JP2002333242A - Vapor compression heat pump - Google Patents

Vapor compression heat pump

Info

Publication number
JP2002333242A
JP2002333242A JP2001137415A JP2001137415A JP2002333242A JP 2002333242 A JP2002333242 A JP 2002333242A JP 2001137415 A JP2001137415 A JP 2001137415A JP 2001137415 A JP2001137415 A JP 2001137415A JP 2002333242 A JP2002333242 A JP 2002333242A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
leeward
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001137415A
Other languages
Japanese (ja)
Inventor
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001137415A priority Critical patent/JP2002333242A/en
Publication of JP2002333242A publication Critical patent/JP2002333242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform effective defrosting with constant stability in a defrosting operation while performing expected function of absorbing heat from outside air with constant stability in the defrosting operation. SOLUTION: In a normal operation, refrigerant R is sequentially circulated, in a refrigerant circuit, through a compressor 1, a radiating heat exchanger 2, an expansion mechanism 4, a parallel-connected circuit or serially-connected circuit of a windward part 3A and a lee part 3B in an endothermic heat exchanger 3, and the compressor 1. In the defrosting operation, the refrigerant R is sequentially circulated through the compressor 1, a parallel-connected circuit of the radiating heat exchanger 2 and the upstream part 3A of the endothermic heat exchanger 3, and the compressor 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は外気から吸熱させる
蒸気圧縮式ヒートポンプに関し、詳しくは、蒸発器とし
て外気に対し吸熱作用させる吸熱用熱交換器を、外気通
風路において風上側に位置させる風上側部分と風下側に
位置させる風下側部分とに分割し、吸熱用熱交換器の風
上側部分及び風下側部分の両方を蒸発器として機能させ
る通常運転と、吸熱用熱交換器の風下側部分を蒸発器と
して機能させ、かつ、吸熱用熱交換器の風上側部分を凝
縮器として機能させる除霜運転との切り換えを可能にし
てある蒸気圧縮式ヒートポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression heat pump for absorbing heat from outside air, and more particularly, to a windward side in which a heat absorbing heat exchanger acting as an evaporator for absorbing heat to outside air is located on the windward side in an outside air ventilation passage. Normal operation in which both the leeward side part and the leeward side part of the heat absorbing heat exchanger function as an evaporator, and the leeward side part of the heat absorbing heat exchanger. The present invention relates to a vapor compression heat pump capable of functioning as an evaporator and capable of switching to a defrosting operation in which an upwind portion of a heat absorbing heat exchanger functions as a condenser.

【0002】[0002]

【従来の技術】上記のヒートポンプは、除霜運転におい
て吸熱用熱交換器の風上側部分を凝縮器として機能させ
ながら、吸熱用熱交換器の風下側部分を蒸発器として機
能させることで、風上側部分での凝縮器としての発生熱
により除霜(一般に吸熱用熱交換器での着霜は風上側部
分で生じる)を行ないながらも、蒸発器としての風下側
部分において外気からの吸熱を継続できる利点がある
が、従来、この種のヒートポンプでは、通常運転の際、
冷媒を圧縮機―放熱用熱交換器(凝縮器)―膨張機構―
吸熱用熱交換器の風上側部分(蒸発器)と風下側部分
(蒸発器)との並列接続回路又は直列接続回路―圧縮機
の順に循環させるのに対し、除霜運転の際は、冷媒を圧
縮機―放熱用熱交換器(凝縮器)―吸熱用熱交換器の風
上側部分(凝縮器)―膨張機構―吸熱用熱交換器の風下
側部分(蒸発器)―圧縮機の順に循環させる冷媒回路構
成を採っていた(特開平4−174266号公報参
照)。
2. Description of the Related Art In the above-described heat pump, a windward portion of a heat absorbing heat exchanger functions as a condenser while a leeward portion of the heat absorbing heat exchanger functions as an evaporator in a defrosting operation. While defrosting by heat generated as a condenser in the upper part (generally frost formation in the heat exchanger for heat absorption occurs in the windward part), heat absorption from outside air is continued in the leeward part as an evaporator Although there are advantages that can be achieved, conventionally, this type of heat pump, during normal operation,
Refrigerant compressor-heat exchanger for heat dissipation (condenser)-expansion mechanism-
In a parallel connection circuit or a series connection circuit of the windward side part (evaporator) and the leeward side part (evaporator) of the heat absorbing heat exchanger, the refrigerant is circulated in the order of the compressor. Compressor-heat exchanger for heat radiation (condenser)-windward part of heat exchanger for heat absorption (condenser)-expansion mechanism-leeward part of heat exchanger for heat absorption (evaporator)-circulates in order of compressor A refrigerant circuit configuration is employed (see Japanese Patent Application Laid-Open No. 4-174266).

【0003】[0003]

【発明が解決しようとする課題】しかし、この従来のヒ
ートポンプでは、除霜運転の際、圧縮機から吐出される
高温高圧の気相冷媒のうちの多くが上流側の放熱用熱交
換器で凝縮して、下流側に位置する吸熱用熱交換器の風
上側部分での冷媒凝縮による発熱量が小さいものに制限
されてしまい、このことで、除霜が効果的に行なわれな
くなる場合が生じる問題があった。
However, in this conventional heat pump, during defrosting operation, most of the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor is condensed in the upstream heat-radiating heat exchanger. As a result, the amount of heat generated by the condensation of the refrigerant at the windward side of the heat-absorbing heat exchanger located on the downstream side is limited to a small amount, and this may cause a problem that defrosting may not be performed effectively. was there.

【0004】また、これに対し除霜を効果的に行なうの
に、除霜運転において冷媒を圧縮機―吸熱用熱交換器の
風上側部分(凝縮器)―放熱用熱交換器(凝縮器)−膨
張機構―吸熱用熱交換器の風下側部分(蒸発器)−圧縮
機の順に循環させるといったことも考えられるが、この
場合は逆に、圧縮機から吐出冷媒のうちの多くが上流側
に位置する吸熱用熱交換器の風上側部分で凝縮(特にこ
の風上側部分は着霜状態にあることから冷媒凝縮が顕著
に進む)して、下流側の放熱用熱交換器での冷媒凝縮に
よる発熱量が小さいものに制限され、このことで、除霜
運転中も外気からの吸熱を行なえる(すなわち、放熱用
熱交換器で発生熱を得られる)という所期の機能が十分
に発揮されなくなる場合が生じる問題を招く。
On the other hand, in order to effectively perform defrosting, in the defrosting operation, the refrigerant is compressed by the compressor, the windward side of the heat exchanger for heat absorption (condenser), and the heat exchanger for heat dissipation (condenser). -It is conceivable to circulate in the order of the expansion mechanism-the leeward side part of the heat exchanger for heat absorption (evaporator)-the compressor, but in this case, conversely, most of the refrigerant discharged from the compressor flows upstream. Condensation occurs at the windward side of the located heat absorbing heat exchanger (especially because the windward side is in a frosted state, condensing the refrigerant remarkably), and the refrigerant is condensed at the downstream heat releasing heat exchanger. The calorific value is limited to a small value, which makes it possible to absorb heat from the outside air even during the defrosting operation (that is, to obtain the heat generated by the heat exchanger for heat dissipation), and thus the desired function is sufficiently exhibited. This leads to a problem that it may disappear.

【0005】この実情に鑑み、本発明の主たる課題は、
合理的な除霜形態を採ることにより上記の如き問題を効
果的に解消する点にある。
[0005] In view of this situation, the main problems of the present invention are:
The problem is to solve the above-mentioned problem effectively by adopting a reasonable defrosting mode.

【0006】[0006]

【課題を解決するための手段】〔1〕請求項1に係る発
明は蒸気圧縮式ヒートポンプに係り、その特徴は、蒸発
器として外気に対し吸熱作用させる吸熱用熱交換器を、
外気通風路において風上側に位置させる風上側部分と風
下側に位置させる風下側部分とに分割し、前記吸熱用熱
交換器の風上側部分及び風下側部分の両方を蒸発器とし
て機能させる通常運転と、前記吸熱用熱交換器の風下側
部分を蒸発器として機能させ、かつ、前記吸熱用熱交換
器の風上側部分を凝縮器として機能させる除霜運転との
切り換えを可能にする蒸気圧縮式ヒートポンプにおい
て、前記通常運転では、冷媒を圧縮機―放熱用熱交換器
―膨張機構―吸熱用熱交換器の風上側部分と風下側部分
との並列接続回路又は直列接続回路―圧縮機の順に循環
させ、かつ、前記除霜運転では、冷媒を圧縮機―放熱用
熱交換器と吸熱用熱交換器の風上側部分との並列接続回
路―膨張機構―吸熱用熱交換器の風下側部分―圧縮機の
順に循環させる冷媒回路構成にしてある点にある。
Means for Solving the Problems [1] The invention according to claim 1 relates to a vapor compression heat pump. The feature of the invention is that a heat absorbing heat exchanger that acts as an evaporator to absorb heat to outside air is provided.
Normal operation in which a windward portion located on the leeward side and a leeward portion located on the leeward side in the outside air ventilation path are divided, and both the leeward side portion and the leeward side portion of the heat absorbing heat exchanger function as an evaporator. And a vapor compression type that allows switching to a defrosting operation in which the leeward portion of the heat absorbing heat exchanger functions as an evaporator, and the leeward portion of the heat absorbing heat exchanger functions as a condenser. In the heat pump, in the normal operation, the refrigerant is circulated in the order of a compressor, a heat-dissipating heat exchanger, an expansion mechanism, a parallel connection circuit or a series connection circuit of a windward portion and a leeward portion of a heat-absorption heat exchanger, and a compressor. And, in the defrosting operation, the refrigerant is compressed by a compressor-a parallel connection circuit of a heat radiation heat exchanger and a windward portion of a heat absorption heat exchanger-an expansion mechanism-a leeward portion of the heat absorption heat exchanger-compression Refrigerant circulated in the order of the machine Lies in that is the road construction.

【0007】つまり、この構成によれば、通常運転では
上記の冷媒循環により、放熱用熱交換器を凝縮器として
機能させるのに対し、吸熱用熱交換器における並列接続
又は直列接続の風上側部分と風下側部分との両方を蒸発
器として機能させ、これにより、それら風上側部分と風
下側部分との両方を通風外気に対して吸熱作用させるこ
とができる。
In other words, according to this configuration, in the normal operation, the heat radiating heat exchanger functions as a condenser by the above-described refrigerant circulation, whereas the heat absorbing heat exchanger has a parallel-connected or series-connected windward portion. The leeward portion and the leeward portion both function as an evaporator, whereby both the leeward portion and the leeward portion can endothermic the outside air.

【0008】また、除霜運転では上記冷媒循環により、
放熱用熱交換器及び吸熱用熱交換器の風上側部分を凝縮
器として機能させるのに対し、吸熱用熱交換器の風下側
部分を蒸発器として機能させ、これにより、吸熱用熱交
換器の風上側部分での発生熱により除霜を行ないながら
吸熱用熱交換器の風下側部分により外気からの吸熱を継
続できるようにするが、このことにおいて、上記の如く
圧縮機からの吐出冷媒を放熱用熱交換器と吸熱用熱交換
器の風上側部分とに対し並列に供給する冷媒循環形態を
採ることから、それら並列状態の放熱用熱交換器と吸熱
用熱交換器の風上側部分とに対する圧縮機吐出冷媒の分
配比(分流比)を適当に規定しておけば、圧縮機からの
吐出冷媒のうちの多くが放熱用熱交換器で凝縮して吸熱
用熱交換器の風上側部分での冷媒凝縮による発熱量が小
さいものに制限されるといったことや、逆に圧縮機から
吐出冷媒の多くが吸熱用熱交換器の風上側部分で凝縮し
て放熱用熱交換器での冷媒凝縮による発熱量が小さいも
のに制限されるといったことが生じるのを効果的に防止
することができる。
[0008] In the defrosting operation, the above-described refrigerant circulation causes
While the leeward side of the heat exchanger for heat radiation and the heat exchanger for heat absorption functions as a condenser, the leeward side of the heat exchanger for heat absorption functions as an evaporator, thereby the heat exchanger for heat absorption. While the leeward portion of the heat absorbing heat exchanger can continue absorbing heat from the outside air while performing defrosting by the heat generated in the leeward portion, in this case, the refrigerant discharged from the compressor is radiated as described above. Since the refrigerant circulation form is used to supply the heat exchanger in parallel and the windward portion of the heat exchanger for heat absorption to the heat exchanger for heat dissipation and the windward portion of the heat exchanger for heat absorption in the parallel state. If the distribution ratio (division ratio) of the refrigerant discharged from the compressor is appropriately specified, most of the refrigerant discharged from the compressor is condensed in the heat exchanger for heat radiation and is condensed in the windward portion of the heat exchanger for heat absorption. Heat generation by refrigerant condensation is limited to Conversely, most of the refrigerant discharged from the compressor is condensed on the windward side of the heat absorbing heat exchanger, and the amount of heat generated by condensation of the refrigerant in the heat releasing heat exchanger is limited to a small amount. This can be effectively prevented.

【0009】すなわち、このことにより、除霜運転にお
いて効果的な除霜を常に安定的に行なえるようにしなが
ら、除霜運転中も外気からの吸熱を行なえるという所期
の機能も常に安定的に発揮させることができ、この点
で、除霜運転において圧縮機からの吐出冷媒を放熱用熱
交換器と吸熱用熱交換器の風上側部分とに対しその順に
あるいは逆の順で直列に通過させる先述の如きヒートポ
ンプに比べ一層優れたヒートポンプにすることができ
る。
That is, the desired function of absorbing heat from the outside air during the defrosting operation is always stable while the effective defrosting can always be performed stably in the defrosting operation. At this point, the refrigerant discharged from the compressor passes in series in that order or in the reverse order to the heat-radiating heat exchanger and the windward portion of the heat-absorbing heat exchanger in this point in the defrosting operation. Thus, a heat pump that is more excellent than the above-described heat pump can be obtained.

【0010】なお、請求項1に係る発明の実施にあた
り、除霜運転において並列状態の放熱用熱交換器と吸熱
用熱交換器の風上側部分との夫々から送出される凝縮冷
媒を膨張機構を通じて吸熱用熱交換器の風下側部分に送
るには、それら送出冷媒を共通の膨張機構を通じて吸熱
用熱交換器の風下側部分に送る形態、あるいはまた、各
別の膨張機構を通じて吸熱用熱交換器の風下側部分に送
る形態のいずれを採用してもよい。
In carrying out the invention according to the first aspect, the condensed refrigerant sent from each of the heat-dissipating heat exchanger and the windward portion of the heat-absorbing heat exchanger in a parallel state in the defrosting operation is supplied through an expansion mechanism. In order to send the refrigerant to the leeward part of the heat exchanger for heat absorption, the refrigerant to be sent is sent to the leeward part of the heat exchanger for heat absorption through a common expansion mechanism, or alternatively, the heat exchanger for heat absorption through a separate expansion mechanism. Any of the forms of sending to the leeward side portion of the sheet may be adopted.

【0011】また、除霜運転において並列状態の放熱用
熱交換器と吸熱用熱交換器の風上側部分とに対する圧縮
機吐出冷媒の分配比を規定するのに、その冷媒分配比を
運転状態や吸熱用熱交換器の着霜状態などに応じて自動
的に調整する調整弁を設けるようにしてもよい。
Further, in the defrosting operation, the distribution ratio of the refrigerant discharged from the compressor to the radiating heat exchanger and the windward side portion of the heat absorbing heat exchanger in a parallel state is defined. An adjusting valve that automatically adjusts according to the frosting state of the heat absorbing heat exchanger may be provided.

【0012】〔2〕請求項2に係る発明は蒸気圧縮式ヒ
ートポンプに係り、その特徴は、蒸発器として外気に対
し吸熱作用させる吸熱用熱交換器を、外気通風路におい
て風上側に位置させる風上側部分と風下側に位置させる
風下側部分とに分割し、前記吸熱用熱交換器の風上側部
分及び風下側部分の両方を蒸発器として機能させる通常
運転と、前記吸熱用熱交換器の風下側部分を蒸発器とし
て機能させ、かつ、前記吸熱用熱交換器の風上側部分を
凝縮器として機能させる除霜運転との切り換えを可能に
する蒸気圧縮式ヒートポンプにおいて、前記通常運転で
は、冷媒を圧縮機―放熱用熱交換器―膨張機構―吸熱用
熱交換器の風上側部分と風下側部分との並列接続回路又
は直列接続回路―圧縮機の順に循環させ、かつ、前記除
霜運転では、冷媒を圧縮機―放熱用熱交換器―膨張機構
―吸熱用熱交換器の風下側部分―圧縮機の順に循環させ
るとともに、それに併行して冷媒を圧縮機―吸熱用熱交
換器の風上側部分―圧縮機の順に循環させる冷媒回路構
成にしてある点にある。
[2] The invention according to claim 2 relates to a vapor compression heat pump, which is characterized in that a heat absorbing heat exchanger acting as an evaporator for absorbing heat to the outside air is located on the windward side in the outside air ventilation path. A normal operation in which an upper part and a leeward part positioned on the leeward side are divided, and both the leeward part and the leeward part of the heat absorbing heat exchanger function as an evaporator; and the leeward of the heat absorbing heat exchanger. In a vapor compression heat pump that allows a side portion to function as an evaporator, and that can be switched to a defrosting operation in which the windward portion of the heat-absorbing heat exchanger functions as a condenser, the normal operation uses a refrigerant. In the compressor-heat dissipation heat exchanger-expansion mechanism-parallel connection circuit or series connection circuit of the windward side part and the leeward side part of the heat absorption heat exchanger-circulates in the order of the compressor, and in the defrosting operation, Refrigerant Compressor-heat exchanger for heat dissipation-expansion mechanism-leeward part of heat exchanger for heat absorption-circulates in the order of compressor, and at the same time, refrigerant-compressor-windward part of heat exchanger for heat absorption-compression The point is that the refrigerant circuit is configured to circulate in the order of the machines.

【0013】つまり、この構成によれば、通常運転では
上記の冷媒循環により、放熱用熱交換器を凝縮器として
機能させるのに対し、吸熱用熱交換器における並列接続
又は直列接続の風上側部分と風下側部分との両方を蒸発
器として機能させ、これにより、それら風上側部分と風
下側部分との両方を通風外気に対して吸熱作用させるこ
とができる。
In other words, according to this configuration, in the normal operation, the heat radiating heat exchanger functions as a condenser by the above-described refrigerant circulation, whereas the heat absorbing heat exchanger is connected in parallel or in series in the windward side. The leeward portion and the leeward portion both function as an evaporator, whereby both the leeward portion and the leeward portion can endothermic the outside air.

【0014】また、除霜運転では上記冷媒循環により、
放熱用熱交換器及び吸熱用熱交換器の風上側部分を凝縮
器として機能させるのに対し、吸熱用熱交換器の風下側
部分を蒸発器として機能させ、これにより、吸熱用熱交
換器の風上側部分での発生熱により除霜を行ないながら
吸熱用熱交換器の風下側部分により外気からの吸熱を継
続できるようにするが、このことにおいて、上記の如く
冷媒を圧縮機―放熱用熱交換器―膨張機構―吸熱用熱交
換器の風下側部分―圧縮機の順に循環させるとともに、
それに併行して冷媒を圧縮機―吸熱用熱交換器の風上側
部分―圧縮機の順に循環させる冷媒循環形態を採ること
から、それら並列状態の2つの循環系統に対する圧縮機
吐出冷媒の分配比(分流比)を適当に規定しておけば、
圧縮機からの吐出冷媒のうちの多くが放熱用熱交換器で
凝縮して吸熱用熱交換器の風上側部分での冷媒凝縮によ
る発熱量が小さいものに制限されるといったことや、逆
に圧縮機から吐出冷媒の多くが吸熱用熱交換器の風上側
部分で凝縮して放熱用熱交換器での冷媒凝縮による発熱
量が小さいものに制限されるといったことが生じるのを
効果的に防止することができる。
Further, in the defrosting operation, the above-mentioned refrigerant circulation causes
While the leeward side of the heat exchanger for heat radiation and the heat exchanger for heat absorption functions as a condenser, the leeward side of the heat exchanger for heat absorption functions as an evaporator, thereby the heat exchanger for heat absorption. The heat absorption from the outside air can be continued by the leeward portion of the heat absorbing heat exchanger while defrosting by the heat generated in the leeward portion. In this case, as described above, the refrigerant is transferred to the compressor by the radiating heat. Exchanger-expansion mechanism-leeward side of heat exchanger for heat absorption-circulating in order of compressor,
At the same time, since the refrigerant circulates in the order of the compressor, the windward part of the heat exchanger for heat absorption, and the compressor, the distribution ratio of the refrigerant discharged from the compressor to the two circulation systems in a parallel state is adopted. If the flow ratio is appropriately defined,
Most of the refrigerant discharged from the compressor is condensed in the heat-dissipating heat exchanger, and the amount of heat generated by refrigerant condensation on the windward side of the heat-absorbing heat exchanger is limited to a small amount. This effectively prevents most of the refrigerant discharged from the machine from condensing on the windward side of the heat absorbing heat exchanger and limiting the amount of heat generated by condensation of the refrigerant in the heat releasing heat exchanger to a small value. be able to.

【0015】すなわち、このことにより、請求項1に係
る発明と同様、除霜運転において効果的な除霜を常に安
定的に行なえるようにしながら、除霜運転中も外気から
の吸熱を行なえるという所期の機能も常に安定的に発揮
させることができて、この点で、除霜運転において圧縮
機からの吐出冷媒を放熱用熱交換器と吸熱用熱交換器の
風上側部分とに対しその順にあるいは逆の順で直列に通
過させる先述の如きヒートポンプに比べ一層優れたヒー
トポンプにすることができる。
That is, in the same manner as in the first aspect of the present invention, heat can be absorbed from the outside air even during the defrosting operation while the effective defrosting can always be performed stably in the defrosting operation. The expected function can always be exhibited stably, and in this regard, in the defrosting operation, the refrigerant discharged from the compressor is directed to the heat-radiating heat exchanger and the windward side of the heat-absorbing heat exchanger. A heat pump that is more excellent than the above-described heat pumps that pass in series in the order or in the reverse order can be obtained.

【0016】なお、請求項2に係る発明の実施にあたっ
ては、除霜運転において吸熱用熱交換器の風上側部分か
らの冷媒送出路に、冷媒循環経路を高圧側部分と低圧側
部分とに区分するための適当な減圧機構を介装するのが
望ましい。
In carrying out the invention according to claim 2, in the defrosting operation, the refrigerant circulation path is divided into a high-pressure side part and a low-pressure side part in a refrigerant delivery path from the windward side of the heat absorbing heat exchanger. It is desirable to interpose an appropriate pressure reducing mechanism for performing the pressure reduction.

【0017】また、除霜運転において並列状態の上記2
つの循環系統に対する圧縮機吐出冷媒の分配比を規定す
るのに、請求項1に係る発明の場合と同様、その冷媒分
配比を運転状態や吸熱用熱交換器の着霜状態などに応じ
て自動的に調整する調整弁を設けるようにしてもよい。
Further, in the defrosting operation, the above-mentioned 2
In order to define the distribution ratio of the refrigerant discharged from the compressor to the two circulation systems, the distribution ratio of the refrigerant is automatically determined according to the operating state, the frosting state of the heat absorbing heat exchanger, and the like, as in the case of the invention according to claim 1. It is also possible to provide an adjusting valve for adjusting the temperature.

【0018】請求項1,2に係る発明の実施において、
冷媒循環経路中の放熱用熱交換器は1器に限られるもの
ではなく、また、通常運転時の放熱用熱交換器と除霜運
転時の放熱用熱交換器とは必ずしも同一の熱交換器に限
られるものではない。
In the implementation of the invention according to claims 1 and 2,
The number of heat exchangers for heat dissipation in the refrigerant circulation path is not limited to one, and the heat exchanger for heat dissipation during normal operation and the heat exchanger for heat dissipation during defrosting operation are not necessarily the same heat exchanger. It is not limited to.

【0019】また、請求項1,2に係る発明の実施にお
いて、冷媒回路は除霜運転において除霜の対象とする吸
熱用熱交換器とは別の吸熱用熱交換器(すなわち、除霜
運転において蒸発器として機能させる熱交換器)を冷媒
循環経路中に位置させる回路構成であってもよい。
In the first and second embodiments of the present invention, the refrigerant circuit is provided with a heat absorbing heat exchanger different from the heat absorbing heat exchanger to be defrosted in the defrosting operation (ie, the defrosting operation). May be a circuit configuration in which a heat exchanger functioning as an evaporator is positioned in the refrigerant circulation path.

【0020】〔3〕請求項3に係る発明は、請求項1又
は2に係る発明の実施に好適な実施形態を特定するもの
であり、その特徴は、前記風上側部分の容量を前記風下
側部分の容量よりも小さくしてある点にある。
[3] The invention according to claim 3 specifies an embodiment suitable for carrying out the invention according to claim 1 or 2, and its characteristic is that the capacity of the windward portion is changed to the leeward side. The point is that it is smaller than the capacity of the part.

【0021】つまり、通常運転の際に生じる吸熱用熱交
換器での着霜は、一般に吸熱用熱交換器における外気通
風方向の風上側の端部近傍で集中的に生じることから、
これに対応させて、吸熱用熱交換器の外気通風方向での
分割にあたり、上記の如く風上側部分の容量を風下側部
分の容量よりも小さくしておけば、除霜運転の際に吸熱
用熱交換器の風上側部分で熱発生させることにおいて、
その風上側部分のうちの着霜の無い部分での無駄な熱発
生を回避できるとともに、吸熱用熱交換器の風下側部分
の外気に対する吸熱性能を高めることができて、その
分、除霜運転時における放熱用熱交換器での発生熱量を
効果的に増大させることができ、この点で、エネルギ効
率の面において一層優れたヒートポンプにすることがで
きる。
That is, frost formation in the heat-absorbing heat exchanger that occurs during normal operation generally occurs intensively near the windward end of the heat-absorbing heat exchanger in the direction of outside air ventilation.
Corresponding to this, when the heat exchanger for heat absorption is divided in the direction of outside air ventilation, if the capacity of the leeward side part is smaller than the capacity of the leeward side part as described above, it is In generating heat in the windward part of the heat exchanger,
It is possible to avoid wasteful heat generation in the frost-free part of the windward side part, and it is possible to enhance the heat absorption performance of the leeward side part of the heat-absorbing heat exchanger with respect to the outside air. In this case, the amount of heat generated in the heat-exchanging heat exchanger can be effectively increased, and in this regard, a heat pump having more excellent energy efficiency can be obtained.

【0022】〔4〕請求項4に係る発明は、請求項1〜
3のいずれか1項に係る発明の実施に好適な実施形態を
特定するものであり、その特徴は、前記通常運転におい
て冷媒を前記風上側部分と前記風下側部分とに対しその
順に直列に通過させる構成にしてある点にある。
[4] The invention according to claim 4 is the invention according to claims 1 to
3. A preferred embodiment for carrying out the invention according to any one of (3) and (3), characterized in that in the normal operation, the refrigerant passes in series to the leeward part and the leeward part in this order in series. The point is that it is configured to be.

【0023】つまり、この構成によれば、除霜運転にお
いて付着霜による冷却で吸熱用熱交換器の風上側部分に
溜り込んだ凝縮冷媒を、通常運転への切り換え後、蒸発
器としての風下側部分を介して圧縮機に吸入させること
ができ、これにより、通常運転において吸熱用熱交換器
の風上側部分と風下側部分とに対し冷媒を並列に通過さ
せる形態を採るに比べ、除霜運転から通常運転への復帰
の際の液バックトラブル(圧縮機が液冷媒を吸入してし
まう現象)を効果的に防止することができる。
That is, according to this configuration, in the defrosting operation, the condensed refrigerant accumulated in the leeward side of the heat absorbing heat exchanger due to the cooling by the adhering frost is switched to the normal operation, and then the leeward side as the evaporator is switched. This allows the refrigerant to be sucked into the compressor through the portion, thereby allowing the refrigerant to pass through the heat-exchanging heat exchanger in the normal operation to the leeward portion and the leeward portion in a normal operation. Liquid back trouble (phenomenon in which the compressor sucks the liquid refrigerant) at the time of returning to the normal operation from the normal operation can be effectively prevented.

【0024】[0024]

【発明の実施の形態】〔第1実施形態〕図1はヒートポ
ンプの冷媒回路を示し、1は圧縮機、2は放熱用熱交換
器、3は吸熱用熱交換器、4は膨張機構、5は受液器、
6はアキュムレータである。また、7は吸熱用熱交換器
3に対し吸熱源としての外気OAを通風するファンであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 shows a refrigerant circuit of a heat pump, 1 is a compressor, 2 is a heat exchanger for heat dissipation, 3 is a heat exchanger for heat absorption, 4 is an expansion mechanism, Is the receiver,
6 is an accumulator. Reference numeral 7 denotes a fan that passes outside air OA as a heat absorbing source to the heat absorbing heat exchanger 3.

【0025】吸熱用熱交換器3は、図3に示す如く、多
数の伝熱フィン8,9に蛇行伝熱管3aを貫通させたフ
ィンチューブコイルで構成してあり、また、2列の伝熱
管列L1,L2を有する風上側部分3Aと、3列の伝熱
管列L3〜L5を有する風下側部分3Bとに分割し、こ
れら風上側部分3Aと風下側部分3Bとをその順に風上
側から並べた隣接状態でファン7による外気通風の通風
路Fに配置してある。
As shown in FIG. 3, the heat-exchanging heat exchanger 3 is composed of a fin tube coil having a number of heat transfer fins 8, 9 penetrating a meandering heat transfer tube 3a. The leeward portion 3A having the rows L1 and L2 and the leeward portion 3B having three heat transfer tube rows L3 to L5 are divided, and these leeward portions 3A and leeward portions 3B are arranged in this order from the leeward side. In the adjacent state, the fan 7 is disposed in a ventilation path F for outside air ventilation.

【0026】V1,V2は冷媒経路切換用の第1及び第
2三方弁、V3は同じく冷媒経路切換用の開閉弁であ
り、このヒートポンプは、これら弁V1〜V3の切り換
え操作により次の通常運転と除霜運転とを切り換え実施
する構成にしてある。
V1 and V2 are first and second three-way valves for switching the refrigerant path, and V3 is also an on-off valve for switching the refrigerant path. This heat pump operates in the next normal operation by switching these valves V1 to V3. And the defrosting operation is switched.

【0027】(イ)通常運転 開閉弁V3を閉じた状態で、同図1に示す如く、冷媒R
を圧縮機1―放熱用熱交換器2−受液器5−膨張機構4
−第2三方弁V2−吸熱用熱交換器3の風上側部分3A
―第1三方弁V1−吸熱用熱交換器3の風下側部分3B
−アキュムレータ6−圧縮機1の順に循環させ、これに
より、直列接続状態にある吸熱用熱交換器3の風上側部
分3Aと風下側部分3Bとの両方を蒸発器として機能さ
せて、これら風上側部分3Aと風下側部分3Bとの両方
をファン7による通風外気OAに対し吸熱作用させ、こ
れに対し、放熱用熱交換器2を凝縮器として機能させて
熱発生させる。
(A) Normal operation With the on-off valve V3 closed, as shown in FIG.
Compressor 1-heat exchanger for heat radiation 2-receiver 5-expansion mechanism 4
-2nd three-way valve V2-Windward part 3A of heat exchanger 3 for heat absorption
-First three-way valve V1-Downwind side portion 3B of heat exchanger 3 for heat absorption
Circulating the accumulator 6-compressor 1 in this order, so that both the leeward part 3A and the leeward part 3B of the heat absorbing heat exchanger 3 connected in series function as an evaporator, Both the part 3A and the leeward part 3B cause the fan 7 to absorb heat to the ventilated outside air OA, while the heat-radiating heat exchanger 2 functions as a condenser to generate heat.

【0028】(ロ)除霜運転 開閉弁V3を開いた状態で、図2に示す如く、冷媒Rを
圧縮機1―放熱用熱交換器2−受液器5−膨張機構4−
開閉弁V3−吸熱用熱交換器3の風下側部分3B−アキ
ュムレータ6−圧縮機1の順に循環させ、かつ、それに
併行して、冷媒Rを圧縮機1−第1三方弁V1−吸熱用
熱交換器3の風上側部分3A−第2三方弁V2−受液器
5−膨張機構4−開閉弁V3−吸熱用熱交換器3の風下
側部分3B−アキュムレータ6−圧縮機1の順に循環さ
せ、これにより、吸熱用熱交換器3の風下側部分3Bの
みを蒸発器として機能させてファン7による通風外気O
Aに対し吸熱作用させ、これに対し、並列接続状態にあ
る放熱用熱交換器2と吸熱用熱交換器3の風上側部分3
Aの夫々を、それらに対する冷媒分配比を配管抵抗上で
規定した状態で凝縮器として機能させて、それら放熱用
熱交換器2と吸熱用熱交換器3の風上側部分3Aとの夫
々で熱発生させる。
(B) Defrosting operation With the on-off valve V3 opened, as shown in FIG. 2, the refrigerant R is supplied to the compressor 1-radiator heat exchanger 2-liquid receiver 5-expansion mechanism 4-
The on-off valve V3-the leeward portion 3B of the heat-absorbing heat exchanger 3-the accumulator 6-the compressor 1 is circulated in this order, and at the same time, the refrigerant R is supplied to the compressor 1-the first three-way valve V1-heat absorbing heat. The leeward portion 3A of the exchanger 3-the second three-way valve V2-the liquid receiver 5-the expansion mechanism 4-the on-off valve V3-the leeward portion 3B of the heat absorbing heat exchanger 3-the accumulator 6-the compressor 1 are circulated in this order. Thereby, only the leeward side portion 3B of the heat absorbing heat exchanger 3 functions as an evaporator, and
A heat-absorbing action on the heat-exchanging heat exchanger 2 and the windward-side portion 3 of the heat-absorbing heat exchanger 3 which are connected in parallel.
A is made to function as a condenser in a state where the distribution ratio of refrigerant to them is specified on the pipe resistance, and the heat is dissipated by the heat exchanger 2 for heat radiation and the windward portion 3A of the heat exchanger 3 for heat absorption. generate.

【0029】すなわち、吸熱用熱交換器3を外気OAに
対して吸熱作用させる通常運転では、外気条件によって
外気中水分による霜付きや外気に含まれる雪の付着堆積
が吸熱用熱交換器3(特にその風上端寄りの部分)で生
じるが、このとき、この除霜運転を実施することで、吸
熱用熱交換器3の風下側部分3Bにより外気OAからの
吸熱を継続(換言すれば、放熱用熱交換器2での熱発生
を継続)しながら、吸熱用熱交換器3における付着霜や
付着雪を風上側部分3Aでの発生熱により融解除去し、
その上で再び通常運転に復帰する。
That is, in normal operation in which the heat absorbing heat exchanger 3 absorbs heat to the outside air OA, frost due to moisture in the outside air and adhesion of snow contained in the outside air due to outside air conditions cause heat absorption heat exchanger 3 ( Particularly, the heat is generated at a portion near the wind upper end). At this time, by performing the defrosting operation, the heat absorption from the outside air OA is continued by the leeward portion 3B of the heat absorbing heat exchanger 3 (in other words, the heat radiation). Frost and attached snow in the heat-absorbing heat exchanger 3 are melted and removed by the heat generated in the windward portion 3A while the heat generation in the heat exchanger 2 is continued).
Then, the operation returns to the normal operation again.

【0030】〔第2実施形態〕図4は別構成のヒートポ
ンプの冷媒回路を示し、第1実施形態で示したヒートポ
ンプと同様、1は圧縮機、2は放熱用熱交換器、3は吸
熱用熱交換器、4は膨張機構、5は受液器、6はアキュ
ムレータであり、7は吸熱用熱交換器3に対し吸熱源と
しての外気OAを通風するファンである。
[Second Embodiment] FIG. 4 shows a refrigerant circuit of a heat pump having a different configuration. Like the heat pump shown in the first embodiment, reference numeral 1 denotes a compressor, 2 denotes a heat exchanger for radiating heat, and 3 denotes a heat exchanger for absorbing heat. A heat exchanger, 4 is an expansion mechanism, 5 is a liquid receiver, 6 is an accumulator, and 7 is a fan that ventilates outside heat OA as a heat absorbing source to the heat absorbing heat exchanger 3.

【0031】また、吸熱用熱交換器3も、第1実施形態
で示したものと同様、図3に示す如き構成をもって風上
側部分3Aと風下側部分3Bとに分割してある。
The heat absorbing heat exchanger 3 is also divided into a windward portion 3A and a leeward portion 3B with the configuration shown in FIG. 3, as in the first embodiment.

【0032】10はこの別構成のヒートポンプで付加装
備した減圧機構、V4はその減圧機構10に対するバイ
パス弁、V5は冷媒経路切換用の三方弁であり、このヒ
ートポンプは、これら弁V4,V5の切り換え操作によ
り次の通常運転と除霜運転とを切り換え実施する構成に
してある。
Reference numeral 10 denotes a decompression mechanism additionally provided with this heat pump of another configuration, V4 denotes a bypass valve for the decompression mechanism 10, V5 denotes a three-way valve for switching the refrigerant path, and this heat pump switches these valves V4 and V5. The operation is switched between the normal operation and the defrosting operation by the operation.

【0033】(ハ)通常運転 バイパス弁V4を開いた状態で、同図4に示す如く、冷
媒Rを圧縮機1―放熱用熱交換器2−受液器5−膨張機
構4−三方弁V5−吸熱用熱交換器3の風上側部分3A
―バイパス弁V4−アキュムレータ6―圧縮機1の順に
循環させ、かつ、それに併行して、冷媒Rを圧縮機1−
放熱用熱交換器2−受液器5−膨張機構4−吸熱用熱交
換器3の風下側部分3B−アキュムレータ6−圧縮機1
の順に循環させ、これにより、並列接続状態にある吸熱
用熱交換器3の風上側部分3Aと風下側部分3Bとの両
方を蒸発器として機能させて、これら風上側部分3Aと
風下側部分3Bとの両方をファン7による通風外気OA
に対し吸熱作用させ、これに対し、放熱用熱交換器2を
凝縮器として機能させて熱発生させる。
(C) Normal operation With the bypass valve V4 opened, as shown in FIG. 4, the refrigerant R is supplied to the compressor 1-radiator heat exchanger 2-liquid receiver 5-expansion mechanism 4-three-way valve V5 -Upwind side part 3A of heat exchanger 3 for heat absorption
-Bypass valve V4-Accumulator 6-Compressor 1 is circulated in this order, and at the same time, refrigerant R is compressed by compressor 1-
Heat-dissipating heat exchanger 2-Liquid receiver 5-Expansion mechanism 4-Downwind side portion 3B of heat-exchanging heat exchanger 3-Accumulator 6-Compressor 1
In this way, both the leeward portion 3A and the leeward portion 3B of the heat absorbing heat exchanger 3 in a parallel connection state function as an evaporator, and the leeward portion 3A and the leeward portion 3B Both of the fan 7 open air OA
And the heat exchanger 2 for heat dissipation functions as a condenser to generate heat.

【0034】(ニ)除霜運転 バイパス弁V4を閉じた状態で、図5に示す如く、冷媒
Rを圧縮機1―放熱用熱交換器2−受液器5−膨張機構
4−吸熱用熱交換器3の風下側部分3B−アキュムレー
タ6−圧縮機1の順に循環させ、かつ、それに併行し
て、冷媒Rを圧縮機1−三方弁V5−吸熱用熱交換器3
の風上側部分3A−減圧機構10−アキュムレータ6−
圧縮機1の順に循環させ、これにより、吸熱用熱交換器
3の風下側部分3Bのみを蒸発器として機能させてファ
ン7による通風外気OAに対し吸熱作用させ、これに対
し、並列接続状態にある放熱用熱交換器2と吸熱用熱交
換器3の風上側部分3Aの夫々を、それらに対する冷媒
分配比を配管抵抗上で規定した状態で凝縮器として機能
させて、それら放熱用熱交換器2と吸熱用熱交換器3の
風上側部分3Aとの夫々で熱発生させる。
(D) Defrosting operation With the bypass valve V4 closed, as shown in FIG. 5, the refrigerant R is supplied to the compressor 1-radiator heat exchanger 2-liquid receiver 5-expansion mechanism 4-heat absorbing heat. The refrigerant R is circulated in the order of the leeward portion 3B of the exchanger 3, the accumulator 6 and the compressor 1, and in parallel therewith, the refrigerant R is supplied to the compressor 1 to the three-way valve V5 to the heat exchanger 3 for heat absorption.
Windward part 3A-decompression mechanism 10-accumulator 6-
The compressor 1 is circulated in this order, so that only the leeward portion 3B of the heat absorbing heat exchanger 3 functions as an evaporator to cause the fan 7 to absorb heat to the ventilated outside air OA. Each of the heat-exchanging heat exchangers 2 and 3A of the heat-absorbing heat exchanger 3 is made to function as a condenser in a state where the refrigerant distribution ratio thereof is specified on the pipe resistance, and the heat-exchanging heat exchangers are used. The heat is generated in each of the heat exchanger 2 and the windward portion 3A of the heat exchanger 3 for heat absorption.

【0035】すなわち、通常運転において霜付きや雪の
付着堆積が吸熱用熱交換器3で生じたとき、この除霜運
転を実施することで、第1実施形態のヒートポンプと同
様、吸熱用熱交換器3の風下側部分3Bにより外気OA
からの吸熱を継続(放熱用熱交換器2での熱発生を継
続)しながら、吸熱用熱交換器3における付着霜や付着
雪を風上側部分3Aでの発生熱により融解除去し、その
上で再び通常運転に復帰する。
That is, when frost or snow accumulates and accumulates in the heat-absorbing heat exchanger 3 in the normal operation, this defrosting operation is carried out, as in the heat pump of the first embodiment. OA by the leeward part 3B of the vessel 3
Frost and snow in the heat-absorbing heat exchanger 3 are melted and removed by the heat generated in the windward side portion 3A, while continuing the heat absorption from the heat exchanger (the heat generation in the heat-dissipating heat exchanger 2 is continued). To return to normal operation again.

【0036】〔その他の実施形態〕次にその他の実施形
態を列記する。
[Other Embodiments] Next, other embodiments will be listed.

【0037】除霜運転時に冷媒Rを圧縮機1―放熱用熱
交換器2と吸熱用熱交換器3の風上側部分3Aとの並列
接続回路―膨張機構4―吸熱用熱交換器3の風下側部分
3B―圧縮機1の順に循環させる請求項1記載の発明の
実施において、冷媒回路の具体的な回路構成は、第1実
施形態で示した回路構成に限られるものでなく、種々の
変更が可能である。
At the time of the defrosting operation, the refrigerant R is supplied to the compressor 1 in parallel with the heat-exchanging heat exchanger 2 and the windward portion 3A of the heat-exchanging heat exchanger 3, the expansion mechanism 4, and the leeward heat-exchanging heat exchanger 3. In the embodiment of the present invention, the refrigerant circuit is circulated in the order of the side portion 3B and the compressor 1, and the specific circuit configuration of the refrigerant circuit is not limited to the circuit configuration shown in the first embodiment, and various changes are made. Is possible.

【0038】第1実施形態では、通常運転において蒸発
器として機能させる吸熱用熱交換器3の風上側部分3A
及び風下側部分3Bに対し、その順に冷媒Rを直列に通
過させる例を示したが、これに代え、請求項1記載の発
明の実施において、通常運転時に吸熱用熱交換器3の風
上側部分3Aと風下側部分3Bとに対し冷媒Rを並列に
通過させたり、風下側部分3B−風上側部分3Aの順に
冷媒Rを直列に通過させるようにしてもよい。
In the first embodiment, the windward portion 3A of the heat absorbing heat exchanger 3 which functions as an evaporator in normal operation.
Although the example in which the refrigerant R is passed in series to the leeward portion 3B in this order is shown, instead, the leeward portion of the heat absorbing heat exchanger 3 during normal operation in the embodiment of the invention described in claim 1 is shown. The refrigerant R may be passed through the 3A and the leeward portion 3B in parallel, or the refrigerant R may be passed in series in the order of the leeward portion 3B and the leeward portion 3A.

【0039】第1実施形態で示したヒートポンプ(図2
参照)において、除霜運転時における放熱用熱交換器2
と吸熱用熱交換器3の風上側部分3Aとに対する圧縮機
吐出冷媒Rの分配比を第1三方弁V1や第2三方弁V2
を用いて、ないしは、付加装備する別の弁を用いて自動
調整するなど、請求項1記載の発明の実施において、除
霜運転時における放熱用熱交換器2と吸熱用熱交換器3
の風上側部分3Aとに対する圧縮機吐出冷媒Rの分配比
を、運転状態や吸熱用熱交換器3の着霜状態などに応じ
て自動的に調整するようにしてもよい。
The heat pump shown in the first embodiment (FIG. 2)
), The heat exchanger 2 for heat dissipation during the defrosting operation
The distribution ratio of the refrigerant R discharged from the compressor to the upstream side portion 3A of the heat exchanger 3 for absorbing heat is determined by the first three-way valve V1 or the second three-way valve V2.
In the implementation of the invention according to claim 1, the heat exchanger 2 for heat dissipation and the heat exchanger 3 for heat absorption at the time of defrosting operation are automatically adjusted by using a valve or by using another valve additionally provided.
The distribution ratio of the compressor discharge refrigerant R to the windward portion 3A may be automatically adjusted in accordance with the operation state, the frost formation state of the heat absorbing heat exchanger 3, and the like.

【0040】除霜運転時に冷媒Rを圧縮機1―放熱用熱
交換器2―膨張機構4―吸熱用熱交換器3の風下側部分
3B―圧縮機1の順に循環させるとともに、それに併行
して冷媒Rを圧縮機1―吸熱用熱交換器3の風上側部分
3A―圧縮機1の順に循環させる請求項2記載の発明の
実施において、冷媒回路の具体的な回路構成は、第2実
施形態で示した回路構成に限られるものでなく種々の変
更が可能であり、例えば、アキュムレータ6の容量に余
裕がある場合など、場合によっては、除霜運転時に吸熱
用熱交換器3の風上側部分3Aの下流側で機能させる減
圧機構10を省略するなどしてもよい。
During the defrosting operation, the refrigerant R is circulated in the order of the compressor 1, the heat exchanger for heat radiation 2, the expansion mechanism 4, the leeward portion 3B of the heat exchanger 3 for heat absorption, and the compressor 1, and in parallel therewith. The refrigerant circuit R is circulated in the order of the compressor 1, the windward portion 3A of the endothermic heat exchanger 3, and the compressor 1. In the embodiment of the invention according to the second embodiment, the specific circuit configuration of the refrigerant circuit is the second embodiment. It is not limited to the circuit configuration shown by, and various changes are possible. For example, when the capacity of the accumulator 6 has an allowance, in some cases, the windward portion of the heat absorbing heat exchanger 3 during the defrosting operation. The decompression mechanism 10 functioning downstream of 3A may be omitted.

【0041】第2実施形態では、通常運転において蒸発
器として機能させる吸熱用熱交換器3の風上側部分3A
及び風下側部分3Bに対し並列に冷媒Rを通過させる例
を示したが、これに代え、請求項2記載の発明の実施に
おいて、通常運転時に吸熱用熱交換器3の風上側部分3
Aと風下側部分3Bとに対しその順にあるいは逆の順で
冷媒Rを直列に通過させるようにしてもよい。
In the second embodiment, the windward portion 3A of the heat absorbing heat exchanger 3 which functions as an evaporator in normal operation.
Although the example in which the refrigerant R is passed in parallel to the leeward portion 3B and the leeward portion 3B have been described, the leeward portion 3 of the heat-absorbing heat exchanger 3 during the normal operation may be replaced with the embodiment of the invention described in claim 2.
The refrigerant R may be passed in series in the order of A and the leeward portion 3B or in the reverse order.

【0042】第2実施形態で示したヒートポンプ(図5
参照)において、除霜運転時における放熱用熱交換器2
と吸熱用熱交換器3の風上側部分3Aとに対する圧縮機
吐出冷媒Rの分配比を三方弁V5を用いて、ないしは、
付加装備する別の弁を用いて自動調整するなど、請求項
2記載の発明の実施において、除霜運転時における放熱
用熱交換器2と吸熱用熱交換器3の風上側部分3Aとに
対する圧縮機吐出冷媒Rの分配比を、運転状態や吸熱用
熱交換器3の着霜状態などに応じて自動的に調整するよ
うにしてもよい。
The heat pump shown in the second embodiment (FIG. 5)
), The heat exchanger 2 for heat dissipation during the defrosting operation
The three-way valve V5 is used to determine the distribution ratio of the refrigerant discharged from the compressor R to the upstream side portion 3A of the heat exchanger 3 for heat absorption, or
In the embodiment of the invention according to the second aspect, such as automatic adjustment using another valve provided as an additional equipment, compression of the heat-dissipating heat exchanger 2 and the windward portion 3A of the heat-absorbing heat exchanger 3 during the defrosting operation. The distribution ratio of the machine discharge refrigerant R may be automatically adjusted according to the operating state, the frost formation state of the heat absorbing heat exchanger 3, and the like.

【0043】吸熱用熱交換器3における風上側部分3A
と風下側部分3Bとの容量比(換言すれば伝熱管列の列
数比)は前述の第1及び第2実施形態で示した容量比に
限らず種々の変更が可能であり、また、前述の第1及び
第2実施形態では、吸熱用熱交換器3をフィンチューブ
コイルで構成することにおいて、風上側部分3Aの伝熱
フィン8と風下側部分3Bの伝熱フィン9とを別体にし
たが、場合によっては、風上側部分3Aと風下側部分3
Bとにわたる共通の伝熱フィンを設ける構造にしてもよ
く、その他、風上側部分3Aと風下側部分3Bとに分割
する吸熱用熱交換器3の具体的な構造及び熱交換形式は
種々の構成変更が可能である。
Upwind side portion 3A of heat exchanger 3 for heat absorption
The capacity ratio (in other words, the ratio of the number of rows of heat transfer tubes) of the leeward portion 3B to the leeward portion 3B is not limited to the capacity ratio shown in the first and second embodiments, and various changes can be made. In the first and second embodiments, when the heat absorbing heat exchanger 3 is formed of a fin tube coil, the heat transfer fins 8 of the windward portion 3A and the heat transfer fins 9 of the leeward portion 3B are separately provided. However, in some cases, the leeward portion 3A and the leeward portion 3A
B may be provided with a common heat transfer fin. The specific structure and heat exchange type of the heat absorbing heat exchanger 3 divided into the windward portion 3A and the leeward portion 3B may be various configurations. Changes are possible.

【0044】本発明による蒸気圧縮式ヒートポンプは、
空調や融雪あるいは給湯や物品加熱など各種分野におい
て種々の用途に使用できる。
The vapor compression heat pump according to the present invention comprises:
It can be used for various applications in various fields such as air conditioning, snow melting, hot water supply and article heating.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態における冷媒回路構成及び通常運
転時の冷媒流れを示す図
FIG. 1 is a diagram illustrating a refrigerant circuit configuration and a refrigerant flow during normal operation according to a first embodiment.

【図2】第1実施形態における除霜運転時の冷媒流れを
示す図
FIG. 2 is a diagram showing a refrigerant flow during a defrosting operation in the first embodiment.

【図3】吸熱用熱交換器の一部切欠斜視図FIG. 3 is a partially cutaway perspective view of a heat exchanger for heat absorption.

【図4】第2実施形態における冷媒回路構成及び通常運
転時の冷媒流れを示す図
FIG. 4 is a diagram showing a refrigerant circuit configuration and a refrigerant flow during normal operation in a second embodiment.

【図5】第2実施形態における除霜運転時の冷媒流れを
示す図
FIG. 5 is a diagram showing a refrigerant flow during a defrosting operation in a second embodiment.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱用熱交換器 3 吸熱用熱交換器 3A 風上側部分 3B 風下側部分 4 膨張機構 F 外気通風路 OA 外気 R 冷媒 DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for heat radiation 3 Heat exchanger for heat absorption 3A Upwind side part 3B Downwind side part 4 Expansion mechanism F Outside air ventilation path OA Outside air R Refrigerant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器として外気に対し吸熱作用させる
吸熱用熱交換器を、外気通風路において風上側に位置さ
せる風上側部分と風下側に位置させる風下側部分とに分
割し、 前記吸熱用熱交換器の風上側部分及び風下側部分の両方
を蒸発器として機能させる通常運転と、前記吸熱用熱交
換器の風下側部分を蒸発器として機能させ、かつ、前記
吸熱用熱交換器の風上側部分を凝縮器として機能させる
除霜運転との切り換えを可能にしてある蒸気圧縮式ヒー
トポンプであって、 前記通常運転では、冷媒を圧縮機―放熱用熱交換器―膨
張機構―吸熱用熱交換器の風上側部分と風下側部分との
並列接続回路又は直列接続回路―圧縮機の順に循環さ
せ、 かつ、前記除霜運転では、冷媒を圧縮機―放熱用熱交換
器と吸熱用熱交換器の風上側部分との並列接続回路―膨
張機構―吸熱用熱交換器の風下側部分―圧縮機の順に循
環させる冷媒回路構成にしてある蒸気圧縮式ヒートポン
プ。
1. A heat-absorbing heat exchanger, which acts as an evaporator and absorbs heat to outside air, is divided into a windward portion located on the leeward side and a leeward portion located on the leeward side in the outside air ventilation path. Normal operation in which both the leeward and leeward portions of the heat exchanger function as evaporators, and the leeward portion of the heat absorbing heat exchanger functioning as an evaporator, and the wind of the heat absorbing heat exchanger A vapor compression heat pump capable of switching between a defrosting operation in which an upper portion functions as a condenser, wherein in the normal operation, the refrigerant exchanges refrigerant with a compressor, a heat-dissipating heat exchanger, an expansion mechanism, and heat-exchanging heat exchange. Circuit or series connection circuit of the leeward and leeward parts of the heat exchanger and the compressor are circulated in this order, and in the defrosting operation, the refrigerant flows through the compressor and the heat exchanger for heat radiation and the heat exchanger for heat absorption. Parallel connection with the windward side of A vapor compression heat pump with a refrigerant circuit configuration that circulates in the following order: continuation circuit-expansion mechanism-leeward side of heat exchanger for heat absorption-compressor.
【請求項2】 蒸発器として外気に対し吸熱作用させる
吸熱用熱交換器を、外気通風路において風上側に位置さ
せる風上側部分と風下側に位置させる風下側部分とに分
割し、 前記吸熱用熱交換器の風上側部分及び風下側部分の両方
を蒸発器として機能させる通常運転と、前記吸熱用熱交
換器の風下側部分を蒸発器として機能させ、かつ、前記
吸熱用熱交換器の風上側部分を凝縮器として機能させる
除霜運転との切り換えを可能にしてある蒸気圧縮式ヒー
トポンプであって、 前記通常運転では、冷媒を圧縮機―放熱用熱交換器―膨
張機構―吸熱用熱交換器の風上側部分と風下側部分との
並列接続回路又は直列接続回路―圧縮機の順に循環さ
せ、 かつ、前記除霜運転では、冷媒を圧縮機―放熱用熱交換
器―膨張機構―吸熱用熱交換器の風下側部分―圧縮機の
順に循環させるとともに、それに併行して冷媒を圧縮機
―吸熱用熱交換器の風上側部分―圧縮機の順に循環させ
る冷媒回路構成にしてある蒸気圧縮式ヒートポンプ。
2. The heat-absorbing heat exchanger as an evaporator that absorbs heat to the outside air is divided into a windward portion located on the leeward side and a leeward portion located on the leeward side in the outside air ventilation path. Normal operation in which both the leeward and leeward portions of the heat exchanger function as evaporators, and the leeward portion of the heat absorbing heat exchanger functioning as an evaporator, and the wind of the heat absorbing heat exchanger A vapor compression heat pump capable of switching between a defrosting operation in which an upper portion functions as a condenser, wherein in the normal operation, the refrigerant exchanges refrigerant with a compressor-radiation heat exchanger-expansion mechanism-heat absorption heat exchange. Circuit or a series connection circuit of the leeward and leeward parts of the heat exchanger and the compressor are circulated in this order, and in the defrosting operation, the refrigerant is used in the compressor-radiation heat exchanger-expansion mechanism-heat absorption Downwind side of heat exchanger A vapor compression heat pump having a refrigerant circuit configuration in which the refrigerant is circulated in the order of the compressor and, in parallel, the refrigerant is circulated in the order of the compressor, the windward side of the heat exchanger for heat absorption, and the compressor.
【請求項3】 前記風上側部分の容量を前記風下側部分
の容量よりも小さくしてある請求項1又は2記載の蒸気
圧縮式ヒートポンプ。
3. The vapor compression heat pump according to claim 1, wherein the capacity of the leeward portion is smaller than the capacity of the leeward portion.
【請求項4】 前記通常運転において冷媒を前記風上側
部分と前記風下側部分とに対しその順に直列に通過させ
る構成にしてある請求項1〜3のいずれか1項に記載の
蒸気圧縮式ヒートポンプ。
4. The vapor compression heat pump according to claim 1, wherein in the normal operation, the refrigerant is passed in series to the leeward portion and the leeward portion in this order. .
JP2001137415A 2001-05-08 2001-05-08 Vapor compression heat pump Pending JP2002333242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137415A JP2002333242A (en) 2001-05-08 2001-05-08 Vapor compression heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137415A JP2002333242A (en) 2001-05-08 2001-05-08 Vapor compression heat pump

Publications (1)

Publication Number Publication Date
JP2002333242A true JP2002333242A (en) 2002-11-22

Family

ID=18984526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137415A Pending JP2002333242A (en) 2001-05-08 2001-05-08 Vapor compression heat pump

Country Status (1)

Country Link
JP (1) JP2002333242A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216778A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Refrigerating cycle device
KR101401909B1 (en) * 2012-03-07 2014-05-29 선문대학교 산학협력단 Heat pump chiller system by non-frosting continuous operating the heat exchanger and Defrost method
CN104807082A (en) * 2014-01-24 2015-07-29 木村工机株式会社 Heat-exchange coil and air conditioning unit
CN107101405A (en) * 2016-02-22 2017-08-29 珠海格力电器股份有限公司 One kind compression circulatory system
CN109163417A (en) * 2018-08-16 2019-01-08 北京同方洁净技术有限公司 Air source heat pump system
CN111189258A (en) * 2018-08-20 2020-05-22 李华玉 Combined cycle heat pump device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216778A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Refrigerating cycle device
KR101401909B1 (en) * 2012-03-07 2014-05-29 선문대학교 산학협력단 Heat pump chiller system by non-frosting continuous operating the heat exchanger and Defrost method
CN104807082A (en) * 2014-01-24 2015-07-29 木村工机株式会社 Heat-exchange coil and air conditioning unit
KR20150088702A (en) * 2014-01-24 2015-08-03 키무라코우키 가부시키가이샤 Heat exchange coil and air conditioning unit
KR101629341B1 (en) * 2014-01-24 2016-06-13 키무라코우키 가부시키가이샤 Heat exchange coil and air conditioning unit
CN104807082B (en) * 2014-01-24 2017-08-04 木村工机株式会社 Heat exchanger coil and air conditioner
CN107101405A (en) * 2016-02-22 2017-08-29 珠海格力电器股份有限公司 One kind compression circulatory system
CN107101405B (en) * 2016-02-22 2023-11-14 珠海格力电器股份有限公司 Compression circulation system
CN109163417A (en) * 2018-08-16 2019-01-08 北京同方洁净技术有限公司 Air source heat pump system
CN111189258A (en) * 2018-08-20 2020-05-22 李华玉 Combined cycle heat pump device
CN111189258B (en) * 2018-08-20 2022-07-26 李华玉 Combined cycle heat pump device

Similar Documents

Publication Publication Date Title
JP4428341B2 (en) Refrigeration cycle equipment
EP1924810A1 (en) Air conditioning system for communication equipment and controlling method thereof
JP6884784B2 (en) Refrigeration cycle equipment
JP3140333B2 (en) Heat pump equipment
JP6888131B2 (en) Refrigeration cycle equipment
JP2006284133A (en) Heat exchanger
JP2002333242A (en) Vapor compression heat pump
JP4670576B2 (en) vending machine
JP4155334B2 (en) vending machine
JP2002286317A (en) Vapor compression heat pump
JP3650358B2 (en) Air conditioner
JP2006170536A (en) Vapor compression type heat pump
US7814761B2 (en) Air conditioner
CN212362478U (en) Refrigeration system
JP4444146B2 (en) Vending machine with cooling and heating system
WO2022013976A1 (en) Outdoor unit for refrigeration device and refrigeration device comprising same
JP4429960B2 (en) Vending machine with cooling and heating system
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method
JP2006084107A (en) Air conditioner
JP2002286332A (en) Vapor compression type heat pump
JP2004239507A (en) Heat pump hot water supply device
JP2008117034A (en) Cooling/warming cycle and vending machine using the same
JP2002022307A (en) Air conditioner
JP4639708B2 (en) Air conditioner
JP2004116930A (en) Gas heat pump type air conditioner