JP2706273B2 - Superelastic Ni-Ti-Cu alloy and method for producing the same - Google Patents

Superelastic Ni-Ti-Cu alloy and method for producing the same

Info

Publication number
JP2706273B2
JP2706273B2 JP63240200A JP24020088A JP2706273B2 JP 2706273 B2 JP2706273 B2 JP 2706273B2 JP 63240200 A JP63240200 A JP 63240200A JP 24020088 A JP24020088 A JP 24020088A JP 2706273 B2 JP2706273 B2 JP 2706273B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
superelastic
stress
hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63240200A
Other languages
Japanese (ja)
Other versions
JPH0288737A (en
Inventor
宏 堀川
秀和 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP63240200A priority Critical patent/JP2706273B2/en
Publication of JPH0288737A publication Critical patent/JPH0288737A/en
Application granted granted Critical
Publication of JP2706273B2 publication Critical patent/JP2706273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超弾性Ni−Ti−Cu系合金に関し、特に応力ヒ
ステリシスの狭い超弾性特性を有するNi−Ti−Cu−Fe合
金或いはNi−Ti−Cu−Cr合金およびその製造方法に係る
ものである。
Description: TECHNICAL FIELD The present invention relates to a super-elastic Ni-Ti-Cu alloy, and more particularly to a Ni-Ti-Cu-Fe alloy or a Ni-Ti alloy having a superelastic property with a narrow stress hysteresis. The present invention relates to a Cu-Cr alloy and a method for producing the same.

〔従来の技術とその課題〕[Conventional technology and its problems]

一般に熱弾性型マルテンサイト変態を示す材料は形状
記憶効果を示すことが知られており、この形状記憶効果
は、加熱、冷却時に生じるマルテンサイト逆変態および
マルテンサイト変態によるものである。Ni−Tiが原子比
で1:1近傍のNi−Ti合金は、熱弾性型マルテンサイト変
態を起こし、変態温度以上の温度において超弾性を示
す。
In general, it is known that a material exhibiting thermoelastic martensitic transformation exhibits a shape memory effect, and this shape memory effect is due to martensite reverse transformation and martensitic transformation that occur during heating and cooling. A Ni-Ti alloy having an atomic ratio of Ni-Ti of about 1: 1 causes thermoelastic martensitic transformation and exhibits superelasticity at a temperature higher than the transformation temperature.

この超弾性特性を利用して現在種々の素子の実用化さ
れている。このNi−Ti系合金の応力−歪曲線を第5図に
示す。応力を負荷していくときの応力ステージの高さと
除荷(負荷を開放)時のステージの差を応力ヒステリシ
スと呼ぶ。第5図を例に説明すると、歪みが4%になる
まで負荷をかけることで得られた超弾性曲線において、
歪み4%のときの応力と2%のときの応力の差(第5図
に図示)を応力ヒステリシスと呼ぶ。この第5図に示す
Ni−Ti合金の場合は、応力ヒステリシスが40kg/mm2以上
となっている。このような超弾性の利用には、この応力
ヒスリシスが小さい方がエネルギーロスが少なく、超弾
性材料として優れている。さらに除荷後に完全に元の形
状に復帰すること、すなわち残留歪がないことが必要な
条件となっている。したがってNi−Ti合金では不充分で
ありこのような特性を満足するような優れた超弾性合金
の出現と新しい素材に適した製造条件の確立が強く要望
されている。
Utilizing this superelastic property, various devices have been put to practical use. FIG. 5 shows a stress-strain curve of this Ni-Ti alloy. The difference between the height of the stress stage when applying stress and the stage when unloading (unloading) is called stress hysteresis. Referring to FIG. 5 as an example, in a superelastic curve obtained by applying a load until the strain becomes 4%,
The difference between the stress at a strain of 4% and the stress at a strain of 2% (shown in FIG. 5) is called stress hysteresis. As shown in FIG.
In the case of a Ni-Ti alloy, the stress hysteresis is 40 kg / mm 2 or more. In the use of such superelasticity, the smaller the stress hysteresis, the smaller the energy loss and the better the superelastic material. Further, it is necessary to completely return to the original shape after unloading, that is, to have no residual strain. Therefore, Ni-Ti alloys are insufficient, and there is a strong demand for the appearance of excellent superelastic alloys satisfying such characteristics and establishment of manufacturing conditions suitable for new materials.

一方Cuを5〜10at%含有するNi−Ti−Cu合金はNi−Ti
系形状記憶合金の中でも非常に優れた材料で高変態温度
(50〜100℃)を安定して示し良好な形状記憶特性を示
す。さらにこれに、Al、Zr、CO、Cr、Feなどを少量添加
して変態温度を調整した合金(特公昭61−54850号)も
知られている。
On the other hand, Ni-Ti-Cu alloy containing 5 to 10 at% Cu is Ni-Ti
It is a very excellent material among the system shape memory alloys, stably exhibits a high transformation temperature (50 to 100 ° C) and shows good shape memory characteristics. Further, there is also known an alloy in which the transformation temperature is adjusted by adding a small amount of Al, Zr, CO, Cr, Fe or the like (Japanese Patent Publication No. 61-54850).

しかし、このNi−Ti−Cu合金は第6図に示すように変
態温度が高く、体温付近の36℃の温度においては超弾性
を示さない。またNi−Ti−Cu合金に上記のAl、Zr、CO、
Cr、Feなどを添加した合金においても変態温度の調整が
難しく、また応力ヒステリシスが小さく、しかも残留歪
のないものは得られなかった。
However, this Ni-Ti-Cu alloy has a high transformation temperature as shown in Fig. 6, and does not exhibit superelasticity at a temperature of 36 ° C near body temperature. In addition, the above Al, Zr, CO, Ni-Ti-Cu alloy
Even in alloys to which Cr, Fe, etc. were added, it was difficult to adjust the transformation temperature, and it was not possible to obtain an alloy having a small stress hysteresis and no residual strain.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は上記の問題について検討の結果、変態温度を
体温付近の温度から低温まで任意に調整が可能で、かつ
応力ヒステリシスが小さく、しかも残留歪がない優れた
超弾性を示すNi−Ti−Cu系超弾性合金およびその製造方
法を開発したものである。
As a result of examining the above problems, the present invention is capable of arbitrarily adjusting the transformation temperature from a temperature near body temperature to a low temperature, and has a small stress hysteresis and excellent superelastic Ni-Ti-Cu without residual strain. A superelastic alloy and a method for producing the same have been developed.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明はCu5.0〜10.0at%、Ti48.5〜50.0at%、Fe0.3
〜2.0at%、残部Niからなり、Af温度が−27〜37℃、応
力ヒステリシスが40kg/mm2以下であることを特徴とする
超弾性Ni−Ti−Cu系合金を請求項1とし、Cu5.0〜10.0a
t%、Ti48.5〜50.0at%、Cr0.2〜1.5at%、残部Niから
なりAf温度が−27〜37℃、応力ヒステリシスが40kg/mm2
以下であることを特徴とする超弾性Ni−Ti−Cu系合金を
請求項2とし、またCu5.0〜10.0at%、Ti48.5〜50.0at
%、Fe0.3〜2.0at%、残部Niからなる合金を加工率15%
以上の冷間加工を施した後、300〜400℃の温度で0.5〜
2時間形状記憶処理することを特徴とするAf温度が−27
〜37℃、応力ヒステリシスが40kg/mm2以下の超弾性Ni−
Ti−Cu系合金の製造方法を請求項3とし、さらにCu5.0
〜10.0at%、Ti48.5〜50.0at%、Cr0.2〜1.5at%、残部
Niからなる合金を加工率15%以上の冷間加工を施した
後、300〜400℃の温度で0.5〜2時間形状記憶処理する
ことを特徴とするAf温度が−27〜37℃、応力ヒステリシ
スが40kg/mm2以下の超弾性Ni−Ti−Cu系合金の製造方法
を請求項4とするものである。
The present invention is based on Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at%, Fe 0.3
A superelastic Ni-Ti-Cu based alloy comprising -2.0 at%, the balance being Ni, having an A f temperature of -27 to 37 ° C and a stress hysteresis of 40 kg / mm 2 or less, Cu 5.0 to 10.0a
t%, Ti48.5~50.0at%, Cr0.2~1.5at% , A f temperature and the balance of Ni -27~37 ℃, stress hysteresis 40 kg / mm 2
Claim 2 is a superelastic Ni-Ti-Cu-based alloy characterized by the following: Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at
%, Fe0.3-2.0at%, balance of Ni is 15%
After performing the above cold working, at a temperature of 300 ~ 400 ℃ 0.5 ~
Af temperature of -27 characterized by shape memory processing for 2 hours
~37 ℃, stress hysteresis is 40kg / mm 2 or less of the super-elastic Ni-
The method for producing a Ti-Cu-based alloy is defined as claim 3,
~ 10.0at%, Ti48.5 ~ 50.0at%, Cr0.2 ~ 1.5at%, balance
After giving the process rolling ratio of 15% or more of cold alloy consisting of Ni, A f temperature, characterized in that 0.5 to 2 hours shape memory treatment at a temperature of 300 to 400 ° C. is -27~37 ℃, stress A method for producing a superelastic Ni—Ti—Cu alloy having a hysteresis of 40 kg / mm 2 or less is defined as claim 4.

すなわち本発明は、種々研究の結果Ni−Ti−Cu合金
が、Ni−Ti合金に比べ応力ヒステリシスの狭いことを知
見し、これにFe或いはCrを微量添加することにより変態
温度(以下Af温度という)を低下させ、また特殊な製造
方法によりNi−Ti−Cu合金の狭い応力ヒステリシス特性
を保有しながら、常温域での残留歪のない良好な超弾性
特性を有するNi−Ti−Cu系合金を得たものである。
That is, the present invention has found that as a result of various studies, the Ni-Ti-Cu alloy has a narrower stress hysteresis than the Ni-Ti alloy, and the addition of a small amount of Fe or Cr to the transformation temperature (hereinafter referred to as the A f temperature). Ni-Ti-Cu alloy with good superelastic properties without residual strain at room temperature while retaining the narrow stress hysteresis characteristics of Ni-Ti-Cu alloy by a special manufacturing method It is obtained.

しかして本発明合金の組成を上記のように限定したの
は、Cuは応力ヒステリシスの巾を狭くする効果を有する
ものであるが5.0at%未満では、その効果が少なく、ま
た10at%を越えると加工性が低下する。FeおよびCrの添
加はAf温度を体温または室温以下に下げる効果と共に残
留歪を小さくする作用をなす元素であるが、Fe0.3at
%、Crが0.2at%未満でAf温度を低下させる効果が少な
く、またFeが2.0at%、Crが1.5at%を越えると冷間加工
性が低下するからである。
Thus, the composition of the alloy of the present invention is limited as described above because Cu has an effect of narrowing the width of stress hysteresis, but if it is less than 5.0 at%, its effect is small, and if it exceeds 10 at%, it exceeds 10 at%. Workability decreases. The addition of Fe and Cr is an element that has the effect of lowering the Af temperature to below body temperature or room temperature and also has the effect of reducing residual strain.
% And Cr are less than 0.2 at%, the effect of lowering the Af temperature is small, and when Fe exceeds 2.0 at% and Cr exceeds 1.5 at%, the cold workability is reduced.

また本発明の製造方法において加工率15%以上で冷間
加工を施すのは、これ未満の加工率では充分な超弾性特
性が得られないからである。さらに形状記憶処理温度の
下限を300℃としたのは300℃未満では記憶処理が不充分
であり、超弾性の応力ステージが充分に得られない。ま
た400℃を越えると残留歪が残るためである。
Further, the reason why the cold working is performed at a working ratio of 15% or more in the manufacturing method of the present invention is that a sufficient superelastic property cannot be obtained at a working ratio lower than this. Furthermore, the reason why the lower limit of the shape memory processing temperature is set to 300 ° C. is that when the temperature is lower than 300 ° C., the memory processing is insufficient, and a superelastic stress stage cannot be sufficiently obtained. If the temperature exceeds 400 ° C., residual strain remains.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 Hereinafter, an embodiment of the present invention will be described.

実施例1 第1表に示す組成のNi−Ti−Cu系合金からなる直径1m
mの冷間加工線材を390℃の温度で60分間の熱処理した
後、示差走差熱量計により変態温度を測定した。第2表
および第1図にはマルテンサイト相から母相への変態終
了温度Af点を示した。
Example 1 1 m diameter Ni-Ti-Cu alloy having the composition shown in Table 1
After the m cold-worked wire was heat treated at a temperature of 390 ° C for 60 minutes, the transformation temperature was measured with a differential scanning calorimeter. Table 2 and FIG. 1 show the transformation end temperature Af point from the martensite phase to the parent phase.

第1表、第2表および第1図から明らかなように、F
e、Crの添加により変態温度が低下し、Feでは、0.3at%
未満、Crでは0.2未満においては変態温度が体温以下に
はならず充分ではない。
As is clear from Tables 1 and 2, and FIG.
e, Cr addition lowers the transformation temperature. For Fe, 0.3at%
If the temperature is less than 0.2% and Cr is less than 0.2, the transformation temperature does not become lower than the body temperature and is not sufficient.

なおL〜Qの比較合金は、冷間加工率15%以上が困難
である応力ヒステリシスが大きい、Af温度が高過ぎるな
どの欠陥がある。
Incidentally, the comparative alloys L to Q have defects such as a large stress hysteresis at which a cold working ratio of 15% or more is difficult and an excessively high Af temperature.

実施例2 第1表のC,G合金において記憶処理温度を250〜500℃
まで変えたときの引っ張り試験結果を第3表に示す。熱
処理時間は60分である。引っ張り試験は36℃の恒温槽中
にて行なわれ、4%まで歪を与えた後、除荷した。得ら
れた応力−歪曲線において、歪2%時の応力ヒステリシ
ス、および残留歪を測定した。またNi51.0at%−Tiの従
来合金を比較に記載した。
Example 2 The memory treatment temperature of the C and G alloys in Table 1 was 250 to 500 ° C.
Table 3 shows the results of the tensile test when the temperature was changed up to. The heat treatment time is 60 minutes. The tensile test was performed in a constant temperature bath at 36 ° C. After applying a strain to 4%, the load was unloaded. In the obtained stress-strain curve, stress hysteresis at a strain of 2% and residual strain were measured. The conventional alloy of Ni 51.0 at% -Ti is also described for comparison.

第3表より本発明合金はNi−Ti2元合金に比べ、応力
ヒステリシスが狭いことが明らかである。また、本発明
合金において記憶処理温度が400℃を越えると残留歪が
大きくなり完全な超弾性特性が得られない。さらに合金
Cの250、390、500℃処理材、およびNi51.0at%−Tiの
応力−歪曲線を第2図〜第4図に示す。
From Table 3, it is clear that the alloy of the present invention has a smaller stress hysteresis than the Ni-Ti binary alloy. Further, in the alloy of the present invention, when the memory treatment temperature exceeds 400 ° C., the residual strain increases, and perfect superelastic properties cannot be obtained. Further, FIGS. 2 to 4 show stress-strain curves of the alloy C treated at 250, 390 and 500 ° C. and Ni51.0 at% -Ti.

第2図に示すように390℃で記憶処理したものは良好
な超弾性特性を示す。しかし第3図のように500℃で記
憶処理したものは残留歪が1%と大きくなり好ましくな
い。
As shown in FIG. 2, those subjected to memory treatment at 390 ° C. show good superelastic properties. However, as shown in FIG. 3, the material subjected to the memory treatment at 500 ° C. has an undesirably large residual strain of 1%.

また第4図のように300℃未満の記憶処理では水平な
応力ステージが見られず良好な超弾性特性は得られな
い。
Further, as shown in FIG. 4, in the memory treatment at a temperature lower than 300.degree.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、Ni−Ti−Cu形状記憶合金
の超弾性は応力ヒステリシスが狭く良好な特性を示し、
体温以下の温度で超弾性を得るためにFeあるいはCrを微
量添加し変態温度を下げ、さらに最適な熱処理条件を組
み合わせることにより応力ヒステリシスが狭く、残留歪
の少ない、優れた超弾性特性を得ることが出来るもので
あり、超弾性を利用する各種素子の実用化において顕著
な効果を奏するものである。
Thus, according to the present invention, the superelasticity of the Ni-Ti-Cu shape memory alloy shows good characteristics with a narrow stress hysteresis,
In order to obtain superelasticity at temperatures below body temperature, lower the transformation temperature by adding a small amount of Fe or Cr and further combine optimal heat treatment conditions to obtain excellent superelastic properties with narrow stress hysteresis, small residual strain, This has a remarkable effect in the practical use of various elements utilizing superelasticity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る合金の添加元素とAf
度の関係を示す図、第2図〜第4図は本発明の一実施例
に係る合金の応力−歪の関係を示す図、第5図および第
6図は従来合金の応力−歪の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the added element and the Af temperature of the alloy according to one embodiment of the present invention, and FIGS. 2 to 4 are diagrams showing the relationship between the stress and strain of the alloy according to one embodiment of the present invention. FIG. 5, FIG. 5 and FIG. 6 are diagrams showing the stress-strain relationship of the conventional alloy.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cu5.0〜10.0at%、Ti48.5〜50.0at%、Fe
0.3〜2.0at%、残部Niからなり、Af温度が−27〜37℃、
応力ヒステリシスが40kg/mm2以下であることを特徴とす
る超弾性Ni−Ti−Cu系合金。
(1) Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at%, Fe
0.3-2.0at%, balance Ni, Af temperature -27 ~ 37 ℃,
Superelastic Ni-Ti-Cu based alloy stress hysteresis, characterized in that at 40 kg / mm 2 or less.
【請求項2】Cu5.0〜10.0at%、Ti48.5〜50.0at%、Cr
0.2〜1.5at%、残部NiからなりAf温度が−27〜37℃、応
力ヒステリシスが40kg/mm2以下であることを特徴とする
超弾性Ni−Ti−Cu系合金。
(2) Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at%, Cr
0.2~1.5at%, A f temperature and the balance of Ni -27~37 ℃, superelastic Ni-Ti-Cu based alloy, wherein the stress hysteresis is 40 kg / mm 2 or less.
【請求項3】Cu5.0〜10.0at%、Ti48.5〜50.0at%、Fe
0.3〜2.0at%、残部Niからなる合金を加工率15%以上の
冷間加工を施した後、300〜400℃の温度で0.5〜2時間
形状記憶処理することを特徴とするAf温度が−27〜37
℃、応力ヒステリシスが40kg/mm2以下の超弾性Ni−Ti−
Cu系合金およびその製造方法。
(3) Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at%, Fe
0.3~2.0at%, after the alloy and the balance Ni was subjected to cold working or machining rate 15%, A f temperature, characterized in that 0.5 to 2 hours shape memory treatment at a temperature of 300 to 400 ° C. is −27 to 37
° C., the stress hysteresis of 40 kg / mm 2 or less superelastic Ni-Ti-
Cu-based alloy and its manufacturing method.
【請求項4】Cu5.0〜10.0at%、Ti48.5〜50.0at%、Cr
0.2〜1.5at%、残部Niからなる合金を加工率15%以上の
冷間加工を施した後、300〜400℃の温度で0.5〜2時間
形状記憶処理することを特徴とするAf温度が−27〜37
℃、応力ヒステリシスが40kg/mm2以下の超弾性Ni−Ti−
Cu系合金の製造方法。
4. Cu 5.0 to 10.0 at%, Ti 48.5 to 50.0 at%, Cr
0.2~1.5at%, after the alloy and the balance Ni was subjected to cold working or machining rate 15%, A f temperature, characterized in that 0.5 to 2 hours shape memory treatment at a temperature of 300 to 400 ° C. is −27 to 37
° C., the stress hysteresis of 40 kg / mm 2 or less superelastic Ni-Ti-
Manufacturing method of Cu-based alloy.
JP63240200A 1988-09-26 1988-09-26 Superelastic Ni-Ti-Cu alloy and method for producing the same Expired - Lifetime JP2706273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240200A JP2706273B2 (en) 1988-09-26 1988-09-26 Superelastic Ni-Ti-Cu alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240200A JP2706273B2 (en) 1988-09-26 1988-09-26 Superelastic Ni-Ti-Cu alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0288737A JPH0288737A (en) 1990-03-28
JP2706273B2 true JP2706273B2 (en) 1998-01-28

Family

ID=17055947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240200A Expired - Lifetime JP2706273B2 (en) 1988-09-26 1988-09-26 Superelastic Ni-Ti-Cu alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2706273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990411B (en) * 2022-04-14 2023-01-31 中南大学 High-copper-content 3D printing nickel-titanium-copper alloy and preparation method thereof
CN116005035A (en) * 2022-12-30 2023-04-25 西安理工大学 Shape memory alloy and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514642B2 (en) * 1987-01-10 1996-07-10 住友電気工業株式会社 Alloy wire wearing clothing

Also Published As

Publication number Publication date
JPH0288737A (en) 1990-03-28

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US4707196A (en) Ti-Ni alloy articles having a property of reversible shape memory and a method of making the same
US7628874B2 (en) Methods of processing nickel-titanium alloys
JPS63186859A (en) Method for improving dynamical and statical mechanical properties of (alpha + beta)- titanium alloy
JPS6043903B2 (en) Strengthening method of Cu-Ni-Sn alloy
JPWO2007043687A1 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JP5512145B2 (en) Shape memory alloy
Mercier et al. Mechanical properties of the cold-worked martensitic NiTi type alloys
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JPS59215448A (en) Functional alloy
JP2006265680A (en) Superelastic material and its production method
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPH06293929A (en) Beta titanium alloy wire and its production
JPH07207390A (en) Super elastic spring
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
KR102604458B1 (en) Commercially pure titanium having high strength and high uniform ductility and method of manufacturing the same
JPH05295498A (en) Manufacture of ni-ti superelastic material
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JP2004124156A (en) METHOD FOR MANUFACTURING SUPERELASTIC TiNbSn ALLOY FOR ORGANISM
JPH059686A (en) Production of shape memory niti alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

EXPY Cancellation because of completion of term