JP2002324585A - Nonaqueous electrolyte secondary battery and capacity restoring method thereof - Google Patents

Nonaqueous electrolyte secondary battery and capacity restoring method thereof

Info

Publication number
JP2002324585A
JP2002324585A JP2001126616A JP2001126616A JP2002324585A JP 2002324585 A JP2002324585 A JP 2002324585A JP 2001126616 A JP2001126616 A JP 2001126616A JP 2001126616 A JP2001126616 A JP 2001126616A JP 2002324585 A JP2002324585 A JP 2002324585A
Authority
JP
Japan
Prior art keywords
electrode
battery
negative electrode
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001126616A
Other languages
Japanese (ja)
Inventor
Tetsuya Murai
村井  哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001126616A priority Critical patent/JP2002324585A/en
Publication of JP2002324585A publication Critical patent/JP2002324585A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which a part not opposed to a counter electrode for pasting a metal lithium to an electrode is not required, and lithium is evenly supplementary-charged over the entire electrode even if the electrode is long and large. SOLUTION: The nonaqueous electrolyte secondary battery comprises a positive electrode, a negative electrode other than metal lithium, and a nonaqueous electrolyte. It is provided with a third electrode containing metal lithium which does not contact the electrolyte and is not connected to the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
およびその容量回復方法に関する。
The present invention relates to a non-aqueous electrolyte secondary battery and a method for restoring its capacity.

【0002】[0002]

【従来の技術】非水電解質二次電池は、高エネルギー密
度という特徴を生かして、小型・携帯用電子機器の電源
として、広く利用されている。また、近い将来、電気自
動車への応用も期待されているため、大型の非水電解質
二次電池の開発がすすめられている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery is widely used as a power source for small and portable electronic devices, taking advantage of its high energy density. In addition, since application to electric vehicles is expected in the near future, development of large non-aqueous electrolyte secondary batteries is being promoted.

【0003】非水電解質二次電池は、正極活物質および
負極活物質にリチウムを吸蔵・放出可能な材料を使用し
ている。具体的には、正極活物質としてコバルト酸リチ
ウム等の遷移金属の複合酸化物を、負極活物質としてリ
チウム、リチウム合金やグラファイト等の炭素質材料を
用いる。非水電解質二次電池の反応は、充電では正極活
物質から放出されたリチウムが負極活物質に吸蔵され、
放電では負極活物質に吸蔵されているリチウムが放出さ
れて正極活物質に吸蔵される。
A nonaqueous electrolyte secondary battery uses a material capable of inserting and extracting lithium as a positive electrode active material and a negative electrode active material. Specifically, a composite oxide of a transition metal such as lithium cobalt oxide is used as a positive electrode active material, and a carbonaceous material such as lithium, a lithium alloy, and graphite is used as a negative electrode active material. In the reaction of a non-aqueous electrolyte secondary battery, during charging, lithium released from the positive electrode active material is occluded in the negative electrode active material,
In discharging, lithium occluded in the negative electrode active material is released and occluded in the positive electrode active material.

【0004】また、非水電解質二次電池の電解液として
は、エチレンカーボネートやエチルメチルカーボネート
等の各種炭酸エステルを含む混合有機溶媒にLiP
、LiBF等のリチウム塩を溶解させた非水電解
液を使用している。
As an electrolyte for a non-aqueous electrolyte secondary battery, LiP is mixed with a mixed organic solvent containing various carbonates such as ethylene carbonate and ethyl methyl carbonate.
A non-aqueous electrolyte in which lithium salts such as F 6 and LiBF 4 are dissolved is used.

【0005】このような非水電解質二次電池の中では、
負極に黒鉛等の炭素材料を使用し、この炭素材料にリチ
ウムを吸蔵・放出させる、いわゆるリチウムイオン電池
は、金属リチウムを使用した電池と比較して、安全性が
高く、しかも高エネルギー密度で長寿命であるという特
長をもっている。さらに最近では、負極材料として、酸
化珪素(SiO)や珪素(Si)、あるいはこれらの粒
子の表面を炭素で被覆したものが使用され、炭素材料と
同様な特長をもつことが明らかとなってきた。
[0005] Among such non-aqueous electrolyte secondary batteries,
So-called lithium ion batteries, which use a carbon material such as graphite for the negative electrode and occlude and release lithium into and from this carbon material, have higher safety, higher energy density and longer life than batteries using metallic lithium. It has the feature of life. More recently, as a negative electrode material, silicon oxide (SiO) or silicon (Si), or a material obtained by coating the surface of these particles with carbon has been used, and it has become clear that the material has the same characteristics as a carbon material. .

【0006】[0006]

【発明が解決しようとする課題】しかし、非水電解質二
次電池の、炭素材料や酸化珪素(SiO)や珪素(S
i)、あるいはこれらの粒子の表面を炭素で被覆したも
の等の負極材料は、非水電解液を構成する有機溶媒や支
持塩と反応する。そして、これらの負極材料の表面に有
機物被膜を形成する。この有機物被膜を形成する反応
は、負極材料中に吸蔵されたリチウムを消費する自己放
電反応であることが知られている。
However, in a non-aqueous electrolyte secondary battery, a carbon material, silicon oxide (SiO), silicon (S
A negative electrode material such as i) or a material obtained by coating the surface of these particles with carbon reacts with an organic solvent or a supporting salt constituting the nonaqueous electrolyte. Then, an organic film is formed on the surface of these negative electrode materials. It is known that the reaction for forming the organic film is a self-discharge reaction that consumes lithium stored in the negative electrode material.

【0007】この自己放電反応は、非水電解質二次電池
を組立て、有機電解液を注入した後は、継続的に進行す
る。特に非水電解質二次電池を充電状態で長期間放置す
ると、上述の自己放電反応が進行して、負極材料中に吸
蔵されているリチウムが消費され、電池の容量が低下し
たり、正極と負極の容量バランスがとれなくなり、充放
電反応に支障をおよぼすという問題があった。
The self-discharge reaction proceeds continuously after the non-aqueous electrolyte secondary battery is assembled and the organic electrolyte is injected. In particular, when a non-aqueous electrolyte secondary battery is left in a charged state for a long period of time, the above-described self-discharge reaction proceeds, consuming lithium stored in the negative electrode material, reducing the capacity of the battery, and reducing the capacity of the positive and negative electrodes. There is a problem in that the capacity of the battery cannot be balanced and the charge / discharge reaction is hindered.

【0008】このような問題を解決するためのひとつの
方法として、例えば特開平11−185809号公報に
記載されているように、負極に直接金属リチウムを貼り
付け、リチウム源を補充するという、いわゆる「プリチ
ャージ法」が提案された。しかしながら、このプリチャ
ージ法において、正極と対向した負極に金属リチウムを
貼り付けて充放電を行なうと、充電時にその部分でリチ
ウムのデンドライトが発生し、内部短絡が起こるという
問題があった。また、負極の、正極と対向していない部
分(未対向部)に直接金属リチウムを貼り付ける方法
は、大型の非水電解質二次電池のように、電極が非常に
長く、大きい場合には、電極全体に均一にリチウムが行
き渡らないという問題があった。
As one method for solving such a problem, for example, as described in Japanese Patent Application Laid-Open No. H11-185809, a method of directly attaching metallic lithium to a negative electrode and replenishing a lithium source is called a so-called so-called negative electrode. A "precharge method" was proposed. However, in this precharge method, when metal lithium is attached to the negative electrode facing the positive electrode and charge / discharge is performed, there is a problem that lithium dendrite is generated in the portion during charging and an internal short circuit occurs. In addition, the method of directly attaching metallic lithium to a part of the negative electrode that is not opposed to the positive electrode (unopposed part) is, as in a large non-aqueous electrolyte secondary battery, when the electrode is very long and large, There was a problem that lithium was not uniformly distributed over the entire electrode.

【0009】また、特表平11−509959号公報や
特開平10−270090号公報に記載されているよう
に、あらかじめ電池内部に金属リチウムやリチウム合金
を備えた第3電極を設けておき、この第3電極と負極と
を接続してプリチャージを行い、負極の不可逆容量を補
充する方法も提案されている。
Further, as described in JP-T-11-509959 and JP-A-10-270090, a third electrode provided with lithium metal or a lithium alloy is provided in advance in a battery. A method has been proposed in which the third electrode is connected to the negative electrode to perform a precharge to replenish the irreversible capacity of the negative electrode.

【0010】ここで、不可逆容量とは、非水電解質二次
電池において炭素材料を負極に使用した場合、初期充電
で負極中に吸蔵されたリチウムの全てを放電によって放
出することはできず、放電後も負極中に残留するリチウ
ム量のことをさし、この不可逆容量を減少させる必要が
あった。
Here, the irreversible capacity means that when a carbon material is used for a negative electrode in a nonaqueous electrolyte secondary battery, all of the lithium occluded in the negative electrode during initial charging cannot be released by discharging, After that, it refers to the amount of lithium remaining in the negative electrode, and it was necessary to reduce this irreversible capacity.

【0011】従来の、金属リチウムやリチウム合金を備
えた第3電極を用いる方法は、不可逆容量を減少させる
ためのものであり、第3電極から不可逆容量相当分を負
極に充電するもので、電池を通常の充放電に使用する前
にのみ第3電極は使用されていた。そのため、ある程度
の充放電サイクルを繰り返した後に、電池の正極または
負極のいずれかの電極の容量不足が生じた場合、その不
足分の容量を回復することができなかった。
A conventional method using a third electrode provided with metallic lithium or a lithium alloy is for reducing the irreversible capacity, and charging the irreversible capacity equivalent to the negative electrode from the third electrode. The third electrode was used only before was used for normal charge and discharge. Therefore, when the capacity of either the positive electrode or the negative electrode of the battery becomes insufficient after repeating a certain number of charge / discharge cycles, the insufficient capacity cannot be recovered.

【0012】また、上記の例のように、金属リチウムを
電池内で電解液と接触させた状態でとりつけた場合、予
想以上に容量低下が大きい場合にそなえて、金属リチウ
ムのために大きなスペースが必要であり、長期間保存し
た場合には、金属リチウムと電解液の界面に絶縁皮膜が
形成され、その後に第3電極に通電しても電流が少しし
か流れず、リチウムの溶出が不十分となる恐れがあり、
さらに、電池内部で正極または負極と第3電極が接触
し、正極では過放電状態、負極では過充電状態になると
いう問題があった。
In addition, as in the above example, when metal lithium is installed in a state of being in contact with the electrolyte in the battery, a large space is required for the metal lithium in case that the capacity decrease is larger than expected. It is necessary, and when stored for a long period of time, an insulating film is formed at the interface between metallic lithium and the electrolytic solution, and then a small amount of current flows even when the third electrode is energized thereafter, and the elution of lithium is insufficient. May be
Further, there is a problem that the positive electrode or the negative electrode contacts the third electrode inside the battery, and the positive electrode is in an overdischarged state and the negative electrode is in an overcharged state.

【0013】本発明はこのような問題を解決し、電極に
金属リチウムを貼り付けるための対極との未対向部を必
要とせず、また、大型の非水電解質二次電池のように、
電極が長くて大きい場合にも、電極全体に均一にリチウ
ムの補充電を行なうことのできる非水電解質二次電池を
提供することを目的とする。
The present invention solves such a problem, and does not require a non-opposite portion with a counter electrode for attaching metallic lithium to an electrode. Further, as in a large non-aqueous electrolyte secondary battery,
It is an object of the present invention to provide a non-aqueous electrolyte secondary battery capable of uniformly charging lithium for the entire electrode even when the electrode is long and large.

【0014】[0014]

【問題を解決する手段】請求項1の発明は、正極と、金
属リチウム以外の負極と、非水電解質とを備えた非水電
解質二次電池において、金属リチウムを含み、電解液と
接触せず、正極および負極に接続されない第3電極を備
えたことを特徴とする。
According to the first aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode other than lithium metal, and a non-aqueous electrolyte. And a third electrode not connected to the positive electrode and the negative electrode.

【0015】請求項1の発明によれば、放電容量の低下
した電極を補充電することが可能な非水電解質二次電池
が得られる。
According to the first aspect of the present invention, a non-aqueous electrolyte secondary battery capable of supplementarily charging an electrode having a reduced discharge capacity is obtained.

【0016】請求項2の発明は、上記非水電解質二次電
池の容量回復方法であって、第3電極を電解液と接触さ
せ、正極または負極のいずれか一方の電極と第3電極間
に通電することにより、前記いずれかの電極にリチウム
を吸蔵させることを特徴とする。
The invention according to claim 2 is the above-mentioned method for recovering the capacity of a nonaqueous electrolyte secondary battery, wherein the third electrode is brought into contact with an electrolytic solution, and between the third electrode and either one of the positive electrode or the negative electrode. It is characterized in that lithium is occluded in any one of the electrodes by energization.

【0017】請求項2の発明によれば、電極に金属リチ
ウムを貼り付けるための対極との未対向部を必要とせ
ず、また、電極が長くて大きい場合にも、電極全体に均
一にリチウムの補充電を行なうことのできる非水電解質
二次電池が得られる。
According to the second aspect of the present invention, there is no need for a non-facing portion of the counter electrode for attaching metallic lithium to the electrode, and even when the electrode is long and large, the lithium can be uniformly applied to the entire electrode. A non-aqueous electrolyte secondary battery capable of performing supplementary charging is obtained.

【0018】請求項3の発明は、上記非水電解質二次電
池において、第3電極を複数備えたことを特徴とする。
請求項3の発明によれば、電極全体により均一にリチウ
ムの補充電を行なうことのできる非水電解質二次電池が
得られる。
According to a third aspect of the present invention, in the nonaqueous electrolyte secondary battery, a plurality of third electrodes are provided.
According to the third aspect of the present invention, a non-aqueous electrolyte secondary battery capable of more uniformly supplementing lithium with the entire electrode can be obtained.

【0019】請求項4の発明は、上記非水電解質二次電
池において、巻回型発電要素と平板状第3電極とを備
え、前記平板状第3電極の平面が前記巻回型発電要素の
巻回中心軸に垂直であることを特徴とする。
According to a fourth aspect of the present invention, in the non-aqueous electrolyte secondary battery, a wound type power generating element and a flat third electrode are provided, and the plane of the flat third electrode is the same as the wound type power generating element. It is characterized by being perpendicular to the winding center axis.

【0020】請求項4の発明によれば、容易に電極全体
に均一にリチウムの補充電を行なうことのできる非水電
解質二次電池が得られる。
According to the fourth aspect of the present invention, a non-aqueous electrolyte secondary battery capable of easily and uniformly charging the entire electrode with lithium can be obtained.

【0021】[0021]

【発明の実施の形態】本発明の実施形態を、長円筒型電
池ケースに巻回型発電要素を収納した大型非水電解質二
次電池を例として説明する。なお、ここで大型非水電解
質二次電池とは、一般に容量が50Ah以上の非水電解
質二次電池をさすが、本発明は、これよりも容量が小さ
い電池にも適用可能なことはいうまでもない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to a large non-aqueous electrolyte secondary battery in which a winding type power generation element is housed in a long cylindrical battery case. Here, the large non-aqueous electrolyte secondary battery generally refers to a non-aqueous electrolyte secondary battery having a capacity of 50 Ah or more. Needless to say, the present invention can be applied to a battery having a smaller capacity than this. Absent.

【0022】図1〜図3は、カセット型第3電極を用い
る本発明の長円筒型非水電解質二次電池の構造を示した
ものであり、カセット型第3電極を取付けない状態の電
池の構造を図1に、カセット型第3電極の構造を図2
に、さらに、カセット型第3電極を取付けた状態の電池
の断面構造を図3に示す。
FIGS. 1 to 3 show the structure of a long cylindrical non-aqueous electrolyte secondary battery of the present invention using a cassette type third electrode. FIG. 1 shows the structure, and FIG. 2 shows the structure of the cassette type third electrode.
FIG. 3 shows a sectional structure of the battery with the cassette type third electrode attached thereto.

【0023】図1〜図3において、1は発電要素、2は
電池ケース、3は電池蓋、4は正極端子、5は負極端
子、6は開閉可能な扉、7は第3電極の端子、8は第3
電極の蓋、9はハーメチックシール、10は集電板、1
1は金属リチウム、12はカセットケース、13は電解
液、14は外部直流電源である。
1 to 3, 1 is a power generating element, 2 is a battery case, 3 is a battery cover, 4 is a positive terminal, 5 is a negative terminal, 6 is an openable door, 7 is a third electrode terminal, 8 is the third
Electrode lid, 9 is hermetic seal, 10 is current collector, 1
1 is metallic lithium, 12 is a cassette case, 13 is an electrolyte, and 14 is an external DC power supply.

【0024】発電要素1は、正極とセパレータと負極と
を交互に重ねあわせて長円筒型に巻回したものであり、
電池ケース4としては長円筒型金属ケースを使用し、正
極端子4および負極端子5は、電池蓋3とはハーメチッ
クシール等によって絶縁されている。負極活物質として
は金属リチウム以外の、例えばグラファイト等のリチウ
ムを吸蔵・放出可能な材料を使用している。
The power generating element 1 is formed by alternately stacking a positive electrode, a separator, and a negative electrode and winding them into a long cylindrical shape.
A long cylindrical metal case is used as the battery case 4, and the positive electrode terminal 4 and the negative electrode terminal 5 are insulated from the battery lid 3 by a hermetic seal or the like. As the negative electrode active material, a material other than metallic lithium, such as graphite, capable of inserting and extracting lithium is used.

【0025】本発明の非水電解質二次電池が通常の状態
で充放電をしている場合は、電池蓋3の一部に設けられ
た開閉可能な扉6は閉じられている。そして、第3電極
は電池とは切り離されて、第3電極の金属リチウム11
はカセットケース12の内部に収納されている。そのた
め、リチウムは水等と反応することはない。
When the non-aqueous electrolyte secondary battery of the present invention is charged and discharged in a normal state, the openable and closable door 6 provided on a part of the battery cover 3 is closed. Then, the third electrode is separated from the battery, and the metallic lithium 11 of the third electrode is removed.
Are housed inside the cassette case 12. Therefore, lithium does not react with water or the like.

【0026】つぎに、この電池を長時間使用し、負極の
容量が自己放電によって消費され、負極の容量が減少し
て正極−負極間の容量バランスがくずれた場合には、図
3に示したように、第3電極をカセットケースから取り
出し、電池の開閉可能な扉6を開いて、電池に第3電極
を装着し、金属リチウム11が電解液13の中に浸漬す
るようにし、その後、第3電極の端子7と負極端子5と
を接続し、外部電源14を用いて負極が充電される方向
に通電して補充電すると、負極の容量は元の状態に回復
し、正極−負極間の容量バランスが保たれるようにな
る。通電終了後には、電池から第3電極を取り出し、電
池の開閉可能な扉6を閉じ、第3電極の金属リチウム1
1はカセットケース12の内部に収納されて電解液13
とは接触してない状態に戻り、電池は通常の充放電に使
用される。
Next, when the battery was used for a long time and the capacity of the negative electrode was consumed by self-discharge, the capacity of the negative electrode was reduced, and the capacity balance between the positive electrode and the negative electrode was lost, as shown in FIG. Thus, the third electrode is taken out of the cassette case, the openable door 6 of the battery is opened, the third electrode is mounted on the battery, and the metal lithium 11 is immersed in the electrolytic solution 13. When the terminal 7 of the three electrodes is connected to the negative terminal 5 and the auxiliary power is supplied by using the external power supply 14 in the direction in which the negative electrode is charged, the capacity of the negative electrode is restored to the original state, and the capacity between the positive electrode and the negative electrode is restored. Capacity balance will be maintained. After the end of energization, the third electrode is taken out of the battery, the openable door 6 of the battery is closed, and the metallic lithium 1 of the third electrode is removed.
Reference numeral 1 denotes an electrolytic solution 13 housed inside a cassette case 12.
The battery returns to a state where it is not in contact with the battery, and the battery is used for normal charging and discharging.

【0027】第3電極が使用されない場合には、金属リ
チウム11部分をカセットケース12に収納しておけ
ば、第3電極は必要な時にいつでも使用することができ
る。なお、第3電極のカセットケースから取り出し・収
納や、第3電極の電池への装着・取り出しは、水分等の
悪影響を避けるため、ドライルームのようなできるだけ
水分のない雰囲気中で行なう必要がある。
When the third electrode is not used, the third electrode can be used whenever necessary if the metallic lithium 11 is stored in the cassette case 12. In addition, it is necessary to take out and store the third electrode from the cassette case, and attach and take out the third electrode to and from the battery in an atmosphere having as little moisture as possible, such as a dry room, in order to avoid adverse effects such as moisture. .

【0028】図4および図5は、本発明の第3電極を備
えた非水電解質二次電池の他の例の断面構造を示したも
のであり、図4は電池が通常の状態で充放電をしている
場合、図5は正極−負極間の容量バランスがくずれて、
第3電極を使用して負極を補充電している場合を示す。
図4および図5において、記号1〜14は図1〜図3と
同じものを示し、15はローラーである。第3電極とし
ては、帯状集電板に金属リチウムを取付けたものを使用
した。
FIGS. 4 and 5 show a cross-sectional structure of another example of the nonaqueous electrolyte secondary battery provided with the third electrode of the present invention. FIG. FIG. 5 shows that the capacity balance between the positive electrode and the negative electrode is broken,
This shows a case where the negative electrode is supplementarily charged using the third electrode.
4 and 5, symbols 1 to 14 indicate the same as those in FIGS. 1 to 3, and 15 is a roller. As the third electrode, one obtained by attaching metallic lithium to a belt-shaped current collector was used.

【0029】本発明の電池が通常の状態で充放電をして
いる場合は、図4に示すように、第3電極の帯状集電板
10と金属リチウム11はローラー15に巻きつけられ
ていて、金属リチウム11と電解液13は接触していな
い。同時に、第3電極の端子7は正極端子4および負極
端子5とは接続されていない。したがって、この状態で
は、金属リチウム11は電池反応に関与しない。
When the battery of the present invention is charged and discharged in a normal state, as shown in FIG. 4, the strip-shaped current collector 10 of the third electrode and the metallic lithium 11 are wound around the roller 15. The metal lithium 11 and the electrolyte 13 are not in contact. At the same time, the terminal 7 of the third electrode is not connected to the positive terminal 4 and the negative terminal 5. Therefore, in this state, the metal lithium 11 does not participate in the battery reaction.

【0030】つぎに、この電池を長時間使用し、負極の
容量が自己放電によって消費されると、負極の容量が減
少して正極−負極間の容量バランスがくずれた場合に
は、図5に示したように、ローラー15から帯状集電板
10と金属リチウム11を巻き戻し、金属リチウム11
を電解液13の中に浸漬させ、その後、第3電極の端子
7と負極端子5とを接続し、外部電源14を用いて負極
が充電される方向に通電して補充電することにより、負
極の容量は元の状態に回復し、正極−負極間の容量バラ
ンスが保たれるようになる。通電終了後には、第3電極
はローラー15に巻き戻され、金属リチウム11は電解
液13とは接触してない図4の状態に戻り、電池は通常
の充放電に使用される。
Next, when the battery is used for a long time and the capacity of the negative electrode is consumed by self-discharge, the capacity of the negative electrode decreases and the capacity balance between the positive electrode and the negative electrode is lost. As shown, the belt-shaped current collector 10 and the metal lithium 11 are rewound from the roller 15 and the metal lithium 11
Is immersed in an electrolyte 13, and then the terminal 7 of the third electrode is connected to the negative electrode terminal 5, and a current is supplied to the negative electrode using an external power supply 14 in the direction in which the negative electrode is charged. Is restored to the original state, and the capacity balance between the positive electrode and the negative electrode is maintained. After the end of the energization, the third electrode is rewound onto the roller 15, the metallic lithium 11 returns to the state shown in FIG. 4 in which the metallic lithium 11 is not in contact with the electrolytic solution 13, and the battery is used for normal charging and discharging.

【0031】本発明において、第3電極の構造として
は、特に限定されるものではなく、平板状や棒状など、
種々の形状とすることができる。また、電池に取付ける
第3電極の数は1個に限らず、電池の大きさや容量によ
り、複数個使用してもよい。
In the present invention, the structure of the third electrode is not particularly limited.
Various shapes are possible. The number of the third electrodes attached to the battery is not limited to one, and a plurality of third electrodes may be used depending on the size and capacity of the battery.

【0032】なお、上記の例では、負極の容量が減少し
た場合について述べたが、負極とは反対に、正極の容量
が減少して正極−負極間の容量バランスがくずれた場合
には、正極と第3電極を接続して、正極の容量を補充す
ればよい。
In the above example, the case where the capacity of the negative electrode is reduced has been described. However, contrary to the case of the negative electrode, when the capacity of the positive electrode is reduced and the capacity balance between the positive electrode and the negative electrode is lost, And the third electrode may be connected to replenish the capacity of the positive electrode.

【0033】つぎに、本発明の非水電解質二次電池が巻
回型発電要素を備え、この巻回型発電要素の巻回中心軸
が角型電池ケースの開口面と平行であり、さらに巻回型
発電要素の平面部分と電池ケースの開口面とが垂直にな
るように挿入された構造の場合には、第3電極としては
平板状とし、巻回型発電要素と第3電極の関係は、平板
状第3電極の平面が巻回型発電要素の巻回中心軸に垂直
であるようにすることが好ましい。
Next, the nonaqueous electrolyte secondary battery of the present invention includes a wound type power generating element, and the winding center axis of the wound type power generating element is parallel to the opening surface of the rectangular battery case. In the case of a structure in which the planar portion of the spiral power generation element is inserted so that the opening surface of the battery case is perpendicular to the third electrode, the third electrode has a flat plate shape, and the relationship between the spiral power generation element and the third electrode is as follows. It is preferable that the flat surface of the third plate-shaped electrode is perpendicular to the winding center axis of the wound power generating element.

【0034】図6は、そのような電池における、巻回型
発電要素と電池ケースの関係を示したもので、図6にお
いて、1は巻回型発電要素、2は電池ケース、16は電
池ケースの開口面、17は巻回型発電要素の巻回中心
軸、18は巻回型発電要素の平面部分である。本発明の
角型非水電解質二次電池においては、電池ケース2へ巻
回型発電要素1を、図6に示した矢印の方向に挿入す
る。すなわち、この巻回型発電要素1の巻回中心軸17
が、角型電池ケースの開口面16と平行であり、さらに
巻回型発電要素の平面部分18と電池ケースの開口面1
6とが垂直になるように挿入されている。このような構
造とすることにより、巻回型発電要素を電池ケースに挿
入する際の電極の端面の損傷を防止し、内部短絡のない
電池が得られる。
FIG. 6 shows the relationship between a wound power generating element and a battery case in such a battery. In FIG. 6, reference numeral 1 denotes a wound power generating element, 2 denotes a battery case, and 16 denotes a battery case. , 17 is a winding center axis of the wound power generating element, and 18 is a plane portion of the wound power generating element. In the prismatic nonaqueous electrolyte secondary battery of the present invention, the wound power generating element 1 is inserted into the battery case 2 in the direction of the arrow shown in FIG. That is, the winding center shaft 17 of the winding type power generating element 1
Are parallel to the opening surface 16 of the rectangular battery case, and furthermore, the flat portion 18 of the wound power generating element and the opening surface 1 of the battery case
6 are inserted vertically. With such a structure, it is possible to prevent damage to the end faces of the electrodes when inserting the wound power generating element into the battery case, and to obtain a battery without internal short circuit.

【0035】巻回型発電要素と平板状第3電極を、平板
状第3電極の平面が巻回型発電要素の巻回中心軸に垂直
であるような配置とすることにより、第3電極と正極ま
たは負極とを通電した場合、発電要素には、巻回型発電
要素の巻回中心軸に平行な方向からリチウムイオンが供
給される。一方、平板状第3電極の平面が巻回型発電要
素の平面部と平行になるように配置した場合には、リチ
ウムイオンは巻回型発電要素の平面部に垂直な方向らか
は発電要素に供給されず、あいかわらず巻回型発電要素
の巻回中心軸に平行な方向から供給されるため、外部電
源から高電圧を印加しなければならなくなる。
By arranging the wound power generating element and the plate-shaped third electrode such that the plane of the plate-shaped third electrode is perpendicular to the winding center axis of the wound power generating element, When electricity is supplied to the positive electrode or the negative electrode, lithium ions are supplied to the power generating element from a direction parallel to the winding center axis of the wound power generating element. On the other hand, when the flat surface of the third electrode is arranged so as to be parallel to the flat portion of the wound power generating element, the lithium ions are distributed in a direction perpendicular to the flat portion of the wound power generating element. Is supplied from a direction parallel to the center axis of the winding of the wound power generating element, so that a high voltage must be applied from an external power supply.

【0036】なお、上記の説明では、負極活物質が炭素
質材料の場合についてのみ説明したが、負極活物質とし
てはこれ以外にも、スズ酸化物、ケイ素酸化物またはケ
イ素などの、炭素質材料と同様の不可逆容量をもつ負極
活物質を使用する場合にも、本発明は有効である。
In the above description, only the case where the negative electrode active material is a carbonaceous material has been described. However, the negative electrode active material may be any other carbonaceous material such as tin oxide, silicon oxide or silicon. The present invention is also effective when a negative electrode active material having the same irreversible capacity as described above is used.

【0037】また、本発明の非水電解質二次電池の発電
要素の形状は、巻回型、折りたたみ型、スタック型な
ど、種々の形状の発電要素を使用することができる。ま
た、電池の形状としては、角型、円筒型、長円筒型な
ど、あらゆる形状の電池を使用することができる。な
お、本発明は電池の容量にかかわりなく使用可能である
が、電池内部の空間に比較的余裕のある、容量が50A
h以上の大型の非水電解質二次電池において特に有効で
ある。
The shape of the power generating element of the non-aqueous electrolyte secondary battery of the present invention may be various shapes such as a wound type, a folding type, and a stack type. As the shape of the battery, batteries having any shape such as a square shape, a cylindrical shape, and a long cylindrical shape can be used. Although the present invention can be used irrespective of the capacity of the battery, the capacity inside the battery is relatively large and the capacity is 50 A.
This is particularly effective in large non-aqueous electrolyte secondary batteries of h or more.

【0038】本発明の電池においては、非水電解液の溶
媒としては、、エチレンカーボネート(EC)、プロピ
レンカーボネート(PC)、ジメチルカーボネート(D
MC)、ジエチルカーボネート(DEC)、γ−ブチロ
ラクトン、スルホラン、ジメチルスルホキシド、アセト
ニトリル、ジメチルホルムアミド、ジメチルアセトアミ
ド、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、ジオキソラン、メチルアセテート等の極性溶媒、
もしくはこれらの混合物を使用してもよい。
In the battery of the present invention, the solvent of the non-aqueous electrolyte is ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (D
MC), diethyl carbonate (DEC), γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, Polar solvents such as methyl acetate,
Alternatively, a mixture thereof may be used.

【0039】さらに非水電解液に含有させる塩として
は、LiPF、LiPF(C 、LiBF
、LiAsF、LiClO、LiSCN、Li
I、LiCFSO、LiCl、LiBr、LiCF
CO等のリチウム塩、もしくはこれらの混合物を用
いてもよい。
Further, as a salt to be contained in the non-aqueous electrolyte
Is LiPF6, LiPF3(C2F 5)3, LiBF
4, LiAsF6, LiClO4, LiSCN, Li
I, LiCF3SO3, LiCl, LiBr, LiCF
3CO2Or a mixture of these salts
It may be.

【0040】さらにアルカリ金属を吸蔵放出可能な正極
物質としては、無機化合物として、組成式Li
、又はLi(ただし、Mは遷移金属、0≦
x≦1、0≦y≦2)で表される、複合酸化物、トンネ
ル状の空孔を有する酸化物、層状構造の金属カルコゲン
化物を用いることができる。その具体例としては、Li
CoO、LiNiO、LiMn、LiMnO
、MnO、FeOOH、FeO、V、V
13、TiO、TiS、オキシ水酸化ニッケル等
が挙げられる。また、有機化合物としては、例えばポリ
アニリン等の導電性有機高分子等が挙げられる。さら
に、無機化合物、有機化合物を問わず、前記各種活物質
を混合して用いてもよい。
Further, as a positive electrode material capable of inserting and extracting an alkali metal, as an inorganic compound, a composition formula Li x M
O 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦
Complex oxides, oxides having tunnel-like vacancies, and metal chalcogenides having a layered structure represented by x ≦ 1, 0 ≦ y ≦ 2) can be used. As a specific example, Li
CoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO
2 , MnO 2 , FeOOH, FeO 2 , V 2 O 5 , V 6
O 13 , TiO 2 , TiS 2 , nickel oxyhydroxide and the like can be mentioned. Examples of the organic compound include a conductive organic polymer such as polyaniline. Furthermore, regardless of an inorganic compound or an organic compound, the above-mentioned various active materials may be mixed and used.

【0041】本発明の電池において、隔離体としては、
従来の微細孔をもったポリエチレンやポリプロピレン等
のポリオレフィン系セパレータを用いることができる
し、これらのセパレータと高分子固体電解質と組み合せ
て使用してもよい。場合によってはポリオレフィン系セ
パレータを使用せずに、有機電解液を含んだ高分子固体
電解質のみを使用してもよい。この有機電解液を含んだ
高分子固体電解質としては、ゲル系高分子固体電解質や
有孔性高分子固体電解質などを用いることができる。
In the battery of the present invention, the separator is
Conventional polyolefin separators such as polyethylene and polypropylene having micropores can be used, or these separators may be used in combination with a solid polymer electrolyte. In some cases, only a polymer solid electrolyte containing an organic electrolyte may be used without using a polyolefin-based separator. As the polymer solid electrolyte containing the organic electrolyte, a gel polymer solid electrolyte, a porous polymer solid electrolyte, or the like can be used.

【0042】[0042]

【実施例】以下、本発明の好適な実施例を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0043】活物質としてのコバルト酸リチウム(Li
CoO)80wt%と導電助剤としてのアセチレンブ
ラック8wt%と結着剤としてのポリフッ化ビニリデン
(PVdF)12wt%とを混合し、N−メチルピロリ
ドン(NMP)を加えてペースト状に調製し、これを幅
150mm、長さ1500cm、厚さ20μmのアルミ
ニウム箔の両面に塗布し、100℃で乾燥してNMPを
蒸発させ、両面に活物質層を備えた厚さ240μmの正
極板を製作した。
As an active material, lithium cobalt oxide (Li)
80 wt% of CoO 2 ), 8 wt% of acetylene black as a conductive additive, and 12 wt% of polyvinylidene fluoride (PVdF) as a binder, and N-methylpyrrolidone (NMP) is added to prepare a paste. This was applied on both sides of an aluminum foil having a width of 150 mm, a length of 1500 cm, and a thickness of 20 μm, dried at 100 ° C. to evaporate NMP, and a 240 μm-thick positive electrode plate having active material layers on both sides was manufactured.

【0044】負極板は、活物質としてのグラファイト
(黒鉛)92wt%と結着剤としてのポリフッ化ビニリ
デン8wt%とを混合し、N−メチルピロリドン(NM
P)を加えてペースト状に調製し、これを幅155m
m、長さ1550cm、厚さ20μmの銅箔の両面に塗
付し、100℃で乾燥してNMPを蒸発させ、両面に活
物質層を備えた厚さ170μmの負極板を製作した。セ
パレータとしては、幅160mm、厚さ40μmのポリ
エチレン微多孔膜を使用した。
The negative electrode plate was prepared by mixing 92% by weight of graphite (graphite) as an active material and 8% by weight of polyvinylidene fluoride as a binder, and mixing N-methylpyrrolidone (NM).
P) to prepare a paste, which is 155 m wide
m, a length of 1550 cm and a thickness of 20 μm were coated on both sides of a copper foil, dried at 100 ° C. to evaporate NMP, and a 170 μm-thick negative electrode plate having active material layers on both sides was manufactured. As the separator, a polyethylene microporous membrane having a width of 160 mm and a thickness of 40 μm was used.

【0045】得られた正極板及び負極板の端部にそれぞ
れリード端子を溶接した。正極リード端子には厚み10
0μmのアルミニウム片を用い、負極リード端子には厚
み100μmのニッケル片を用いた。その後、正極リー
ド端子と負極リード端子がともに巻きはじめ部となるよ
うにし、正極板、セパレータ、負極板およびセパレータ
がこの順序で交互に重なり合うようにし、ポリエチレン
の長方形状の巻芯を中心として、長辺が発電要素の巻回
中心軸と平行になるよう、その周囲に長円渦状に巻回し
て、160×90×35mmの大きさの巻回型発電要素
とした。
Lead terminals were welded to the ends of the obtained positive electrode plate and negative electrode plate, respectively. 10 thickness for positive lead terminal
A 0 μm aluminum piece was used, and a 100 μm thick nickel piece was used for the negative electrode lead terminal. Thereafter, the positive electrode lead terminal and the negative electrode lead terminal are both formed to be winding portions, and the positive electrode plate, the separator, the negative electrode plate, and the separator are alternately overlapped in this order. It was wound in an elliptical spiral shape around its periphery so that the side was parallel to the winding center axis of the power generating element, to obtain a wound power generating element having a size of 160 × 90 × 35 mm.

【0046】この巻回型発電要素を、高さ190mm、
幅95mm、厚さ40mmのステンレスケース中に、図
1に示したように挿入し、長円筒型電池を組み立てた。
なお、電池蓋には第3電極を挿入する開閉可能な扉部分
を備えた。そして、エチレンカーボネート(EC)とジ
エチルカーボネート(DEC)とを体積比率1:1で混
合し、1mol/lのLiPFを加えた電解液を真空
注液した。一定時間経過後、電池蓋とケースを密封溶着
して、公称容量100Ahの電池を製作した。
This wound type power generating element is 190 mm high,
The battery was inserted into a stainless case having a width of 95 mm and a thickness of 40 mm as shown in FIG. 1 to assemble a long cylindrical battery.
The battery lid was provided with an openable and closable door portion into which the third electrode was inserted. Then, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 and an electrolytic solution to which 1 mol / l of LiPF 6 was added was vacuum injected. After a certain period of time, the battery lid and the case were sealed and welded to produce a battery having a nominal capacity of 100 Ah.

【0047】第3電極としては、図2に示したのと同様
の、集電体としての厚さ20μmの銅板の片面に、厚さ
1mmのリチウムを貼り付けた、リチウム部分の大きさ
が180mm×90mmの電極を用いた。この第3電極
は、使用しない場合はステンレス製のカセットケースに
収納されている。
As the third electrode, a 1-mm-thick lithium was adhered to one side of a 20-μm-thick copper plate as a current collector similar to that shown in FIG. 2, and the size of the lithium portion was 180 mm. A × 90 mm electrode was used. When the third electrode is not used, it is housed in a cassette case made of stainless steel.

【0048】上記の同じ電池を20セル用いて、25℃
において、1CAの電流で4.1Vまで、続いて4.1
Vの定電圧で2時間充電するという初回充電をおこなっ
た。その後、放電は1CAの電流で2.0Vまで、充電
は1CAの電流で4.1Vまで、続いて4.1Vの定電
圧で2時間という条件で充放電を50サイクル繰り返し
た。
Using 20 cells of the same battery as described above, at 25 ° C.
At a current of 1 CA to 4.1 V, and then 4.1
An initial charge of charging at a constant voltage of V for 2 hours was performed. Thereafter, charging and discharging were repeated 50 cycles under the conditions of discharging up to 2.0 V at a current of 1 CA, charging up to 4.1 V at a current of 1 CA, and then continuing at a constant voltage of 4.1 V for 2 hours.

【0049】その後、これらの20セルを、10セルづ
つAグループとBグループに分けた。Aグループについ
ては、50サイクル終了ごとに第3電極を挿入して、外
部電源を用いて、負極と第3電極間に、負極が充電され
る方向に、1サイクル目からの放電容量劣化分を回復す
るだけの電気量を通電し、つぎの50サイクルの充放電
を行なった。一方、Bグループについては、第3電極は
一切使用せず、そのまま充放電を続けた図7に、Aグル
ープおよびBグループの電池の、充放電サイクル数と放
電容量の関係を示す。図7において、記号○はAグルー
プの、また記号●はBグループの電池を示す。なお、図
7の放電容量は、各グループの電池の10セルの平均値
とした。
Thereafter, these 20 cells were divided into A group and B group by 10 cells. For group A, a third electrode is inserted every 50 cycles, and the external power supply is used to detect the amount of discharge capacity deterioration from the first cycle between the negative electrode and the third electrode in the direction in which the negative electrode is charged. An amount of electricity sufficient for recovery was applied, and the next 50 cycles of charging and discharging were performed. On the other hand, for the group B, the third electrode was not used at all, and the charge and discharge were continued without any change. FIG. 7 shows the relationship between the number of charge / discharge cycles and the discharge capacity of the batteries of the group A and the group B. In FIG. 7, the symbol は indicates a battery of Group A, and the symbol ● indicates a battery of Group B. Note that the discharge capacity in FIG. 7 was an average value of 10 cells in each group.

【0050】図7に示したように、Aグループの電池に
おいては、1サイクル目の放電容量は50Ahである
が、50サイクル目の放電容量は48Ahまで減少して
おり、放電容量劣化分は2Ahである。そこで、50サ
イクル目の放電終了後、負極と第3電極間に、負極が充
電される方向に、0.01CA(0.5A)で4時間通
電(放電容量劣化分の2Ahに相当)し、負極放電容量
を1サイクル目と同じ50Ahまで回復させた。同様
に、100サイクル目の放電容量劣化分は2.5Ahで
あるので、0.01CA(0.5A)で5時間通電を、
また150サイクル目の放電容量劣化分は3.5Ahで
あるので、0.01CA(0.5A)で7時間通電を行
なった。
As shown in FIG. 7, in the batteries of Group A, the discharge capacity in the first cycle is 50 Ah, but the discharge capacity in the 50th cycle is reduced to 48 Ah, and the discharge capacity deterioration is 2 Ah. It is. Therefore, after the discharge in the 50th cycle, a current is applied between the negative electrode and the third electrode in a direction of charging the negative electrode at 0.01 CA (0.5 A) for 4 hours (corresponding to 2 Ah corresponding to the discharge capacity deterioration), The negative electrode discharge capacity was restored to 50 Ah, the same as in the first cycle. Similarly, since the discharge capacity deterioration amount at the 100th cycle is 2.5 Ah, the energization is performed at 0.01 CA (0.5 A) for 5 hours.
In addition, since the amount of deterioration in the discharge capacity at the 150th cycle was 3.5 Ah, energization was performed at 0.01 CA (0.5 A) for 7 hours.

【0051】図7から明らかなように、Bグループの電
池では充放電サイクル数が増加するにしたがって放電容
量は減少したのに対し、本発明の電池であるAグループ
の電池の放電容量は、第3電極を用いて通電した後に
は、放電容量が回復していることが示された。
As is apparent from FIG. 7, the discharge capacity of the batteries of Group B decreased as the number of charge / discharge cycles increased, whereas the discharge capacity of the batteries of Group A, which is the battery of the present invention, was reduced to the second value. It was shown that the discharge capacity was recovered after the current was supplied using the three electrodes.

【0052】[0052]

【発明の効果】本発明により、長期間保存または長期サ
イクル時における容量の低下分を、金属リチウムを備え
た第3電極によって補充電することができる。また、本
発明において、第3電極は、補充電に使用する時以外は
電池の電解液と接触せず、さらに、正極や負極と接続さ
れていないため、保存中に変化することはない。本発明
は、長くて大きな電極を使用する、容量が50Ah以上
の大型の非水電解質二次電池に対して特に有効である。
According to the present invention, the decrease in capacity during long-term storage or long-term cycling can be supplemented by the third electrode provided with metallic lithium. Further, in the present invention, the third electrode does not come into contact with the electrolytic solution of the battery except when used for auxiliary charging, and further, is not connected to the positive electrode or the negative electrode, and thus does not change during storage. The present invention is particularly effective for a large non-aqueous electrolyte secondary battery having a capacity of 50 Ah or more, using a long and large electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の長円筒型非水電解質二次電池の、第3
電極を取付けない状態の構造を示す図。
FIG. 1 shows a third example of the long cylindrical nonaqueous electrolyte secondary battery of the present invention.
The figure which shows the structure in the state in which an electrode is not attached.

【図2】本発明の、カセット型第3電極の構造を示す
図。
FIG. 2 is a view showing a structure of a cassette type third electrode of the present invention.

【図3】本発明の長円筒型非水電解質二次電池の、第3
電極を取付けた状態の構造を示す断面図。
FIG. 3 shows a third example of the long cylindrical nonaqueous electrolyte secondary battery of the present invention.
Sectional drawing which shows the structure of the state which attached the electrode.

【図4】本発明の他の例の、電池が通常の充放電をして
いる状態を示す断面図。
FIG. 4 is a cross-sectional view of another example of the present invention, showing a state in which the battery is performing normal charge and discharge.

【図5】本発明の他の例の、電池を補充電をしている状
態を示す断面図。
FIG. 5 is a cross-sectional view showing a state in which a battery is being supplementarily charged according to another example of the present invention.

【図6】本発明の角型非水電解質二次電池、の巻回型発
電要素と第3電極の関係を示す斜視図。
FIG. 6 is a perspective view showing a relationship between a wound power generating element and a third electrode of the prismatic nonaqueous electrolyte secondary battery of the present invention.

【図7】AグループおよびBグループの電池の、充放電
サイクル数と放電容量の関係を示す図。
FIG. 7 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of the batteries in Group A and Group B.

【符号の説明】[Explanation of symbols]

1 巻回型発電要素 2 電池ケース 3 電池蓋 4 正極端子 5 負極端子 6 開閉可能な扉 7 第3電極の端子 8 第3電極の蓋 9 ハーメチックシール 10 集電体 11 金属リチウム 12 カセットケース 13 電解液 14 外部直流電源 15 ローラー 16 電池ケースの開口面 17 巻回型発電要素の巻回中心軸 18 巻回型発電要素の平面部分 DESCRIPTION OF SYMBOLS 1 Wound type power generation element 2 Battery case 3 Battery lid 4 Positive electrode terminal 5 Negative terminal 6 Openable door 7 Third electrode terminal 8 Third electrode lid 9 Hermetic seal 10 Current collector 11 Metal lithium 12 Cassette case 13 Electrolysis Liquid 14 External DC power supply 15 Roller 16 Battery case opening surface 17 Winding central axis of winding type power generating element 18 Planar part of winding type power generating element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と、金属リチウム以外の負極と、非
水電解質とを備えた非水電解質二次電池において、金属
リチウムを含み、電解液と接触せず、正極および負極に
接続されない第3電極を備えたことを特徴とする非水電
解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode other than metallic lithium, and a non-aqueous electrolyte, wherein the third non-aqueous electrolyte contains metallic lithium, does not contact the electrolytic solution, and is not connected to the positive electrode and the negative electrode. A non-aqueous electrolyte secondary battery comprising an electrode.
【請求項2】 第3電極を電解液と接触させ、正極また
は負極のいずれか一方の電極と第3電極間に通電するこ
とにより、前記いずれかの電極にリチウムを吸蔵させる
ことを特徴とする請求項1に記載の非水電解質二次電池
の容量回復方法。
2. The method according to claim 1, wherein the third electrode is brought into contact with an electrolytic solution, and a current is passed between one of the positive electrode and the negative electrode and the third electrode, so that one of the electrodes absorbs lithium. A method for recovering the capacity of the nonaqueous electrolyte secondary battery according to claim 1.
【請求項3】 第3電極を複数備えたことを特徴とする
請求項1または2に記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, comprising a plurality of third electrodes.
【請求項4】 巻回型発電要素と平板状第3電極とを備
え、前記平板状第3電極の平面が前記巻回型発電要素の
巻回中心軸に垂直であることを特徴とする請求項1、2
または3に記載の非水電解質二次電池。
4. A winding type power generating element and a plate-shaped third electrode, wherein a plane of the plate-shaped third electrode is perpendicular to a winding center axis of the wound type power generating element. Terms 1, 2
Or the non-aqueous electrolyte secondary battery according to 3.
JP2001126616A 2001-04-24 2001-04-24 Nonaqueous electrolyte secondary battery and capacity restoring method thereof Pending JP2002324585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001126616A JP2002324585A (en) 2001-04-24 2001-04-24 Nonaqueous electrolyte secondary battery and capacity restoring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126616A JP2002324585A (en) 2001-04-24 2001-04-24 Nonaqueous electrolyte secondary battery and capacity restoring method thereof

Publications (1)

Publication Number Publication Date
JP2002324585A true JP2002324585A (en) 2002-11-08

Family

ID=18975622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126616A Pending JP2002324585A (en) 2001-04-24 2001-04-24 Nonaqueous electrolyte secondary battery and capacity restoring method thereof

Country Status (1)

Country Link
JP (1) JP2002324585A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577914A1 (en) * 2002-12-26 2005-09-21 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery
JP2011165343A (en) * 2010-02-04 2011-08-25 Hitachi Ltd Nonaqueous electrolyte secondary battery apparatus, and method for charging anode of the same
EP2369658A1 (en) * 2010-03-24 2011-09-28 Fuji Jukogyo Kabushiki Kaisha Electric storage device
CN102315422A (en) * 2011-09-13 2012-01-11 东莞新能源科技有限公司 Lithium ion battery
WO2012008421A1 (en) * 2010-07-16 2012-01-19 日産自動車株式会社 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
JP2012089471A (en) * 2010-09-21 2012-05-10 Nissan Motor Co Ltd Device and method for recovering battery capacity
WO2012124211A1 (en) 2011-03-14 2012-09-20 三菱自動車工業株式会社 Lithium-ion battery capacity recovery method
JP2012195055A (en) * 2011-03-14 2012-10-11 Mitsubishi Motors Corp State management method of lithium ion battery
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
CN103390764A (en) * 2013-08-02 2013-11-13 清华大学 Lithium ion battery with resumable capacity
CN103460493A (en) * 2010-11-16 2013-12-18 瓦尔达微创新有限责任公司 Lithium ion cell having improved aging behavior
JP2014110184A (en) * 2012-12-04 2014-06-12 Japan Steel Works Ltd:The Nickel hydrogen battery and capacitance recovery method of the same
JP2014241283A (en) * 2013-05-15 2014-12-25 株式会社半導体エネルギー研究所 Secondary battery and capacity recovery method of the same
DE102016103542A1 (en) 2015-03-31 2016-10-06 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and system using this
CN106803569A (en) * 2015-11-26 2017-06-06 日立麦克赛尔株式会社 Lithium rechargeable battery and preparation method thereof
CN106972210A (en) * 2017-05-27 2017-07-21 上海纳晓能源科技有限公司 Recoverable lithium battery device and its restorative procedure
KR20180103734A (en) 2017-03-10 2018-09-19 주식회사 엘지화학 Seperator for lithium secondary battery and lithium secondary battery comprising the same
US10446881B2 (en) * 2016-02-19 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
JP2019215973A (en) * 2018-06-11 2019-12-19 本田技研工業株式会社 Capacity recovery device of lithium ion secondary battery and capacity recovery method
CN111403640A (en) * 2020-03-31 2020-07-10 上海豫源电力科技有限公司 High-energy lithium battery and manufacturing method thereof
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
WO2022107892A1 (en) * 2020-11-20 2022-05-27 株式会社村田製作所 Secondary battery, secondary battery control system, and battery pack
US11362373B2 (en) 2017-07-10 2022-06-14 Lg Energy Solution, Ltd. Method for regenerating lithium secondary battery

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8152865B2 (en) 2002-12-26 2012-04-10 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and manufacturing method of the same
JPWO2004059672A1 (en) * 2002-12-26 2006-05-11 富士重工業株式会社 Power storage device and method for manufacturing power storage device
EP1577914A4 (en) * 2002-12-26 2009-05-27 Fuji Heavy Ind Ltd Electrical storage device and method for manufacturing electrical storage device
EP1577914A1 (en) * 2002-12-26 2005-09-21 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery
JP2011165343A (en) * 2010-02-04 2011-08-25 Hitachi Ltd Nonaqueous electrolyte secondary battery apparatus, and method for charging anode of the same
EP2369658A1 (en) * 2010-03-24 2011-09-28 Fuji Jukogyo Kabushiki Kaisha Electric storage device
WO2012008421A1 (en) * 2010-07-16 2012-01-19 日産自動車株式会社 Lithium ion secondary battery, device for recovering battery capacity and method for recovering battery capacity
TWI466355B (en) * 2010-07-16 2014-12-21 Nissan Motor A lithium ion secondary battery and a battery capacity recovery device, and a battery capacity recovery method
JP2012089471A (en) * 2010-09-21 2012-05-10 Nissan Motor Co Ltd Device and method for recovering battery capacity
US10003074B2 (en) 2010-11-16 2018-06-19 Varta Microbattery Gmbh Lithium ion cell having improved ageing behavior
US10483543B2 (en) 2010-11-16 2019-11-19 Varta Microbattery Gmbh Lithium ion cell having improved ageing behavior
CN103460493A (en) * 2010-11-16 2013-12-18 瓦尔达微创新有限责任公司 Lithium ion cell having improved aging behavior
WO2012124211A1 (en) 2011-03-14 2012-09-20 三菱自動車工業株式会社 Lithium-ion battery capacity recovery method
JP2012195055A (en) * 2011-03-14 2012-10-11 Mitsubishi Motors Corp State management method of lithium ion battery
US9106090B2 (en) 2011-03-14 2015-08-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for recovering capacity of lithium ion battery
JP5565600B2 (en) * 2011-03-14 2014-08-06 三菱自動車工業株式会社 Capacity recovery method for lithium ion battery
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
CN102315422A (en) * 2011-09-13 2012-01-11 东莞新能源科技有限公司 Lithium ion battery
JP2014110184A (en) * 2012-12-04 2014-06-12 Japan Steel Works Ltd:The Nickel hydrogen battery and capacitance recovery method of the same
JP2014241283A (en) * 2013-05-15 2014-12-25 株式会社半導体エネルギー研究所 Secondary battery and capacity recovery method of the same
US9559384B2 (en) 2013-05-15 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for restoring capacity of secondary battery
US10038221B2 (en) 2013-05-15 2018-07-31 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for restoring capacity of secondary battery
CN103390764A (en) * 2013-08-02 2013-11-13 清华大学 Lithium ion battery with resumable capacity
DE102016103542A1 (en) 2015-03-31 2016-10-06 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and system using this
DE102016103542B4 (en) 2015-03-31 2018-11-29 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and system using this
KR20160117246A (en) 2015-03-31 2016-10-10 도요타지도샤가부시키가이샤 Lithium ion secondary battery and system using same
US9960453B2 (en) 2015-03-31 2018-05-01 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and system using same
CN106803569A (en) * 2015-11-26 2017-06-06 日立麦克赛尔株式会社 Lithium rechargeable battery and preparation method thereof
US10446881B2 (en) * 2016-02-19 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
US10714794B2 (en) 2017-03-03 2020-07-14 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of producing the lithium ion secondary battery
KR20180103734A (en) 2017-03-10 2018-09-19 주식회사 엘지화학 Seperator for lithium secondary battery and lithium secondary battery comprising the same
US11362401B2 (en) 2017-03-10 2022-06-14 Lg Energy Solution, Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
CN106972210A (en) * 2017-05-27 2017-07-21 上海纳晓能源科技有限公司 Recoverable lithium battery device and its restorative procedure
US11362373B2 (en) 2017-07-10 2022-06-14 Lg Energy Solution, Ltd. Method for regenerating lithium secondary battery
JP2019215973A (en) * 2018-06-11 2019-12-19 本田技研工業株式会社 Capacity recovery device of lithium ion secondary battery and capacity recovery method
JP6997039B2 (en) 2018-06-11 2022-01-17 本田技研工業株式会社 Lithium-ion secondary battery capacity recovery device and capacity recovery method
CN111403640A (en) * 2020-03-31 2020-07-10 上海豫源电力科技有限公司 High-energy lithium battery and manufacturing method thereof
WO2022107391A1 (en) * 2020-11-20 2022-05-27 株式会社村田製作所 Secondary battery, secondary battery control system, and battery pack
WO2022107892A1 (en) * 2020-11-20 2022-05-27 株式会社村田製作所 Secondary battery, secondary battery control system, and battery pack
JP7464146B2 (en) 2020-11-20 2024-04-09 株式会社村田製作所 Secondary battery, secondary battery control system and battery pack

Similar Documents

Publication Publication Date Title
US7927740B2 (en) Battery pack and vehicle
JP2002324585A (en) Nonaqueous electrolyte secondary battery and capacity restoring method thereof
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
KR101836043B1 (en) Nonaqueous electrolyte secondary battery
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
JP3436600B2 (en) Rechargeable battery
JP6776291B2 (en) Batteries, battery packs, vehicles, and stationary power supplies
JPH11339850A (en) Lithium-ion secondary battery
JP2006344505A (en) Electrolyte solution and battery
CN111384399A (en) Protective coating for lithium metal electrodes
US6660433B2 (en) Lithium secondary battery and battery device comprising same
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
KR20170107368A (en) Non-aqueous electrolyte battery, battery pack and vehicle
JP2001236946A (en) Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2010225394A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery charging method
JP2002075460A (en) Lithium secondary cell
JP2003123836A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213