JP2004192950A - Solid polymer fuel cell and its manufacturing method - Google Patents

Solid polymer fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2004192950A
JP2004192950A JP2002359521A JP2002359521A JP2004192950A JP 2004192950 A JP2004192950 A JP 2004192950A JP 2002359521 A JP2002359521 A JP 2002359521A JP 2002359521 A JP2002359521 A JP 2002359521A JP 2004192950 A JP2004192950 A JP 2004192950A
Authority
JP
Japan
Prior art keywords
catalyst layer
polymer electrolyte
gas diffusion
fuel cell
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002359521A
Other languages
Japanese (ja)
Inventor
Hisatoshi Fukumoto
久敏 福本
Osamu Hiroi
治 廣井
Hideo Maeda
秀雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002359521A priority Critical patent/JP2004192950A/en
Publication of JP2004192950A publication Critical patent/JP2004192950A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer fuel cell well supplying reaction gas to a catalyst layer and having small proton conduction resistance, while appropriately humidifying an electrolyte by efficiently using generated water under a low humidified condition and suppressing the water content of the electrolyte to be in excess of a required quantity under a high humidified condition. <P>SOLUTION: The solid polymer fuel cell 51 is composed of a solid polymer electrolyte film 1, catalyst layers 2, 3 disposed on both sides of the electrolyte film 1, and porous gas diffusion layers 4, 5 disposed on opposite surfaces of the catalyst layers 2, 3 contacting with the electrolyte film 1, respectively. The catalyst layers 2, 3 contain catalyst carrier conductive particles and electrolytes, and voidfraction of the catalyst layers 2, 3 are increased in the direction from the electrolyte film 1 toward the porous gas diffusion layers 4, 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、幅広い加湿条件で優れた発電特性を得ることのできる固体高分子型燃料電池及びその製造方法に関する。
【0002】
【従来の技術】
燃料電池は、水素やメタノール等の燃料を電気化学的に酸化し、燃料の化学エネルギーを直接電気エネルギーとして取り出すため高効率であり、また、その反応生成物が原理的に水のみであるためクリーンな発電システムとして注目されている。この燃料電池には、使用される電解質の種類から、リン酸型、溶融炭酸塩型、固体高分子型などがあるが、近年高出力の得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。
【0003】
固体高分子型燃料電池は、固体高分子電解質膜の両面に触媒層を配置し、導電性の多孔質体からなる燃料ガス拡散層及び空気拡散層でこれを挟み込んだ単電池と、電極である燃料ガス拡散層及び空気拡散層のそれぞれに反応ガスを供給するための溝を有するガス不透過性のセパレータとで構成されるものである。燃料ガス拡散層側(アノード)に水素ガスを、空気拡散層側(カソード)に酸素ガス(通常は、酸素を含む空気)を供給し、外部回路より電流を取り出すとき、下記のような反応が生じる。
アノード反応:H→2H+2e (1)
カソード反応:2H+2e+1/2O→HO (2)
即ち、燃料ガス拡散層を通じてアノード触媒層に供給された水素は酸化されてプロトン(水素イオン)となり、固体高分子電解質膜中をカソード触媒層まで移動する。カソード触媒層に到達したプロトンは、空気拡散層を通過してきた酸素及び外部回路を流れてきた電子と反応して水を生成する。
従って、燃料電池の発電特性を向上させるためには、プロトンの移動や反応ガスの供給が効率よく行われる必要がある。
【0004】
電解質中をプロトンが効率よく移動するためには、電解質を十分に加湿してイオン伝導性を向上させる必要がある。電解質を加湿するためには、反応ガスを加湿する方法や反応で生成した水を直接用いる方法がある。しかし、反応ガスを加湿する方法では、電池の外部にバブラなどの加湿器が必要となるので、反応で生成した水だけを用いて電解質を加湿することが、電池の小型化やエネルギー効率の点から望ましい。従って、反応で生成した水が、触媒層から外部に排出され難い構造にする必要がある。一方、電解質が過剰に含水すると、水が凝縮し、反応ガスの供給が阻害されるので、反応して生成した水は触媒層から適度に排出される必要もある。
【0005】
そこで、電解質に常時適度な水分を保持するための方法として、触媒層の厚さ方向及び面方向に沿って、電解質量を変化させた触媒層をガス拡散層上に形成した固体高分子型燃料電池が提案されている(例えば、特許文献1参照)。この触媒層に含まれる電解質量の多い部分では、水の保持力が向上し、電解質量の少ない部分ではガス拡散性が良好なため、長時間安定した発電特性が得られる。しかしながら、触媒層をガス拡散層表面に形成しているために、電解質膜と触媒層との接合部の接触が不十分となり、プロトン伝導抵抗が大きいという問題がある。これとは逆に、触媒層を電解質膜に形成する方法も提案されているが、この場合は、ガス拡散層と触媒層との接合部の接触が不十分となり、同様にプロトン伝導抵抗が大きいという問題がある。
【0006】
また、ガス拡散層の内部に触媒担持導電性粒子と電解質とを充填して、ガス拡散層と触媒層を一体化させた固体高分子型燃料電池が提案されている(例えば、特許文献2参照)。触媒層とガス拡散層を一体化させたことによりガス拡散性が向上し、高加湿の条件では、適度な水分が保持されて優れた発電特性が得られる。しかしながら、低加湿の条件では、触媒層の空隙を通じて電解質の乾燥が進行して発電特性の低下が著しいため、大きな外部加湿器が必要となる。また、ガス拡散層と触媒層とが一体化された多孔質体を電解質膜表面に接合させるため、電解質膜と触媒層との接合部の接触が不十分となり、プロトン伝導抵抗が大きいという問題もある。
【0007】
【特許文献1】
特開2001−319663号公報
【特許文献2】
特開2001−43865号公報
【0008】
【発明が解決しようとする課題】
前述のように、従来の固体高分子型燃料電池は、加湿条件に応じて、電解質中の水分を適度に調整することが難しく、加湿条件により発電特性が大きく変化し、また、接合部におけるプロトン伝導抵抗が大きいという問題があった。
従って、本発明の目的は、低加湿条件では反応により生成する水を効率よく利用することで電解質を適度に加湿し、高加湿条件では電解質が過剰に含水することを抑制して、触媒層への反応ガスの供給を良好にし、且つ接合部におけるプロトン伝導抵抗の小さい固体高分子型燃料電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、上記の課題を解決することができた。即ち、本発明は、固体高分子電解質膜と、前記固体高分子電解質膜の両面に配置した触媒層と、前記触媒層の前記固体高分子電解質膜と接する面の反対の面にそれぞれ配置した多孔質ガス拡散層とを具備した固体高分子型燃料電池において、前記触媒層が、触媒担持導電性粒子及び電解質を含有し、且つ前記触媒層の空隙率が、前記固体高分子電解質膜から前記多孔質ガス拡散層の方向に大きくなっていること特徴とする固体高分子型燃料電池を提供するものである。
また本発明は、触媒担持導電性粒子及び電解質を含有する触媒層インクを多孔質ガス拡散層上に塗布して、前記触媒層インクの一部を前記多孔質ガス拡散層に染み込ませて触媒層を形成する工程と、前記触媒層インクを樹脂フィルム上に塗布した後、固体高分子電解質膜の両面に転写して触媒層を形成する工程と、前記多孔質ガス拡散層の触媒層面と前記固体高分子電解質膜の触媒層面とを向かい合わせて接合する工程とを含む固体高分子型燃料電池の製造方法を提供するものである。
【0010】
【発明の実施の形態】
実施の形態1.
図1は、本発明の固体高分子型燃料電池の一実施形態の断面図である。
図1において、本発明の固体高分子型燃料電池51は、固体高分子電解質膜1と、固体高分子電解質膜1の両面に配置した触媒層2および3と、触媒層2および3の外側(固体高分子電解質膜1と接する面の反対の面)にそれぞれ配置した多孔質ガス拡散層としての空気極ガス拡散層4および燃料極ガス拡散層5とを具備してなる。また、触媒層2は、第一燃料極触媒層2aおよび第二燃料極触媒層2bの複数層から構成され、触媒層3は、第一空気極触媒層3aおよび第二空気極触媒層3bの複数層から構成されている。
本発明は、触媒層2および3が、触媒担持導電性粒子及び電解質を含有し、且つ触媒層2および3の空隙率が、固体高分子電解質膜1から多孔質ガス拡散層4および5の方向にそれぞれ大きくなっていること特徴としている。すなわち本実施の形態1によれば、触媒層2の空隙率は、第一燃料極触媒層2aよりも第二燃料極触媒層2bのほうが大きく、且つ触媒層3の空隙率は、第一空気極触媒層3aよりも第二空気極触媒層3bのほうが大きくなっている。
【0011】
空隙率は、具体的には、最も大きい所で50%〜98%、最も小さい所で30%〜80%に調整するのがよい。
尚、本実施の形態では、触媒層の空隙率が、固体高分子電解質膜から多孔質ガス拡散層の方向に、段階的に大きくなる形態について説明するが、触媒層の空隙率が連続的に大きくなる形態も本発明に包含される。
【0012】
(触媒担持導電性粒子)
本実施の形態の触媒担持導電性粒子としては、水素の酸化反応と酸素の還元反応を促進する触媒が導電性粒子に担持されたものであればよい。ここでの触媒は、水素の酸化反応と酸素の還元反応を促進し、微粉末状であり水に不溶であればどのようなものでも使用可能であるが、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属やこれらの合金、またはこれらの酸化物、複酸化物等を挙げることができる。これらの触媒を担持する導電性粒子としては、微粉末状で導電性を有し、触媒に犯されないものであればよく、カーボンブラック、黒鉛、グラファイト、カーボンナノチューブの凝集体及び各種金属微粉末を挙げることができる。これら導電性粒子の平均一次粒子径は、10〜300nmが好ましく、20〜100nmがより好ましい。この範囲内であれば、触媒層を形成したときに良好な電気伝導性を得ることができる。
導電性粒子に担持される触媒の量は、導電性粒子の形状に依存するが、導電性粒子に対して10〜80重量%、好ましくは、20〜70重量%である。
【0013】
(電解質)
本実施の形態の電解質としては、プロトンを伝導する物質であればよく、有機物、無機物、特に限定するものではないが、ナフィオン(デュポン社製)に代表されるような、含フッ素ポリマーあるいは非フッ素系炭化水素ポリマーを骨格として少なくともスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等のプロトン交換基を有するものを挙げることができる。
【0014】
(固体高分子電解質膜)
本実施の形態の固体高分子電解質膜としては、上記のプロトン伝導性ポリマー等を用いることができ、単一のプロトン伝導性ポリマーからなってもよいし、2種以上のプロトン伝導性ポリマーを混合したものであってもよい。特に、プロトン伝導性ポリマーを押し出し成膜し、膜厚を5〜100μmとした固体高分子電解質膜を用いることが好ましい。
【0015】
(多孔質ガス拡散層)
本実施の形態の多孔質ガス拡散層としては、カーボンペーパー、カーボンクロス、カーボンフェルトなどの導電性多孔質体を挙げることができ、これらは燃料ガス拡散層及び空気拡散層の何れにも用いることができる。腐食の問題などから考えてカーボン材料の方が好適であるが、金属など他の導電性の多孔質体を用いてもよい。さらに、多孔質ガス拡散層と触媒層との接触部の接触を良好にするため、多孔質ガス拡散層にカーボンブラックとフッ素系バインダとからなる目止め層を施したものを用いてもよい。多孔質ガス拡散層の孔径は、触媒担持導電性粒子の平均一次粒子径の100〜2000倍、より好ましくは200〜1000倍であり、空隙率は、好ましくは60%〜95%、より好ましくは70%〜90%である。これらの範囲内であれば、触媒層インクを塗布した際、触媒層インクの一部が多孔質ガス拡散層に染み込み、触媒層と多孔質ガス拡散層とが複合した複合領域を形成するため、接合部のプロトン伝導性が良好で、且つ空隙率の大きな排水性の良好な触媒層を形成することができる。
【0016】
(触媒層インク)
本実施の形態の触媒層インクとは、電解質がアルコール等の溶剤中に溶解した電解質溶液(例えば、アルドリッチ製ナフィオン溶液)と触媒担持導電性粒子とを混合したものであればよい。電解質や溶剤の種類の違いによって異なるが、燃料極側の固体高分子電解質膜に塗布する触媒層インクは、触媒担持導電性粒子1重量部に対して、0.25〜1.0重量部、好ましくは0.5〜0.75重量部の電解質を含有し、燃料極側の多孔質ガス拡散層側に塗布する触媒層インクは、触媒担持導電性粒子1重量部に対して、0.25〜1.0重量部、好ましくは0.4〜0.75重量部の電解質を含有することが望ましい。また、空気極側の固体高分子電解質膜に塗布する触媒層インクは、触媒担持導電性粒子1重量部に対して、0.1〜0.75重量部、好ましくは0.3〜0.6重量部の電解質を含有し、空気極側の多孔質ガス拡散層側に塗布する触媒層インクは、触媒担持導電性粒子1重量部に対して、0.1〜0.75重量部、好ましくは0.15〜0.4重量部の電解質を含有することが望ましい。上記の範囲とすることで、プロトン伝導性及び電気伝導性が良好で、且つ固体高分子電解質膜から多孔質ガス拡散層の方向に、空隙率の大きくなる触媒層を形成することができる。
【0017】
(撥水性物質)
また、触媒層インクに撥水性物質を更に含有させることで、触媒層で生成した水が撥水性物質にブロックされて排出されにくくなり、電解質の乾燥を抑制することができる。撥水性物質の具体例としては、ポリテトラフルオロエチレン(PTFE)、フッ化エチレンプロピレン(FEP)、ポリフッ化ビニリデン(PVDF)などのフッ素系樹脂、シリコーン系樹脂などが挙げられる。これらの撥水性物質を触媒層に含有させる方法としては、上記の撥水性物質によって撥水処理した触媒担持導電性粒子と電解質溶液とを混合して触媒層インクを調製する方法が挙げられる。前記方法を用いる場合、触媒担持導電性粒子1重量部に対して、撥水性物質が0.02〜0.6重量部、好ましくは0.05〜0.4重量部となるように撥水化処理を行う。
【0018】
(固体高分子型燃料電池の製造方法)
次に本発明の固体高分子型燃料電池の製造方法の一実施形態を説明する。以下は、前記で説明した図1の固体高分子型燃料電池の製造方法に関するものである。
まず、触媒担持導電性粒子と電解質溶液の混合割合を変えて、多孔質ガス拡散層に塗布する燃料極側及び空気極側の触媒層インク(以下、それぞれ第一燃料極触媒層インク及び第一空気極触媒層インクと略す)を調製する。次に、二枚の薄い樹脂フィルム(例えば、ポリエチレンテレフタレート(PET)フィルム)に第一燃料極触媒層インク及び第一空気極触媒層インクを、スクリーン印刷法又はスプレー印刷法により塗布する。ただし、触媒層と樹脂フィルムが密着しないように、樹脂フィルム表面に離型剤(例えば、シリコーン系樹脂、フッ素系樹脂、ポリオレフィン系樹脂など撥水性を有する材料)を予めコーティングしておくことが望ましい。続いて、触媒層インクを塗布した樹脂フィルムを加熱してインクを乾燥し、次いで、固体高分子電解質膜1(例えば、デュポン製ナフィオン112膜)の両面に触媒層を転写して、第一燃料極触媒層2a及び第一空気極触媒層3aを固体高分子電解質膜1の表面に形成する。転写の際、触媒層は樹脂フィルムにより圧縮されるため、固体高分子電解質膜に密着した空隙率の小さい、具体的には空隙率が30%〜80%の触媒層を得ることができる。
次に、触媒担持導電性粒子と電解質溶液の混合割合を変えて、電解質の含有割合が、第一燃料極触媒層インクの電解質の含有割合と同じかそれより少なくなるように第二燃料極触媒層インクを調製する。同様に、電解質の含有割合が、第一空気極触媒層インクの電解質の含有割合と同じかそれより少なくなるように第二空気極触媒層インクを調製する。触媒層の電解質含有割合を、固体高分子電解質膜から前記多孔質ガス拡散層の方向に少なくすることにより、触媒層の空隙率を、固体高分子電解質膜から多孔質ガス拡散層の方向に一層大きくすることができる。続いて、ポリテトラフルオロエチレンなどで撥水処理した多孔質ガス拡散層としての空気極ガス拡散層4および燃料極ガス拡散層5上に、第二燃料極触媒層インク及び第二空気極触媒層インクそれぞれを、スクリーン印刷法又はスプレー印刷法により塗布し、触媒層インクの一部を多孔質ガス拡散層に染み込ませることにより、空隙率の大きい、具体的には、空隙率が50%〜98%の第二燃料極触媒層2b及び第二空気極触媒層3bを形成する。本実施の形態では、触媒層インクの一部を多孔質ガス拡散層に染み込ませているため、多孔質ガス拡散層における多孔性が触媒層の空隙率を大きくすることに寄与している。
次に、第一燃料極触媒層2aと第二燃料極触媒層2b、第一空気極触媒層3aと第二空気極触媒層3bそれぞれが向かい合わせになるように各部材を重ね合わせ、ホットプレスして接合し、固体高分子型燃料電池51が得られる。
【0019】
本実施の形態では、触媒層を二層重ねて構成しているが、三層以上重ねた構成も可能であり、第一触媒層及び第二触媒層を形成したのと同様の工程を複数繰り返すことによって、三層以上の触媒層を形成することができる。しかしながら、触媒層を六層以上重ねた構成では、製造工程が複雑になるばかりでなく、触媒層間の接触抵抗が増大し発電特性が低下する恐れがあるので、五層以下が好ましく、三層以下がより好ましい。また、重ね合わせた触媒層の厚みは、好ましくは1〜100μm、より好ましくは5〜50μmとなるように各触媒層の厚みを設定するのがよい。触媒層が薄過ぎる場合、触媒量の不足によって発電特性が十分とならず、また触媒層が厚過ぎる場合も、電気伝導性の低下やガス拡散性の低下によって発電特性が十分とならない。
また、本実施の形態では、燃料極及び空気極両方の触媒層を複数層としたが、どちらか一方の触媒層だけを複数層とすることも可能である。
【0020】
実施の形態2.
本発明の実施の形態2による固体高分子型燃料電池について、実施の形態1と同様に図1を用いて説明する。実施の形態1との違いは、第一燃料極触媒層2a及び第一空気極触媒層3aが、撥水性物質を更に含有することである。
以下に、本実施の形態による固体高分子型燃料電池の作製方法について説明する。
触媒担持導電性粒子と水とを混合し、更に、撥水性を有する微粒子を分散させた溶液を添加してペースト状にする。このペーストを窒素雰囲気中で加熱し、水分や界面活性剤などを除去した後、残った固形物を粉砕し、撥水処理された触媒担持導電性粒子が得られる。この撥水処理した触媒担持導電性粒子と電解質溶液との混合割合を変えて、第一燃料極触媒層インク及び第一空気極触媒層インクを調製する。それ以外は、実施の形態1と同様にして、第一燃料極触媒層2a、第一燃料極触媒層2b、第一空気極触媒層3a及び第二空気極触媒層3bを形成する。
次に、第一燃料極触媒層2aと第二燃料極触媒層2b、第一空気極触媒層3aと第二空気極触媒層3bそれぞれが向かい合わせになるように各部材を重ね合わせ、ホットプレスして接合し、固体高分子型燃料電池51が得られる。
【0021】
本実施の形態では、第一触媒層が撥水性物質を含有する構成であるが、他の触媒層が撥水性物質を含有する構成も可能である。
【0022】
【実施例】
以下に実施例および比較例を示し、本発明をさらに詳しく説明するが、本発明はこれらの例に制限されるものではない。
【0023】
〔実施例1〕
図1に示すような固体高分子型燃料電池51を作製した。
白金担持カーボンブラック(白金50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金担持カーボンブラック1重量部に対して、電解質が0.4重量部となるように第一空気極触媒層インクを調製した。同様に、白金担持カーボンブラック1重量部に対して、電解質が0.25重量部となるように第二空気極触媒層インクを調製した。これとは別に、白金−ルテニウム担持カーボンブラック(白金−ルテニウム50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金−ルテニウム担持カーボンブラック1重量部に対して、電解質が0.6重量部となるように第一燃料極触媒層インクを調製した。同様に、白金−ルテニウム担持カーボンブラック1重量部に対して、電解質が0.5重量部となるように第二燃料極触媒層インクを調製した。
離型剤を予めコーティングしたポリエチレンテレフタレート(PET)フィルムを二枚用意し、第一燃料極触媒層インク及び第一空気極触媒層インクをスクリーン印刷法によりそれぞれに塗布した。触媒層インクを塗布した二枚のPETフィルムを80℃の乾燥機に入れて、触媒層インクを乾燥した。高分子電解質膜(デュポン製ナフィオン112膜)の両面に、それぞれの乾燥した触媒層の面が接するように樹脂フィルムを重ね合わせ、ホットプレスして、触媒層と高分子電解質膜とを熱融着した後、PETフィルムを剥した。
次に、カーボンペーパー(東レ製TGP−H−120、空隙率80%)をポリテトラフルオロエチレン分散液(ポリテトラフルオロエチレン含量6重量%)に浸漬した後、80℃で乾燥して余分な水分を蒸発させ、次いで360℃で焼成して、撥水処理したカーボンペーパーを調製した。この撥水処理したカーボンペーパーを二枚用意し、第二燃料極触媒層インク及び第二空気極触媒層をスクリーン印刷法によりそれぞれに塗布した。
第一燃料極触媒層と第二燃料極触媒層、第一空気極触媒層と第二空気極触媒層それぞれが向かい合うように各部材を重ね合わせ、それをホットプレスして接合し、実施例1の固体高分子型燃料電池を得た。
尚、第一燃料極触媒層2aの空隙率は50%であり、第二燃料極触媒層2bの空隙率は90%であり、第一空気極触媒層3aの空隙率は60%であり、第二空気極触媒層3bの空隙率は92%であった。
【0024】
次に、得られた固体高分子型燃料電池の発電特性を評価した。作製した固体高分子型燃料電池51の電極の外側に額縁状のPTFE製ガスケット10を貼り付け、ガスケット付き固体高分子型燃料電池60とした。図4は、ガスケット10を貼り付けた固体高分子型燃料電池の断面図であり、図5は、ガスケット10を貼り付けた固体高分子型燃料電池の平面図である。
これを、図6に示すように、燃料流路16及び空気流路17を有するカーボンセパレータ6、7で両側から挟み込み、発電特性評価用の単セル70とした。この単セル70を負荷装置30と接続した後、単セル70を80℃に保温し、65℃に保温したバブラで加湿した水素を燃料流路16に供給し、60〜80℃に保温したバブラで加湿した空気を空気流路17に供給し常圧にて発電特性を評価した。
本実施例の燃料電池の発電特性を図7に示す。60〜80℃の空気加湿温度(露点)において、セル電圧の低下は殆ど見られず良好な発電特性を示した。これは、空気加湿温度の高い条件では、第二空気極触媒層が機能し、反対に空気加湿温度の低い条件では、第一空気極触媒層が機能するため、何れの加湿条件でもセル電圧が低下しなかったと考えられる。
また、空気加湿温度を65℃に固定し、燃料加湿温度を60〜80℃まで変えた試験も実施した。空気加湿温度を変化させた場合と同様に何れの加湿条件でもセル電圧の低下は殆ど見られなかった。燃料加湿温度の高い条件では、第二燃料極触媒層が機能し、燃料加湿温度の低い条件では、第一燃料極触媒層が機能するため、セル電圧の低下が見られなかったと考えられる。
【0025】
〔実施例2〕
白金担持カーボンブラック(白金50重量%、平均一次粒子径 約35nm)1重量部と水とを混合し、更に、ポリテトラフルオロエチレン分散液(ポリテトラフルオロエチレン含量6重量%)0.8重量部を添加してペースト状にした。その際、水はペーストが適当な粘度になるように添加した。このペーストを窒素雰囲気中で加熱し、ポリテトラフルオロエチレン分散液中に含まれる水分や界面活性剤などを除去した後、残った固形物を粉砕し、撥水処理された白金担持カーボンブラックを調製した。同様に、白金−ルテニウム担持カーボンブラック(白金−ルテニウム50重量%、平均一次粒子径 35nm)を撥水処理した。白金担持カーボンブラックの代わりに、撥水処理された白金担持カーボンブラックを用いて第一空気極触媒層インクを調製し、白金−ルテニウム担持カーボンブラックの代わりに、撥水処理された白金−ルテニウム担持カーボンブラックを用いて第一燃料極触媒層インクを調製する以外は、実施例1と同様にして、実施例2の固体高分子型燃料電池を得た。
尚、第一燃料極触媒層2aの空隙率は50%であり、第二燃料極触媒層2bの空隙率は90%であり、第一空気極触媒層3aの空隙率は60%であり、第二空気極触媒層3bの空隙率は92%であった。
得られた固体高分子型燃料電池を用いて、実施例1と同様にして単セルを作製し、発電特性を評価し図7に示した。
実施例1と同様に、評価した加湿範囲では大きなセル電圧の低下は見られなかった。実施例1と比較して本実施例の方がより加湿温度の低い条件で、高いセル電圧が得られた。これは、第一空気極触媒層に撥水処理を施したため、触媒層で生成した水が、この撥水性物質にブロックされて排出されにくくなっており、実施例1より加湿温度の低い条件でも発電に十分な水分が保持されるためと考えられる。
【0026】
〔比較例1〕
白金担持カーボンブラック(白金50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金担持カーボンブラック1重量部に対して、電解質が0.25重量部となるように空気極触媒層インクを調製した。これとは別に、白金−ルテニウム担持カーボンブラック(白金−ルテニウム50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金−ルテニウム担持カーボンブラック1重量部に対して、電解質が0.5重量部となるように燃料極触媒層インクを調製した。
次に、カーボンペーパー(東レ製TGP−H−120、空隙率80%)をポリテトラフルオロエチレン分散液(ポリテトラフルオロエチレン含量6重量%)に浸漬した後、80℃で乾燥して余分な水分を蒸発させ、次いで360℃で焼成して、撥水処理したカーボンペーパーを調製した。この撥水処理したカーボンペーパーを二枚用意し、燃料極触媒層インク及び空気極触媒層をスクリーン印刷法によりそれぞれに塗布した。
高分子電解質膜(デュポン製ナフィオン112膜)の両面に、燃料極触媒層及び空気極触媒層の面が接するようにカーボンペーパーを重ね合わせ、それをホットプレスして接合し、図2に示す比較例1の固体高分子型燃料電池52を得た。図2において、比較例1の固体高分子型燃料電池52は、固体高分子電解質膜1と、固体高分子電解質膜1の両面にそれぞれ配置した燃料極触媒層2c及び空気極触媒層3cと、触媒層2cおよび3cの外側にそれぞれ配置した多孔質ガス拡散層としての空気極ガス拡散層4および燃料極ガス拡散層5とを具備してなる。比較例1の固体高分子型燃料電池52は、前記実施例1および2とは異なり、燃料極触媒層2c及び空気極触媒層3cがそれぞれ単層構成であり、空隙率を何ら変化させていない。
得られた固体高分子型燃料電池を用いて、実施例1と同様にして単セルを作製し、発電特性を評価し図7に示した。
空気加湿温度75℃付近において最も高いセル電圧を示したが、加湿温度が低下すると、セル電圧も低下する傾向が見られた。これは、加湿温度の低い条件では、電解質膜が乾燥しプロトン伝導性が低下するため、その抵抗によりセル電圧が低下したと考えられる。
【0027】
〔比較例2〕
白金担持カーボンブラック(白金50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金担持カーボンブラック1重量部に対して、電解質が0.4重量部となるように空気極触媒層インクを調製した。これとは別に、白金−ルテニウム担持カーボンブラック(白金−ルテニウム50重量%、平均一次粒子径 35nm)と電解質溶液(アルドリッチ製ナフィオン溶液)を準備し、白金−ルテニウム担持カーボンブラック1重量部に対して、電解質が0.6重量部となるように燃料極触媒層インクを調製した。離型剤を予めコーティングしたポリエチレンテレフタレート(PET)フィルムを二枚用意し、燃料極触媒層インク及び空気極触媒層インクをスクリーン印刷法によりそれぞれに塗布した。触媒層インクを塗布した二枚のPETフィルムを80℃の乾燥機に入れて、触媒層インクを乾燥した。高分子電解質膜(デュポン製ナフィオン112膜)の両面に、それぞれの乾燥した触媒層の面が接するように樹脂フィルムを重ね合わせ、ホットプレスして、触媒層と高分子電解質膜とを熱融着した後、PETフィルムを剥した。
次に、カーボンペーパー(東レ製TGP−H−120、空隙率80%)をポリテトラフルオロエチレン分散液(ポリテトラフルオロエチレン含量6重量%)に浸漬した後、80℃で乾燥して余分な水分を蒸発させ、次いで360℃で焼成して、撥水処理したカーボンペーパーを調製した。この撥水処理したカーボンペーパーを二枚用意し、先の高分子電解質膜を挟み込み、それをホットプレスして接合し、図3に示す比較例2の固体高分子型燃料電池53を得た。
図3において、比較例2の固体高分子型燃料電池53は、固体高分子電解質膜1と、固体高分子電解質膜1の両面にそれぞれ配置した燃料極触媒層2d及び空気極触媒層3dと、触媒層2dおよび3dの外側にそれぞれ配置した多孔質ガス拡散層としての空気極ガス拡散層4および燃料極ガス拡散層5とを具備してなる。比較例2の固体高分子型燃料電池53は、前記実施例1および2とは異なり、燃料極触媒層2d及び空気極触媒層3dがそれぞれ単層構成であり、空隙率を何ら変化させていない。
得られた固体高分子型燃料電池を用いて、実施例1と同様にして単セルを作製し、発電特性を評価し図7に示した。
空気加湿温度(露点)60℃付近において最も高いセル電圧を示し、加湿温度が上昇するに伴い、セル電圧は低下する傾向が見られた。これは、加湿温度の高い条件では、電解質膜が過剰に含水するため、反応に必要な酸素が供給され難くなりセル電圧が低下したと考えられる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、供給する反応ガスの加湿温度(露点)が低い運転条件では、水分を保持し易い固体高分子電解質膜に近い触媒層が機能し、反対に反応ガスの加湿温度が高い運転条件では、水分の排出が円滑に行われ、ガス拡散性の良好な固体高分子電解質膜から離れた触媒層が機能するため、幅広い加湿条件で固体高分子型燃料電池を安定して運転する可能となる。特に、低加湿条件での性能改善によって、外部加湿器を小さく、最終的には加湿器がなくとも動作可能な固体高分子型燃料電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の固体高分子型燃料電池の一実施形態の断面図である。
【図2】比較例1による固体高分子型燃料電池を説明するための断面図である。
【図3】比較例2による固体高分子型燃料電池を説明するための断面図である。
【図4】ガスケットを貼り付けた固体高分子型燃料電池の断面図である。
【図5】ガスケットを貼り付けた固体高分子型燃料電池の平面図である。
【図6】実施例及び比較例の固体高分子型燃料電池を評価するために構成した単セルを説明するための断面図である。
【図7】空気加湿温度を変化させて実施例及び比較例の固体高分子型燃料電池の発電特性を比較した図である。
【符号の説明】
1 高分子電解質、2a 第一燃料極触媒層、2b 第二燃料極触媒層、2c燃料極触媒層、2d 燃料極触媒層、3a 第一空気極触媒層、3b 第二空気極触媒層、3c 空気極触媒層、3d 空気極触媒層、4 空気極ガス拡散層、5 燃料極ガス拡散層、6 燃料極セパレータ、7 空気極セパレータ、10ガスケット、16 燃料流路、17空気流路、30 負荷装置、51,52,53 固体高分子型燃料電池、60 ガスケット付き固体高分子型燃料電池、70 単セル。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell capable of obtaining excellent power generation characteristics under a wide range of humidification conditions, and a method for manufacturing the same.
[0002]
[Prior art]
Fuel cells are highly efficient because they electrochemically oxidize fuels such as hydrogen and methanol, and directly extract the chemical energy of the fuel as electrical energy, and because the reaction product is in principle only water, it is clean. Is attracting attention as a simple power generation system. This fuel cell includes phosphoric acid type, molten carbonate type, solid polymer type, etc., depending on the type of electrolyte used.In recent years, a solid polymer electrolyte membrane has been used as the electrolyte as a fuel cell with high output. The polymer electrolyte fuel cell used has attracted attention.
[0003]
A polymer electrolyte fuel cell is a unit cell in which catalyst layers are arranged on both sides of a polymer electrolyte membrane, and sandwiched between a fuel gas diffusion layer and an air diffusion layer made of a conductive porous body, and electrodes. A gas-impermeable separator having a groove for supplying a reaction gas to each of the fuel gas diffusion layer and the air diffusion layer. When hydrogen gas is supplied to the fuel gas diffusion layer side (anode) and oxygen gas (usually air containing oxygen) is supplied to the air diffusion layer side (cathode) and current is taken out from an external circuit, the following reaction occurs. Occurs.
Anode reaction: H 2 → 2H + + 2e (1)
Cathode reaction: 2H + + 2e + 1 / 2O 2 → H 2 O (2)
That is, the hydrogen supplied to the anode catalyst layer through the fuel gas diffusion layer is oxidized to protons (hydrogen ions) and moves through the solid polymer electrolyte membrane to the cathode catalyst layer. The protons that have reached the cathode catalyst layer react with oxygen that has passed through the air diffusion layer and electrons that have flowed through the external circuit to generate water.
Therefore, in order to improve the power generation characteristics of the fuel cell, it is necessary to efficiently move the protons and supply the reaction gas.
[0004]
In order for protons to move efficiently in the electrolyte, it is necessary to sufficiently humidify the electrolyte to improve ionic conductivity. In order to humidify the electrolyte, there are a method of humidifying the reaction gas and a method of directly using water generated by the reaction. However, in the method of humidifying the reaction gas, a humidifier such as a bubbler is required outside the battery, so humidifying the electrolyte using only the water generated by the reaction can reduce the size and energy efficiency of the battery. Desirable. Therefore, it is necessary to make the structure such that water generated by the reaction is hardly discharged from the catalyst layer to the outside. On the other hand, if the electrolyte contains excessive water, the water condenses and the supply of the reaction gas is hindered, so that the water generated by the reaction must be appropriately discharged from the catalyst layer.
[0005]
Therefore, as a method for always keeping an appropriate amount of water in the electrolyte, a solid polymer fuel in which a catalyst layer having a changed electrolytic mass is formed on a gas diffusion layer along the thickness direction and the surface direction of the catalyst layer. A battery has been proposed (for example, see Patent Document 1). In a portion having a large electrolytic mass contained in the catalyst layer, the water holding power is improved, and in a portion having a small electrolytic mass, the gas diffusivity is good, so that stable power generation characteristics can be obtained for a long time. However, since the catalyst layer is formed on the surface of the gas diffusion layer, there is a problem that the contact of the junction between the electrolyte membrane and the catalyst layer becomes insufficient and the proton conduction resistance is large. Conversely, a method of forming the catalyst layer on the electrolyte membrane has also been proposed, but in this case, the contact between the gas diffusion layer and the catalyst layer becomes insufficient and the proton conduction resistance is similarly large. There is a problem.
[0006]
Further, a polymer electrolyte fuel cell has been proposed in which a catalyst-supporting conductive particle and an electrolyte are filled in a gas diffusion layer to integrate the gas diffusion layer and the catalyst layer (for example, see Patent Document 2). ). By integrating the catalyst layer and the gas diffusion layer, gas diffusivity is improved, and under high humidification conditions, an appropriate amount of water is retained and excellent power generation characteristics are obtained. However, under low humidification conditions, drying of the electrolyte proceeds through the voids in the catalyst layer and the power generation characteristics are significantly reduced, so a large external humidifier is required. In addition, since the porous body in which the gas diffusion layer and the catalyst layer are integrated is bonded to the surface of the electrolyte membrane, the contact between the electrolyte membrane and the catalyst layer becomes insufficient, and the proton conduction resistance is large. is there.
[0007]
[Patent Document 1]
JP 2001-319663 A
[Patent Document 2]
JP 2001-43865 A
[0008]
[Problems to be solved by the invention]
As described above, in the conventional polymer electrolyte fuel cell, it is difficult to appropriately adjust the moisture in the electrolyte according to the humidification conditions, and the power generation characteristics greatly change depending on the humidification conditions. There is a problem that the conduction resistance is large.
Therefore, an object of the present invention is to appropriately humidify the electrolyte by efficiently using water generated by the reaction under low humidification conditions, and to suppress the electrolyte from being excessively hydrated under high humidification conditions, to the catalyst layer. The object of the present invention is to provide a polymer electrolyte fuel cell which makes the supply of the reaction gas good and has a low proton conduction resistance at the junction.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have been able to solve the above problems. That is, the present invention provides a solid polymer electrolyte membrane, a catalyst layer disposed on both sides of the solid polymer electrolyte membrane, and a porous layer disposed on a surface of the catalyst layer opposite to the surface in contact with the solid polymer electrolyte membrane. A polymer gas diffusion layer, wherein the catalyst layer contains catalyst-carrying conductive particles and an electrolyte, and the porosity of the catalyst layer is reduced from the solid polymer electrolyte membrane to the porosity. The present invention provides a polymer electrolyte fuel cell characterized in that it increases in the direction of the porous gas diffusion layer.
The present invention also provides a catalyst layer ink containing a catalyst-supporting conductive particle and an electrolyte, which is coated on a porous gas diffusion layer, and a part of the catalyst layer ink is impregnated into the porous gas diffusion layer. Forming a catalyst layer by applying the catalyst layer ink onto a resin film, and then transferring the catalyst layer ink to both surfaces of a solid polymer electrolyte membrane to form a catalyst layer. Bonding the polymer electrolyte membrane with the catalyst layer surface facing the catalyst layer surface.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of one embodiment of the polymer electrolyte fuel cell of the present invention.
In FIG. 1, a polymer electrolyte fuel cell 51 of the present invention includes a polymer electrolyte membrane 1, catalyst layers 2 and 3 disposed on both sides of the polymer electrolyte membrane 1, and outer portions of the catalyst layers 2 and 3 ( An air electrode gas diffusion layer 4 and a fuel electrode gas diffusion layer 5 are respectively provided as porous gas diffusion layers disposed on the surface opposite to the surface in contact with the solid polymer electrolyte membrane 1). Further, the catalyst layer 2 is composed of a plurality of layers of a first fuel electrode catalyst layer 2a and a second fuel electrode catalyst layer 2b, and the catalyst layer 3 is formed of a first air electrode catalyst layer 3a and a second air electrode catalyst layer 3b. It is composed of multiple layers.
In the present invention, the catalyst layers 2 and 3 contain the catalyst-carrying conductive particles and the electrolyte, and the porosity of the catalyst layers 2 and 3 is from the solid polymer electrolyte membrane 1 to the porous gas diffusion layers 4 and 5. The feature is that each is larger. That is, according to Embodiment 1, the porosity of the catalyst layer 2 is larger in the second fuel electrode catalyst layer 2b than in the first fuel electrode catalyst layer 2a, and the porosity of the catalyst layer 3 is The second air electrode catalyst layer 3b is larger than the electrode catalyst layer 3a.
[0011]
Specifically, the porosity is preferably adjusted to 50% to 98% at the largest part and to 30% to 80% at the smallest part.
In the present embodiment, a description will be given of a mode in which the porosity of the catalyst layer increases stepwise in the direction from the solid polymer electrolyte membrane to the porous gas diffusion layer, but the porosity of the catalyst layer is continuously increased. Forms that become larger are also included in the present invention.
[0012]
(Catalyst-supporting conductive particles)
The catalyst-carrying conductive particles of the present embodiment may be any as long as the catalyst for promoting the oxidation reaction of hydrogen and the reduction reaction of oxygen is supported on the conductive particles. The catalyst here promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen, and any catalyst can be used as long as it is in the form of a fine powder and is insoluble in water.Platinum, palladium, ruthenium, iridium, rhodium , Other than the platinum group elements of osmium, metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and alloys thereof, or oxides and double oxides thereof. be able to. The conductive particles that carry these catalysts may be any fine particles that have conductivity and do not violate the catalyst, such as carbon black, graphite, graphite, aggregates of carbon nanotubes, and various metal fine powders. Can be mentioned. The average primary particle diameter of these conductive particles is preferably from 10 to 300 nm, more preferably from 20 to 100 nm. Within this range, good electrical conductivity can be obtained when the catalyst layer is formed.
Although the amount of the catalyst supported on the conductive particles depends on the shape of the conductive particles, it is 10 to 80% by weight, preferably 20 to 70% by weight based on the conductive particles.
[0013]
(Electrolytes)
The electrolyte according to the present embodiment may be any substance that conducts protons, and is not particularly limited to organic substances and inorganic substances, but is not particularly limited, and may be a fluorine-containing polymer or non-fluorine such as Nafion (manufactured by DuPont). A polymer having a proton exchange group, such as a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, or a phosphoric acid group, having a skeleton of a hydrocarbon polymer is used.
[0014]
(Solid polymer electrolyte membrane)
As the solid polymer electrolyte membrane of the present embodiment, the above-described proton conductive polymer or the like can be used, and may be composed of a single proton conductive polymer or a mixture of two or more proton conductive polymers. May be done. In particular, it is preferable to use a solid polymer electrolyte membrane formed by extruding a proton conductive polymer into a film and setting the film thickness to 5 to 100 μm.
[0015]
(Porous gas diffusion layer)
Examples of the porous gas diffusion layer of the present embodiment include conductive porous bodies such as carbon paper, carbon cloth, and carbon felt, and these can be used for both the fuel gas diffusion layer and the air diffusion layer. Can be. The carbon material is more preferable in view of the problem of corrosion and the like, but other conductive porous materials such as metal may be used. Further, in order to improve the contact at the contact portion between the porous gas diffusion layer and the catalyst layer, a porous gas diffusion layer provided with a sealing layer made of carbon black and a fluorine-based binder may be used. The pore size of the porous gas diffusion layer is 100 to 2000 times, more preferably 200 to 1000 times the average primary particle size of the catalyst-supporting conductive particles, and the porosity is preferably 60% to 95%, more preferably 70% to 90%. Within these ranges, when the catalyst layer ink is applied, part of the catalyst layer ink penetrates into the porous gas diffusion layer to form a composite region in which the catalyst layer and the porous gas diffusion layer are composited, It is possible to form a catalyst layer having good proton conductivity at the junction and good drainage with large porosity.
[0016]
(Catalyst layer ink)
The catalyst layer ink of the present embodiment may be any mixture of an electrolyte solution in which an electrolyte is dissolved in a solvent such as alcohol (for example, a Nadion solution manufactured by Aldrich) and catalyst-carrying conductive particles. Depending on the type of electrolyte and solvent, the catalyst layer ink applied to the solid polymer electrolyte membrane on the fuel electrode side is 0.25 to 1.0 part by weight, based on 1 part by weight of the catalyst-supporting conductive particles, Preferably, the catalyst layer ink containing 0.5 to 0.75 parts by weight of the electrolyte and coated on the porous gas diffusion layer side on the fuel electrode side is 0.25 parts by weight based on 1 part by weight of the catalyst-supporting conductive particles. It is desirable to contain 1.0 to 1.0 parts by weight, preferably 0.4 to 0.75 parts by weight of electrolyte. Further, the catalyst layer ink applied to the solid polymer electrolyte membrane on the air electrode side is 0.1 to 0.75 parts by weight, preferably 0.3 to 0.6 parts by weight with respect to 1 part by weight of the catalyst-supporting conductive particles. The catalyst layer ink which contains the electrolyte part by weight and is coated on the porous gas diffusion layer side on the air electrode side is 0.1 to 0.75 parts by weight, preferably 1 part by weight of the catalyst-supporting conductive particles. It is desirable to contain 0.15 to 0.4 parts by weight of electrolyte. When the content is in the above range, a catalyst layer having good proton conductivity and electric conductivity and having a high porosity in the direction from the solid polymer electrolyte membrane to the porous gas diffusion layer can be formed.
[0017]
(Water-repellent substance)
Further, by further containing a water-repellent substance in the catalyst layer ink, water generated in the catalyst layer is blocked by the water-repellent substance and is hardly discharged, so that drying of the electrolyte can be suppressed. Specific examples of the water-repellent substance include fluorine resins such as polytetrafluoroethylene (PTFE), ethylene propylene (FEP), and polyvinylidene fluoride (PVDF), and silicone resins. As a method for incorporating these water-repellent substances into the catalyst layer, there is a method of preparing a catalyst layer ink by mixing the catalyst-supporting conductive particles subjected to the water-repellent treatment with the above-mentioned water-repellent substance and an electrolyte solution. When the above method is used, the water-repellent substance is used in an amount of 0.02 to 0.6 parts by weight, preferably 0.05 to 0.4 parts by weight, based on 1 part by weight of the conductive particles carrying the catalyst. Perform processing.
[0018]
(Method of manufacturing polymer electrolyte fuel cell)
Next, an embodiment of a method for manufacturing a polymer electrolyte fuel cell according to the present invention will be described. The following relates to a method for manufacturing the polymer electrolyte fuel cell of FIG. 1 described above.
First, by changing the mixing ratio of the catalyst-supporting conductive particles and the electrolyte solution, the fuel electrode side and air electrode side catalyst layer inks (hereinafter, referred to as the first fuel electrode catalyst layer ink and the first fuel electrode catalyst layer, respectively) applied to the porous gas diffusion layer. An air electrode catalyst layer ink is abbreviated). Next, a first fuel electrode catalyst layer ink and a first air electrode catalyst layer ink are applied to two thin resin films (for example, polyethylene terephthalate (PET) films) by a screen printing method or a spray printing method. However, it is desirable to coat the surface of the resin film with a release agent (for example, a water-repellent material such as a silicone-based resin, a fluorine-based resin, or a polyolefin-based resin) in advance so that the catalyst layer and the resin film do not adhere to each other. . Subsequently, the resin film coated with the catalyst layer ink is heated to dry the ink, and then the catalyst layer is transferred to both surfaces of the solid polymer electrolyte membrane 1 (for example, Nafion 112 membrane manufactured by DuPont), and the first fuel The electrode catalyst layer 2a and the first air electrode catalyst layer 3a are formed on the surface of the solid polymer electrolyte membrane 1. At the time of transfer, the catalyst layer is compressed by the resin film, so that a catalyst layer having a small porosity closely adhered to the solid polymer electrolyte membrane, specifically, a porosity of 30% to 80% can be obtained.
Next, the mixing ratio of the catalyst-supporting conductive particles and the electrolyte solution is changed so that the content of the electrolyte is equal to or less than the content of the electrolyte in the first fuel electrode catalyst layer ink. Prepare a layer ink. Similarly, the second air electrode catalyst layer ink is prepared so that the electrolyte content is equal to or less than the electrolyte content of the first air electrode catalyst layer ink. By reducing the electrolyte content of the catalyst layer in the direction from the solid polymer electrolyte membrane to the porous gas diffusion layer, the porosity of the catalyst layer is further increased in the direction from the solid polymer electrolyte membrane to the porous gas diffusion layer. Can be larger. Subsequently, a second fuel electrode catalyst layer ink and a second air electrode catalyst layer are provided on the air electrode gas diffusion layer 4 and the fuel electrode gas diffusion layer 5 as porous gas diffusion layers subjected to water repellent treatment with polytetrafluoroethylene or the like. Each of the inks is applied by a screen printing method or a spray printing method, and a part of the catalyst layer ink is impregnated into the porous gas diffusion layer, so that the porosity is large, specifically, the porosity is 50% to 98%. % Of the second anode catalyst layer 2b and the second cathode catalyst layer 3b. In the present embodiment, since a part of the catalyst layer ink is impregnated into the porous gas diffusion layer, the porosity of the porous gas diffusion layer contributes to increasing the porosity of the catalyst layer.
Next, the respective members are overlapped so that the first fuel electrode catalyst layer 2a and the second fuel electrode catalyst layer 2b and the first air electrode catalyst layer 3a and the second air electrode catalyst layer 3b face each other. Then, the polymer electrolyte fuel cell 51 is obtained.
[0019]
In the present embodiment, the catalyst layer is formed by stacking two layers, but a structure in which three or more layers are stacked is also possible, and a plurality of steps similar to those in which the first catalyst layer and the second catalyst layer are formed are repeated. Thereby, three or more catalyst layers can be formed. However, a configuration in which six or more catalyst layers are stacked not only complicates the manufacturing process but also increases the contact resistance between the catalyst layers and may lower the power generation characteristics. Is more preferred. Further, the thickness of each catalyst layer is preferably set so that the thickness of the superposed catalyst layers is preferably 1 to 100 μm, more preferably 5 to 50 μm. If the catalyst layer is too thin, the power generation characteristics will not be sufficient due to an insufficient amount of catalyst, and if the catalyst layer is too thick, the power generation characteristics will not be sufficient due to a decrease in electric conductivity or gas diffusion.
Further, in the present embodiment, the catalyst layers for both the fuel electrode and the air electrode are provided in a plurality of layers, but it is also possible to provide only one of the catalyst layers as a plurality of layers.
[0020]
Embodiment 2 FIG.
A polymer electrolyte fuel cell according to Embodiment 2 of the present invention will be described with reference to FIG. The difference from the first embodiment is that the first fuel electrode catalyst layer 2a and the first air electrode catalyst layer 3a further contain a water-repellent substance.
Hereinafter, a method for manufacturing the polymer electrolyte fuel cell according to the present embodiment will be described.
The catalyst-carrying conductive particles are mixed with water, and a solution in which fine particles having water repellency are dispersed is added to form a paste. The paste is heated in a nitrogen atmosphere to remove water, surfactant, and the like, and then the remaining solid is pulverized to obtain water-repellent treated catalyst-carrying conductive particles. The first fuel electrode catalyst layer ink and the first air electrode catalyst layer ink are prepared by changing the mixing ratio of the water-repellent catalyst-carrying conductive particles and the electrolyte solution. Otherwise, the first fuel electrode catalyst layer 2a, the first fuel electrode catalyst layer 2b, the first air electrode catalyst layer 3a, and the second air electrode catalyst layer 3b are formed in the same manner as in the first embodiment.
Next, the respective members are overlapped so that the first fuel electrode catalyst layer 2a and the second fuel electrode catalyst layer 2b and the first air electrode catalyst layer 3a and the second air electrode catalyst layer 3b face each other. Then, the polymer electrolyte fuel cell 51 is obtained.
[0021]
In the present embodiment, the first catalyst layer has a configuration containing a water-repellent substance, but a configuration in which another catalyst layer contains a water-repellent substance is also possible.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0023]
[Example 1]
A polymer electrolyte fuel cell 51 as shown in FIG. 1 was produced.
A platinum-supported carbon black (50% by weight of platinum, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) are prepared, and the electrolyte is 0.4 parts by weight with respect to 1 part by weight of the platinum-supported carbon black. First, a first air electrode catalyst layer ink was prepared. Similarly, a second air electrode catalyst layer ink was prepared such that the electrolyte was 0.25 parts by weight with respect to 1 part by weight of platinum-supported carbon black. Separately, a platinum-ruthenium-supported carbon black (50% by weight of platinum-ruthenium, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) were prepared, and 1 part by weight of the platinum-ruthenium-supported carbon black was prepared. The first fuel electrode catalyst layer ink was prepared so that the electrolyte was 0.6 parts by weight. Similarly, the second fuel electrode catalyst layer ink was prepared so that the electrolyte was 0.5 part by weight with respect to 1 part by weight of platinum-ruthenium-supported carbon black.
Two polyethylene terephthalate (PET) films pre-coated with a release agent were prepared, and the first fuel electrode catalyst layer ink and the first air electrode catalyst layer ink were applied to each by a screen printing method. The two PET films coated with the catalyst layer ink were placed in a dryer at 80 ° C. to dry the catalyst layer ink. A resin film is superimposed on both sides of a polymer electrolyte membrane (Dupont Nafion 112 membrane) so that the surfaces of the dried catalyst layers are in contact with each other, and hot pressed to thermally fuse the catalyst layer and the polymer electrolyte membrane. After that, the PET film was peeled off.
Next, carbon paper (TGP-H-120, manufactured by Toray, porosity: 80%) is immersed in a polytetrafluoroethylene dispersion (polytetrafluoroethylene content: 6% by weight), and dried at 80 ° C. to remove excess water. Was evaporated and then calcined at 360 ° C. to prepare a water-repellent carbon paper. Two sheets of this water-repellent carbon paper were prepared, and a second fuel electrode catalyst layer ink and a second air electrode catalyst layer were respectively applied by a screen printing method.
Example 1 The first fuel electrode catalyst layer and the second fuel electrode catalyst layer, and the first air electrode catalyst layer and the second air electrode catalyst layer were stacked so that the members face each other, and they were joined by hot pressing. Was obtained.
The porosity of the first anode catalyst layer 2a is 50%, the porosity of the second anode catalyst layer 2b is 90%, and the porosity of the first cathode catalyst layer 3a is 60%. The porosity of the second air electrode catalyst layer 3b was 92%.
[0024]
Next, the power generation characteristics of the obtained polymer electrolyte fuel cell were evaluated. A frame-shaped PTFE gasket 10 was attached to the outside of the electrode of the manufactured polymer electrolyte fuel cell 51 to obtain a polymer electrolyte fuel cell 60 with a gasket. FIG. 4 is a cross-sectional view of the polymer electrolyte fuel cell to which the gasket 10 is attached, and FIG. 5 is a plan view of the polymer electrolyte fuel cell to which the gasket 10 is attached.
As shown in FIG. 6, this was sandwiched from both sides by carbon separators 6 and 7 having a fuel flow path 16 and an air flow path 17 to form a single cell 70 for power generation characteristic evaluation. After the single cell 70 is connected to the load device 30, the single cell 70 is kept at 80 ° C., hydrogen supplied by a bubbler kept at 65 ° C. is supplied to the fuel flow path 16, and the bubbler kept at 60 to 80 ° C. The humidified air was supplied to the air flow path 17 and the power generation characteristics were evaluated at normal pressure.
FIG. 7 shows the power generation characteristics of the fuel cell of this example. At an air humidification temperature (dew point) of 60 to 80 ° C., almost no decrease in cell voltage was observed, indicating good power generation characteristics. This is because the second air electrode catalyst layer functions under the condition of high air humidification temperature, and conversely, the first air electrode catalyst layer functions under the condition of low air humidification temperature. It is thought that it did not decrease.
In addition, a test was performed in which the air humidification temperature was fixed at 65 ° C and the fuel humidification temperature was changed from 60 to 80 ° C. As in the case where the air humidification temperature was changed, almost no decrease in cell voltage was observed under any humidification conditions. It is considered that the cell voltage did not decrease because the second fuel electrode catalyst layer functions under the condition of high fuel humidification temperature and the first fuel electrode catalyst layer functions under the condition of low fuel humidification temperature.
[0025]
[Example 2]
1 part by weight of platinum-supported carbon black (50% by weight of platinum, average primary particle diameter of about 35 nm) is mixed with water, and further, 0.8 part by weight of a polytetrafluoroethylene dispersion (polytetrafluoroethylene content: 6% by weight) Was added to form a paste. At that time, water was added so that the paste had an appropriate viscosity. After heating this paste in a nitrogen atmosphere to remove water and surfactants contained in the polytetrafluoroethylene dispersion, the remaining solid matter is pulverized to prepare a water-repellent-treated platinum-supported carbon black. did. Similarly, carbon black supported on platinum-ruthenium (platinum-ruthenium 50% by weight, average primary particle diameter 35 nm) was subjected to a water-repellent treatment. Instead of platinum-supported carbon black, a water-repellent platinum-supported carbon black was used to prepare a first air electrode catalyst layer ink, and instead of platinum-ruthenium-supported carbon black, a water-repellent platinum-ruthenium-supported ink was prepared. A polymer electrolyte fuel cell of Example 2 was obtained in the same manner as in Example 1 except that the first fuel electrode catalyst layer ink was prepared using carbon black.
The porosity of the first anode catalyst layer 2a is 50%, the porosity of the second anode catalyst layer 2b is 90%, and the porosity of the first cathode catalyst layer 3a is 60%. The porosity of the second air electrode catalyst layer 3b was 92%.
Using the obtained polymer electrolyte fuel cell, a single cell was produced in the same manner as in Example 1, and the power generation characteristics were evaluated. The results are shown in FIG.
As in Example 1, no large decrease in cell voltage was observed in the evaluated humidification range. In this example, a higher cell voltage was obtained under the condition of lower humidification temperature than in Example 1. This is because the first air electrode catalyst layer has been subjected to the water repellent treatment, so that the water generated in the catalyst layer is blocked by the water repellent substance and is difficult to be discharged. It is considered that sufficient moisture for power generation is maintained.
[0026]
[Comparative Example 1]
A platinum-supported carbon black (50% by weight of platinum, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) are prepared, and the electrolyte is 0.25 parts by weight with respect to 1 part by weight of the platinum-supported carbon black. Then, an air electrode catalyst layer ink was prepared. Separately, a platinum-ruthenium-supported carbon black (50% by weight of platinum-ruthenium, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) were prepared, and 1 part by weight of the platinum-ruthenium-supported carbon black was prepared. A fuel electrode catalyst layer ink was prepared so that the electrolyte was 0.5 parts by weight.
Next, carbon paper (TGP-H-120, manufactured by Toray, porosity: 80%) is immersed in a polytetrafluoroethylene dispersion (polytetrafluoroethylene content: 6% by weight), and dried at 80 ° C. to remove excess water. Was evaporated and then calcined at 360 ° C. to prepare a water-repellent carbon paper. Two sheets of this water-repellent carbon paper were prepared, and the fuel electrode catalyst layer ink and the air electrode catalyst layer were applied to each of them by a screen printing method.
Carbon paper was superimposed on both surfaces of a polymer electrolyte membrane (Dupont Nafion 112 membrane) so that the surfaces of the fuel electrode catalyst layer and the air electrode catalyst layer were in contact with each other, and they were hot-pressed and joined. A polymer electrolyte fuel cell 52 of Example 1 was obtained. In FIG. 2, the polymer electrolyte fuel cell 52 of Comparative Example 1 includes a polymer electrolyte membrane 1, a fuel electrode catalyst layer 2 c and an air electrode catalyst layer 3 c disposed on both surfaces of the polymer electrolyte membrane 1, respectively. It comprises an air electrode gas diffusion layer 4 and a fuel electrode gas diffusion layer 5 as porous gas diffusion layers arranged outside the catalyst layers 2c and 3c, respectively. The polymer electrolyte fuel cell 52 of Comparative Example 1 differs from Examples 1 and 2 in that the fuel electrode catalyst layer 2c and the air electrode catalyst layer 3c each have a single-layer structure, and the porosity is not changed at all. .
Using the obtained polymer electrolyte fuel cell, a single cell was produced in the same manner as in Example 1, and the power generation characteristics were evaluated. The results are shown in FIG.
The highest cell voltage was shown near the air humidification temperature of 75 ° C., but as the humidification temperature decreased, the cell voltage tended to decrease. This is presumably because under the condition of low humidification temperature, the electrolyte membrane dries and the proton conductivity decreases, and the cell voltage decreases due to the resistance.
[0027]
[Comparative Example 2]
A platinum-supported carbon black (50% by weight of platinum, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) are prepared, and the electrolyte is 0.4 parts by weight based on 1 part by weight of the platinum-supported carbon black. Then, an air electrode catalyst layer ink was prepared. Separately, a platinum-ruthenium-supported carbon black (50% by weight of platinum-ruthenium, average primary particle diameter 35 nm) and an electrolyte solution (Nadion solution manufactured by Aldrich) were prepared, and 1 part by weight of the platinum-ruthenium-supported carbon black was prepared. A fuel electrode catalyst layer ink was prepared so that the electrolyte was 0.6 parts by weight. Two polyethylene terephthalate (PET) films preliminarily coated with a release agent were prepared, and the anode catalyst layer ink and the cathode catalyst layer ink were applied to each by a screen printing method. The two PET films coated with the catalyst layer ink were placed in a dryer at 80 ° C. to dry the catalyst layer ink. A resin film is superimposed on both sides of a polymer electrolyte membrane (Dupont Nafion 112 membrane) so that the surfaces of the dried catalyst layers are in contact with each other, and hot pressed to thermally fuse the catalyst layer and the polymer electrolyte membrane. After that, the PET film was peeled off.
Next, carbon paper (TGP-H-120, manufactured by Toray, porosity: 80%) is immersed in a polytetrafluoroethylene dispersion (polytetrafluoroethylene content: 6% by weight), and dried at 80 ° C. to remove excess water. Was evaporated and then calcined at 360 ° C. to prepare a water-repellent carbon paper. Two pieces of the water-repellent carbon paper were prepared, the above-mentioned polymer electrolyte membrane was sandwiched therebetween, and they were joined by hot pressing to obtain a polymer electrolyte fuel cell 53 of Comparative Example 2 shown in FIG.
In FIG. 3, the polymer electrolyte fuel cell 53 of Comparative Example 2 includes a polymer electrolyte membrane 1, a fuel electrode catalyst layer 2 d and an air electrode catalyst layer 3 d disposed on both surfaces of the polymer electrolyte membrane 1, respectively. It comprises an air electrode gas diffusion layer 4 and a fuel electrode gas diffusion layer 5 as porous gas diffusion layers disposed outside the catalyst layers 2d and 3d, respectively. The polymer electrolyte fuel cell 53 of Comparative Example 2 differs from Examples 1 and 2 in that the fuel electrode catalyst layer 2d and the air electrode catalyst layer 3d each have a single-layer structure, and the porosity is not changed at all. .
Using the obtained polymer electrolyte fuel cell, a single cell was produced in the same manner as in Example 1, and the power generation characteristics were evaluated. The results are shown in FIG.
The cell voltage was highest around the air humidification temperature (dew point) of 60 ° C., and the cell voltage tended to decrease as the humidification temperature increased. This is considered to be because under the condition of high humidification temperature, the electrolyte membrane excessively contains water, so that it becomes difficult to supply oxygen necessary for the reaction and the cell voltage is lowered.
[0028]
【The invention's effect】
As described above, according to the present invention, under operating conditions where the humidification temperature (dew point) of the supplied reaction gas is low, the catalyst layer close to the solid polymer electrolyte membrane that easily retains water functions, and conversely, the reaction gas Under high humidification temperature operating conditions, moisture is smoothly discharged and the catalyst layer that is far from the solid polymer electrolyte membrane with good gas diffusivity functions. It becomes possible to drive stably. In particular, by improving the performance under low humidification conditions, it is possible to provide a polymer electrolyte fuel cell that is small in external humidifier and can be operated finally without a humidifier.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of one embodiment of a polymer electrolyte fuel cell according to the present invention.
FIG. 2 is a cross-sectional view illustrating a polymer electrolyte fuel cell according to Comparative Example 1.
FIG. 3 is a cross-sectional view illustrating a polymer electrolyte fuel cell according to Comparative Example 2.
FIG. 4 is a sectional view of a polymer electrolyte fuel cell to which a gasket is attached.
FIG. 5 is a plan view of a polymer electrolyte fuel cell to which a gasket is attached.
FIG. 6 is a cross-sectional view for explaining a single cell configured to evaluate the polymer electrolyte fuel cells of Examples and Comparative Examples.
FIG. 7 is a diagram comparing the power generation characteristics of the polymer electrolyte fuel cells of the example and the comparative example by changing the air humidification temperature.
[Explanation of symbols]
Reference Signs List 1 polymer electrolyte, 2a first fuel electrode catalyst layer, 2b second fuel electrode catalyst layer, 2c fuel electrode catalyst layer, 2d fuel electrode catalyst layer, 3a first air electrode catalyst layer, 3b second air electrode catalyst layer, 3c Air electrode catalyst layer, 3d air electrode catalyst layer, 4 air electrode gas diffusion layer, 5 fuel electrode gas diffusion layer, 6 fuel electrode separator, 7 air electrode separator, 10 gaskets, 16 fuel flow path, 17 air flow path, 30 load Apparatus, 51, 52, 53 Solid polymer fuel cell, 60 Solid polymer fuel cell with gasket, 70 single cells.

Claims (6)

固体高分子電解質膜と、前記固体高分子電解質膜の両面に配置した触媒層と、前記触媒層の前記固体高分子電解質膜と接する面の反対の面にそれぞれ配置した多孔質ガス拡散層とを具備した固体高分子型燃料電池において、
前記触媒層が、触媒担持導電性粒子及び電解質を含有し、且つ前記触媒層の空隙率が、前記固体高分子電解質膜から前記多孔質ガス拡散層の方向に大きくなっていること特徴とする固体高分子型燃料電池。
A solid polymer electrolyte membrane, a catalyst layer disposed on both sides of the solid polymer electrolyte membrane, and a porous gas diffusion layer disposed on a surface of the catalyst layer opposite to the surface in contact with the solid polymer electrolyte membrane. In the equipped polymer electrolyte fuel cell,
The solid, wherein the catalyst layer contains catalyst-carrying conductive particles and an electrolyte, and the porosity of the catalyst layer increases in the direction from the solid polymer electrolyte membrane to the porous gas diffusion layer. Polymer fuel cell.
前記触媒層の一部が、前記多孔質ガス拡散層と複合し複合領域を形成していることを特徴とする請求項1に記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to claim 1, wherein a part of the catalyst layer is composited with the porous gas diffusion layer to form a composite region. 前記触媒層の電解質含有割合が、前記固体高分子電解質膜から前記多孔質ガス拡散層の方向に少なくなっていることを特徴とする請求項1又は2に記載の固体高分子型燃料電池。3. The polymer electrolyte fuel cell according to claim 1, wherein an electrolyte content of the catalyst layer decreases in a direction from the polymer electrolyte membrane to the porous gas diffusion layer. 4. 前記触媒層が、撥水性物質を更に含有することを特徴とする請求項1ないし3の何れか1項に記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the catalyst layer further contains a water-repellent substance. 前記触媒層が、複数層から構成されていることを特徴とする請求項1ないし4の何れか1項に記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the catalyst layer is composed of a plurality of layers. 触媒担持導電性粒子及び電解質を含有する触媒層インクを多孔質ガス拡散層上に塗布して、前記触媒層インクの一部を前記多孔質ガス拡散層に染み込ませて触媒層を形成する工程と、前記触媒層インクを樹脂フィルム上に塗布した後、固体高分子電解質膜の両面に転写して触媒層を形成する工程と、前記多孔質ガス拡散層の触媒層面と前記固体高分子電解質膜の触媒層面とを向かい合わせて接合する工程とを含む固体高分子型燃料電池の製造方法。A step of applying a catalyst layer ink containing catalyst-supporting conductive particles and an electrolyte on a porous gas diffusion layer, and forming a catalyst layer by infiltrating a part of the catalyst layer ink into the porous gas diffusion layer. Forming a catalyst layer by applying the catalyst layer ink onto a resin film and transferring the catalyst layer ink to both surfaces of the solid polymer electrolyte membrane; and forming a catalyst layer surface of the porous gas diffusion layer and the solid polymer electrolyte membrane. And joining the catalyst layer face-to-face with the catalyst layer surface.
JP2002359521A 2002-12-11 2002-12-11 Solid polymer fuel cell and its manufacturing method Pending JP2004192950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359521A JP2004192950A (en) 2002-12-11 2002-12-11 Solid polymer fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359521A JP2004192950A (en) 2002-12-11 2002-12-11 Solid polymer fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004192950A true JP2004192950A (en) 2004-07-08

Family

ID=32758896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359521A Pending JP2004192950A (en) 2002-12-11 2002-12-11 Solid polymer fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004192950A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033253A1 (en) * 2004-09-21 2006-03-30 Sharp Kabushiki Kaisha Membrane electrode assembly, method for producing same, fuel cell and electronic device
JP2006286564A (en) * 2005-04-05 2006-10-19 Gs Yuasa Corporation:Kk Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst layer
JP2007026873A (en) * 2005-07-15 2007-02-01 Toshiba Corp Fuel cell
JP2007179893A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, and manufacturing method of same
JP2007179951A (en) * 2005-12-28 2007-07-12 Equos Research Co Ltd Electrode for fuel cell, and method of manufacturing same
JP2007214131A (en) * 2006-02-08 2007-08-23 Samsung Sdi Co Ltd Fuel cell electrode, its manufacturing method, and fuel cell provided with the same
KR100779820B1 (en) * 2005-05-16 2007-11-28 마쯔시다덴기산교 가부시키가이샤 Direct oxidation fuel cell and manufacturing method therefor
JP2008010173A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Membrane/electrode assembly for fuel cell
WO2008013293A1 (en) * 2006-07-24 2008-01-31 Toyota Jidosha Kabushiki Kaisha Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2008519420A (en) * 2004-11-05 2008-06-05 ゼネラル・モーターズ・コーポレーション Split architecture for improved durability of membrane electrode assemblies
JP2008140608A (en) * 2006-11-30 2008-06-19 Jsr Corp Membrane-electrode assembly
US7473486B2 (en) 2004-01-26 2009-01-06 Panasonic Corporation Catalyst-coated membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2010257720A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane/electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
DE112010002746T5 (en) 2009-06-29 2013-01-24 Kabushiki Kaisha Equos Research Reaction layer for fuel cell
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell
JP2014099415A (en) * 2009-02-26 2014-05-29 Asahi Kasei E-Materials Corp Fuel battery electrode catalyst layer, film-electrode assembly, and solid polymer molecule-type fuel battery
US8741500B2 (en) 2007-08-02 2014-06-03 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
US9059443B2 (en) 2006-06-06 2015-06-16 Sharp Kabushiki Kaisha Fuel cell, fuel cell system and electronic device
US9142853B2 (en) 2009-04-01 2015-09-22 Sharp Kabushiki Kaisha Fuel cell stack and electronic device provided with the same
US9484583B2 (en) 2013-10-14 2016-11-01 Nissan North America, Inc. Fuel cell electrode catalyst having graduated layers
JP2018163745A (en) * 2017-03-24 2018-10-18 凸版印刷株式会社 Membrane electrode assembly for fuel battery, manufacturing method thereof, unit battery cell, fuel battery stack, and solid polymer fuel battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH0729576A (en) * 1993-07-16 1995-01-31 Aqueous Res:Kk Manufacture of electrode for fuel cell
JPH0888008A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Fuel cell and manufacture thereof
JPH0888011A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Solid polymer electrolyte fuel cell
JPH08162123A (en) * 1994-12-05 1996-06-21 Tanaka Kikinzoku Kogyo Kk Polymer electrolyte-type electro-chemical cell and its manufacture
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2001319663A (en) * 2000-05-08 2001-11-16 Fuji Electric Co Ltd Solid polymer type fuel cell and its manufacturing method
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
JP2002008677A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Manufacturing method of solid polymer type fuel cell
JP2002042825A (en) * 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd Fuel cell electrode catalyst, its manufacturing method, and fuel cell
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2002533877A (en) * 1998-12-22 2002-10-08 デイビッド・システムズ・テクノロジー・ソシエダッド・リミターダ Membrane-electrode assembly and method of manufacturing the same
JP2002298860A (en) * 2001-01-25 2002-10-11 Toyota Motor Corp Method for forming electrode catalyst layer of fuel cell
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251086A (en) * 1992-03-09 1993-09-28 Hitachi Ltd Fuel cell and its applied device
JPH0729576A (en) * 1993-07-16 1995-01-31 Aqueous Res:Kk Manufacture of electrode for fuel cell
JPH0888008A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Fuel cell and manufacture thereof
JPH0888011A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Solid polymer electrolyte fuel cell
JPH08162123A (en) * 1994-12-05 1996-06-21 Tanaka Kikinzoku Kogyo Kk Polymer electrolyte-type electro-chemical cell and its manufacture
JPH09245802A (en) * 1996-03-11 1997-09-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer solid electrolyte type fuel cell
JPH11288727A (en) * 1998-04-02 1999-10-19 Asahi Chem Ind Co Ltd Solid high polymer fuel cell film/electrode junction body
JP2002533877A (en) * 1998-12-22 2002-10-08 デイビッド・システムズ・テクノロジー・ソシエダッド・リミターダ Membrane-electrode assembly and method of manufacturing the same
JP2001319663A (en) * 2000-05-08 2001-11-16 Fuji Electric Co Ltd Solid polymer type fuel cell and its manufacturing method
JP2002042825A (en) * 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd Fuel cell electrode catalyst, its manufacturing method, and fuel cell
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
JP2002008677A (en) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd Manufacturing method of solid polymer type fuel cell
JP2002298860A (en) * 2001-01-25 2002-10-11 Toyota Motor Corp Method for forming electrode catalyst layer of fuel cell
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2004186049A (en) * 2002-12-04 2004-07-02 Honda Motor Co Ltd Electrode structure for solid polymer fuel cell and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473486B2 (en) 2004-01-26 2009-01-06 Panasonic Corporation Catalyst-coated membrane, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2006033253A1 (en) * 2004-09-21 2006-03-30 Sharp Kabushiki Kaisha Membrane electrode assembly, method for producing same, fuel cell and electronic device
JP2008519420A (en) * 2004-11-05 2008-06-05 ゼネラル・モーターズ・コーポレーション Split architecture for improved durability of membrane electrode assemblies
JP2006286564A (en) * 2005-04-05 2006-10-19 Gs Yuasa Corporation:Kk Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst layer
KR100779820B1 (en) * 2005-05-16 2007-11-28 마쯔시다덴기산교 가부시키가이샤 Direct oxidation fuel cell and manufacturing method therefor
JP2007026873A (en) * 2005-07-15 2007-02-01 Toshiba Corp Fuel cell
JP2007179893A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate, and manufacturing method of same
JP2007179951A (en) * 2005-12-28 2007-07-12 Equos Research Co Ltd Electrode for fuel cell, and method of manufacturing same
JP2007214131A (en) * 2006-02-08 2007-08-23 Samsung Sdi Co Ltd Fuel cell electrode, its manufacturing method, and fuel cell provided with the same
US9059443B2 (en) 2006-06-06 2015-06-16 Sharp Kabushiki Kaisha Fuel cell, fuel cell system and electronic device
JP2008010173A (en) * 2006-06-27 2008-01-17 Toyota Motor Corp Membrane/electrode assembly for fuel cell
WO2008013293A1 (en) * 2006-07-24 2008-01-31 Toyota Jidosha Kabushiki Kaisha Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2008140608A (en) * 2006-11-30 2008-06-19 Jsr Corp Membrane-electrode assembly
US8741500B2 (en) 2007-08-02 2014-06-03 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
JP2014099415A (en) * 2009-02-26 2014-05-29 Asahi Kasei E-Materials Corp Fuel battery electrode catalyst layer, film-electrode assembly, and solid polymer molecule-type fuel battery
US9142853B2 (en) 2009-04-01 2015-09-22 Sharp Kabushiki Kaisha Fuel cell stack and electronic device provided with the same
JP2010257720A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane/electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
DE112010002746T5 (en) 2009-06-29 2013-01-24 Kabushiki Kaisha Equos Research Reaction layer for fuel cell
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell
US9484583B2 (en) 2013-10-14 2016-11-01 Nissan North America, Inc. Fuel cell electrode catalyst having graduated layers
JP2018163745A (en) * 2017-03-24 2018-10-18 凸版印刷株式会社 Membrane electrode assembly for fuel battery, manufacturing method thereof, unit battery cell, fuel battery stack, and solid polymer fuel battery

Similar Documents

Publication Publication Date Title
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
KR101775743B1 (en) Process for production of cathode catalyst layer for fuel cell, cathode catalyst layer, and membrane electrode assembly for solid polymer fuel cell
JP3690651B2 (en) Fuel cell
KR100722093B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system comprising the same
JP5004489B2 (en) FUEL CELL CELL AND METHOD FOR PRODUCING THE SAME
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP4266624B2 (en) Fuel cell electrode and fuel cell
JP4190478B2 (en) Polymer electrolyte fuel cell
JP2006294594A (en) Electrode catalyst layer for fuel cell, and fuel cell using the same
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2004288388A (en) Electrode for fuel cell, its manufacturing method, and fuel cell
JP2007095582A (en) Manufacturing method of membrane electrode assembly
US20120183878A1 (en) Manufacturing Method Of Electrode Catalyst Layer, Electrode Catalyst Layer, Membrane Electrode Assembly And Fuel Cell
JP2002063912A (en) Manufacturing method of polymer electrolyte fuel cell
JP2007329072A (en) Method of manufacturing electrode for fuel cell
WO2012043337A1 (en) Fuel-cell electrode catalyst layer manufacturing method, fuel-cell membrane-electrode assembly, and polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4180556B2 (en) Polymer electrolyte fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP2006134640A (en) Polymer electrolyte fuel cell and its manufacturing method
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313