyukigaoka, Tsukuba, Ibaraki Pref. Address F-term in Hodogaya Chemical Industry Co., Ltd. Tsukuba Research Laboratories (reference) 3K007 AB02 AB06 AB11 AB14 DB03 4H006 AA03 AB91

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式で記述されるヘキサアミン化
合物を用いたことを特徴とする電界発光素子。 【化1】 ただし、R1 、R2 は水素原子、低級アルキル基、低級
アルコキシ基、置換または無置換のアリール基を表し、
3 は水素原子、メチル基、メトキシ基、塩素原子を表
す。またXは以下の構造を有する置換基を表す。 【化2】 このうちR4 は水素原子、メチル基、メトキシ基、塩素
原子を表す。
1. An electroluminescent device using a hexaamine compound represented by the following general formula. Embedded image However, R 1 and R 2 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, a substituted or unsubstituted aryl group,
R 3 represents a hydrogen atom, a methyl group, a methoxy group, or a chlorine atom. X represents a substituent having the following structure. Embedded image R 4 represents a hydrogen atom, a methyl group, a methoxy group, or a chlorine atom.
【請求項2】 請求項1に記載の一般式で記述されるヘ
キサアミン化合物を用いたことを特徴とする熱安定性電
界発光素子。
2. A thermostable electroluminescent device comprising a hexaamine compound represented by the general formula according to claim 1.
【請求項3】 基板の上に下層から順番に積層された電
極、正孔輸送層、発光層、電子輸送層および電極を有す
ることを特徴とする請求項1または2記載の電界発光素
子。
3. The electroluminescent device according to claim 1, further comprising an electrode, a hole transporting layer, a light emitting layer, an electron transporting layer, and an electrode laminated in order from a lower layer on the substrate.
【請求項4】 基板の上に下層から順番に積層された電
極、正孔輸送層、発光層、電子輸送層および電極を有
し、上記正孔輸送層として、請求項1または請求項2記
載のヘキサアミン化合物の内から選定された少なくとも
2種類を含む材料を用いたことを特徴とする電界発光素
子。
4. The semiconductor device according to claim 1, further comprising an electrode, a hole transport layer, a light emitting layer, an electron transport layer, and an electrode laminated in order from a lower layer on the substrate, wherein the hole transport layer is used as the hole transport layer. An electroluminescent device using a material containing at least two kinds selected from the above hexaamine compounds.
【請求項5】 電子輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
5. The electroluminescent device according to claim 3, wherein the electron transport layer also serves as a light emitting layer.
【請求項6】 正孔輸送層が発光層を兼ねていることを
特徴とする請求項3または4記載の電界発光素子。
6. The electroluminescent device according to claim 3, wherein the hole transport layer also functions as a light emitting layer.
JP2002083871A 2002-03-25 2002-03-25 Electroluminescent device Expired - Lifetime JP3745296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083871A JP3745296B2 (en) 2002-03-25 2002-03-25 Electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083871A JP3745296B2 (en) 2002-03-25 2002-03-25 Electroluminescent device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6132744A Division JPH07331238A (en) 1993-11-01 1994-06-15 Electroluminescent element

Publications (2)

Publication Number Publication Date
JP2002343577A true JP2002343577A (en) 2002-11-29
JP3745296B2 JP3745296B2 (en) 2006-02-15

Family

ID=19193402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083871A Expired - Lifetime JP3745296B2 (en) 2002-03-25 2002-03-25 Electroluminescent device

Country Status (1)

Country Link
JP (1) JP3745296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP2008222558A (en) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp Organic compound, composition for use in organic electroluminescent device, thin film for use in organic electroluminescent device, and organic electroluminescent device
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827639B1 (en) 2006-11-07 2008-05-07 네오뷰코오롱 주식회사 Amine compound and organic light-emitting diode including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element
JPH07126615A (en) * 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd Electroluminescence device
JPH0848656A (en) * 1994-02-08 1996-02-20 Tdk Corp Compound for organic el element and organic el element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061972A (en) * 1991-06-05 1994-01-11 Sumitomo Chem Co Ltd Organic electroluminescent element
JPH07126615A (en) * 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd Electroluminescence device
JPH0848656A (en) * 1994-02-08 1996-02-20 Tdk Corp Compound for organic el element and organic el element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085599A (en) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP4581355B2 (en) * 2003-09-09 2010-11-17 東洋インキ製造株式会社 Organic electroluminescence device
JP2008222558A (en) * 2007-03-08 2008-09-25 Mitsubishi Chemicals Corp Organic compound, composition for use in organic electroluminescent device, thin film for use in organic electroluminescent device, and organic electroluminescent device
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element

Also Published As

Publication number Publication date
JP3745296B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP3194657B2 (en) EL device
EP1698613B1 (en) Tetramine compound and organic electroluminescence element
US7255938B2 (en) Organic electroluminescent device and organic compound for use in organic electroluminescent device
JP2003040873A (en) New quinoxaline derivative and organic electroluminescent element utilizing the same
KR100478520B1 (en) Blue light-emitting compound and display device adopting light-emitting compound as color-developing substance
JPH07126226A (en) Benzidine compound
JP2000086595A (en) Triphenylamine derivative and organic electroluminescent element using the same
JP2003264086A (en) Organic electroluminescence element
WO2005092857A1 (en) Carbazole derivative containing fluorene group and organic electroluminescent element
JP3274939B2 (en) EL device
US6531234B1 (en) Organic electroluminescence device and method of its manufacture
JP3525034B2 (en) Organic electroluminescence device
JPH07331238A (en) Electroluminescent element
JP3529735B2 (en) Electroluminescent device
JP3745296B2 (en) Electroluminescent device
JP2004292766A (en) Organic electroluminescent element material
JP3880967B2 (en) Compound for electroluminescent device
JPH083122A (en) Hexaamine compound
JPH10231476A (en) Organic el element
JP3787945B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP4491264B2 (en) Arylamine compounds
KR100589940B1 (en) Porphines - platinum metal complex compounds for organic electroluminescent device and organic electroluminescent device using them
JP4308560B2 (en) Organometallic complex, its ligand, and organic EL device
JP3742095B2 (en) Electroluminescent device
JP2000212103A (en) Aromatic methylidene compound, aromatic aldehyde compound for producing the compound and production of these compounds

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term