JP2002322586A - Electrolytic copper foil for fine pattern and its manufacturing method - Google Patents

Electrolytic copper foil for fine pattern and its manufacturing method

Info

Publication number
JP2002322586A
JP2002322586A JP2002018412A JP2002018412A JP2002322586A JP 2002322586 A JP2002322586 A JP 2002322586A JP 2002018412 A JP2002018412 A JP 2002018412A JP 2002018412 A JP2002018412 A JP 2002018412A JP 2002322586 A JP2002322586 A JP 2002322586A
Authority
JP
Japan
Prior art keywords
copper foil
untreated
electrolytic
copper
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002018412A
Other languages
Japanese (ja)
Other versions
JP3660628B2 (en
Inventor
Adam M Wolski
アダム・エム・ウォルスキー
Michel Streel
ミッシェル・ストレール
Akitoshi Suzuki
昭利 鈴木
Hideo Otsuka
英雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP2002018412A priority Critical patent/JP3660628B2/en
Publication of JP2002322586A publication Critical patent/JP2002322586A/en
Application granted granted Critical
Publication of JP3660628B2 publication Critical patent/JP3660628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide copper foil which has a high etching factor without lowering peeling strength, can attain fine pattern without leaving copper particles at a root of a wiring pattern and further has large high temperature elongation percentage and high tensile strength. SOLUTION: Electrolytic copper foil of this invention is characterized by that roughening treatment is executed on a deposition surface of the copper foil in which surface roughness Rz of the deposition surface of untreated copper foil is the same as or is smaller than surface roughness Rz of a glossy surface of the untreated copper foil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファインパターン
化が可能な電解銅箔、すなわち高いエッチングファクタ
ーが得られる電解銅箔、この電解銅箔を使用した銅張積
層板並びにプリント配線板に関する。また、本発明によ
る未処理銅箔は、従来に比べ両面がフラットなため、二
次電池用電極やフラットケーブル、電線被覆シールド材
等にも使用可能である。しかし、本発明による電解銅箔
はこれらに限られるものではない。
The present invention relates to an electrolytic copper foil capable of forming a fine pattern, that is, an electrolytic copper foil capable of obtaining a high etching factor, a copper-clad laminate using the electrolytic copper foil, and a printed wiring board. Further, the untreated copper foil according to the present invention is flatter on both sides as compared with the conventional one, so that it can be used as an electrode for a secondary battery, a flat cable, a shield material for covering electric wires, and the like. However, the electrolytic copper foil according to the present invention is not limited to these.

【0002】[0002]

【従来の技術】プリント回路用電解銅箔は、工業的には
硫酸銅水溶液の電解液を、鉛や白金族を被覆したチタン
電極などの不溶性電極と、これに対向して設けられたス
テンレスやチタン製の陰極回転ドラムの隙間に満たして
これら電極に通電し、陰極回転ドラムの上に銅を析出さ
せ、これを連続的に巻取ることにより製造されている。
2. Description of the Related Art An electrolytic copper foil for a printed circuit is industrially manufactured by using an electrolytic solution of an aqueous solution of copper sulfate with an insoluble electrode such as a titanium electrode coated with lead or a platinum group and a stainless steel provided opposite to the insoluble electrode. It is manufactured by filling gaps between the cathode rotating drums made of titanium and energizing these electrodes, depositing copper on the cathode rotating drum, and continuously winding the copper.

【0003】一般に銅イオンと硫酸イオンだけを含む水
溶液を電解液として用いると、設備上混入が避けられな
いゴミや油類によって銅箔にピンホールやマイクロポロ
シティーが発生して実用上重大な欠陥となったり、該銅
箔の電解液と接する側の面(粗面)が持つ山谷の形状が
崩れてしまい、後にこの銅箔を絶縁基板材料と接合する
際に十分な強度が得られなかったり、該粗面の粗さが大
きい場合には多層プリント配線板の層間絶縁抵抗や回路
導電率が低下したり、基板材料に接合後のパターンエッ
チング時に基板への残銅現象あるいは回路部のアンダー
カット現象を引起し、回路基板として種々の性能を劣化
させてしまうという問題を生じる。
In general, when an aqueous solution containing only copper ions and sulfate ions is used as an electrolytic solution, pinholes and microporosity are generated in copper foil due to dust and oil which cannot be mixed in equipment and serious defects in practical use. Or the shape of the peaks and valleys of the surface (rough surface) of the copper foil on the side in contact with the electrolytic solution is broken, and when the copper foil is later joined to the insulating substrate material, sufficient strength cannot be obtained. If the roughness of the rough surface is large, the interlayer insulation resistance and the circuit conductivity of the multilayer printed wiring board are reduced, or the residual copper phenomenon on the substrate or the undercut of the circuit portion during pattern etching after bonding to the substrate material. This causes a phenomenon that a variety of performances are deteriorated as a circuit board.

【0004】このピンホール等の防止のため電解液に塩
化物イオンを添加したり、電解液を活性炭等を含むフィ
ルターに通してゴミや油類を除去している。またマイク
ロポロシティー防止及び粗面の山谷形状を整えるため
に、古くから膠を電解液に添加する事が行われており、
膠以外にも種々の有機物や無機物を添加剤として用いる
ことが提案されてきた。プリント配線板用電解銅箔の製
造技術は銅塩を含む溶液に電極を設け、これに通電し
て、カソードに銅を析出させるという点から分かるよう
に、めっき技術を基礎としており、プリント配線板用電
解銅箔製造用の添加剤としては銅めっき用添加剤を転用
出来る場合が多い。膠、チオ尿素、糖蜜などは古くから
銅めっき用の光沢剤として知られており、このことから
電解液にこれら添加剤を添加した場合にはいわゆる光沢
作用、プリント配線板用電解銅箔に関しては粗面の粗さ
を小さくする効果の発現が期待出来、米国特許5,17
1,417号明細書には、チオ尿素などの活性イオウを
添加剤として用いた電解銅箔の製造方法が開示されてい
る。しかしながら、プリント配線板用電解銅箔は、生産
性の向上などを目的として、通常のめっきより高い電流
密度で生産されている点や、近年プリント配線板用電解
銅箔に要求される性能が著しく高度になったこと、特に
伸びなどの機械的性能を損なうことなく、粗面の粗さを
低く抑えた銅箔に対する要求が強くなったことなどか
ら、これらめっき用の添加剤をそのままプリント配線板
用電解銅箔の添加剤として使用しても満足できる特性が
得られないのが現状である。
In order to prevent such pinholes and the like, chloride ions are added to the electrolyte or the electrolyte is passed through a filter containing activated carbon or the like to remove dust and oils. In addition, glue has been added to the electrolyte for a long time to prevent microporosity and adjust the shape of peaks and valleys on rough surfaces.
It has been proposed to use various organic and inorganic substances as additives besides glue. The manufacturing technology of electrolytic copper foil for printed wiring boards is based on plating technology, as can be seen from the fact that electrodes are provided in a solution containing a copper salt, and electricity is supplied to this to deposit copper on the cathode. In many cases, an additive for copper plating can be diverted as an additive for producing an electrolytic copper foil for use. Glue, thiourea, molasses, etc. have long been known as brighteners for copper plating. For this reason, when these additives are added to the electrolytic solution, the so-called luster effect, and when it comes to electrolytic copper foil for printed wiring boards, An effect of reducing the roughness of the rough surface can be expected, and US Pat.
No. 1,417 discloses a method for producing an electrolytic copper foil using active sulfur such as thiourea as an additive. However, for the purpose of improving productivity and the like, the electrolytic copper foil for printed wiring boards is produced at a higher current density than ordinary plating, and the performance required for the electrolytic copper foil for printed wiring boards in recent years is remarkable. These plating additives have been used as they are for printed wiring boards, as they have become more sophisticated, and in particular, the demand for copper foils with low roughness on the rough surface has increased, without impairing mechanical performance such as elongation. At present, satisfactory characteristics cannot be obtained even when used as an additive in electrolytic copper foil for use.

【0005】一方、近年、半導体、集積回路をはじめと
した電子回路技術の発達はめざましく、当然のことなが
ら、その部品の形成部あるいは搭載部であるプリント配
線板においても尚一層の技術革新が求められている。プ
リント配線板の高多層化、ファインパターン化の要求等
がそれである。
On the other hand, in recent years, the development of electronic circuit technology such as semiconductors and integrated circuits has been remarkable, and, of course, further technical innovations have been required for printed wiring boards which are parts or mounting parts of such parts. Have been. This is due to the demand for higher multilayers and finer patterns of printed wiring boards.

【0006】これらの要求を満足させるためにプリント
配線板用電解銅箔に求められる性能は、層間及びパター
ン間の絶縁性、エッチング時のアンダーカット防止のた
めの粗面(析出面。以下、同様)のロープロファイル化
(粗さの低下)及び熱応力によるクラック防止のための
高温伸び特性の向上、さらにはプリント配線板の寸法安
定性のための高い引張り強さが求められている。特にフ
ァインパターン化のための更なるロープロファイル化の
要求が強い。
[0006] In order to satisfy these requirements, the performance required of the electrolytic copper foil for printed wiring boards is a rough surface (deposited surface; the same shall apply hereinafter) for preventing interlayer insulation between layers and patterns and preventing undercut during etching. ) Is required to have a low profile (reduction in roughness), to improve high-temperature elongation characteristics for preventing cracks due to thermal stress, and to have high tensile strength for dimensional stability of the printed wiring board. In particular, there is a strong demand for a further low profile for fine patterning.

【0007】粗面のロープロファイル化は、例えば前述
の様に膠やチオ尿素を多量に電解液に添加すれば達成さ
れるが、反面、その添加量の増加に伴って常温伸び率、
高温伸び率とも急激に低下してしまう。一方、添加剤を
添加しない電解液から得られる銅箔は、常温伸び率、高
温伸び率ともに非常に高いものになるが、粗面の形状が
乱れ、粗さが大きくなったり、高い引張り強さを維持出
来なくなり、さらにはこれら性能が安定したものを製造
すると言った点では無理がある。電解電流密度を低く抑
えた場合、高電流密度での電解箔に比べ、粗面の粗さは
低くなり、伸び率や引張り強さも向上するが、生産性の
低下は経済上好ましくない。
The low profile of the rough surface can be achieved, for example, by adding a large amount of glue or thiourea to the electrolytic solution as described above.
Both the high-temperature elongation decreases sharply. On the other hand, the copper foil obtained from the electrolyte solution without adding additives has very high room temperature elongation and high temperature elongation, but the shape of the rough surface is disturbed, the roughness becomes large, or the tensile strength becomes high. Cannot be maintained, and furthermore, it is impossible to produce a product having a stable performance. When the electrolytic current density is kept low, the roughness of the rough surface is lower and the elongation and tensile strength are improved as compared with the electrolytic foil at a high current density, but the decrease in productivity is not economically preferable.

【0008】このように、近年のプリント配線板用電解
銅箔に要求される、更なるロープロファイル化、良好な
常温伸び率、高温伸び率及び高い引張り強さを実現する
ことは容易ではない。
As described above, it is not easy to realize further low profile, good room temperature elongation, high temperature elongation, and high tensile strength, which are required in recent years for electrolytic copper foil for printed wiring boards.

【0009】従来の電解銅箔がファインパターン化でき
ない理由の大きな要因として、表面粗さが粗いことをあ
げることができる。電解銅箔は、通常、図1に示すよう
な電解製箔装置により製箔された銅箔に、図2に示す表
面処理装置により密着性向上のための粗化処理、防錆処
理を施して製造される。電解製箔装置は回転するドラム
状のカソード(表面はSUS又はチタン製)2と該カソ
ードに対して同心円状に配置されたアノード1(鉛又は
貴金属酸化物被覆チタン電極)からなる装置に、電解液
3を流通させつつ両極間に電流を流して、該カソード表
面に所定の厚さに銅を析出させ、その後該カソード表面
から銅をはぎ取る。この段階の箔を未処理銅箔という。
One of the major reasons why the conventional electrolytic copper foil cannot be formed into a fine pattern is that the surface roughness is rough. Electrodeposited copper foil is usually obtained by subjecting a copper foil produced by an electrolytic foil making apparatus as shown in FIG. 1 to a roughening treatment for improving adhesion and a rust preventing treatment by a surface treatment apparatus shown in FIG. Manufactured. The electrolytic foil-making apparatus comprises a rotating drum-shaped cathode (surface made of SUS or titanium) 2 and an anode 1 (lead or noble metal oxide-coated titanium electrode) arranged concentrically with the cathode. An electric current is caused to flow between the two electrodes while flowing the liquid 3 to deposit copper to a predetermined thickness on the cathode surface, and then copper is stripped from the cathode surface. The foil at this stage is called untreated copper foil.

【0010】この後、銅張積層板に必要とされる性能を
付与するため、図2に示すような表面処理装置に未処理
銅箔4を通し、電気化学的あるいは化学的な表面処理を
連続的に行う。この処理のうち、絶縁樹脂基板と接着さ
せるときの密着性を高めるために、粒状の銅を析出させ
る工程がある。これを粗化処理と呼んでいる。これらの
表面処理した後の銅箔を表面処理銅箔8と呼び、銅張積
層板に使用される。
Thereafter, in order to impart the required performance to the copper-clad laminate, the untreated copper foil 4 is passed through a surface treatment apparatus as shown in FIG. 2 to continuously perform electrochemical or chemical surface treatment. Do it. Among these treatments, there is a step of depositing granular copper in order to enhance the adhesion when adhering to the insulating resin substrate. This is called a roughening process. The copper foil after the surface treatment is called a surface-treated copper foil 8 and is used for a copper-clad laminate.

【0011】電解銅箔の機械的性能は未処理銅箔4の性
能によって決定されるが、銅箔のエッチング特性、すな
わちエッチング速度と均一溶解性も、この未処理銅箔の
性能によって多くが決定される。
Although the mechanical performance of the electrolytic copper foil is determined by the performance of the untreated copper foil 4, the etching characteristics of the copper foil, that is, the etching rate and uniform solubility, are also largely determined by the performance of the untreated copper foil. Is done.

【0012】銅箔の性能でエッチング性に大きな影響の
ある要因は表面の粗さである。粗化処理を施して絶縁樹
脂基板と接着する面の粗さの影響が大きい。銅箔の粗さ
に影響する要因には大きく分けて2つある。ひとつは未
処理銅箔の表面粗さであり、もうひとつは粗化処理の粒
状の銅の付き方である。元箔である未処理銅箔の表面粗
さが粗いと粗化処理後の銅箔の粗さは粗くなる。また、
一般的に粒状の銅の付着量が多いと粗化処理後の銅箔の
粗さは粗くなる。粗化処理時の粒状の銅の付着量は処理
時に流す電流により調節が可能であるが、未処理銅箔の
表面粗さは、前述のドラム状のカソードに銅を析出させ
る時の電解条件、特に電解液に加える添加剤によって決
まるところが大きい。
A factor that greatly affects the etching properties in the performance of the copper foil is the surface roughness. The effect of the roughening treatment on the surface to be bonded to the insulating resin substrate is significant. There are two main factors that affect the roughness of the copper foil. One is the surface roughness of the untreated copper foil, and the other is how the roughened copper foil is applied. If the surface roughness of the untreated copper foil as the original foil is rough, the roughness of the copper foil after the roughening treatment becomes rough. Also,
Generally, when the amount of adhered granular copper is large, the roughness of the copper foil after the roughening treatment becomes coarse. The amount of granular copper adhered during the roughening treatment can be adjusted by the current flowing during the treatment, but the surface roughness of the untreated copper foil is the electrolysis condition when depositing copper on the above-mentioned drum-shaped cathode, In particular, it largely depends on the additive added to the electrolyte.

【0013】一般的には、未処理箔は光沢面と呼ぶドラ
ムに接触していた側の面は比較的平滑であるが、逆の面
である粗面は凹凸を有する。粗面を平滑化するために、
過去幾つかの試みがなされている。例えば前述の米国特
許第5,171,417号の明細書に開示された、チオ
尿素などの活性イオウを添加剤として用いた電解銅箔の
製造方法がそれである。しかし、この場合は従来のニカ
ワ等の添加剤を用いた場合に比較して粗面は平滑化され
るが、光沢面に比較すると未だ粗く、効果は完全ではな
い。
In general, the untreated foil has a relatively smooth surface on the side that has been in contact with the drum, which is called a glossy surface, whereas the opposite rough surface has irregularities. In order to smooth the rough surface,
Several attempts have been made in the past. For example, a method for producing an electrolytic copper foil using an active sulfur such as thiourea as an additive disclosed in the specification of the aforementioned US Pat. No. 5,171,417. However, in this case, the rough surface is smoothed as compared with the case where the conventional additive such as glue is used, but it is still rough as compared with the glossy surface, and the effect is not perfect.

【0014】また、光沢面は比較的平滑であることか
ら、特開平6−270331号公報に開示されているよ
うに、光沢面側に粒状の銅を付着させ樹脂基板と接着さ
せる試みもなされている。しかしこの場合は、回路のエ
ッチング時に、通常の粗面側にドライフィルムやレジス
トをはらなければならず、表面の凹凸のために銅箔との
接着力が低くなり、剥離しやすいという欠点がある。
Further, since the glossy surface is relatively smooth, an attempt has been made to attach granular copper to the glossy surface side and adhere it to the resin substrate, as disclosed in JP-A-6-270331. I have. However, in this case, at the time of etching the circuit, a dry film or a resist must be applied to the normal rough surface side, and the adhesive force with the copper foil is reduced due to the unevenness of the surface, and there is a disadvantage that it is easily peeled. .

【0015】[0015]

【発明が解決しようとする課題】本発明はこのような従
来技術の問題点を解消すべくなされたものであり、引き
剥し強さを低下させることなく、高いエッチングファク
ターを持ち、配線パターンの根元に銅粒子が残ることな
く、ファインパターンを達成できる銅箔であると共に大
きな高温伸び率及び高い引張り強さを有する銅箔を提供
するものである。ここで、ファインパターン化の尺度
は、一般的には図3に示すエッチングファクター(=2
T/(Wb−Wt))によってあらわすことができる。
この値が大きいほど回路断面はシャープな形状となる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has a high etching factor without lowering the peeling strength, and has an improved wiring pattern base. The present invention is to provide a copper foil that can achieve a fine pattern without leaving copper particles on the copper foil, and that has a large high-temperature elongation and a high tensile strength. Here, the scale of fine patterning is generally the etching factor (= 2) shown in FIG.
T / (Wb−Wt)).
The larger this value is, the sharper the circuit section is.

【0016】[0016]

【課題を解決するための手段】本発明は、電解銅箔であ
って、未処理銅箔の析出面の表面粗度RZが該未処理銅
箔の光沢面の表面粗度RZと同じか、それより小さい箔
の析出面上に粗化処理を施したことを特徴とする。ここ
で、表面粗度RZとは、JIS B 0601-1994
「表面粗さの定義と表示」の5.1十点平均粗さ
(RZ)の定義に規定されたRZをいう。前記の未処理銅
箔は、メルカプト基を持つ化合物並びにそれ以外の少な
くとも1種以上の有機化合物及び塩化物イオンを添加し
た電解液を用いた電解にて得ることができる。
The present invention relates to an electrolytic copper foil, wherein the surface roughness R Z of the deposition surface of the untreated copper foil is the same as the surface roughness R Z of the glossy surface of the untreated copper foil. Or, a roughening treatment is performed on a deposition surface of a smaller foil. Here, the surface roughness R Z refers to JIS B 0601-1994.
It refers to definition defined R Z of 5.1 ten-point average roughness (R Z) of the "Display the definition of surface roughness". The untreated copper foil can be obtained by electrolysis using a compound having a mercapto group and at least one or more other organic compounds and an electrolytic solution to which chloride ions are added.

【0017】本発明における、組み合わせのベースとな
る添加剤は、3−メルカプト1−プロパンスルホン酸塩
である。3−メルカプト1−プロパンスルホン酸塩は、
HS(CH23SO3Na等で代表して示される化合物
である。この化合物は、単独では銅の結晶を微細化する
効果はそれほどないが、他の有機化合物と組み合わせて
用いることにより、銅の結晶を微細化し、凹凸の少ない
めっき表面を得ることができる。その詳しい作用機構は
不明であるが、当該分子が硫酸銅電解液中の銅イオンと
反応し、錯体となる事により、あるいはめっき界面に作
用して過電圧を上昇させる事によって、銅の結晶を微細
化し、凸凹の少ないめっき面の形成を可能ならしめるの
ではないかと推定される。
In the present invention, the base additive of the combination is 3-mercapto 1-propanesulfonate. 3-mercapto 1-propanesulfonate is
It is a compound represented by HS (CH 2 ) 3 SO 3 Na or the like. This compound alone does not have a significant effect of miniaturizing copper crystals, but when used in combination with other organic compounds, can refine copper crystals and obtain a plated surface with less unevenness. Although the detailed mechanism of action is unknown, the molecule reacts with copper ions in the copper sulfate electrolyte to form a complex, or acts on the plating interface to increase the overvoltage, thereby minimizing the copper crystal. It is presumed that the formation of a plated surface with few irregularities becomes possible.

【0018】組み合わせる有機化合物の一つ目は、高分
子多糖類である。高分子多糖類とは、デンプン、セルロ
ース、植物ゴムなどの炭水化物であり、一般に水中でコ
ロイドとなる。工業的に安価に製造されているものとし
て、デンプンでは食用デンプン、工業用デンプン、デキ
ストリン、セルロースとしては特開平2−182890
号公報に開示されているような水溶性セルロースエーテ
ル、すなわち、カルボキシメチルセルロースナトリウ
ム、カルボキシメチルヒドロキシエチルセルロースエー
テルなどがある。植物ゴムとしてはアラビアゴムやトラ
カンドゴムがある。
The first organic compound to be combined is a high molecular polysaccharide. High molecular polysaccharides are carbohydrates such as starch, cellulose, and plant rubber, and generally become colloids in water. As industrially inexpensive starches, edible starch, industrial starch, dextrin, and cellulose are disclosed in JP-A-2-182890.
There are water-soluble cellulose ethers as disclosed in Japanese Patent Application Laid-Open No. H11-209, ie, sodium carboxymethyl cellulose and carboxymethyl hydroxyethyl cellulose ether. Vegetable gums include gum arabic and trakand gum.

【0019】これらの有機化合物は、3−メルカプト1
−プロパンスルホン酸塩と組み合わせることにより、銅
の結晶を微細化し、凹凸のないめっき面を得ることがで
きるが、結晶の微細化に加えて、これらの有機化合物に
は、製造された銅箔の脆化を防止する働きがある。これ
らの有機化合物は銅箔に蓄積される内部応力を緩和する
ため、陰極ドラムから巻き取られる際の破れや銅箔が丸
まってしまう現象を防止するばかりでなく、常温及び高
温の伸び率も改善する。
These organic compounds are 3-mercapto-1
-By combining with propane sulfonate, copper crystals can be refined and a plated surface without irregularities can be obtained.In addition to the refinement of crystals, these organic compounds include the produced copper foil. It works to prevent embrittlement. These organic compounds reduce the internal stress accumulated in the copper foil, which not only prevents tearing when the cathode is wound from the cathode drum and the phenomenon that the copper foil is curled, but also improves the elongation at normal and high temperatures. I do.

【0020】本発明における組み合わせにかかるもう一
つの有機化合物は、低分子量膠である。低分子量膠とは
一般に製造されている膠、ゼラチンを酵素や酸若しくは
アルカリで分解し、その分子量を小さくしたものであ
る。例えばニッピゼラチン社製の“PBF”や米国Pete
r-Cooper社製の“PCRA”として市販されている。こ
れらの分子量は1万以下で、低分子量のためゼリー強度
が著しく低いのが特徴である。
Another organic compound of the combination according to the present invention is a low molecular weight glue. The low-molecular-weight glue is generally produced by decomposing glue or gelatin with an enzyme, acid or alkali to reduce its molecular weight. For example, "PBF" manufactured by Nippi Gelatin Co., Ltd.
It is commercially available as "PCRA" manufactured by r-Cooper. These have a molecular weight of 10,000 or less, and are characterized by extremely low jelly strength due to their low molecular weight.

【0021】通常の膠やゼラチンは、マイクロポロシテ
ィーの防止や粗面の粗さを抑え形状を整える効果がある
が、伸び特性を低下させるという弊害がある。しかしな
がら通常の膠やゼラチンとして市販されているものより
も分子量の小さい膠を使用すれば、伸び特性などを大き
く犠牲にせず、マイクロポロシティーの防止や粗面の粗
さを抑え形状を整える効果があることが分かった。尚、
3−メルカプト1−プロパンスルホン酸塩に高分子多糖
類と低分子量膠を同時に加えると、それぞれを単独で加
えるよりも、高温の伸び率が改善されるとともに、マイ
クロポロシティーの防止や細かな均一な凸凹面を得るこ
とが可能である。
Although ordinary glue and gelatin have the effect of preventing microporosity and suppressing the roughness of the rough surface and adjusting the shape, they have the disadvantage of lowering the elongation characteristics. However, the use of glue with a smaller molecular weight than those that are commercially available as ordinary glue or gelatin has the effect of preventing microporosity, suppressing the roughness of the rough surface, and adjusting the shape without greatly sacrificing elongation characteristics. I found it. still,
Simultaneous addition of high molecular weight polysaccharide and low molecular weight glue to 3-mercapto 1-propanesulfonate improves elongation at high temperature, prevents microporosity, and prevents fine uniformity compared to adding each alone. It is possible to obtain a rough surface.

【0022】更に、上記の有機添加剤に加え塩化物イオ
ンを電解液に添加する。電解液中に塩化物イオンがまっ
たく存在しないと、所望される粗面がロープロファイル
化された銅箔を得ることができないからである。その添
加量としては、数ppmで効果が出てくるが、広い電流密
度範囲で安定してロープロファイル銅箔を製造するため
には、10〜60ppmの範囲に保つことが好ましい。6
0ppmを越える添加量でもロープロファイル化される
が、添加量を増加したほどにはその効果に著しい増進が
認められず、逆に添加量が過剰になると、樹枝状の電析
が起こったり限界電流密度が低下するので好ましくな
い。
Further, chloride ions are added to the electrolyte solution in addition to the above organic additives. If no chloride ions are present in the electrolytic solution, a copper foil having a desired roughened surface with low profile cannot be obtained. The effect can be obtained when the amount of addition is several ppm, but in order to stably produce a low-profile copper foil in a wide current density range, it is preferable to keep the addition amount in the range of 10 to 60 ppm. 6
Even when the amount of addition exceeds 0 ppm, a low profile is obtained, but as the amount of addition increases, the effect is not remarkably enhanced. Conversely, when the amount of addition is excessive, dendritic electrodeposition occurs or the limiting current increases. It is not preferable because the density decreases.

【0023】以上述べた通り、電解液に3−メルカプト
1−プロパンスルホン酸塩と高分子多糖類及び/又は低
分子量膠と微量の塩化物イオンを併用添加することによ
り、ファインパターン化のためのロープロファイル銅箔
に求められる種々の特性を高いレベルで実現させること
が可能となった。さらには、本発明による未処理銅箔の
析出面の表面粗度RZは該未処理銅箔の光沢面の表面粗
度RZと同程度か、それより小さい箔となるため、析出
面上に粗化処理を施した後の表面処理銅箔は従来のもの
に比較して更にロープロファイルとなり、大きなエッチ
ングファクターを持った箔となる。
As described above, the addition of 3-mercapto 1-propanesulfonate, a high molecular weight polysaccharide and / or a low molecular weight glue and a small amount of chloride ions to the electrolytic solution in combination with the electrolytic solution makes it possible to form a fine pattern. Various characteristics required for a low-profile copper foil can be realized at a high level. Furthermore, the surface roughness R Z of the deposition surface of the untreated copper foil according to the present invention is approximately the same as or smaller than the surface roughness R Z of the glossy surface of the untreated copper foil. The surface-treated copper foil which has been subjected to a roughening treatment has a lower profile than that of a conventional copper foil, and has a large etching factor.

【0024】[0024]

【発明の実施の形態】以下に本発明を実施例に基づいて
更に詳しく説明するが、本発明はこれらに限定されるも
のではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these.

【0025】実施例1〜5 (1)製箔 表1に示す組成の電解液(添加剤を添加する前の硫酸銅
−硫酸溶液)を、活性炭フィルターに通して清浄処理し
た。次いで、この電解液に3−メルカプト1−プロパン
スルホン酸ナトリウムと、高分子多糖類としてヒドロキ
シエチルセルロース及び低分子量膠(分子量3,00
0)と、塩化物イオンを表1に示す濃度となるように、
それぞれ添加して製箔用電解液を調製した。尚、塩化物
イオン濃度を全て30ppmに調整したが、本発明はこの
濃度に限定されるものではない。このようにして調製し
た電解液を用い、アノードには貴金属酸化物被覆チタン
電極、陰極にはチタン製回転ドラムを用いて表1に示す
電解条件の下に、18μm厚みの 未処理銅箔を電解製
箔によって製造した。
Examples 1 to 5 (1) Foil Making An electrolytic solution having the composition shown in Table 1 (a copper sulfate-sulfuric acid solution before adding an additive) was subjected to a cleaning treatment through an activated carbon filter. Next, sodium 3-mercapto 1-propanesulfonate, hydroxyethylcellulose as a high molecular weight polysaccharide and low molecular weight glue (molecular weight of 3,000
0) and the chloride ion to the concentration shown in Table 1.
Each was added to prepare an electrolytic solution for foil making. The chloride ion concentration was all adjusted to 30 ppm, but the present invention is not limited to this concentration. Using the electrolytic solution thus prepared, an untreated copper foil having a thickness of 18 μm was electrolyzed under the electrolysis conditions shown in Table 1 using a titanium electrode coated with a noble metal oxide as an anode and a titanium rotary drum as a cathode. Manufactured by foil making.

【0026】(2)粗面粗さ及び機械的特性の評価 (1)で得られた各実施例の未処理銅箔の表面粗さ
Z、Raを表面粗さ計(小坂研究所製SE−3C型)を
用いて測定した(ここで、表面粗さRZ、Raとは、JI
S B 0601-1994 「表面粗さの定義と表示」に規
定されたRZ、Raである。尚、基準長さ:lは、粗面測
定時2.5mm、光沢面測定時0.8mmである)。そして
幅方向の常温での、及び180℃の温度における5分間
保持後での伸び率並びに各々の温度での引張り強さを引
張り試験機(インストロン社製1122型)を用いて、
それぞれ測定した。結果を、表2に示す。
[0026] (2) rough roughness and surface roughness of the untreated copper foil of each example obtained in Evaluation (1) mechanical properties R Z, surface roughness meter R a (manufactured by Kosaka Kenkyusho It was measured using a SE-3C type) (wherein, the surface roughness R Z, and R a, JI
S B 0601-1994 "surface roughness defined to display" a defined R Z, is R a. Note that the reference length: l is 2.5 mm when measuring a rough surface and 0.8 mm when measuring a glossy surface.) Then, the elongation at room temperature in the width direction and after holding for 5 minutes at a temperature of 180 ° C. and the tensile strength at each temperature were measured using a tensile tester (Model 1122 manufactured by Instron).
Each was measured. Table 2 shows the results.

【0027】比較例1〜2 表1に示す組成の電解液及び電解条件の下に電解した以
外、実施例と同様に製箔して得られた銅箔の表面粗さ及
び機械的特性を評価した。結果を表2に示す。
Comparative Examples 1 and 2 The surface roughness and mechanical properties of copper foils obtained by making foils in the same manner as in the Examples except that electrolysis was carried out under an electrolytic solution having the composition shown in Table 1 and electrolysis conditions were evaluated. did. Table 2 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】3−メルカプト1−プロパンスルホン酸ナ
トリウム及びヒドロキシエチルセルロースを添加した実
施例1、3−メルカプト1−プロパンスルホン酸ナトリ
ウム及び低分子量膠を添加した実施例2では、粗面粗さ
(粗面の表面粗さ)は充分に小さく、高温伸び特性が優
れている。3−メルカプト1−プロパンスルホン酸ナト
リウムにヒドロキシエチルセルロースと低分子量膠を添
加した実施例3及び実施例4では、実施例2及び3に比
較して更に粗面粗さが小さくなっている。
In Example 1 where sodium 3-mercapto 1-propanesulfonate and hydroxyethyl cellulose were added, and in Example 2 where sodium 3-mercapto 1-propanesulfonate and low molecular weight glue were added, the rough surface roughness (rough surface Surface roughness) is sufficiently small, and the high-temperature elongation characteristics are excellent. In Examples 3 and 4 in which hydroxyethyl cellulose and low-molecular-weight glue were added to sodium 3-mercapto 1-propanesulfonate, the rough surface roughness was further reduced as compared with Examples 2 and 3.

【0031】これに対して、チオ尿素と通常膠を加えた
比較例1では、従来の未処理銅箔に比較すると粗面の粗
さは小さくなるが本発明の未処理銅箔に比較すると粗
く、光沢面に比較して大きな粗度の粗面を持つ未処理銅
箔しか得ることができない。しかも、この未処理銅箔の
場合、高温伸びが小さい。尚、比較例2には、従来の銅
の例として通常膠を用いて製箔した未処理銅の性能を参
考までに示した。
On the other hand, in Comparative Example 1 in which thiourea and ordinary glue were added, the roughness of the rough surface was smaller than that of the conventional untreated copper foil, but was coarser than that of the untreated copper foil of the present invention. However, only untreated copper foil having a rough surface having a greater roughness than a glossy surface can be obtained. Moreover, in the case of this untreated copper foil, the high-temperature elongation is small. In Comparative Example 2, the performance of untreated copper foil produced using ordinary glue as an example of conventional copper is shown for reference.

【0032】次いで、実施例1〜4及び比較例1〜2に
示した未処理銅箔の粗面に粗化処理を行った。また比較
例2に示した未処理箔の光沢面に同様な粗化処理を行っ
た。粗化のための浴組成と条件は下記の通りである。粗
化処理後、更に防錆処理を施して表面処理銅箔を製造し
た。この銅箔の表面粗さを表面粗さ計(小坂研究所製S
E−3C型)を用いて測定した。結果を表3に示した。
尚、表3において、実施例1〜4及び比較例1〜2は、
それぞれ表2の実施例1〜4及び比較例1〜2の未処理
銅箔の粗面に粗化処理を行ったものであり、比較例3は
表2の比較例2の未処理銅箔の光沢面に粗化処理を行っ
たものである。
Next, the roughened surfaces of the untreated copper foils shown in Examples 1 to 4 and Comparative Examples 1 and 2 were subjected to a roughening treatment. The same roughening treatment was performed on the glossy surface of the untreated foil shown in Comparative Example 2. The bath composition and conditions for roughening are as follows. After the roughening treatment, a rustproofing treatment was further performed to produce a surface-treated copper foil. The surface roughness of this copper foil was measured using a surface roughness tester (Kosaka Laboratory S
E-3C). The results are shown in Table 3.
In Table 3, Examples 1-4 and Comparative Examples 1-2 are:
The roughened surface of each of the untreated copper foils of Examples 1 to 4 and Comparative Examples 1 and 2 in Table 2 was subjected to a roughening treatment. The glossy surface is roughened.

【0033】 [0033]

【0034】 [0034]

【0035】得られた銅箔をガラスエポキシ樹脂FR−
4基板の片面に熱融着して銅張積層板を作成した。更
に、下記の「評価法」によりエッチング性の評価を行っ
た。
The obtained copper foil was made of glass epoxy resin FR-
A copper-clad laminate was prepared by heat fusion to one surface of the four substrates. Furthermore, the etching property was evaluated by the following “evaluation method”.

【0036】評価法 エッチング特性の評価は次に示す方法で行った。各銅張
積層板表面を洗浄後、該表面に液レジストを5μmの厚
みで均一に塗布して乾燥した。次にレジストに試験用回
路パターンを重ね、露光機を用いて200mJ/cm2で紫外
線照射した。テストパターンは線幅100μm、線間1
00μm、長さ5cmの平行直線を10本並べたものであ
る。照射後直ちに現像し、水洗、乾燥した。
Evaluation Method Evaluation of the etching characteristics was performed by the following method. After washing the surface of each copper-clad laminate, a liquid resist was uniformly applied to the surface with a thickness of 5 μm and dried. Next, a test circuit pattern was superimposed on the resist, and the resist was irradiated with ultraviolet rays at 200 mJ / cm 2 using an exposure machine. The test pattern has a line width of 100 μm and a line spacing of 1
10 parallel straight lines of 00 μm and 5 cm in length are arranged. Developed immediately after irradiation, washed with water and dried.

【0037】このように、レジストによる回路が形成さ
れた各銅張積層板のそれぞれに対し、エッチング評価装
置によりエッチングした。エッチング評価装置は単ノズ
ルで、垂直に立てた試料の銅張積層板に対して直角方向
からエッチング液を噴射するものである。エッチング液
には塩化第二鉄と塩酸を混合した液(FeCl3:2mol
/l、HCl:0.5mol/l)を使用し、液温50℃、噴
射圧0.16MPa、液流量1l/min、試料とノズルの距離
15cmにて行った。噴射時間は55秒とした。噴射後直
ちに水洗し、アセトンにてレジストを剥離してプリント
回路パターンを得た。
As described above, each of the copper-clad laminates on which the circuit was formed by the resist was etched by the etching evaluation apparatus. The etching evaluation device is a single nozzle, which jets an etching solution from a direction perpendicular to a copper-clad laminate of a sample placed vertically. The etching solution is a mixture of ferric chloride and hydrochloric acid (FeCl 3 : 2 mol)
/ l, HCl: 0.5 mol / l) at a liquid temperature of 50 ° C, an injection pressure of 0.16 MPa, a liquid flow rate of 1 l / min, and a distance of 15 cm between the sample and the nozzle. The injection time was 55 seconds. Immediately after the spraying, the substrate was washed with water, and the resist was stripped with acetone to obtain a printed circuit pattern.

【0038】得られた各々のプリント回路パターンに対
し、ボトム幅70μmの時のエッチングファクターを測
定した。また同時に引き剥し強さも測定した。その結果
を表3に示す。エッチングファクター値が大きいほどエ
ッチング特性が良好と判断できるが、実施例1〜4は比
較例1〜3よりもエッチングファクターが格段に大き
い。
For each of the obtained printed circuit patterns, the etching factor was measured when the bottom width was 70 μm. At the same time, the peel strength was also measured. Table 3 shows the results. It can be judged that the etching characteristics are better as the etching factor value is larger, but the etching factors of Examples 1 to 4 are much larger than Comparative Examples 1 to 3.

【0039】比較例1〜2は、実施例1〜4に比し未処
理銅箔の粗面の粗度が大きいため、粗化処理後の粗度も
大きくエッチングファクターは良くない。これに対し実
施例2の未処理銅箔の粗面と、比較例3の未処理銅箔の
光沢面の粗度はほぼ等しい。しかし、同条件で処理した
にもかかわらず粗化処理後の表面粗度は実施例2の方が
小さく、従来例2の方が大きい。これは、光沢面の場合
は、チタンドラムに接していた面であるため、ドラムの
傷がそのまま転写されており、そのうえに粗化処理がな
されると粗化の銅粒が粗大化しやすく最終的に粗化処理
後の表面粗度は大きくなってしまう、一方、本発明によ
る銅箔の粗面は鏡面状態の電析で非常に緻密であるた
め、その上に粗化処理がなされると粗化の銅粒が微細化
し、最終的に粗化処理後の表面粗度は小さくなるものと
思われる。これは未処理銅箔の粗面の表面粗度が更に小
さい実施例1、実施例3及び実施例4の場合更に顕著に
なり、粗化処理面の粗さは非常に小さくなり、エッチン
グファクターも大きくなっている。粗化処理面の粗さが
非常に小さいにもかかわらず比較例3と同程度の引き剥
し強さとなるのは、粗化処理において粗化の銅粒が微細
化する結果、表面積が大きくなり、粗さが小さいにもか
かわらず引き剥し強さが大きくなるからと考えられる。
尚、比較例3は、粗化処理面の粗さが実施例1〜4のそ
れに比較して大きくなるため、エッチングファクターの
値では比較例1〜2のそれより実施例1〜4のそれに近
い値を示すが、エッチング時の足残りの点で実施例1〜
4に比べて劣る(高温伸びが良くないという理由ではな
く、上記の理由で劣る)。
In Comparative Examples 1 and 2, the roughness of the roughened surface of the untreated copper foil is larger than that in Examples 1 to 4, so that the roughness after the roughening treatment is large and the etching factor is not good. On the other hand, the roughness of the rough surface of the untreated copper foil of Example 2 and the roughness of the glossy surface of the untreated copper foil of Comparative Example 3 are almost equal. However, despite the treatment under the same conditions, the surface roughness after the roughening treatment was smaller in Example 2 and larger in Conventional Example 2. In the case of a glossy surface, since the surface was in contact with the titanium drum, the scratch on the drum was transferred as it was, and when roughening was performed on it, the roughened copper particles tended to coarsen and eventually The surface roughness after the roughening treatment increases, while the rough surface of the copper foil according to the present invention is very dense due to electrodeposition in a mirror surface state. It is considered that the copper grains of (1) became finer, and finally the surface roughness after the roughening treatment was reduced. This becomes even more remarkable in Examples 1, 3 and 4 where the surface roughness of the roughened surface of the untreated copper foil is even smaller, the roughness of the roughened surface is very small, and the etching factor is also small. It is getting bigger. Even though the roughness of the roughened surface is very small, the same peel strength as that of Comparative Example 3 is obtained because the roughened copper particles are refined in the roughening process, so that the surface area is increased. It is considered that the peeling strength is increased despite the small roughness.
In Comparative Example 3, since the roughness of the roughened surface was larger than that of Examples 1 to 4, the value of the etching factor was closer to that of Examples 1 to 4 than that of Comparative Examples 1 and 2. The values are shown, but in Examples 1 to 4 in terms of the remaining foot during etching.
4 (not for the reason that the high-temperature elongation is not good, but for the above-mentioned reasons).

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【発明の効果】上述の通り、本発明によれば、電解銅箔
のロープロファイル化を容易に実現でき、しかも常温及
び高温における伸び率が優れ、かつ高い引張り強さを有
する電解銅箔を得ることができる。このようにして得ら
れる電解銅箔は、高密度プリント配線板用の内外層銅箔
に、更には耐折性の向上からフレキシブル基板用電解銅
箔にも適用することができるものである。また、従来の
未処理銅箔に比し両面がフラットなため、本発明により
得られる未処理銅箔は、二次電池用電極やフラットケー
ブル、電線被覆シールド材等にも使用することが可能で
ある。
As described above, according to the present invention, an electrolytic copper foil having an excellent elongation at room temperature and high temperature and a high tensile strength can be easily realized with a low profile of the electrolytic copper foil. be able to. The electrolytic copper foil thus obtained can be applied to inner and outer layer copper foils for high-density printed wiring boards, and further to electrolytic copper foils for flexible substrates due to improved folding resistance. In addition, since both surfaces are flat compared to conventional untreated copper foil, the untreated copper foil obtained according to the present invention can be used as an electrode for a secondary battery, a flat cable, a wire covering shield material, and the like. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解製箔装置の構造を示す断面図である。FIG. 1 is a sectional view showing the structure of an electrolytic foil making apparatus.

【図2】表面処理装置の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration of a surface treatment device.

【図3】エッチングファクターの求め方を示す模式図で
ある。
FIG. 3 is a schematic diagram showing a method of obtaining an etching factor.

【符号の説明】[Explanation of symbols]

A 銅箔の断面 B 絶縁板 Wt 銅箔断面のトップ幅 Wb 銅箔断面のボトム幅 T 銅箔の厚さ 1 電解製箔装置のアノード 2 電解製箔装置のカソード 3 電解製箔装置の電解液 4 未処理銅箔 5 表面処理装置の電解液 6 表面処理装置の電解液 7 表面処理装置のアノード 8 表面処理銅箔 A Cross section of copper foil B Insulating plate Wt Top width of copper foil cross section Wb Bottom width of copper foil cross section T Copper foil thickness 1 Anode of electrolytic foil apparatus 2 Cathode of electrolytic foil apparatus 3 Electrolyte of electrolytic foil apparatus 4 Untreated copper foil 5 Electrolyte for surface treatment equipment 6 Electrolyte for surface treatment equipment 7 Anode for surface treatment equipment 8 Surface treated copper foil

フロントページの続き (72)発明者 鈴木 昭利 栃木県今市市荊沢601番地の2 古河サー キットフォイル株式会社今市事業所内 (72)発明者 大塚 英雄 栃木県今市市荊沢601番地の2 古河サー キットフォイル株式会社今市事業所内Continued on the front page (72) Inventor Akira Suzuki 601-2 Jingzawa, Imaichi-shi, Tochigi Prefecture Furukawa Circuit Foil Co., Ltd. (72) Inventor Hideo Otsuka 601-2 Jingawa 2 Igazawa, Imaichi-shi, Tochigi Kit Foil Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解銅箔の未処理銅箔において、(i)
該未処理銅箔の析出面の表面粗度RZが該未処理銅箔の
光沢面の表面粗度R Zより小さく、(ii)該未処理銅箔
の180℃における高温伸びが19%以上であり、そし
て(iii)未処理箔引張り強度が20kgf/mm2以下である
ことを特徴とする銅箔。
1. An untreated copper foil of an electrolytic copper foil, wherein (i)
Surface roughness R of the deposition surface of the untreated copper foilZIs the untreated copper foil
Surface roughness R of glossy surface ZSmaller, (ii) the untreated copper foil
Has a high-temperature elongation at 180 ° C. of 19% or more, and
(Iii) untreated foil tensile strength is 20kgf / mmTwoIs less than
Copper foil characterized by the above.
【請求項2】 該未処理銅箔の析出面の表面粗度R
Zが、2.1以下である、請求項1記載の電解銅箔。
2. The surface roughness R of a deposition surface of the untreated copper foil.
The electrolytic copper foil according to claim 1, wherein Z is 2.1 or less.
【請求項3】 メルカプト基を持つ化合物、塩化物イオ
ン、並びに分子量10000以下の低分子量膠及び高分
子多糖類を添加した電解液を用いて電解された電解銅
箔。
3. An electrolytic copper foil which is electrolyzed using an electrolytic solution to which a compound having a mercapto group, chloride ions, and low-molecular-weight glue and high-molecular-weight polysaccharide having a molecular weight of 10,000 or less are added.
JP2002018412A 1995-09-22 2002-01-28 Electrolytic copper foil for fine pattern and manufacturing method thereof Expired - Lifetime JP3660628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018412A JP3660628B2 (en) 1995-09-22 2002-01-28 Electrolytic copper foil for fine pattern and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24426295 1995-09-22
JP7-244262 1995-09-22
JP2002018412A JP3660628B2 (en) 1995-09-22 2002-01-28 Electrolytic copper foil for fine pattern and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10674396A Division JP3313277B2 (en) 1995-09-22 1996-04-26 Electrodeposited copper foil for fine pattern and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004311533A Division JP4017628B2 (en) 1995-09-22 2004-09-29 Electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP2002322586A true JP2002322586A (en) 2002-11-08
JP3660628B2 JP3660628B2 (en) 2005-06-15

Family

ID=26536650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018412A Expired - Lifetime JP3660628B2 (en) 1995-09-22 2002-01-28 Electrolytic copper foil for fine pattern and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3660628B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318596A (en) * 2002-02-21 2003-11-07 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2004190073A (en) * 2002-12-10 2004-07-08 Toppan Printing Co Ltd Copper foil with gradient structure, production method therefor, etching method, copper foil pattern, and preserving method
EP1455005A2 (en) * 2003-02-12 2004-09-08 Furukawa Circuit Foil Co., Ltd. Copper foil for high frequency circuit and method of producing of same
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2004263296A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2005015861A (en) * 2003-06-26 2005-01-20 Nikko Materials Co Ltd Copper foil and manufacturing method therefor
JP2005150155A (en) * 2003-11-11 2005-06-09 Furukawa Circuit Foil Kk Copper foil for electromagnetic-wave shielding, its manufacturing method and electromagnetic-wave shielding body made of copper foil
JP2005150265A (en) * 2003-11-13 2005-06-09 Fukuda Metal Foil & Powder Co Ltd Surface treatment electrolytic copper foil
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2006070361A (en) * 2004-08-06 2006-03-16 Fukuda Metal Foil & Powder Co Ltd Method for producing electrolytic copper foil
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
US7824534B2 (en) 2005-01-25 2010-11-02 Nippon Mining & Metals Co., Ltd. Copper electrolytic solution containing as additive compound having specific skeleton, and electrolytic copper foil manufactured therewith
KR101090199B1 (en) * 2003-02-12 2011-12-07 후루카와 덴키 고교 가부시키가이샤 Copper foil for fine printed circuit and method for manufacturing the same
KR101423762B1 (en) 2006-06-07 2014-07-25 후루카와 덴키 고교 가부시키가이샤 Surface treatment copper foil and method for manufacturing the same , and circuit board
JP2020183575A (en) * 2019-04-30 2020-11-12 南亞塑膠工業股▲分▼有限公司 Electrolytic copper foil, method of manufacturing the same, and lithium ion secondary battery
CN114196994A (en) * 2021-12-30 2022-03-18 山东金宝电子股份有限公司 Roughening solution and roughening process for surface of copper foil
CN114411209A (en) * 2022-03-01 2022-04-29 广东嘉元科技股份有限公司 Manufacturing method and production equipment of extra-thin copper foil

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318596A (en) * 2002-02-21 2003-11-07 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
JP2004190073A (en) * 2002-12-10 2004-07-08 Toppan Printing Co Ltd Copper foil with gradient structure, production method therefor, etching method, copper foil pattern, and preserving method
KR101090199B1 (en) * 2003-02-12 2011-12-07 후루카와 덴키 고교 가부시키가이샤 Copper foil for fine printed circuit and method for manufacturing the same
JP2004263300A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
JP2004263296A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor
EP1455005A3 (en) * 2003-02-12 2006-08-02 Furukawa Circuit Foil Co., Ltd. Copper foil for high frequency circuit and method of producing of same
EP1455005A2 (en) * 2003-02-12 2004-09-08 Furukawa Circuit Foil Co., Ltd. Copper foil for high frequency circuit and method of producing of same
JP2005015861A (en) * 2003-06-26 2005-01-20 Nikko Materials Co Ltd Copper foil and manufacturing method therefor
JP2005150155A (en) * 2003-11-11 2005-06-09 Furukawa Circuit Foil Kk Copper foil for electromagnetic-wave shielding, its manufacturing method and electromagnetic-wave shielding body made of copper foil
JP2005161840A (en) * 2003-11-11 2005-06-23 Furukawa Circuit Foil Kk Ultra-thin copper foil with carrier and printed circuit
JP2005150265A (en) * 2003-11-13 2005-06-09 Fukuda Metal Foil & Powder Co Ltd Surface treatment electrolytic copper foil
JP2006070361A (en) * 2004-08-06 2006-03-16 Fukuda Metal Foil & Powder Co Ltd Method for producing electrolytic copper foil
US7824534B2 (en) 2005-01-25 2010-11-02 Nippon Mining & Metals Co., Ltd. Copper electrolytic solution containing as additive compound having specific skeleton, and electrolytic copper foil manufactured therewith
JP2007131946A (en) * 2005-10-14 2007-05-31 Mitsui Mining & Smelting Co Ltd Flexible copper clad laminate, flexible printed wiring board obtained by using flexible copper clad laminate thereof, film carrier tape obtained by using flexible copper clad laminate thereof, semiconductor device obtained by using flexible copper clad laminate thereof, method of manufacturing flexible copper clad laminate and method of manufacturing film carrier tape
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
JP4712759B2 (en) * 2006-06-07 2011-06-29 古河電気工業株式会社 Surface-treated electrolytic copper foil, method for producing the same, and circuit board
KR101423762B1 (en) 2006-06-07 2014-07-25 후루카와 덴키 고교 가부시키가이샤 Surface treatment copper foil and method for manufacturing the same , and circuit board
JP2020183575A (en) * 2019-04-30 2020-11-12 南亞塑膠工業股▲分▼有限公司 Electrolytic copper foil, method of manufacturing the same, and lithium ion secondary battery
JP7165120B2 (en) 2019-04-30 2022-11-02 南亞塑膠工業股▲分▼有限公司 Electrolytic copper foil, manufacturing method thereof, and lithium ion secondary battery
US11588175B2 (en) 2019-04-30 2023-02-21 Nan Ya Plastics Corporation Electrolytic copper foil
CN114196994A (en) * 2021-12-30 2022-03-18 山东金宝电子股份有限公司 Roughening solution and roughening process for surface of copper foil
CN114411209A (en) * 2022-03-01 2022-04-29 广东嘉元科技股份有限公司 Manufacturing method and production equipment of extra-thin copper foil
CN114411209B (en) * 2022-03-01 2022-10-14 广东嘉元科技股份有限公司 Manufacturing method and production equipment of extra-thin copper foil

Also Published As

Publication number Publication date
JP3660628B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3313277B2 (en) Electrodeposited copper foil for fine pattern and its manufacturing method
JP3660628B2 (en) Electrolytic copper foil for fine pattern and manufacturing method thereof
KR101090199B1 (en) Copper foil for fine printed circuit and method for manufacturing the same
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
TWI414638B (en) A method for manufacturing a surface-treated electrolytic copper foil, and a circuit board
JP4065004B2 (en) Electrolytic copper foil, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring board using the surface-treated electrolytic copper foil
JP3670186B2 (en) Method for producing surface-treated copper foil for printed wiring board
WO2006106956A1 (en) Electrolytic copper foil and process for producing electrolytic copper foil, surface treated elctrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
US6777108B1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2001177204A (en) Surface-treated copper foil and method of manufacturing the same
JP3250994B2 (en) Electrolytic copper foil
JP2004263300A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP4017628B2 (en) Electrolytic copper foil
JP2004263296A (en) Copper foil for fine pattern printed circuit and manufacturing method therefor
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
JPH09272994A (en) Electrolytic copper foil for fine pattern
JPH0853789A (en) Production of elelctrolytic copper foil
TWI396779B (en) Copper foil and its manufacturing method, and flexible printed circuit board
WO2005064044A1 (en) Bronzing-surface-treated copper foil, process for producing the same, and electromagnetic wave shielding conductive mesh for front panel of plasma display utilizing the bronzing-surface-treated copper foil
JP4330979B2 (en) Surface treatment electrolytic copper foil
RU2166567C2 (en) Process of manufacture of electrically precipitated copper foil and copper foil produced by this process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term