JP2002329501A - Gas diffusion electrode and polyelectrolyte fuel cell using this - Google Patents

Gas diffusion electrode and polyelectrolyte fuel cell using this

Info

Publication number
JP2002329501A
JP2002329501A JP2001132972A JP2001132972A JP2002329501A JP 2002329501 A JP2002329501 A JP 2002329501A JP 2001132972 A JP2001132972 A JP 2001132972A JP 2001132972 A JP2001132972 A JP 2001132972A JP 2002329501 A JP2002329501 A JP 2002329501A
Authority
JP
Japan
Prior art keywords
gas diffusion
fuel cell
polymer electrolyte
electrode
diffusion electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001132972A
Other languages
Japanese (ja)
Inventor
Osamu Sakai
修 酒井
Junji Niikura
順二 新倉
Masao Yamamoto
雅夫 山本
Teruhisa Kanbara
輝壽 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001132972A priority Critical patent/JP2002329501A/en
Priority to PCT/JP2002/004006 priority patent/WO2002091503A1/en
Priority to EP02720565.7A priority patent/EP1383184B1/en
Priority to CNB028014154A priority patent/CN1299373C/en
Priority to KR10-2002-7017708A priority patent/KR100504965B1/en
Publication of JP2002329501A publication Critical patent/JP2002329501A/en
Priority to US10/426,217 priority patent/US20040009389A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To resolve a problem of an extensive drop of output voltage due to reduction of a humidifying amount in a polyelectrolyte fuel cell needing to maintain a polyelectrolyte in a wet state and commonly operating the cell while humidifying by using some kind of humidifying means. SOLUTION: Water repellent conductive particles mainly composed of water repellent material such as fluororesin and conductive particles such as carbon are arranged throughout the whole area of a conductive porous electrode base material by impregnation or press filling or the like. The gas diffusion electrode is used in at least one of an anode or cathode of the polyelectrolyte fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、民生用コジェネレ
ーションシステム、あるいは自動車や移動体用の発電機
として有用な燃料電池、特に高分子電解質を用いた高分
子電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell useful as a cogeneration system for a consumer or a generator for an automobile or a moving body, and more particularly to a polymer electrolyte fuel cell using a polymer electrolyte.

【0002】[0002]

【従来の技術】高分子電解質型燃料電池は、水素などの
燃料ガスと空気などの酸化ガスを白金などの触媒を配し
た触媒層を有するガス拡散電極によって電気化学的に反
応させ、電気熱とを同時に発生させるものである。この
ような高分子電解質燃料電池の一般的な構成を図1に示
す。図1において、水素イオンを選択的に輸送する高分
子電解質膜1の両面には白金族金属触媒を担持したカー
ボン粉末を主成分とする触媒層2が密着して配置されて
いる。触媒層2の外面には、ガス透過性と導電性を兼ね
備えた一対の拡散層3が触媒層に密着して配置されてい
る。この拡散層3と触媒層2により電極4が構成され
る。電極4の外側には、電極4と高分子電解質膜1とで
形成される電解質膜−電極接合体(MEA)5を機械的
に固定するとともに、隣接するMEA同士を互いに電気
的に直列に接続する導電性セパレータ板6が配置され
る。セパレータ板6は、電極4と接する面に、電極に反
応ガスを供給するとともに反応により発生した水や余剰
のガスを運び去るためのガス流路7を有する。このガス
流路はセパレータ板とは別に設けることもできるが、セ
パレータ板の表面に溝を設けてガス流路とする方式が一
般的である。図の例では、アノードに燃料ガスを供給す
るガス流路7aを有するセパレータ板6aと、カソード
に酸化剤ガスを供給するガス流路7bを有するセパレー
タ板6bとを組み合わせて、冷却水の流路8を形成して
いる。9は電極の周縁部に配したガスケットである。
2. Description of the Related Art In a polymer electrolyte fuel cell, a fuel gas such as hydrogen and an oxidizing gas such as air are electrochemically reacted by a gas diffusion electrode having a catalyst layer on which a catalyst such as platinum is disposed, so as to generate electric heat and heat. At the same time. FIG. 1 shows a general configuration of such a polymer electrolyte fuel cell. In FIG. 1, a catalyst layer 2 mainly composed of a carbon powder carrying a platinum group metal catalyst is disposed in close contact with both surfaces of a polymer electrolyte membrane 1 for selectively transporting hydrogen ions. On the outer surface of the catalyst layer 2, a pair of diffusion layers 3 having both gas permeability and conductivity are disposed in close contact with the catalyst layer. The electrode 4 is constituted by the diffusion layer 3 and the catalyst layer 2. Outside the electrode 4, an electrolyte membrane-electrode assembly (MEA) 5 formed by the electrode 4 and the polymer electrolyte membrane 1 is mechanically fixed, and adjacent MEAs are electrically connected to each other in series. The conductive separator plate 6 is disposed. The separator plate 6 has a gas flow path 7 on a surface in contact with the electrode 4 for supplying a reaction gas to the electrode and carrying away water and excess gas generated by the reaction. Although this gas flow path can be provided separately from the separator plate, a method in which a groove is provided on the surface of the separator plate to form a gas flow path is generally used. In the illustrated example, a separator plate 6a having a gas passage 7a for supplying a fuel gas to the anode and a separator plate 6b having a gas passage 7b for supplying an oxidizing gas to the cathode are combined to form a cooling water passage. 8 are formed. Reference numeral 9 denotes a gasket arranged on the periphery of the electrode.

【0003】多くの燃料電池は、上記のような構造の単
電池を数多く重ねた積層構造をとっている。上記のよう
な高分子電解質型燃料電池スタックでは、セパレータ板
等の構成部品の電気的接触抵抗を低減するため、また燃
料ガスや酸化剤ガスのシール性を維持するために、電池
全体を恒常的に締め付けることが必要である。このため
には、多数の単電池を一方向に積み重ねたその両端にそ
れぞれエンドプレートを配置し、その両エンドプレート
同士を締結用部材で固定し、締め付け圧を加えるように
している。
[0003] Many fuel cells have a stacked structure in which a number of unit cells having the above structure are stacked. In the polymer electrolyte fuel cell stack as described above, in order to reduce the electrical contact resistance of the components such as the separator plate, and to maintain the sealing property of the fuel gas and the oxidizing gas, the entire cell is constantly maintained. Need to be tightened. For this purpose, end plates are arranged at both ends of a large number of cells stacked in one direction, and both end plates are fixed to each other with a fastening member, and a fastening pressure is applied.

【0004】前記の拡散層3は、ガス透過性と電子伝導
性を有することが必要であり、カーボンペーパー、カー
ボンクロス等が一般的に用いられる。これらのガス拡散
層は、撥水性を高めるためにフッ素樹脂のディスパージ
ョンなどを利用して撥水処理されることが多い。また、
さらなる撥水性を付与するために、カーボン粉体を主成
分とするカーボン層あるいはポリテトラフルオロエチレ
ン(PTFE)等のフッ素系撥水材をカーボン粉体に混
合した撥水性カーボン層を前記拡散層13の触媒層側に
設けることも行われる。これらにより、高分子電解質の
保湿及び電池反応により過剰となった水分の安全かつ速
やかな除去が有効になされる。電池運転時には、カソー
ドにおいては、反応物質である酸素または空気がガス流
路からこの拡散層をとおして触媒層へと拡散するととも
に、反応によって生成され触媒層から拡散層へと浸透し
てきた過剰な水分を余剰ガスとともに電池外部へと除去
する。
The diffusion layer 3 needs to have gas permeability and electron conductivity, and carbon paper, carbon cloth, and the like are generally used. These gas diffusion layers are often subjected to a water-repellent treatment using a dispersion of a fluororesin in order to increase the water-repellency. Also,
In order to provide further water repellency, the diffusion layer 13 is formed by mixing a carbon layer containing carbon powder as a main component or a water repellent carbon layer obtained by mixing a fluorine-based water repellent material such as polytetrafluoroethylene (PTFE) with carbon powder. Is also provided on the catalyst layer side. By these, the moisturizing of the polymer electrolyte and the safe and prompt removal of excess water due to the battery reaction are effectively performed. At the time of battery operation, at the cathode, oxygen or air as a reactant diffuses from the gas flow path through the diffusion layer to the catalyst layer, and excess oxygen generated by the reaction and penetrating from the catalyst layer to the diffusion layer. The moisture is removed to the outside of the battery together with the excess gas.

【0005】高分子電解質型燃料電池のMEAの一般的
な作製プロセスの概略を以下に述べる。まず、高分子電
解質膜の両面に、転写法や直接印刷法等により触媒層を
形成する。他方で、カーボンペーパーやカーボンクロス
等の多孔性拡散層に前述の撥水性カーボン層を形成す
る。この撥水性カーボン層付き拡散層と前記の触媒層付
き電解質膜は、スタック構成時に個別の部材として積層
させることも可能である。しかし、あらかじめ、撥水性
カーボン層付き拡散層と触媒層付き電解質膜とを熱圧着
などによりMEAとして一体化させておくのが、取り扱
い等の面で有利である。MEAの周縁部には、ガスシー
ルのためのガスケットを同時に配置することが多い。
[0005] An outline of a general manufacturing process of an MEA for a polymer electrolyte fuel cell is described below. First, a catalyst layer is formed on both surfaces of a polymer electrolyte membrane by a transfer method, a direct printing method, or the like. On the other hand, the aforementioned water-repellent carbon layer is formed on a porous diffusion layer such as carbon paper or carbon cloth. The diffusion layer with a water-repellent carbon layer and the electrolyte membrane with a catalyst layer can be stacked as individual members when a stack is formed. However, it is advantageous in terms of handling and the like that the diffusion layer with the water-repellent carbon layer and the electrolyte membrane with the catalyst layer are previously integrated as an MEA by thermocompression bonding or the like. A gasket for gas sealing is often arranged at the periphery of the MEA at the same time.

【0006】[0006]

【発明が解決しようとする課題】高分子電解質型燃料電
池の高分子電解質膜は、含水率の増加に伴ってイオン伝
導度が高くなり、ガス透過性が低下する物性を有してい
る。このため、前記の高分子電解質膜および触媒層中の
高分子電解質を湿潤状態に保つ必要がある。しかしなが
ら、過剰な湿潤状態にすると、凝縮水により拡散層の気
孔部やセパレータ板のガス流路が閉塞され、ガス拡散の
阻害により電池性能が極端に劣化するフラッディング状
態に陥る。高性能な高分子電解質型燃料電池を提供する
ためには、高分子電解質を適当な湿潤状態に保ちつつ、
過剰な水分を安全かつ速やかに除去することが必要不可
欠である。
The polymer electrolyte membrane of the polymer electrolyte fuel cell has such properties that the ionic conductivity increases as the water content increases and the gas permeability decreases. For this reason, it is necessary to keep the polymer electrolyte in the polymer electrolyte membrane and the catalyst layer in a wet state. However, when the wet state is excessive, the pores of the diffusion layer and the gas flow path of the separator plate are blocked by the condensed water, and a flooding state occurs in which the cell performance is extremely deteriorated due to inhibition of gas diffusion. In order to provide a high-performance polymer electrolyte fuel cell, while maintaining the polymer electrolyte in an appropriate wet state,
It is essential to remove excess water safely and promptly.

【0007】通常、電池運転時に生じる生成水のみによ
って適切な湿潤状態に保つことは困難であるから、何ら
かの加湿方法を用いて反応ガスと共に水成分をMEAへ
供給し、MEAを加湿することが一般的に行われてお
り、加湿量が減少した際には、出力電圧が顕著に低下す
るという問題がある。しかし、加湿方法がより簡便であ
るほど、または加湿量がより少量であるほど、より安定
かつ安全な加湿及び電池運転が可能であり、燃料電池シ
ステムの運転効率を向上させることが可能である。本発
明は、少量の加湿によっても性能の低下しない高分子電
解質型燃料電池を提供することを目的とする。
[0007] Since it is usually difficult to maintain an appropriate wet state only by generated water generated during battery operation, it is common to supply a water component together with a reaction gas to the MEA by using some humidifying method to humidify the MEA. When the humidification amount is reduced, there is a problem that the output voltage is significantly reduced. However, as the humidification method is simpler or the humidification amount is smaller, more stable and safe humidification and battery operation are possible, and the operation efficiency of the fuel cell system can be improved. SUMMARY OF THE INVENTION An object of the present invention is to provide a polymer electrolyte fuel cell whose performance is not deteriorated even by a small amount of humidification.

【0008】[0008]

【課題を解決するための手段】本発明のガス拡散電極
は、導電性の多孔性材料からなる電極基材、および前記
電極基材の電解質膜と接する側の主面に触媒層を有する
ガス拡散電極において、撥水性を有する導電性粒子が前
記電極基材の実質的に全域にわたり分布していることを
特徴とする。前記導電性粒子は、フッ素系樹脂を含むカ
ーボン粒子であることが好ましい。多孔性電極基材は、
カーボンペーパー、カーボンフェルト、カーボンクロス
などの炭素材料からなるものが好ましい。
A gas diffusion electrode according to the present invention comprises an electrode substrate made of a conductive porous material and a catalyst layer on a main surface of the electrode substrate in contact with the electrolyte membrane. The electrode is characterized in that the water-repellent conductive particles are distributed over substantially the entire area of the electrode substrate. The conductive particles are preferably carbon particles containing a fluororesin. The porous electrode substrate is
What consists of carbon materials, such as carbon paper, carbon felt, and carbon cloth, is preferred.

【0009】[0009]

【発明の実施の形態】本発明は、カーボンなどの導電性
粒子とフッ素樹脂などの撥水材料を主成分とする撥水性
を有する導電性粒子を、カーボンペーパーなどの多孔性
電極基材の触媒層と接する側の表面に塗布することによ
り、電極基材の片側の表面近傍に偏在させるのではな
く、含浸や圧入充填などにより、多孔性電極基材の全域
にわたり分布させるのである。このような撥水性を有す
る導電性粒子をほぼ全域に配した多孔性電極基材に、そ
の触媒層と接する側の主面に、さらに撥水性を有する導
電性粒子またはそれに類似するものをコーティングする
ことも有効である。従来のように撥水性の導電性粒子を
多孔性電極基材にブレード塗工やスプレー塗工などによ
って、電極基材の表面近傍に塗布するという形態により
作製されたガス拡散電極は、高分子電解質型燃料電池の
MEAを保湿するには不十分であり、電池外部より加湿
しながらの電池運転時において、加湿量を減少させた際
には、セル電圧の低下が顕著であった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming conductive particles such as carbon and water-repellent conductive particles mainly composed of a water-repellent material such as fluororesin on a catalyst for a porous electrode substrate such as carbon paper. By coating on the surface in contact with the layer, it is not distributed unevenly near one surface of the electrode substrate, but is distributed over the entire area of the porous electrode substrate by impregnation or press-fitting. On a porous electrode substrate in which such water-repellent conductive particles are arranged over almost the entire area, the main surface on the side in contact with the catalyst layer is further coated with water-repellent conductive particles or the like. It is also effective. Conventionally, gas diffusion electrodes made by applying water-repellent conductive particles to the porous electrode substrate in the vicinity of the surface of the electrode substrate by blade coating or spray coating are polymer electrolytes. When the humidification amount was reduced during the operation of the battery while humidifying the outside of the cell, the decrease in the cell voltage was remarkable.

【0010】このような課題に対して、本発明は、より
適切な高分子電解質の湿潤状態を実現するべく、撥水性
を有する導電性粒子を多孔性電極基材、つまりガス拡散
層のほぼ全域にわたって分布させるのである。これによ
り十分な厚みを有し、高分子電解質を保湿する性能に優
れた、導電性と撥水性とを具備したガス拡散電極を提供
することができる。低加湿化という目的に対しては、多
孔性電極基材をあらかじめフッ素樹脂ディスパージョン
などを利用して撥水処理を施すことも一般的である。し
かし、比較検討の結果、本発明のガス拡散電極の方が保
湿能力が大きいことが明らかとなっただけでなく、作製
工程も本発明のガス拡散電極の方が簡便である。
In order to solve such problems, the present invention provides a porous electrode substrate, that is, a gas diffusion layer over substantially the entire area of a porous electrode substrate, ie, a gas diffusion layer, in order to realize a more appropriate wet state of a polymer electrolyte. It is distributed over. This makes it possible to provide a gas diffusion electrode having a sufficient thickness, excellent performance for moisturizing the polymer electrolyte, and having conductivity and water repellency. For the purpose of low humidification, it is also common to apply a water-repellent treatment to the porous electrode substrate in advance using a fluororesin dispersion or the like. However, as a result of the comparative study, it was not only revealed that the gas diffusion electrode of the present invention had a higher moisturizing ability, but also the manufacturing process of the gas diffusion electrode of the present invention was simpler.

【0011】本発明のガス拡散電極は、これをアノー
ド、カソードのいずれか一方のみに配しても低加湿化の
効果はそれぞれにおいて認められるが、両極に本発明の
ガス拡散電極を配するときにもっとも大きな低加湿化の
効果を示す。以上のように本発明は、電解質を適切な湿
潤状態に保つことを重要とする高分子電解質型燃料電池
において、電池外部からの加湿が少ない状態において
も、高い出力電圧を発揮するガス拡散電極を提供する。
In the gas diffusion electrode of the present invention, the effect of low humidification can be recognized in each case even if the gas diffusion electrode is provided in only one of the anode and the cathode. Shows the greatest effect of low humidification. As described above, the present invention provides a polymer electrolyte fuel cell in which it is important to keep the electrolyte in an appropriate wet state, even in a state where humidification from outside the cell is small, a gas diffusion electrode that exhibits a high output voltage. provide.

【0012】[0012]

【実施例】以下、本発明に好適の実施例を詳細に説明す
る。 《実施例1》まず、触媒層の作製方法について説明す
る。粒径が数ミクロン以下のカーボン粉末を、塩化白金
酸水溶液に浸漬し、還元処理によりカーボン粉末の表面
に白金触媒を担持させた。カーボンと担持した白金の重
量比は1:1とした。次に、この白金を担持したカーボ
ン粉末を高分子電解質のアルコール溶液中に分散させ、
スラリー化したこの触媒担持カーボン粉末を含むスラリ
ーをフィルム基材に塗布し、乾燥させて触媒層を形成し
た。この触媒層を高分子電解質膜へ転写して触媒層付き
高分子電解質膜を作製した。触媒層の大きさは、後に接
合するカーボンペーパーより小さくし、カーボンペーパ
ーの外周部が触媒層のそれより数mmはみだすようにし
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. Example 1 First, a method for forming a catalyst layer will be described. A carbon powder having a particle diameter of several microns or less was immersed in an aqueous chloroplatinic acid solution, and a platinum catalyst was supported on the surface of the carbon powder by a reduction treatment. The weight ratio of carbon and supported platinum was 1: 1. Next, this carbon powder carrying platinum is dispersed in an alcohol solution of a polymer electrolyte,
A slurry containing the slurried catalyst-supporting carbon powder was applied to a film substrate and dried to form a catalyst layer. This catalyst layer was transferred to a polymer electrolyte membrane to produce a polymer electrolyte membrane with a catalyst layer. The size of the catalyst layer was made smaller than the carbon paper to be joined later, and the outer peripheral portion of the carbon paper was set to protrude several mm from that of the catalyst layer.

【0013】つぎに、撥水性カーボン層について説明す
る。界面活性剤を添加した水にアセチレンブラックの顆
粒の粉末を分散させた後、ポリテトラフルオロエチレン
(PTFE)の水性ディスパージョンを加えてよく混合
し、撥水性カーボンのスラリーを調製した。この撥水性
カーボンスラリーに、厚み360ミクロンのカーボンペ
ーパーを浸漬させ、これを容器毎減圧下に保持して、撥
水性カーボンスラリーをカーボンペーパーのほぼ全域に
含浸させた。これを引き上げて乾燥後、350℃で2時
間焼成した。こうして撥水性カーボンを含浸したカーボ
ンペーパーを所定の大きさに切断した。上記の触媒層付
き高分子電解質膜の両面に、カーボンペーパーを触媒層
がすべて覆われるように重ね合わせ、カーボンペーパー
の周縁部にガスケットを位置合わせして、100℃で5
分間プレスし、MEAを作製した。
Next, the water-repellent carbon layer will be described. After dispersing acetylene black granule powder in water to which a surfactant was added, an aqueous dispersion of polytetrafluoroethylene (PTFE) was added and mixed well to prepare a slurry of water-repellent carbon. A 360-μm-thick carbon paper was immersed in the water-repellent carbon slurry, and the container was kept under reduced pressure in each container to impregnate the entire area of the carbon paper with the water-repellent carbon slurry. This was pulled up and dried, and then fired at 350 ° C. for 2 hours. The carbon paper impregnated with the water-repellent carbon was cut into a predetermined size. On both sides of the above-mentioned polymer electrolyte membrane with a catalyst layer, carbon paper is overlapped so that the catalyst layer is entirely covered, and a gasket is positioned on the periphery of the carbon paper.
Press for minutes to make MEA.

【0014】以上のようにして作製した高分子電解質型
燃料電池Aを、12時間のエージング運転した後、カソ
ード側の露点が異なる2つの条件下で電流−電圧特性を
評価した。アノードへは露点が70℃となるように加湿
された水素を利用率70%の流量で供給し、カソードへ
は加湿された空気を利用率40%の流量で供給した。ま
ず、カソードへ供給する空気の露点(Tdc)60℃の条
件で電流−電圧特性を測定した。その後、カソードへ供
給する空気の露点を45℃に変更して、8時間のエージ
ング運転の後、再び電流−電圧特性を測定し、これを空
気の露点45℃における電流−電圧特性とした。電池温
度は75℃に保持した。
After aging operation of the polymer electrolyte fuel cell A manufactured as described above for 12 hours, current-voltage characteristics were evaluated under two conditions having different dew points on the cathode side. Hydrogen humidified so as to have a dew point of 70 ° C. was supplied to the anode at a flow rate of 70%, and humidified air was supplied to the cathode at a flow rate of 40%. First, the current-voltage characteristics were measured under the condition that the dew point (Tdc) of the air supplied to the cathode was 60 ° C. Thereafter, the dew point of the air supplied to the cathode was changed to 45 ° C., and after the aging operation for 8 hours, the current-voltage characteristics were measured again, and this was defined as the current-voltage characteristics at the air dew point of 45 ° C. The battery temperature was kept at 75 ° C.

【0015】《比較例1》従来の電池B、つまり撥水性
カーボン層をブレード塗工によって多孔性電極基材の触
媒層と接する面に偏在するように塗工したガス拡散電極
を用いて実施例1と同様の燃料電池Bを構成した。
Comparative Example 1 An example using a conventional battery B, that is, a gas diffusion electrode coated with a water-repellent carbon layer so as to be unevenly distributed on the surface of the porous electrode substrate in contact with the catalyst layer by blade coating. The same fuel cell B as in Example 1 was constructed.

【0016】実施例1の燃料電池Aおよび比較例1の燃
料電池Bの電流−電圧特性を図2に示した。この結果か
ら、本発明によるガス拡散電極を用いた高分子電解質型
燃料電池は、加湿量の少ない状態においても、高い出力
電圧を発揮することがわかる。
FIG. 2 shows the current-voltage characteristics of the fuel cell A of Example 1 and the fuel cell B of Comparative Example 1. From these results, it is understood that the polymer electrolyte fuel cell using the gas diffusion electrode according to the present invention exhibits a high output voltage even when the humidification amount is small.

【0017】《実施例2》実施例1のガス拡散電極をア
ノードのみに配した電池a1、およびカソードのみに配
した電池a2の特性を、両極に配した電池Aと比較して
図3に示す。この結果から、本発明のガス拡散電極をア
ノードのみに配した場合、カソードのみに配した場合の
いずれにおいても、加湿量が少ない状態における出力電
圧を向上させることが可能であることがわかる。そし
て、本発明のガス拡散電極をアノードおよびカソードの
双方に配した場合に最も大きな低加湿化の効果を発揮す
る。
<< Embodiment 2 >> The characteristics of the battery a1 in which the gas diffusion electrode of Embodiment 1 is provided only on the anode and the battery a2 in which only the cathode is provided are shown in FIG. 3 in comparison with the battery A provided with both electrodes. . From these results, it can be seen that the output voltage in a state where the humidification amount is small can be improved in both cases where the gas diffusion electrode of the present invention is provided only on the anode and when the gas diffusion electrode is provided only on the cathode. And when the gas diffusion electrode of the present invention is arranged on both the anode and the cathode, the greatest effect of reducing humidification is exhibited.

【0018】《比較例2》本発明によるガス拡散電極
と、あらかじめ電極基材を撥水処理した後に導電性撥水
層を塗布したガス拡散電極を比較した。比較例となる燃
料電池の作製方法を説明する。電極基材となる厚み36
0ミクロンのカーボンペーパーをフッ素樹脂の水性ディ
スパージョンに浸漬した後、乾燥した。この撥水性を付
与した多孔性電極基材の一主面に、実施例1で用いた撥
水性カーボンのスラリーを塗布した後、350℃で2時
間焼成した。つぎに、所定に大きさに切断した2枚の上
記撥水性カーボン層を塗布した撥水処理カーボンペーパ
ーを、実施例1と同様に触媒反応層付き高分子電解質膜
の両面に、触媒層がすべてカーボンペーパーで覆われる
ように重ね合わせ、さらに周縁部にガスケットを位置合
わせした後、100℃で5分間プレスして、MEAとし
た。
Comparative Example 2 A gas diffusion electrode according to the present invention was compared with a gas diffusion electrode coated with a conductive water-repellent layer after the electrode substrate had been subjected to a water-repellent treatment in advance. A method for manufacturing a fuel cell as a comparative example will be described. Thickness 36 to be the electrode substrate
0 micron carbon paper was immersed in an aqueous dispersion of fluororesin and then dried. The slurry of the water-repellent carbon used in Example 1 was applied to one main surface of the porous electrode substrate provided with the water-repellency, and then fired at 350 ° C. for 2 hours. Next, the water-repellent treated carbon paper coated with the two water-repellent carbon layers cut to a predetermined size was applied to both surfaces of the polymer electrolyte membrane provided with the catalytic reaction layer in the same manner as in Example 1; The sheets were overlapped so as to be covered with carbon paper, and a gasket was further positioned on the periphery, and then pressed at 100 ° C. for 5 minutes to obtain an MEA.

【0019】このMEAを用いた電池Cの実施例1と同
様の条件下での特性を図4に示す。この結果から、本発
明のガス拡散電極を用いた高分子電解質型燃料電池Aと
あらかじめ電極基材を撥水処理した後に導電性撥水層を
塗布したガス拡散電極を用いた高分子電解質型燃料電池
Cでは、前者の方が加湿量が少ない条件における出力電
圧が高いことがわかる。つまり、本発明のガス拡散電極
を用いた電池の方が加湿量の減少に伴う性能の低下を抑
制することが可能である。
FIG. 4 shows the characteristics of the battery C using the MEA under the same conditions as in the first embodiment. From these results, it can be seen that the polymer electrolyte fuel cell A using the gas diffusion electrode of the present invention and the polymer electrolyte fuel using the gas diffusion electrode coated with a conductive water repellent layer after the electrode substrate has been subjected to a water repellent treatment in advance. It can be seen that in the battery C, the former has a higher output voltage under the condition that the humidification amount is smaller. That is, the battery using the gas diffusion electrode of the present invention can suppress a decrease in performance due to a decrease in the amount of humidification.

【0020】[0020]

【発明の効果】以上のように撥水性の導電性粒子を導電
性の多孔性電極基材の全域にわたって分布させることに
より、高分子電解質を保湿する性能に優れたガス拡散電
極が得られる。このガス核酸電極を用いることにより、
加湿量の少ない状態における出力低下が抑制された高分
子電解質型燃料電池を提供することが可能となった。
As described above, by dispersing the water-repellent conductive particles over the entire area of the conductive porous electrode substrate, a gas diffusion electrode excellent in moisturizing the polymer electrolyte can be obtained. By using this gas nucleic acid electrode,
It has become possible to provide a polymer electrolyte fuel cell in which a decrease in output in a state where the amount of humidification is small is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般的な高分子電解質型燃料電池の構成を示す
断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a general polymer electrolyte fuel cell.

【図2】実施例1の燃料電池と比較例1の燃料電池の電
流−電圧特性を示す図である。
FIG. 2 is a diagram showing current-voltage characteristics of a fuel cell of Example 1 and a fuel cell of Comparative Example 1.

【図3】実施例2の燃料電池の電流−電圧特性を示す図
である。
FIG. 3 is a diagram showing current-voltage characteristics of the fuel cell of Example 2.

【図4】実施例1の燃料電池と比較例2の燃料電池の電
流−電圧特性を示す図である。
FIG. 4 is a diagram showing current-voltage characteristics of the fuel cell of Example 1 and the fuel cell of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 触媒層 3 ガス拡散層 4 電極 5 MEA 6、6a、6b 導電性セパレータ板 7、7a、7b ガス流路 8 冷却水の流路 9 ガスケット DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Catalyst layer 3 Gas diffusion layer 4 Electrode 5 MEA 6, 6a, 6b Conductive separator plate 7, 7a, 7b Gas flow path 8 Cooling water flow path 9 Gasket

フロントページの続き (72)発明者 山本 雅夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 神原 輝壽 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 AS01 BB01 BB03 BB05 BB06 BB08 BB11 BB12 BB17 CC06 DD08 EE03 EE05 EE18 5H026 AA06 CC03 CX05 EE05 EE19Continued on the front page (72) Inventor Masao Yamamoto 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Teruhito Kanbara 1006 Ojidoma Kadoma, Kadoma City Osaka Pref. Reference) 5H018 AA06 AS01 BB01 BB03 BB05 BB06 BB08 BB11 BB12 BB17 CC06 DD08 EE03 EE05 EE18 5H026 AA06 CC03 CX05 EE05 EE19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性の多孔性材料からなる電極基材、
および前記電極基材の電解質膜と接する側の主面に触媒
層を有するガス拡散電極であって、撥水性を有する導電
性粒子が前記電極基材の実質的に全域にわたり分布して
いることを特徴とするガス拡散電極。
1. An electrode substrate comprising a conductive porous material,
And a gas diffusion electrode having a catalyst layer on the main surface of the electrode substrate in contact with the electrolyte membrane, wherein the conductive particles having water repellency are distributed over substantially the entire area of the electrode substrate. Characterized gas diffusion electrode.
【請求項2】 前記導電性粒子がフッ素系樹脂を含むカ
ーボン粒子である請求項1記載のガス拡散電極。
2. The gas diffusion electrode according to claim 1, wherein the conductive particles are carbon particles containing a fluorine-based resin.
【請求項3】 水素イオン伝導性の高分子電解質膜、前
記高分子電解質を挟む一対のガス拡散電極、および前記
ガス拡散電極を挟み、ガス拡散電極と接する面にガス流
路を形成した一対の導電性セパレータを具備する高分子
電解質型燃料電池であって、前記ガス拡散電極の少なく
とも一方が、請求項1または2記載のガス拡散電極であ
る高分子電解質型燃料電池。
3. A hydrogen ion conductive polymer electrolyte membrane, a pair of gas diffusion electrodes sandwiching the polymer electrolyte, and a pair of gas diffusion electrodes sandwiching the gas diffusion electrode and forming a gas flow path on a surface in contact with the gas diffusion electrode. 3. A polymer electrolyte fuel cell comprising a conductive separator, wherein at least one of the gas diffusion electrodes is the gas diffusion electrode according to claim 1 or 2.
JP2001132972A 2001-04-27 2001-04-27 Gas diffusion electrode and polyelectrolyte fuel cell using this Withdrawn JP2002329501A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001132972A JP2002329501A (en) 2001-04-27 2001-04-27 Gas diffusion electrode and polyelectrolyte fuel cell using this
PCT/JP2002/004006 WO2002091503A1 (en) 2001-04-27 2002-04-22 Electrode for fuel cell and method of manufacturing the electrode
EP02720565.7A EP1383184B1 (en) 2001-04-27 2002-04-22 Electrode for fuel cell and method of manufacturing the electrode
CNB028014154A CN1299373C (en) 2001-04-27 2002-04-22 Electrode for fuel cell and method of manufacturing the electrode
KR10-2002-7017708A KR100504965B1 (en) 2001-04-27 2002-04-22 Electrode for fuel cell and method of manufacturing the electrode
US10/426,217 US20040009389A1 (en) 2001-04-27 2003-04-30 Electrode material, membrane-electrode assembly and polymer electrolyte fuel cell made therefrom, and method of making the electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132972A JP2002329501A (en) 2001-04-27 2001-04-27 Gas diffusion electrode and polyelectrolyte fuel cell using this

Publications (1)

Publication Number Publication Date
JP2002329501A true JP2002329501A (en) 2002-11-15

Family

ID=18980909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132972A Withdrawn JP2002329501A (en) 2001-04-27 2001-04-27 Gas diffusion electrode and polyelectrolyte fuel cell using this

Country Status (1)

Country Link
JP (1) JP2002329501A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2005174607A (en) * 2003-12-08 2005-06-30 Aisin Seiki Co Ltd Solid polymer electrolyte fuel cell, and gas diffusion electrode for solid polymer electrolyte fuel cell
JP2007005122A (en) * 2005-06-23 2007-01-11 Aisin Seiki Co Ltd Manufacturing method of fuel cell and manufacturing method of diffusion layer for fuel cell
JP2009009830A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Manufacturing method of material for gas diffusion electrode, gas diffusion electrode, and manufacturing device of material for gas diffusion electrode
KR101181853B1 (en) * 2005-01-26 2012-09-11 삼성에스디아이 주식회사 Electrode and membrane/electrode assembly for fuel cell and fuel cell comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174607A (en) * 2003-12-08 2005-06-30 Aisin Seiki Co Ltd Solid polymer electrolyte fuel cell, and gas diffusion electrode for solid polymer electrolyte fuel cell
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP4506164B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
KR101181853B1 (en) * 2005-01-26 2012-09-11 삼성에스디아이 주식회사 Electrode and membrane/electrode assembly for fuel cell and fuel cell comprising same
JP2007005122A (en) * 2005-06-23 2007-01-11 Aisin Seiki Co Ltd Manufacturing method of fuel cell and manufacturing method of diffusion layer for fuel cell
JP2009009830A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Manufacturing method of material for gas diffusion electrode, gas diffusion electrode, and manufacturing device of material for gas diffusion electrode

Similar Documents

Publication Publication Date Title
JP3690651B2 (en) Fuel cell
JP4839211B2 (en) Fuel cell and fuel cell manufacturing method
WO2005124903A1 (en) Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
WO2001017047A1 (en) Polymer electrolyte type fuel cell
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2002367655A (en) Fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP4493954B2 (en) Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2005228755A (en) Polymer electrolyte fuel cell
US20020197524A1 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
KR100504965B1 (en) Electrode for fuel cell and method of manufacturing the electrode
JP2002063912A (en) Manufacturing method of polymer electrolyte fuel cell
JP2001110428A (en) High molecular electrolysis type fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
JP5021885B2 (en) Fuel cell
JP2000003718A (en) Method for activating high molecular electrolyte fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2002329501A (en) Gas diffusion electrode and polyelectrolyte fuel cell using this
JP2001057217A (en) Polymer electrolyte type fuel cell
JP2009009768A (en) Method of manufacturing electrolyte membrane/membrane electrode assembly, and fuel cells
JP2002289200A (en) Fuel battery
JP2002289201A (en) Fuel cell
JP2004349013A (en) Fuel cell stack
JP2004349180A (en) Membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090916