JP2002328340A - Method of manufacturing super-elasticity parts - Google Patents

Method of manufacturing super-elasticity parts

Info

Publication number
JP2002328340A
JP2002328340A JP2001130235A JP2001130235A JP2002328340A JP 2002328340 A JP2002328340 A JP 2002328340A JP 2001130235 A JP2001130235 A JP 2001130235A JP 2001130235 A JP2001130235 A JP 2001130235A JP 2002328340 A JP2002328340 A JP 2002328340A
Authority
JP
Japan
Prior art keywords
heat treatment
superelastic
temperature
super
memory heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001130235A
Other languages
Japanese (ja)
Inventor
Yuichi Ichihara
祐一 市原
Tetsuya Chiba
哲也 千葉
Kouhachirou Oohashi
貢八郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001130235A priority Critical patent/JP2002328340A/en
Publication of JP2002328340A publication Critical patent/JP2002328340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a spectacles frame using a super-elasticity material which is flexible when the spectacles are worn, the feeling of wear is good and residual bending is small. SOLUTION: In the method, when the spectacles frame 10 is manufactured by having the super-elasticity material formed in a specified shape after being cold worked and having a super-elasticity memory heat treatment carried out in a state retaining the formed shape, a super-elasticity memory heat treatment is carried out at least two times separately and the first super-elasticity memory heat treatment is carried out at a high temperature and the second super- elasticity memory heat treatment is carried out at a lower temperature than that of the first time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば眼鏡構成部
品の製造に適用して好適な超弾性部品の製造方法に関
し、特に超弾性記憶熱処理に特徴を有するものに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superelastic component suitable for use in, for example, manufacturing of eyeglass components, and more particularly to a method characterized by superelastic memory heat treatment.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り超弾性材を用いて眼鏡フレーム等の眼鏡構成部品、詳
しくは図3に示すテンプル10a,ブリッジ10b,わ
たり10c,箱足10d等(図中10は眼鏡フレームを
表す)を構成することが提案されている。このような超
弾性材を用いた眼鏡構成部品の場合、従来の眼鏡構成部
品に比べてしなやかさが格段に優れており、眼鏡を掛け
たときの装着感が良好である。
2. Description of the Related Art Conventionally, eyeglass components such as an eyeglass frame using a superelastic material, specifically, a temple 10a, a bridge 10b, a bridge 10c, and a box foot 10d shown in FIG. It is proposed that the middle 10 represents a spectacle frame). In the case of the eyeglass component using such a superelastic material, the flexibility is remarkably superior to the conventional eyeglass component, and the wearing feeling when wearing the eyeglass is good.

【0003】かかる超弾性材を用いて眼鏡構成部品を製
造する場合、通常、超弾性材に圧延や伸線等の冷間加工
を施して十分加工硬化を生ぜしめ、その後に眼鏡構成部
品の形状に成形加工した後、その成形形状に固定し、そ
の状態で超弾性記憶熱処理を施して眼鏡構成部品とす
る。
In the case of manufacturing eyeglass components using such a superelastic material, usually, the superelastic material is subjected to cold working such as rolling or drawing to sufficiently harden the work, and thereafter, the shape of the eyeglass component is obtained. After molding, the lens is fixed to the molded shape and subjected to a superelastic memory heat treatment in that state to form eyeglass components.

【0004】超弾性は弾性限の範囲を超えて変形させた
とき荷重を除くと元の形状に戻る現象で、この超弾性は
変態点以上の温度で力を加えたときに応力誘起によって
オーステナイト母相がマルテンサイト相に相変態するこ
とで発現する。このとき主として剪断変形によって結晶
構造が変化する。而してその変形に際して転位が生ずる
と超弾性特性が劣化してしまう。上記冷間加工はこれを
防止すべく予め加工硬化を生ぜしめておくものである。
[0004] Superelasticity is a phenomenon in which when deformed beyond the limit of elasticity, the shape returns to its original shape when a load is removed, and this superelasticity is caused by stress induction when a force is applied at a temperature higher than the transformation point. It appears when the phase is transformed into a martensite phase. At this time, the crystal structure changes mainly due to shear deformation. Thus, if dislocations occur during the deformation, the superelastic properties deteriorate. In the cold working, work hardening is previously generated to prevent this.

【0005】超弾性材を用いた眼鏡構成部品の超弾性特
性、具体的にはそのしなやかさや力を除いた後に残る残
留曲り等は、この冷間加工を含めた製造条件等の如何に
よって左右される。超弾性材から成る眼鏡構成部品の超
弾性特性はこれらしなやかさと残留曲りとを併せた特性
で評価され、しなやかさの高いもの、残留曲りの小さい
ものが特性的に良好と言えるものである。
[0005] The superelastic properties of spectacle components using a superelastic material, specifically, the residual bending and the like remaining after excluding its flexibility and force, depend on manufacturing conditions including this cold working. You. The superelastic properties of the spectacle components made of a superelastic material are evaluated based on a combination of these flexibility and residual bending, and those having high flexibility and small residual bending can be said to have good characteristics.

【0006】そこで本発明者等は冷間加工後の超弾性記
憶熱処理に着目し、Ni-Ti-Co三元系の超弾性材におい
て、その超弾性記憶熱処理の条件が超弾性特性に及ぼす
影響を調べたところ、適正な温度範囲が存在することが
分った。
Accordingly, the present inventors have focused on the superelastic memory heat treatment after cold working, and in the case of a Ni-Ti-Co ternary superelastic material, the effect of the conditions of the superelastic memory heat treatment on the superelastic properties. Investigation revealed that an appropriate temperature range exists.

【0007】図4はこの結果得られた超弾性記憶熱処理
の温度としなやかさ(曲げ荷重)及び残留曲りとの関係
を表したものである。この結果では400℃、特に42
0〜440℃の温度範囲で超弾性記憶熱処理をした場合
にしなやかさ(曲げ荷重),残留曲りともに良好な値が
得られることを示している。
FIG. 4 shows the relationship between the resulting temperature of the superelastic memory heat treatment, the flexibility (bending load), and the residual bending. The results show that 400 ° C., especially 42 ° C.
It shows that good values can be obtained for both flexibility (bending load) and residual bending when the superelastic memory heat treatment is performed in the temperature range of 0 to 440 ° C.

【0008】しかしながら、従来提供されている超弾性
材を用いた眼鏡構成部品は、このような条件で超弾性記
憶熱処理を行った場合でも超弾性特性の点で未だ改善の
余地のあるものであった。尚、以上では眼鏡構成部品を
代表的な例として説明したが、これ以外の他の超弾性部
品についてもほぼ同様の問題が存在している。
However, conventional eyeglass components using superelastic materials still have room for improvement in superelastic characteristics even when superelastic memory heat treatment is performed under such conditions. Was. Although the eyeglass component has been described above as a typical example, other similar superelastic parts have similar problems.

【0009】[0009]

【課題を解決するための手段】本発明の超弾性部品の製
造方法はこのような問題を解決するために案出されたも
のである。而して請求項1のものは、超弾性材を冷間加
工した後所定形状に成形し、該成形形状を保持した状態
で超弾性記憶熱処理し、超弾性部品を製造するに際し、
該超弾性記憶熱処理を少なくとも2回に分けて行い且つ
第1回目の超弾性記憶熱処理を高い温度で、第2回目の
超弾性記憶熱処理を第1回目よりも低い温度で行うこと
を特徴とする。
The method for manufacturing a superelastic component according to the present invention has been devised to solve such a problem. Thus, according to the first aspect, a superelastic material is formed into a predetermined shape after being cold-worked, and subjected to superelastic memory heat treatment in a state where the formed shape is maintained.
The superelastic memory heat treatment is performed at least twice, and the first superelastic memory heat treatment is performed at a high temperature, and the second superelastic memory heat treatment is performed at a lower temperature than the first heat treatment. .

【0010】請求項2のものは、請求項1において、前
記超弾性部品が眼鏡構成部品であることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the superelastic component is an eyeglass component.

【0011】請求項3のものは、請求項1,2の何れか
において、前記第1回目の超弾性記憶熱処理を460〜
540℃の温度範囲で、前記第2回目の超弾性記憶熱処
理を400〜460℃の温度範囲で行うことを特徴とす
る。
A third aspect of the present invention is the method according to any one of the first and second aspects, wherein the first superelastic memory heat treatment is performed at 460 to 460.
The second superelastic memory heat treatment is performed in a temperature range of 400 to 460 ° C. in a temperature range of 540 ° C.

【0012】請求項4のものは、請求項1〜3の何れか
において、前記超弾性材が重量%でNi:53.00〜5
5.50%,Co:0.5〜3.0%,残部実質的にTiか
ら成る組成を有していることを特徴とする。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the superelastic material has a Ni content of 53.0 to 5% by weight.
5.50%, Co: 0.5-3.0%, with the balance being substantially composed of Ti.

【0013】[0013]

【作用及び発明の効果】以上のように本発明は、超弾性
記憶熱処理を行うに際しこれを少なくとも2回に分けて
行い、第1回目の超弾性記憶熱処理を相対的に高い温度
で、第2回目の超弾性記憶熱処理を第1回目よりも低い
温度で行うものである。前述したように超弾性部品のし
なやかさ、具体的には曲げ荷重は超弾性記憶熱処理の温
度を所定温度以上で行うことで良好となる。しかしなが
ら1回の超弾性記憶熱処理の下では、熱処理温度を所定
温度以上に高めて行ってもしなやかさは一定以上に良く
はならない。即ちほぼ平衡に達した状態となる。
As described above, according to the present invention, the superelastic memory heat treatment is performed at least twice in performing the superelastic memory heat treatment, and the first superelastic memory heat treatment is performed at a relatively high temperature at the second time. The second superelastic memory heat treatment is performed at a lower temperature than the first heat treatment. As described above, the flexibility of the superelastic component, specifically, the bending load is improved by performing the superelastic memory heat treatment at a predetermined temperature or higher. However, under one superelastic memory heat treatment, the suppleness is not improved beyond a certain level even if the heat treatment temperature is raised to a predetermined temperature or higher. In other words, the state has almost reached the equilibrium.

【0014】しかるに本発明に従って超弾性記憶熱処理
を2回に分けて行った場合、尚且つ第1回目の熱処理温
度を高く、第2回目の熱処理温度を低くして行ったと
き、従来得られているよりもより高いしなやかさ、即ち
より低い曲げ荷重特性の得られることが分った。
However, when the superelastic memory heat treatment is performed in two steps in accordance with the present invention, and the first heat treatment temperature is increased and the second heat treatment temperature is decreased, the conventional heat treatment is obtained. It has been found that higher flexibility, i.e. lower bending load characteristics, can be obtained than with.

【0015】一方で残留曲りについて見ると、従来の1
回の超弾性記憶熱処理の場合、440℃を超えて熱処理
温度を高めて行くと残留曲りはどんどん悪くなってしま
う。しかるに本発明に従えば残留曲りについても良好な
レベルに維持することができる。
On the other hand, regarding the residual bending, the conventional 1
In the case of multiple superelastic memory heat treatments, if the heat treatment temperature is increased beyond 440 ° C., the residual bending becomes worse. However, according to the present invention, the residual bending can be maintained at a favorable level.

【0016】本発明は以上のような知見に基づいてなさ
れたものであり、かかる本発明によれば、例えばこれを
眼鏡構成部品の製造に適用した場合(請求項2)等にお
いて、従来にも増して超弾性特性の優れたものが得られ
るようになる。
The present invention has been made based on the above findings. According to the present invention, for example, when the present invention is applied to the manufacture of eyeglass components (Claim 2) or the like, In addition, a material having excellent superelastic properties can be obtained.

【0017】本発明においては、第1回目の超弾性記憶
熱処理を460〜540℃の温度範囲で、第2回目の超
弾性記憶熱処理を400〜460℃の温度範囲で行うこ
とができる(請求項3)。また超弾性材として、重量%
でNi:53.00〜55.50%,Co:0.5〜3.0
%,残部実質的にTiから成る組成を有するものを用いる
ことができる(請求項4)。
In the present invention, the first superelastic memory heat treatment can be performed in a temperature range of 460 to 540 ° C., and the second superelastic memory heat treatment can be performed in a temperature range of 400 to 460 ° C. 3). Also, as superelastic material, weight%
Ni: 53.0-55.50%, Co: 0.5-3.0
%, With the balance being substantially composed of Ti (claim 4).

【0018】[0018]

【実施例】次に本発明の実施例を以下に詳述する。図3
の眼鏡フレーム10(但し図示のものは一例である)、
詳しくはテンプル10a,ブリッジ10b,わたり10
c,箱足10d等の眼鏡構成部品に適用される超弾性材
として、表1に示す化学組成の超弾性材を伸線加工によ
り直径φ1.2mmとした後、続いて冷間加工を施して
φ1.0mmに伸線加工した。このときの加工率(減面
率)は約30%である。尚この超弾性材は再結晶温度が
650℃である。
Next, embodiments of the present invention will be described in detail. FIG.
Eyeglass frame 10 (however, the one shown is an example),
For details, see Temple 10a, Bridge 10b, Cross 10
c, as a superelastic material applied to eyeglass components such as box legs 10d, a superelastic material having a chemical composition shown in Table 1 was drawn to a diameter of 1.2 mm by wire drawing, and then cold worked. Wire drawing was performed to φ1.0 mm. The processing rate (area reduction rate) at this time is about 30%. This superelastic material has a recrystallization temperature of 650 ° C.

【0019】[0019]

【表1】 [Table 1]

【0020】続いてこの超弾性材を所定形状に保持した
状態で、表2に示す熱処理条件で超弾性記憶熱処理(以
下単に熱処理とする)を施した。この熱処理を施したも
のについて、眼鏡構成部品として必要とされる超弾性特
性としてのしなやかさと残留曲りとを、図1に示す3点
曲げ試験法にて評価した。
Subsequently, while maintaining the superelastic material in a predetermined shape, a superelastic memory heat treatment (hereinafter simply referred to as heat treatment) was performed under the heat treatment conditions shown in Table 2. With respect to those subjected to this heat treatment, flexibility and residual bending as superelastic properties required for eyeglass components were evaluated by a three-point bending test method shown in FIG.

【0021】[0021]

【表2】 [Table 2]

【0022】この3点曲げ試験では、試料12を25m
m離れた一対の支持部材14によりPとPとで支持
し、そして中央部Cを下向きに押して6mm撓ませるの
に必要な荷重を測定し、その荷重の大小によりしなやか
さを評価した。また荷重を取り除いた後の残留曲りを併
せて測定した。
In the three-point bending test, the sample 12 was 25 m
is supported by P 1 and P 2 by a pair of support members 14 spaced m, and the central portion C Press down to measure the load required to deflect 6 mm, it was evaluated supple the magnitude of the load. The residual bending after removing the load was also measured.

【0023】その結果得られた熱処理温度としなやかさ
との関係が図2(A)に、また熱処理温度と残留曲りと
の関係が図2(B)に示してある。尚、ここでは比較と
して280〜520℃の範囲内の各温度で1回の熱処理
を行ったものについての結果も図2(A),図2(B)
に併せて示してある。尚、図2中の2回熱処理〜に
ついては試料12を2つずつ用意し、それぞれについて
測定した結果を示している。
FIG. 2A shows the relationship between the resulting heat treatment temperature and flexibility, and FIG. 2B shows the relationship between the heat treatment temperature and residual bending. Here, as a comparison, the results of one heat treatment at each temperature within the range of 280 to 520 ° C. are also shown in FIGS. 2A and 2B.
Are also shown. In addition, for the two heat treatments in FIG. 2, two samples 12 were prepared, and the results of measurement were shown.

【0024】以上の結果に見られるように、1回の熱処
理では所定温度以上に熱処理温度を高めても、しなやか
さ(曲げ荷重)は特に向上して行かないが、2回熱処理
を施した本実施例(2回熱処理,)については、こ
れよりも更に曲げ荷重が小さくなっており、しなやかさ
が増している。一方残留曲りについては、1回の熱処理
で最も良好なものとほぼ同等レベルかこれよりも若干悪
い程度に抑えられている。尚、2回熱処理(比較例)
のものは同一温度で2回熱処理したものであり、この場
合同温度で1回熱処理したものと比べて曲げ荷重,残留
曲りともそれ程変化していない。
As can be seen from the above results, the flexibility (bending load) is not particularly improved even if the heat treatment temperature is increased to a predetermined temperature or more in one heat treatment. In the example (two heat treatments), the bending load is further reduced, and the flexibility is increased. On the other hand, the residual bending is suppressed to a level substantially equal to or slightly worse than the best one in one heat treatment. Heat treatment twice (comparative example)
Was heat-treated twice at the same temperature, and in this case, the bending load and the residual bending did not change much as compared with the heat-treatment once at the same temperature.

【0025】以上のように熱処理を2回に分けて行うこ
とで、従来の1回の熱処理では得られなかった優れた超
弾性特性が得られる。その理由については現段階では明
確には分っていないが、第1回目の熱処理と第2回目の
熱処理とで、しなやかさ(曲げ荷重)を決定する要因と
残留曲りを決定する要因とがそれぞれ異なった機構で制
御されているものと推察できる。
By performing the heat treatment in two steps as described above, excellent superelastic properties which cannot be obtained by the conventional single heat treatment can be obtained. Although the reason for this is not clearly understood at this stage, the factors that determine the pliability (bending load) and the factors that determine the residual bending in the first heat treatment and the second heat treatment, respectively. It can be inferred that they are controlled by different mechanisms.

【0026】因みに表3は、表2における各熱処理条件
と測定された変態温度との関係を表している。表3に示
しているように、500℃で1回熱処理したものは42
0℃で1回熱処理したものに比べてAF点が低くなり、
滑り臨界応力σSが低く、残留曲りの値が悪くなる。
Table 3 shows the relationship between each heat treatment condition in Table 2 and the measured transformation temperature. As shown in Table 3, one heat treatment at 500 ° C.
AF point is lower than that of heat treatment once at 0 ° C,
The critical sliding stress σS is low, and the value of the residual bending is poor.

【0027】[0027]

【表3】 [Table 3]

【0028】しかるに熱処理を2回行ったものについて
は、第1回目の熱処理の温度の如何に拘わらず変態点の
温度が第2回目の熱処理の温度にほぼ依存しており、例
えば第1回目の熱処理を420℃で行っても、第2回目
の熱処理を500℃で行ったもの(2回熱処理,)
については、500℃で1回熱処理を行ったものと変態
点の温度がほぼ同等となっている。或いはまた第1回目
の熱処理を500℃で行っても、第2回目の熱処理を4
20℃で行ったもの(2回熱処理,)については、
420℃で1回熱処理を行ったものと変態点の温度がほ
ぼ同等となっている。即ち第2回目の熱処理の温度を低
くすることによって、変態点を高くし、これによって第
1回目の熱処理によって悪化した残留曲りの値を回復さ
せることができる(図2(B)中の2回熱処理参照)
ものと考えられる。
However, in the case where the heat treatment is performed twice, the temperature of the transformation point substantially depends on the temperature of the second heat treatment regardless of the temperature of the first heat treatment. The second heat treatment performed at 500 ° C. even if the heat treatment is performed at 420 ° C. (twice heat treatment)
The temperature at the transformation point is almost the same as that obtained by performing the heat treatment once at 500 ° C. Alternatively, even if the first heat treatment is performed at 500 ° C., the second heat treatment is performed at 4 ° C.
For those performed at 20 ° C (two heat treatments),
The temperature at the transformation point is almost the same as that after one heat treatment at 420 ° C. In other words, by lowering the temperature of the second heat treatment, the transformation point is raised, whereby the value of the residual bending deteriorated by the first heat treatment can be recovered (two times in FIG. 2B). (See heat treatment)
It is considered something.

【0029】一方第1回目の熱処理を第2回目のそれよ
りも相対的に高い温度で行うことで、単に1回の熱処理
を行った場合に比べて、その1回の熱処理と同じ温度で
熱処理を行った場合であっても曲げ荷重の値をより小さ
くなし得るものと推察される。
On the other hand, by performing the first heat treatment at a relatively higher temperature than that of the second heat treatment, the heat treatment is performed at the same temperature as the single heat treatment. It is presumed that the value of the bending load can be made smaller even when the above is performed.

【0030】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in various modified forms without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において超弾性特性を評価する
ために用いた試験方法の説明図である。
FIG. 1 is an explanatory diagram of a test method used for evaluating superelastic properties in an example of the present invention.

【図2】本発明の実施例において得られた超弾性記憶熱
処理の際の熱処理温度と超弾性特性との関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between a heat treatment temperature and a superelastic property in a superelastic memory heat treatment obtained in an example of the present invention.

【図3】本発明の適用対象である眼鏡フレームを眼鏡全
体とともにその一例として示した図である。
FIG. 3 is a diagram showing an eyeglass frame to which the present invention is applied together with the entire eyeglasses as an example.

【図4】超弾性記憶熱処理を1回行った場合の熱処理温
度と超弾性特性との関係を表した図である。
FIG. 4 is a diagram showing a relationship between a heat treatment temperature and a superelastic characteristic when a superelastic memory heat treatment is performed once.

【符号の説明】[Explanation of symbols]

10 眼鏡フレーム 10a テンプル 10b ブリッジ 10c わたり 10d 箱足 10 glasses frame 10a temple 10b bridge 10c cross 10d box foot

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630F (72)発明者 大橋 貢八郎 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社星崎工場内 Fターム(参考) 2H006 AA02 AA04 AB06 Continuation of the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) C22F 1/00 630 C22F 1/00 630F (72) Inventor Kouhachiro Ohashi 2--30 Ododocho, Minami-ku, Nagoya-shi, Aichi Prefecture Daido Special Steel Co., Ltd. Hoshizaki Factory F-term (reference) 2H006 AA02 AA04 AB06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超弾性材を冷間加工した後所定形状に成
形し、該成形形状を保持した状態で超弾性記憶熱処理
し、超弾性部品を製造するに際し、 該超弾性記憶熱処理を少なくとも2回に分けて行い且つ
第1回目の超弾性記憶熱処理を高い温度で、第2回目の
超弾性記憶熱処理を第1回目よりも低い温度で行うこと
を特徴とする超弾性部品の製造方法。
1. A super-elastic material is cold-worked, formed into a predetermined shape, and subjected to a super-elastic memory heat treatment while maintaining the formed shape. A method for manufacturing a superelastic component, comprising: performing a first superelastic memory heat treatment at a high temperature; and performing a second superelastic memory heat treatment at a lower temperature than the first heat treatment.
【請求項2】 請求項1において、前記超弾性部品が眼
鏡構成部品であることを特徴とする超弾性部品の製造方
法。
2. The method according to claim 1, wherein the superelastic component is a spectacle component.
【請求項3】 請求項1,2の何れかにおいて、前記第
1回目の超弾性記憶熱処理を460〜540℃の温度範
囲で、前記第2回目の超弾性記憶熱処理を400〜46
0℃の温度範囲で行うことを特徴とする超弾性部品の製
造方法。
3. The superelastic memory heat treatment according to claim 1, wherein the first superelastic memory heat treatment is performed in a temperature range of 460 to 540 ° C., and the second superelastic memory heat treatment is performed in a temperature range of 400 to 46 ° C.
A method for producing a superelastic component, which is performed in a temperature range of 0 ° C.
【請求項4】 請求項1〜3の何れかにおいて、前記超
弾性材が重量%で Ni:53.00〜55.50% Co:0.5〜3.0% 残部実質的にTiから成る組成を有していることを特徴と
する超弾性部品の製造方法。
4. The superelastic material according to claim 1, wherein the superelastic material is Ni: 53.00 to 55.50% by weight, Co: 0.5 to 3.0%, and the balance is substantially Ti. A method for producing a superelastic part, comprising a composition.
JP2001130235A 2001-04-26 2001-04-26 Method of manufacturing super-elasticity parts Pending JP2002328340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130235A JP2002328340A (en) 2001-04-26 2001-04-26 Method of manufacturing super-elasticity parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130235A JP2002328340A (en) 2001-04-26 2001-04-26 Method of manufacturing super-elasticity parts

Publications (1)

Publication Number Publication Date
JP2002328340A true JP2002328340A (en) 2002-11-15

Family

ID=18978645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130235A Pending JP2002328340A (en) 2001-04-26 2001-04-26 Method of manufacturing super-elasticity parts

Country Status (1)

Country Link
JP (1) JP2002328340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253100A (en) * 2010-06-03 2011-12-15 Kowa Company Ltd Spectacles for dry eyes
CN103837999A (en) * 2012-11-26 2014-06-04 张家港市丹丹眼镜有限公司 Spectacles leg manufacturing method
CN103852904A (en) * 2014-04-01 2014-06-11 万新光学集团有限公司 Spectacle frame capable of intelligently regulating looseness of spectacle legs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253100A (en) * 2010-06-03 2011-12-15 Kowa Company Ltd Spectacles for dry eyes
CN103837999A (en) * 2012-11-26 2014-06-04 张家港市丹丹眼镜有限公司 Spectacles leg manufacturing method
CN103852904A (en) * 2014-04-01 2014-06-11 万新光学集团有限公司 Spectacle frame capable of intelligently regulating looseness of spectacle legs

Similar Documents

Publication Publication Date Title
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
CN101238402B (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
US20090010796A1 (en) Long fatigue life nitinol
US6557993B2 (en) Eyeglasses and parts thereof made with specially processed NiTi shape memory alloy
JP2005530929A (en) Beta titanium compounds and their production
EP0338586A2 (en) Eyeglass frame having Ti-Ni-V alloy element with improved wear comfortability
JP2007520630A (en) Beta titanium composition and method for producing the same
JP4302604B2 (en) Superelastic titanium alloy for living body
JP5278987B2 (en) Manufacturing method for eyeglass frames
JP2002328340A (en) Method of manufacturing super-elasticity parts
JP5224569B2 (en) Spectacle member, spectacle frame including the same, and manufacturing method thereof
US6419358B1 (en) Pseudoelastic β titanium eyeglass components
JP2002182162A (en) Method of manufacturing spectacles frame using ultraelastic material
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JPH09137241A (en) Spectacle frame and its production as well as method for adjusting shape
JPH0860276A (en) Nickel-titanium-base alloy spectacle member and its production
JP2008106317A (en) beta-TYPE TITANIUM ALLOY
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member
JP2005023359A (en) Ultraelastic material and its production method
JP2006063437A (en) LOW ELASTIC beta TITANIUM ALLOY HAVING ELASTIC MODULUS OF <=65 GPa AND ITS PRODUCTION METHOD
JPH05295498A (en) Manufacture of ni-ti superelastic material
JP2691567B2 (en) Super elastic element
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same