JP2002321983A - Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor - Google Patents

Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor

Info

Publication number
JP2002321983A
JP2002321983A JP2001131332A JP2001131332A JP2002321983A JP 2002321983 A JP2002321983 A JP 2002321983A JP 2001131332 A JP2001131332 A JP 2001131332A JP 2001131332 A JP2001131332 A JP 2001131332A JP 2002321983 A JP2002321983 A JP 2002321983A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
main component
sub
component
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001131332A
Other languages
Japanese (ja)
Inventor
Osamu Otani
修 大谷
Shunichi Yuri
俊一 由利
Toshiyuki Masaka
寿幸 真坂
Kaname Ueda
要 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001131332A priority Critical patent/JP2002321983A/en
Publication of JP2002321983A publication Critical patent/JP2002321983A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a multilayer ceramic capacitor having a high breakdown voltage even at its thickness between dielectric layers of <=5 μm, less deterioration with age of its properties, small size, high capacitance, and high reliability, in which the forming of a segregated phase is suppressed. SOLUTION: One or more kinds among BaTiO3 , CaTiO3 , SrTiO3 , BaTiO3 , and BaZrO3 are used as major components, and compounds containing >=3 kinds among Ba, Ca, Sr, Mg, Si, Cr, Y, V, Mn, W, and Zr are used as secondary components mixed with the major components. The average diameters of primary particles of the major components are 0.2-1.0 μm and the secondary components are added as solutions to them. They are mixed, heat-treated and ground by a wet grinder to obtain the powder of major components coated with the secondary components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内部電極を有する積層
セラミックコンデンサの誘電体グリーンシートを形成す
るための誘電体セラミック材料の製造方法とその製造方
法により得られたセラミック粉末を用いて構成されるコ
ンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dielectric ceramic material for forming a dielectric green sheet of a multilayer ceramic capacitor having internal electrodes, and to a method for producing the same by using a ceramic powder obtained by the method. Related to capacitors.

【0002】[0002]

【従来の技術】従来、積層セラミックコンデンサを作製
する方法として、BaTiO等を主成分とする誘電体
セラミック材料をシート状に形成し、その表面に内部電
極となる導体ペーストを塗布し、積層圧着し、焼成し、
積層セラミックコンデンサを作る方法が一般的に知られ
ている。
As a method of making Conventionally, a multilayer ceramic capacitor, the dielectric ceramic material composed mainly of BaTiO 3 or the like is formed into a sheet, coated with a conductive paste for forming the internal electrodes on the surface thereof, laminated crimping And bake,
A method for making a multilayer ceramic capacitor is generally known.

【0003】前記積層セラミックコンデンサ用誘電体セ
ラミック材料は、通常、前記主成分に、耐還元性付与、
温度特性の調整、信頼性等の諸特性を向上させることを
目的として、数種類の元素を副成分として添加してい
る。
[0003] The dielectric ceramic material for a multilayer ceramic capacitor usually has the following components:
For the purpose of adjusting temperature characteristics and improving various characteristics such as reliability, several types of elements are added as subcomponents.

【0004】このような副成分は、Ba、Ca、Sr、
Mg、Si、Cr、Y、V、Mn、W、Zrの化合物の
3種以上からなり、従来はこの副成分を得るため、この
化合物の3種以上のものを調合し、湿式混合、粉砕した
後、熱風乾燥により粒子を得ている。このようにして得
た副成分を主成分と混合し、シート化する。
[0004] Such subcomponents include Ba, Ca, Sr,
It consists of three or more compounds of Mg, Si, Cr, Y, V, Mn, W and Zr. Conventionally, in order to obtain this subcomponent, three or more of these compounds were prepared, wet-mixed and pulverized. Thereafter, particles are obtained by hot air drying. The subcomponent thus obtained is mixed with the main component to form a sheet.

【0005】また前記コンデンサ用の酸化物としての固
溶体を得る従来方法として、一般に固相反応法や湿式法
が用いられる。固相反応法は、粉体どうしを混合して焼
成する方法である。
As a conventional method for obtaining a solid solution as an oxide for the capacitor, a solid phase reaction method or a wet method is generally used. The solid phase reaction method is a method in which powders are mixed and fired.

【0006】湿式法としては、複数種類の金属イオンを
含む溶液から金属塩を共沈させてその沈殿物を乾燥、粉
砕、仮焼する共沈法がある。
As a wet method, there is a coprecipitation method in which a metal salt is coprecipitated from a solution containing a plurality of types of metal ions, and the precipitate is dried, pulverized, and calcined.

【0007】他の方法として加水分解法がある。この方
法は、金属アルコキシド混合アルコール溶液を得て加水
分解反応を行い、得られた酸化物や水酸化物の沈殿、粉
砕、仮焼することで目的の化合物を得る方法である。
As another method, there is a hydrolysis method. This method is a method of obtaining a target compound by obtaining a mixed alcohol solution of a metal alkoxide, performing a hydrolysis reaction, and precipitating, pulverizing, and calcining the obtained oxide or hydroxide.

【0008】特開平5−124857号においては、絶
縁破壊電圧の向上を目的として、前記副成分を予め混合
粉砕し、平均粒径が0.2μm〜1.0μmとなるよう
に粉砕し、この粉砕された副成分を主成分に混合分散さ
せるという製造方法が提案されている。
In Japanese Patent Application Laid-Open No. 5-124857, for the purpose of improving the dielectric breakdown voltage, the above-mentioned subcomponents are mixed and pulverized in advance, and pulverized so that the average particle size becomes 0.2 μm to 1.0 μm. A production method of mixing and dispersing the obtained subcomponents in the main component has been proposed.

【0009】また、特開平10-255549号公報に
おいては、前記副成分の分散性を良くし、組成を均一化
することで偏析相(特定の成分元素が他の主要部から異
なる集合体を形成して主要部と不均一になった相)や異
相(結晶構造が相違する相であり、偏析相をさす場合も
ある)の発生を抑えることを目的として、温度が200
0〜20000℃のプラズマ炎で加熱溶融処理すること
により、副成分の粒子径が0.001〜0.150μm
の超微粒子を得、この副成分を主成分に混合分散させる
という製造方法が提案されている。
In Japanese Patent Application Laid-Open No. H10-255549, a segregation phase (an aggregate in which a specific component element is different from other main parts is formed by improving the dispersibility of the subcomponent and making the composition uniform). For the purpose of suppressing the generation of a non-uniform phase from the main part) and a heterogeneous phase (a phase having a different crystal structure, sometimes referred to as a segregation phase), the temperature is set to 200.
By heating and melting with a plasma flame of 0 to 20000 ° C., the particle diameter of the subcomponent is 0.001 to 0.150 μm.
A production method has been proposed in which ultra-fine particles are obtained and the auxiliary component is mixed and dispersed in the main component.

【0010】[0010]

【発明が解決しようとする課題】近年、情報機器、通信
機器の急激な小型化、高密度化に伴い、積層セラミック
コンデンサも、広範囲の電子回路に使用するために、超
小型で高静電容量のコンデンサが要求されるようになっ
て来ている。
In recent years, with the rapid miniaturization and high-density of information equipment and communication equipment, multilayer ceramic capacitors have been used in a wide range of electronic circuits. Capacitors have become required.

【0011】しかし、従来のコンデンサ用誘電体粉の製
造方法のうち、固相反応法による場合は、原料由来や工
程中の不純物を効果的に除くことが難しいため、製品粉
末中の不純物が多く、また、原料を混合する際の混合不
良等による組成の不均一(偏析相)が起きやすく、さら
に1000℃以上の高温焼成を要する等の問題点があ
る。
However, among the conventional methods for producing dielectric powder for capacitors, in the case of the solid-phase reaction method, it is difficult to effectively remove impurities from the raw materials and in the process. In addition, there is a problem that the composition is likely to be non-uniform (segregation phase) due to poor mixing or the like at the time of mixing the raw materials, and that high-temperature firing at 1000 ° C. or higher is required.

【0012】また、共沈法によると、原料由来の不純物
が残留しやすく、沈殿条件が異なる化合物を同一条件で
沈殿させることから、組成が不均一になりやすく、熱処
理に高温を必要とし、さらに凝集した粒子を壊す工程を
要する等の問題点がある。
Further, according to the coprecipitation method, impurities derived from the raw materials are apt to remain, and compounds having different precipitation conditions are precipitated under the same conditions. Therefore, the composition tends to be non-uniform, and a high temperature is required for heat treatment. There is a problem that a step of breaking the aggregated particles is required.

【0013】また、加水分解法により主成分、副成分を
含む複合化合物を得る方法においては、金属アルコキシ
ド混合アルコール溶液を得る際、例えば原料の金属アル
コキシド錯体がアルコール溶液中では不安定でゲル化し
てしまったり、工業生産で大量処理を行う際、反応槽内
の組成の均一性を保つことが困難なため、複合化合物が
得られなかったりする。また、熱処理に高温を必要とす
る点も前記方法と同様である。さらに、原料や工程由来
の不純物が残留しやすく、価格的にも高価になる等の問
題点を持つ。
In the method of obtaining a composite compound containing a main component and an auxiliary component by a hydrolysis method, when a mixed alcohol solution of a metal alkoxide is obtained, for example, the metal alkoxide complex as a raw material is unstable and gels in an alcohol solution. When mass processing is performed in industrial production, it is difficult to maintain the uniformity of the composition in the reaction tank, so that a composite compound may not be obtained. Also, the point that a high temperature is required for the heat treatment is the same as the above method. Further, there is a problem that impurities derived from raw materials and processes are apt to remain and the price becomes expensive.

【0014】このような従来の製造方法による複合酸化
物でなる誘電体粉末材料では、偏析相が多く、均一性が
得難く、耐電圧が低い等の関係から、内部電極間の誘電
体層間厚みが10μm〜20μm必要であり、小型で高
静電容量にすることが非常に困難であった。また、無理
に誘電体の層間厚みを10μm以下にした場合、内部電
極間で導通不良が発生して、非常に歩留りが悪く、更
に、ショート不良等が生じ易い等、信頼性が悪く、小型
で高静電容量、高信頼性で低コストの製品化の妨げにな
っていた。
In the dielectric powder material composed of a composite oxide according to such a conventional manufacturing method, the thickness of the dielectric interlayer between the internal electrodes is high because of the large number of segregated phases, the difficulty in obtaining uniformity, and the low withstand voltage. Was required to be 10 μm to 20 μm, and it was very difficult to achieve a small size and high capacitance. Further, if the interlayer thickness of the dielectric is forcibly reduced to 10 μm or less, poor conduction occurs between the internal electrodes, and the yield is extremely low. High capacitance, high reliability and low cost were hindered from commercialization.

【0015】前記特開平5−124857号に記載のよ
うに、副成分の平均粒径を0.2μm〜1.0μmとし
た場合にも、内部電極間の厚みを10μm以下にはでき
ない。無理に10μm程度の積層セラミックコンデンサ
を製品化しても、前述したショート不良による急激な歩
留りの低下や、高温加速寿命試験での急激な特性の劣化
という問題がある。
As described in JP-A-5-124857, even when the average particle size of the sub-components is 0.2 μm to 1.0 μm, the thickness between the internal electrodes cannot be reduced to 10 μm or less. Even if a multilayer ceramic capacitor having a thickness of about 10 μm is forcibly commercialized, there are problems such as a rapid decrease in yield due to the short circuit described above and a rapid deterioration in characteristics in a high-temperature accelerated life test.

【0016】また、主成分と別に複合した副成分のみを
製造する従来方法を採用する場合、副成分を混合粉砕
し、熱風乾燥する際に、副成分の粒子の凝集が大きく、
副成分の平均粒径が大きくなるため、主成分相に完全に
分散されず、数μm程度の偏析相や異相として存在して
いる。
When a conventional method for producing only a subcomponent which is combined separately from the main component is employed, when the subcomponent is mixed and pulverized and dried with hot air, the coagulation of the subcomponent particles is large.
Since the average particle size of the sub-components is large, the sub-components are not completely dispersed in the main component phase and exist as a segregated phase or a heterogeneous phase of about several μm.

【0017】このように、従来の誘電体セラミック材料
は、副成分の凝集によって副成分の平均粒径が大きくな
り、偏析相や異相が存在するために、ショート不良が大
量に生じて歩留りが低下したり、高温加速寿命試験にお
ける急激な特性の劣化という問題がある。
As described above, in the conventional dielectric ceramic material, the average particle size of the sub-components increases due to the aggregation of the sub-components, and the segregation phase and the hetero phase exist. Or a rapid deterioration of characteristics in a high-temperature accelerated life test.

【0018】本発明の目的は、上記した従来技術の問題
点に鑑み、副成分の分散性を良くし、組成を均一化する
ことにより、偏析相の発生を抑え、誘電体層間厚みが5
μm以下であっても、絶縁破壊電圧が高い、経年による
特性劣化が少なく、小型で高容量、高信頼性の積層セラ
ミックコンデンサを作るための誘電体セラミック材料の
製造方法と誘電体セラミックコンデンサを提供すること
にある。
In view of the above-mentioned problems of the prior art, the object of the present invention is to improve the dispersibility of subcomponents and to make the composition uniform, thereby suppressing the generation of segregation phases and reducing the dielectric interlayer thickness to 5%.
Provides a dielectric ceramic material manufacturing method and a dielectric ceramic capacitor to produce a small, high-capacity, high-reliability multi-layer ceramic capacitor with high dielectric breakdown voltage, low deterioration of characteristics over time, even if it is less than μm Is to do.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の誘電体セラミック材料の製造方法は、B
aTiO、CaTiO、SrTiOあるいはBa
ZrOのうちの1種類または2種類以上を主成分と
し、該主成分に混合する副成分として、Ba、Ca、S
r、Mg、Si、Cr、Y、V、Mn、W、Zrの各々
の化合物から選ばれる少なくとも3種以上の化合物を含
むものを用い、前記主成分に対して前記副成分を含有し
た誘電体セラミック材料を製造する場合、前記主成分の
一次粒子の平均粒径を0.2〜1.0μmとし、前記副
成分を溶液として前記主成分粉末に加えて混合して熱処
理し、その後湿式粉砕し、脱水・乾燥することにより、
主成分が副成分で被覆された誘電体粉末を得ることを特
徴とする。
In order to achieve the above object, a method for producing a dielectric ceramic material according to claim 1 is characterized in that:
aTiO 3 , CaTiO 3 , SrTiO 3 or Ba
One or more of ZrO 3 is used as a main component, and Ba, Ca, S
A dielectric containing at least three or more compounds selected from the compounds of r, Mg, Si, Cr, Y, V, Mn, W, and Zr, and containing the subcomponent with respect to the main component. When producing a ceramic material, the average particle size of the primary particles of the main component is 0.2 to 1.0 μm, the subcomponent is added as a solution to the main component powder, mixed and heat-treated, and then wet pulverized. By dehydrating and drying,
It is characterized in that a dielectric powder whose main component is coated with a subcomponent is obtained.

【0020】本発明において、主成分としてのBaTi
、BaZrOは、高誘電率系材料であり、CaT
iO、SrTiOは温度補償低誘電率の材料の主成
分である。各種配合の副成分を主成分に含有させること
は、誘電体材料の焼成時の耐還元性付与、誘電体特性お
よび温度特性の調整、高温加速寿命試験の信頼性等を向
上させるために必要とされる。
In the present invention, BaTi as a main component is used.
O 3 and BaZrO 3 are high dielectric constant materials,
iO 3 and SrTiO 3 are the main components of a temperature-compensated low dielectric constant material. It is necessary to include various components as main components in order to provide reduction resistance during firing of dielectric materials, adjust dielectric and temperature characteristics, and improve the reliability of high-temperature accelerated life tests. Is done.

【0021】本発明においては、前記平均粒径の主成分
粉末を副成分溶液に混合して熱処理し、その後湿式粉砕
し、脱水、乾燥することにより、主成分粉末の表面に細
かな副成分粒子が均一に分散結合した偏析相の少ない複
合酸化物でなる誘電体セラミック材料を得ることができ
る。
In the present invention, the main component powder having the above average particle diameter is mixed with the subcomponent solution and heat-treated, then wet-pulverized, dehydrated and dried to form fine subcomponent particles on the surface of the main component powder. A dielectric ceramic material composed of a composite oxide having a small number of segregated phases uniformly dispersed and bonded can be obtained.

【0022】また、溶液状で副成分を主成分に混合する
こととすれば、副成分の主成分に対する割合を精密に設
定でき、不純物のない誘電体セラミック材料が得られ、
所望の特性を得やすくなる。
If the subcomponent is mixed with the main component in the form of a solution, the ratio of the subcomponent to the main component can be precisely set, and a dielectric ceramic material free of impurities can be obtained.
Desired characteristics can be easily obtained.

【0023】このように、偏析相の少ない材料を用いる
ことにより、誘電体層間厚みが5μm以下であっても、
誘電率が高く、かつ耐電圧性、絶縁性が高く、経年変化
の少ない信頼性の高いコンデンサを作製することが可能
となる。また、高い誘電率でかつ耐電圧性、絶縁性が高
い材料が提供できるため、小型で高容量、高信頼性の積
層セラミックコンデンサを作ることができる。
As described above, by using a material having a small segregation phase, even if the dielectric interlayer thickness is 5 μm or less,
It is possible to manufacture a highly reliable capacitor having a high dielectric constant, a high withstand voltage and a high insulating property, and little aging. In addition, since a material having a high dielectric constant, a high withstand voltage and a high insulating property can be provided, a multilayer ceramic capacitor having a small size, a high capacitance and a high reliability can be manufactured.

【0024】また、副成分は液状で主成分に加えられ、
熱処理の際に、主成分の表面に細かい粒子として薄く形
成されるため、副成分を粒子として加えて固溶体を得る
場合に比較し、熱処理温度が低くてすむ。
The subcomponent is added to the main component in a liquid state,
During the heat treatment, the thin film is formed as fine particles on the surface of the main component, so that the heat treatment temperature can be lower than when a solid solution is obtained by adding the subcomponent as particles.

【0025】本発明において、主成分の平均粒径は0.
2〜1.0μmとするが、その理由は、0.2μm未満
であると誘電率が著しく低下し、1.0μmを超える
と、5μm以下の薄層の積層コンデンサを作製した場
合、電極間の誘電体層内に誘電体粒子が3個未満とな
り、短絡や耐電圧不良が発生しやすくなるためである。
In the present invention, the average particle size of the main component is 0.1.
The reason is that the dielectric constant is remarkably reduced when the thickness is less than 0.2 μm, and when the thickness exceeds 1.0 μm, when a laminated capacitor having a thin layer of 5 μm or less is formed, the distance between the electrodes is reduced. This is because the number of dielectric particles is less than three in the dielectric layer, and a short circuit and withstand voltage failure are likely to occur.

【0026】なお、本発明において、副成分を溶液とす
るためには、副成分を金属塩、金属アルコキシド、金属
錯体とし、これらをアルコール、ベンゼン、クロロホル
ム等の溶媒に溶解させて用いる。
In the present invention, in order to make the sub-component a solution, the sub-component is used as a metal salt, a metal alkoxide or a metal complex which is dissolved in a solvent such as alcohol, benzene or chloroform.

【0027】請求項2の誘電体セラミック材料の製造方
法は、請求項1において、前記副成分を溶液として前記
主成分粉末に加えて混合する場合、1つの副成分を溶液
として主成分粉末に混合し、熱処理して主成分表面に副
成分を形成した後、該副成分を結合した主成分粉末に、
別の副成分を溶液として混合し同様の処理を行う工程を
繰り返すことを特徴とする。
According to a second aspect of the present invention, in the method for producing a dielectric ceramic material according to the first aspect, when the subcomponent is added as a solution to the main component powder and mixed, one subcomponent is mixed as a solution with the main component powder. Then, after heat treatment to form a sub-component on the main component surface, the main component powder combined with the sub-component,
The process is characterized by repeating the process of mixing another subcomponent as a solution and performing the same treatment.

【0028】このように、各副成分を各成分ごとに焼成
して主成分に加えることにより、それぞれの副成分の主
成分に対する割合を正確に設定することができる。
As described above, by firing each sub-component for each component and adding it to the main component, the ratio of each sub-component to the main component can be set accurately.

【0029】請求項3の誘電体セラミック材料の製造方
法は、請求項1において、前記副成分を溶液として前記
主成分粉末に加えて混合する場合、複数種類の副成分を
溶液として主成分粉末に混合し、熱処理して主成分表面
に副成分を形成した後、別の1または複数種類の副成分
を溶液として混合し同様の処理を行う工程を含むことを
特徴とする。
According to a third aspect of the present invention, in the method for producing a dielectric ceramic material according to the first aspect, when the subcomponent is added as a solution to the main component powder and mixed, a plurality of types of subcomponents are converted into a solution into the main component powder. The method includes a step of mixing and heat-treating to form a sub-component on the surface of the main component, then mixing another one or a plurality of types of sub-components as a solution and performing the same treatment.

【0030】このように、複数種類の副成分を一度に混
合することにより、作業工程が簡略化される。なお、こ
のように同時に混合可能な副成分溶液は、溶媒が同じま
たは同系統であり、副成分どうしが反応しないものどう
しである場合である。
As described above, the working process is simplified by mixing a plurality of types of subcomponents at once. In this case, the auxiliary component solutions that can be mixed at the same time are those in which the solvents are the same or of the same system, and the sub components do not react with each other.

【0031】請求項4の誘電体セラミック材料の製造方
法は、請求項1ないし3のいずれかにおいて、前記副成
分を溶液として前記主成分粉末に加えて混合して700
〜1100℃で熱処理すると共に、前記主成分100重
量部に対して前記副成分を0.2重量部以上、10.0
重量部以下の誘電体セラミック材料を得ることを特徴と
する。
According to a fourth aspect of the present invention, in the method for manufacturing a dielectric ceramic material according to any one of the first to third aspects, the subcomponent is added as a solution to the main component powder and mixed.
Heat treatment at ℃ 1100 ° C., and 0.2 parts by weight or more of the subcomponent with respect to 100 parts by weight of the main component.
It is characterized by obtaining a dielectric ceramic material of not more than part by weight.

【0032】本発明において、熱処理は副成分が酸化物
となるための熱分解反応を起こすために行うもので、7
00℃未満であれば熱分解反応が不十分となり、110
0℃を超えると粉末への破砕が困難となる。また、この
熱処理時間は好ましくは1hr〜12hrである。ま
た、副成分の添加量を前記の範囲とすることにより、誘
電体材料の焼成時の耐還元性付与、誘電体特性および温
度特性の調整、高温加速寿命試験の信頼性等を向上させ
るために必要とされる。
In the present invention, the heat treatment is performed to cause a thermal decomposition reaction so that the subcomponent becomes an oxide.
If the temperature is lower than 00 ° C., the thermal decomposition reaction becomes insufficient, and
If it exceeds 0 ° C., it becomes difficult to crush the powder. The heat treatment time is preferably 1 hr to 12 hr. Further, by setting the addition amount of the sub-components in the above range, in order to improve the reliability of the high-temperature accelerated life test, etc., to provide reduction resistance during firing of the dielectric material, adjust dielectric properties and temperature characteristics, and so on. Needed.

【0033】請求項5の誘電体セラミックコンデンサ
は、請求項1から4のいずれかの製造方法により得られ
る誘電体セラミック材料を用いる誘電体セラミックコン
デンサであって、前記誘電体セラミック材料により、電
極間の厚みが1μm以上、5μm以下の誘電体層を構成
することを特徴とする。
According to a fifth aspect of the present invention, there is provided a dielectric ceramic capacitor using a dielectric ceramic material obtained by the manufacturing method according to any one of the first to fourth aspects. Is characterized by forming a dielectric layer having a thickness of 1 μm or more and 5 μm or less.

【0034】本発明は、コンデンサの小型化、薄型化を
実現するものであり、この目的を達成するために、電極
間の誘電体層の厚みを1μm以上、5μm以下とするこ
とが好ましい。誘電体層の厚みが1μm未満であると、
ショート不良が発生しやすくなる。
The present invention realizes miniaturization and thinning of the capacitor. To achieve this object, it is preferable that the thickness of the dielectric layer between the electrodes is 1 μm or more and 5 μm or less. When the thickness of the dielectric layer is less than 1 μm,
Short-circuit defects are likely to occur.

【0035】請求項6の誘電体セラミックコンデンサ
は、請求項1から4のいずれかの製造方法により得られ
る誘電体セラミック材料を用いる誘電体セラミックコン
デンサであって、偏析相あるいは異相の最大サイズが電
極間の厚みの1.5分の1以下であることを特徴とす
る。
According to a sixth aspect of the present invention, there is provided a dielectric ceramic capacitor using a dielectric ceramic material obtained by the method of any one of the first to fourth aspects, wherein the maximum size of a segregated phase or a different phase is an electrode. It is characterized in that the thickness is 1.5 times or less of the thickness between them.

【0036】本発明によるコンデンサにおいて、特性の
劣化やショート不良を防止するため、最終製品である積
層セラミックコンデンサの偏析相あるいは異相の最大サ
イズは電極間厚みの1.5分の1以下とすることが望ま
しい。
In the capacitor according to the present invention, the maximum size of a segregated phase or a different phase of a multilayer ceramic capacitor as a final product should be not more than 1 / 1.5 of the thickness between electrodes in order to prevent deterioration of characteristics and short-circuit failure. Is desirable.

【0037】[0037]

【発明の実施の形態】本発明の製造方法は、BaTiO
、CaTiO、SrTiOあるいはBaZrO
のうちの1種類または2種類以上を主成分とする。該主
成分に混合する副成分として、Ba、Ca、Sr、M
g、Si、Cr、Y、V、Mn、W、Zrの各々の化合
物から選ばれる少なくとも3種以上の化合物を含むもの
を用いる。そして前記主成分に対して前記副成分を含有
した誘電体セラミック材料を製造するため、前記主成分
の一次粒子の平均粒径を0.2〜1.0μmとし、前記
副成分を溶液として前記主成分粉末に加えて混合して熱
処理する。その後湿式粉砕し、脱水・乾燥することによ
り、主成分が副成分で被覆された誘電体粉末を得るもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION
3 , CaTiO 3 , SrTiO 3 or BaZrO 3
One or two or more of these are used as main components. Ba, Ca, Sr, M
A compound containing at least three or more compounds selected from compounds of g, Si, Cr, Y, V, Mn, W, and Zr is used. Then, in order to produce a dielectric ceramic material containing the sub-component with respect to the main component, the primary particles of the main component have an average particle diameter of 0.2 to 1.0 μm, and the sub-component is used as a solution in the main component. Add to the component powder, mix and heat treat. Thereafter, the resultant is subjected to wet pulverization, dehydration and drying to obtain a dielectric powder whose main component is coated with subcomponents.

【0038】本発明においては、副成分を溶液として用
意するため、副成分を例えばアルコキシド錯体や他の金
属錯体や金属塩とする。溶媒として、アルコール、ベン
ゼンやその誘導体あるいはクロロホルム等を用いる。
In the present invention, in order to prepare the subcomponent as a solution, the subcomponent is, for example, an alkoxide complex, another metal complex or a metal salt. As a solvent, alcohol, benzene or a derivative thereof, chloroform or the like is used.

【0039】アルコキシドの具体例としては、メトキシ
ド、エトキシド、プロポキシド、ブトキシド、ペンチル
オキシド、エトキシエトキシド、メトキシエトキシド等
がある。例えばBa(OC、Ca(OC
、Sr(OC 、Mg(OC
、Si(OC、V(OC
等である。
Specific examples of the alkoxide include methoxy
De, ethoxide, propoxide, butoxide, pentyl
Oxide, ethoxy ethoxide, methoxy ethoxide, etc.
There is. For example, Ba (OC2H5)2, Ca (OC2H
5)2, Sr (OC2H5) 2, Mg (OC
2H5)2, Si (OC2H5)4, V (OC2H5)
5And so on.

【0040】なお、アルコキシド錯体におけるアルコラ
ート配位子の数は通常1〜6である。また、同一のアル
コキシド錯体において、金属に配位するアルコラート配
位子は通常同一であるが、場合によっては異なっていて
もよい。
The number of alcoholate ligands in the alkoxide complex is usually 1 to 6. In the same alkoxide complex, the alcoholate ligand coordinated to the metal is usually the same, but may be different depending on the case.

【0041】前記Cr、Y、Mn、W、Zr等は、酢酸
塩、蓚酸塩等の錯体として作製することができる。
The above-mentioned Cr, Y, Mn, W, Zr and the like can be prepared as a complex such as an acetate or an oxalate.

【0042】また、上記副成分金属は、β−ジケトナト
錯体としての錯体を作製することも可能である。
Further, it is possible to prepare a complex as the β-diketonato complex with the above-mentioned auxiliary component metal.

【0043】また、溶媒としては、アルコールやベンゼ
ン等の単体ではなく、ベンゼンまたはベンゼン誘導体と
アルコールとの混合溶媒も用いられる。主成分に対する
副成分の添加量は、溶液中の副成分金属成分の含有率と
その液量とによって決定される。
As the solvent, not a simple substance such as alcohol and benzene, but also a mixed solvent of benzene or a benzene derivative and alcohol is used. The amount of the subcomponent added to the main component is determined by the content of the subcomponent metal component in the solution and the amount of the liquid.

【0044】[実施例1]図1は本発明の誘電体セラミ
ック材料の製造方法の一実施例を示す工程図である。ま
ず主成分に副成分を溶液で添加する(工程S1)。本実
施例においては、主成分として平均粒径が0.6μmの
BaTiOを用いた。
Embodiment 1 FIG. 1 is a process chart showing one embodiment of a method for producing a dielectric ceramic material according to the present invention. First, an auxiliary component is added to the main component in a solution (step S1). In the present embodiment, BaTiO 3 having an average particle diameter of 0.6 μm was used as a main component.

【0045】また、副成分の組成は、主成分BaTiO
:100重量部に対し、Y:1.00重量部、
MgO:0.30重量部、Cr:0.14重量
部、SiO:0.50重量部、CaO:0.20重量
部、V:0.05重量部となるように、下記の組
成の副成分溶液により主成分に加えた。この副成分は主
成分100重量部に対して2.19重量部である。この
組成は、Siがペロブスカイトに入らない場合、下記の
化1に示されるものである。
The composition of the sub-component is as follows:
3 : 100 parts by weight, Y 2 O 3 : 1.00 parts by weight,
MgO: 0.30 parts by weight, Cr 2 O 3 : 0.14 parts by weight, SiO 2 : 0.50 parts by weight, CaO: 0.20 parts by weight, V 2 O 5 : 0.05 parts by weight Was added to the main component by a sub-component solution having the following composition. This subcomponent is 2.19 parts by weight based on 100 parts by weight of the main component. This composition is as shown in the following chemical formula 1 when Si does not enter the perovskite.

【0046】[0046]

【化1】 Embedded image

【0047】前記副成分を溶液とする溶媒はメタノール
とした。なお、下記のBaは副成分として加えるバリウ
ム成分である。各副成分化合物の下に付記するモル/L
は、各化合物の濃度であり、添加量は主成分BaTiO
/100gに対して添加する液量である。
The solvent in which the subcomponent was used as a solution was methanol. The following Ba is a barium component added as a subcomponent. Mol / L added below each subcomponent compound
Is the concentration of each compound, and the amount added is
A liquid amount to be added with respect to 3/100 g.

【0048】Ba(C:ビス(2,4−
ペンタンジオナト)バリウム 濃度:0.65モル/L、添加量:850ml Ca(C:ビス(2,4−ペンタンジオ
ナト)カルシウム 濃度:0.70モル/L、添加量:320ml Si(OC:テトラエトキシシラン 濃度:0.75モル/L、添加量:440ml Y(C・9HO:蓚酸イットリウム 濃度:0.50モル/L、添加量:1250ml Mg(C)・2HO:蓚酸マグネシウム 濃度:0.71モル/L、添加量:1580ml Cr(C)・6HO:蓚酸クロム 濃度:0.20モル/L、添加量:565ml VO(C:ビス(2,4−ペンタンジオ
ナト)酸化バナジウム 濃度:0.10モル/L、添加量:323ml
Ba (C 5 H 7 O 2 ) 2 : bis (2,4-
Pentandionato) barium concentration: 0.65 mol / L, addition amount: 850 ml Ca (C 5 H 7 O 2 ) 2 : bis (2,4-pentanedionato) calcium concentration: 0.70 mol / L, addition The amount: 320ml Si (OC 2 H 5 ) 4: tetraethoxysilane concentration: 0.75 mol / L, amount: 440ml Y 2 (C 2 O 4) 3 · 9H 2 O: oxalic yttrium concentration: 0.50 mol / L, addition amount: 1250 ml Mg (C 2 O 4 ) · 2H 2 O: magnesium oxalate concentration: 0.71 mol / L, addition amount: 1580 ml Cr (C 2 O 4 ) · 6H 2 O: chromium oxalate concentration: 0.20 mol / L, amount: 565ml VO (C 5 H 7 O 2) 2: bis (2,4-pentanedionato) vanadium oxide concentration: 0.10 mol / L, amount: 323m

【0049】このようにして副成分溶液を下記の順序で
主成分に加え、混合、熱処理を繰り返した(工程S1、
S2)。
In this way, the subcomponent solution was added to the main component in the following order, and mixing and heat treatment were repeated (step S1,
S2).

【0050】(1)前記主成分100gに対し、Ba
(CとCa(C とを前記
濃度と添加量で同時に加え、混合攪拌した。次にこの溶
液中の溶媒を飛ばし、800℃で5時間熱処理した。こ
れにより主成分表面に副成分であるBa、Caが主成分
に結合する酸化物として主成分を覆うように析出させ
た。
(1) For 100 g of the main component, Ba
(C5H7O2)2And Ca (C5H7O 2)2And the above
The mixture was added at the same concentration and amount, and mixed and stirred. Next,
The solvent in the liquid was removed and heat treatment was performed at 800 ° C. for 5 hours. This
As a result, Ba and Ca which are subcomponents are
Deposited as an oxide that binds to the main component
Was.

【0051】(2)前記Ba、Ca酸化物を表面に結合
した主成分BaTiOに対して前記Si(OC
を前記濃度と添加量で加え、混合攪拌した。
次にこの溶液中の溶媒を飛ばし、800℃で5時間熱処
理した。これにより主成分表面にさらに前記Siを主成
分および前記副成分に結合する酸化物として主成分を覆
うように析出させた。
(2) With respect to the main component BaTiO 3 having Ba and Ca oxides bonded to the surface, the Si (OC
Added 2 H 5) 4 in amount and the concentration was mixed and stirred.
Next, the solvent in this solution was removed and heat treatment was performed at 800 ° C. for 5 hours. As a result, Si was further deposited on the surface of the main component as an oxide binding to the main component and the subcomponent so as to cover the main component.

【0052】(3)このようにしてBa、Ca、Siを
結合させた主成分BaTiOに対して、さらに、Y
(C・9HO、Mg(C)・2H
O、Cr(C)・6HOを前記濃度、添加量で
同時に加え、混合攪拌した。次にこの溶液中の溶媒を飛
ばし、800℃で5時間熱処理した。これにより主成分
表面にさらに前記Y、Mg、Crを主成分および前記副
成分に結合する酸化物として主成分を覆うように形成し
た。
[0052] (3) In this way Ba, Ca, with respect to the main component BaTiO 3 bound with Si, further, Y 2
(C 2 O 4) 3 · 9H 2 O, Mg (C 2 O 4) · 2H 2
O and Cr (C 2 O 4 ) · 6H 2 O were simultaneously added at the above concentration and amount, and mixed and stirred. Next, the solvent in this solution was removed and heat treatment was performed at 800 ° C. for 5 hours. Thereby, the main component was further formed on the surface of the main component as an oxide that binds the Y, Mg, and Cr to the main component and the subcomponent so as to cover the main component.

【0053】(4)このようにしてBa、Ca、Si、
Y、Mg、Crを表面に結合させた主成分BaTiO
に対して、さらに、VO(Cを前記濃
度、添加量で同時に加え、混合攪拌した。次にこの溶液
中の溶媒を飛ばし、800℃で5時間熱処理した。これ
により主成分表面にさらに前記Vを主成分および前記副
成分に結合する酸化物として主成分を覆うように形成し
た。
(4) Thus, Ba, Ca, Si,
Main component BaTiO 3 with Y, Mg, Cr bonded to the surface
Respect, further, VO (C 5 H 7 O 2) 2 the concentration, added simultaneously with the addition amount, and mixed and stirred. Next, the solvent in this solution was removed and heat treatment was performed at 800 ° C. for 5 hours. In this way, V was formed on the surface of the main component so as to cover the main component as an oxide that binds V to the main component and the subcomponent.

【0054】さらにボールミルにて純水を分散媒として
用いて湿式混合粉砕した(工程S3)。次に100℃で
12時間脱水乾燥を行った(S4)。
Further, the mixture was wet mixed and pulverized with a ball mill using pure water as a dispersion medium (step S3). Next, dehydration drying was performed at 100 ° C. for 12 hours (S4).

【0055】このようにして作製したセラミック材料を
用い、積層セラミックコンデンサを作製した。まず、ボ
ールミルにて有機溶剤を分散媒として用い、有機系バイ
ンダ、可塑剤を添加して十分に湿式混合し、セラミック
材料でなるスラリーを作った。
Using the ceramic material thus manufactured, a multilayer ceramic capacitor was manufactured. First, an organic solvent was used as a dispersion medium in a ball mill, an organic binder and a plasticizer were added, and the mixture was sufficiently wet-mixed to prepare a slurry made of a ceramic material.

【0056】前記スラリーを使用して、ドクターブレー
ド法によりシート成形を行って、誘電体セラミックのグ
リーンシートを得て乾燥した(工程S5)。
Using the slurry, a sheet was formed by a doctor blade method to obtain a dielectric ceramic green sheet and dried (step S5).

【0057】得られたグリーンシートの一面に導電ペー
ストを複数個の内部電極パターンに印刷し(工程S
6)、乾燥後、複数のグリーンシートを積層して圧着
(工程S7)後、切断し(工程S8)、積層セラミック
コンデンサの積層体を作った。
A conductive paste is printed on a plurality of internal electrode patterns on one surface of the obtained green sheet (step S).
6) After drying, a plurality of green sheets were laminated and pressure-bonded (Step S7), and then cut (Step S8) to produce a laminated body of the multilayer ceramic capacitor.

【0058】この積層体を空気中において280℃で5
時間加熱して脱バインダ処理(工程S9)を行った後、
/Nの体積比が3/100の還元ガス流中におい
て約1250℃で2時間焼成することにより、焼結体を
作った(工程S10)。
This laminate was heated at 280 ° C. in air for 5 hours.
After performing the binder removal treatment (step S9) by heating for a time,
A sintered body was produced by firing at about 1250 ° C. for 2 hours in a reducing gas flow having a volume ratio of H 2 / N 2 of 3/100 (step S10).

【0059】次に、前記焼成により欠乏した酸素を補う
ために、空気雰囲気において、800℃で4時間焼成し
て再酸化(工程S11)し、焼結体の両端部にCuペー
ストを塗布して焼き付けることにより、端子電極を形成
して(工程S12)、積層セラミックコンデンサとし
た。
Next, in order to compensate for the oxygen deficient by the calcination, the calcination is performed at 800 ° C. for 4 hours in an air atmosphere to re-oxidize (Step S11), and a Cu paste is applied to both ends of the sintered body. By baking, a terminal electrode was formed (step S12) to obtain a multilayer ceramic capacitor.

【0060】積層セラミックコンデンサの内部電極はそ
の厚みを1.5μmとし、内部電極間の誘電体層の厚み
を3.2μmとし、誘電体層の重ね枚数を309層とし
た。製品の外形寸法は3.2mm×1.6mm×1.6
mmである。
The internal electrodes of the multilayer ceramic capacitor had a thickness of 1.5 μm, the thickness of the dielectric layer between the internal electrodes was 3.2 μm, and the number of dielectric layers laminated was 309. The external dimensions of the product are 3.2mm x 1.6mm x 1.6
mm.

【0061】[従来例1]本発明における工程S1〜S
4の代わりに、焙焼法を用いてセラミック粉末を作製し
た。すなわち副成分として、BaCO、CaCO
SiO、Y 、MgCO、Cr、V
をそれぞれ秤量して調合し、水を加え混合粉砕した。
そして粉砕した泥奨の乾燥を、バッチ炉を使用して熱風
乾燥した後、焙焼した。その後、湿式粉砕後、脱水乾燥
した。得られた粒子の平均粒径は0.5μmのものと
0.15μmのものを得た。この顆粒を直接前記BaT
iOからなる主成分に混合し、他の工程は前記実施例
と同様にして同様の寸法の積層セラミックコンデンサを
作製した。
[Conventional Example 1] Steps S1 to S in the present invention
In place of 4, ceramic powder was prepared using a roasting method.
Was. That is, as a sub-component, BaCO3, CaCO3,
SiO2, Y2O 3, MgCO3, Cr2O3, V2O
5Were weighed and blended, water was added, and the mixture was pulverized.
Then, dry the crushed mud with hot air using a batch furnace.
After drying, it was roasted. After that, after wet grinding, dehydration drying
did. The average particle size of the obtained particles is 0.5 μm.
0.15 μm was obtained. The granules are directly transferred to the BaT
iO3Mixed with the main component consisting of
A multilayer ceramic capacitor with similar dimensions
Produced.

【0062】[従来例2]本発明における工程S1〜S
4の代わりに、プラズマ法を用いて副成分粉末を作製し
た。すなわち副成分として、BaCO、CaCO
SiO、Y 、MgCO、Cr、V
をそれぞれ秤量して調合し、ボールミルで有機溶剤を
分散剤として用い湿式混合粉砕し、脱水後、熱風乾燥
し、顆粒を得た。
[Conventional example 2] Steps S1 to S in the present invention
Sub-component powder was prepared using a plasma method instead of 4.
Was. That is, as a sub-component, BaCO3, CaCO3,
SiO2, Y2O 3, MgCO3, Cr2O3, V2O
5Are weighed and mixed, and the organic solvent is
Used as a dispersant, wet-mixed and pulverized, dehydrated, and dried with hot air
Then, granules were obtained.

【0063】次に例えば特開平10-270284号で
示したようなプラズマ処理装置を用い、顆粒を高周波加
熱されて発生したプラズマ中に導入し、副成分のガス流
を急激に冷却して、その冷却速度を変えることにより、
平均粒径が0.30μm、0.15μm、0.05μm
の平均粒径の副成分を得た。湿式粉砕後、凍結乾燥し
た。この顆粒を直接前記BaTiOからなる主成分に
混合し、他の工程は前記実施例と同様にして同様の寸法
の積層セラミックコンデンサを作製した。
Next, the granules are introduced into the plasma generated by high-frequency heating using a plasma processing apparatus as shown in, for example, JP-A-10-270284, and the gas stream of the subcomponent is rapidly cooled. By changing the cooling rate,
Average particle size is 0.30 μm, 0.15 μm, 0.05 μm
Was obtained. After wet pulverization, it was freeze-dried. Mixed principal component composed of granules directly from the BaTiO 3, the other steps to prepare a multilayer ceramic capacitor of the same size in the same manner as in Example.

【0064】[ショート不良率試験、高温加速寿命試験
および平均破壊電圧試験]前記実施例と従来例によるセ
ラミックコンデンサについて、高温加速寿命試験と誘電
率測定で評価した。高温加速寿命試験は、雰囲気温度2
00℃、直流電圧20Vを連続印加して行った。また、
誘電率測定は、HP4284LCRメータ/測定条件:
1kHz、1Vrmsで行った。また前記各コンデンサ
について、電圧を漸次上昇させて印加し、短絡を生じる
破壊電圧を調べた。その結果を表1に示す。
[Short Failure Rate Test, High Temperature Accelerated Life Test and Average Breakdown Voltage Test] The ceramic capacitors according to the above embodiment and the conventional example were evaluated by a high temperature accelerated life test and a dielectric constant measurement. High temperature accelerated life test is performed at ambient temperature 2
The test was carried out by continuously applying 00 ° C. and a DC voltage of 20 V. Also,
The permittivity is measured using an HP 4284 LCR meter / measurement conditions:
The test was performed at 1 kHz and 1 Vrms. The voltage was gradually increased and applied to each of the capacitors, and the breakdown voltage causing a short circuit was examined. Table 1 shows the results.

【0065】[0065]

【表1】 [Table 1]

【0066】表1から明らかなように、実施例1によれ
ば、いずれの従来例に比較しても、高温負荷試験での寿
命も長くなっている。また、実施例1によれば、従来例
より高い誘電率が得られる。また、実施例1によれば、
従来例より高い破壊電圧が得られる。
As is clear from Table 1, according to Example 1, the life in the high-temperature load test is longer than that of any of the conventional examples. According to the first embodiment, a higher dielectric constant than the conventional example can be obtained. According to the first embodiment,
A higher breakdown voltage than the conventional example can be obtained.

【0067】本発明を実施する場合、各副成分溶液を順
次それぞれ別々に加えて熱処理してもよいが、前記実施
例のように、互いに反応を起こさない複数種類の副成分
溶液を同時に主成分粉末に混合することにより、工程の
簡略化が達成できる。
In practicing the present invention, each of the sub-component solutions may be sequentially added separately and then heat-treated. However, as in the above embodiment, a plurality of types of sub-component solutions which do not react with each other are simultaneously used as the main components. By mixing with the powder, simplification of the process can be achieved.

【0068】[0068]

【発明の効果】本発明によれば、副成分の分散性を良く
し、組成を均一化することができ、もって、偏析相の発
生を抑え、誘電体層間厚みが5μm以下であっても、絶
縁破壊電圧が高く、経年による特性劣化が少なく、小型
で高容量、高信頼性の積層セラミックコンデンサを得る
ことができる。
According to the present invention, the dispersibility of the subcomponents can be improved, the composition can be made uniform, the generation of segregation phase can be suppressed, and even if the dielectric interlayer thickness is 5 μm or less, A small, high-capacity, high-reliability multilayer ceramic capacitor having a high dielectric breakdown voltage, little deterioration in characteristics over time, and a high reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体セラミック材料の製造方法を説
明する工程図である。
FIG. 1 is a process diagram illustrating a method for producing a dielectric ceramic material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/628 C04B 35/00 B H01G 4/12 349 D 358 J (72)発明者 真坂 寿幸 東京都中央区日本橋一丁目13番1号 ティ −ディ−ケイ株式会社内 (72)発明者 上田 要 東京都中央区日本橋一丁目13番1号 ティ −ディ−ケイ株式会社内 Fターム(参考) 4G030 AA07 AA08 AA09 AA10 AA12 AA16 AA17 AA19 AA22 AA24 AA25 AA37 BA09 CA03 CA08 GA01 GA04 GA07 GA08 GA10 GA18 GA19 4G031 AA03 AA04 AA05 AA06 AA08 AA11 AA12 AA13 AA16 AA18 AA19 AA30 BA09 CA03 CA08 GA01 GA05 GA06 5E001 AB03 AE00 AE02 AE03 AE04──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/628 C04B 35/00 B H01G 4/12 349 D 358 J (72) Inventor Toshiyuki Masaka Central Tokyo 1-13-1, Nihonbashi-ku, Tokyo T-DK Corporation (72) Inventor Kaname Ueda 1-13-1, Nihonbashi, Chuo-ku, Tokyo F-term (reference) 4G030 AA07 AA08 AA09 AA10 AA12 AA16 AA17 AA19 AA22 AA24 AA25 AA37 BA09 CA03 CA08 GA01 GA04 GA07 GA08 GA10 GA18 GA19 4G031 AA03 AA04 AA05 AA06 AA08 AA11 AA12 AA13 AA16 AA18 AA19 AA30 GA09 GA03 GA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】BaTiO、CaTiO、SrTiO
あるいはBaZrOのうちの1種類または2種類以
上を主成分とし、 該主成分に混合する副成分として、Ba、Ca、Sr、
Mg、Si、Cr、Y、V、Mn、W、Zrの各々の化
合物から選ばれる少なくとも3種以上の化合物を含むも
のを用い、 前記主成分に対して前記副成分を含有した誘電体セラミ
ック材料を製造する場合、 前記主成分の一次粒子の平均粒径を0.2〜1.0μm
とし、前記副成分を溶液として前記主成分粉末に加えて
混合して熱処理し、 その後湿式粉砕し、脱水・乾燥することにより、主成分
が副成分で被覆された誘電体粉末を得ることを特徴とす
る誘電体セラミック材料の製造方法。
1. BaTiO 3 , CaTiO 3 , SrTiO
One or more of BaZrO 3 and BaZrO 3 as main components, and Ba, Ca, Sr,
A dielectric ceramic material containing at least three or more compounds selected from the compounds of Mg, Si, Cr, Y, V, Mn, W, and Zr, and containing the subcomponent with respect to the main component When manufacturing, the average particle size of the primary particles of the main component is 0.2 to 1.0 μm
The sub-component is added as a solution to the main component powder, mixed and heat-treated, then wet pulverized, dehydrated and dried to obtain a dielectric powder whose main component is coated with the sub-component. A method for producing a dielectric ceramic material.
【請求項2】請求項1の誘電体セラミック材料の製造方
法において、 前記副成分を溶液として前記主成分粉末に加えて混合す
る場合、1つの副成分を溶液として主成分粉末に混合
し、熱処理して主成分表面に副成分を形成した後、該副
成分を結合した主成分粉末に、別の副成分を溶液として
混合し同様の処理を行う工程を繰り返すことを特徴とす
る誘電体セラミック材料の製造方法。
2. The method for producing a dielectric ceramic material according to claim 1, wherein when the sub-component is added as a solution to the main component powder and mixed, one sub-component is mixed as a solution with the main component powder and heat-treated. Forming a sub-component on the surface of the main component and then repeating a process of mixing another sub-component as a solution with the main component powder to which the sub-component is bound and performing the same treatment. Manufacturing method.
【請求項3】請求項1の誘電体セラミック材料の製造方
法において、 前記副成分を溶液として前記主成分粉末に加えて混合す
る場合、複数種類の副成分を溶液として主成分粉末に混
合し、熱処理して主成分表面に副成分を形成した後、別
の1または複数種類の副成分を溶液として混合し同様の
処理を行う工程を含むことを特徴とする誘電体セラミッ
ク材料の製造方法。
3. The method for producing a dielectric ceramic material according to claim 1, wherein when the sub-component is added as a solution to the main component powder and mixed, a plurality of types of sub-components are mixed as a solution with the main component powder; A method for producing a dielectric ceramic material, comprising a step of performing heat treatment to form a sub-component on the surface of a main component, mixing another sub-component or a plurality of sub-components as a solution, and performing the same treatment.
【請求項4】請求項1の誘電体セラミック材料の製造方
法において、 前記副成分を溶液として前記主成分粉末に加えて混合し
て700〜1100℃で熱処理すると共に、 前記主成分100重量部に対して前記副成分を0.2重
量部以上、10.0重量部以下を加えた誘電体セラミッ
ク材料を製造することを特徴とする誘電体セラミック材
料の製造方法。
4. The method for producing a dielectric ceramic material according to claim 1, wherein said subcomponent is added as a solution to said main component powder, mixed and heat-treated at 700 to 1100 ° C. A method for manufacturing a dielectric ceramic material, comprising manufacturing a dielectric ceramic material to which 0.2 to 10.0 parts by weight of the subcomponent is added.
【請求項5】請求項1から4のいずれかの製造方法によ
り得られる誘電体セラミック材料を用いる誘電体セラミ
ックコンデンサであって、前記誘電体セラミック材料に
より、電極間の厚みが1μm以上、5μm以下の誘電体
層を構成することを特徴とする誘電体セラミックコンデ
ンサ。
5. A dielectric ceramic capacitor using a dielectric ceramic material obtained by the method according to claim 1, wherein a thickness between electrodes is 1 μm or more and 5 μm or less by said dielectric ceramic material. A dielectric ceramic capacitor characterized by comprising a dielectric layer of:
【請求項6】請求項1から4のいずれかの製造方法によ
り得られる誘電体セラミック材料を用いる誘電体セラミ
ックコンデンサであって、偏析相あるいは異相の最大サ
イズが電極間の厚みの1.5分の1以下であることを特
徴とする誘電体セラミックコンデンサ。
6. A dielectric ceramic capacitor using a dielectric ceramic material obtained by the method according to any one of claims 1 to 4, wherein a maximum size of a segregated phase or a different phase is 1.5 minutes of a thickness between electrodes. 1. A dielectric ceramic capacitor, characterized by being 1 or less.
JP2001131332A 2001-04-27 2001-04-27 Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor Pending JP2002321983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001131332A JP2002321983A (en) 2001-04-27 2001-04-27 Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131332A JP2002321983A (en) 2001-04-27 2001-04-27 Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2002321983A true JP2002321983A (en) 2002-11-08

Family

ID=18979536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131332A Pending JP2002321983A (en) 2001-04-27 2001-04-27 Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2002321983A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169006A (en) * 2004-12-13 2006-06-29 Tdk Corp Electronic component, dielectric ceramic composition and method of manufacturing the same
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP2009084111A (en) * 2007-09-28 2009-04-23 Tdk Corp Dielectric ceramic composition, and laminated type electronic component
WO2010008041A1 (en) * 2008-07-18 2010-01-21 日本化学工業株式会社 Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
WO2010008040A1 (en) * 2008-07-18 2010-01-21 日本化学工業株式会社 Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
JP2010024094A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type composite oxide, method for producing the same, and composite dielectric material
JP2010024098A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type multiple oxide, method for producing the same and composite dielectric material
JP2010024093A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type composite oxide, method for producing the same, and composite dielectric material
JP2010024095A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type multiple oxide, method for producing the same and composite dielectric material
WO2010100827A1 (en) * 2009-03-03 2010-09-10 株式会社村田製作所 Dielectric ceramic and laminated ceramic capacitor
CN102074351A (en) * 2010-11-12 2011-05-25 无锡索垠飞科技有限公司 Capacitive energy storage battery and manufacture method thereof
KR101508830B1 (en) 2013-04-24 2015-04-07 삼성전기주식회사 METHOD FOR FORMING BaTiO3 DIELECTRIC POWDER AND BaTiO3 DIELECTRIC POWDER FORMED BY THE METHOD

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508458A (en) * 2003-10-13 2007-04-05 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP4932487B2 (en) * 2003-10-13 2012-05-16 サントル、ナショナール、ド、ラ、ルシェルシュ、シアンティフィク、(セーエヌエルエス) Method for obtaining composite ferroelectrics
JP4691978B2 (en) * 2004-12-13 2011-06-01 Tdk株式会社 Method for manufacturing dielectric composition
JP2006169006A (en) * 2004-12-13 2006-06-29 Tdk Corp Electronic component, dielectric ceramic composition and method of manufacturing the same
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP2009084111A (en) * 2007-09-28 2009-04-23 Tdk Corp Dielectric ceramic composition, and laminated type electronic component
WO2010008041A1 (en) * 2008-07-18 2010-01-21 日本化学工業株式会社 Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
JP2010024098A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type multiple oxide, method for producing the same and composite dielectric material
JP2010024093A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type composite oxide, method for producing the same, and composite dielectric material
JP2010024095A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type multiple oxide, method for producing the same and composite dielectric material
JP2010024094A (en) * 2008-07-18 2010-02-04 Nippon Chem Ind Co Ltd Modified perovskite type composite oxide, method for producing the same, and composite dielectric material
CN102159498A (en) * 2008-07-18 2011-08-17 日本化学工业株式会社 Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
WO2010008040A1 (en) * 2008-07-18 2010-01-21 日本化学工業株式会社 Modified perovskite type composite oxide, manufacturing method thereof, and composite dielectric material
WO2010100827A1 (en) * 2009-03-03 2010-09-10 株式会社村田製作所 Dielectric ceramic and laminated ceramic capacitor
JP5423785B2 (en) * 2009-03-03 2014-02-19 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
CN102074351A (en) * 2010-11-12 2011-05-25 无锡索垠飞科技有限公司 Capacitive energy storage battery and manufacture method thereof
KR101508830B1 (en) 2013-04-24 2015-04-07 삼성전기주식회사 METHOD FOR FORMING BaTiO3 DIELECTRIC POWDER AND BaTiO3 DIELECTRIC POWDER FORMED BY THE METHOD

Similar Documents

Publication Publication Date Title
JP5998765B2 (en) Dielectric porcelain composition and ceramic electronic component using the same
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
WO2017163842A1 (en) Dielectric composition, dielectric element, electronic component and laminate electronic component
JP5146475B2 (en) Dielectric ceramic composition and ceramic electronic component
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP3630205B2 (en) Method for manufacturing dielectric ceramic material
KR20070026134A (en) Method of manufacturing for dielectric porcelain composition
JP2011057511A (en) Ceramic electronic part and method for manufacturing the same
JP2002321983A (en) Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
KR101237256B1 (en) Barium titanate dielectric powder, method for manufacturing the same, method for manufacturing ceramic green sheet, and method for manufacturing laminated ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
JP2006232629A (en) Dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP3751146B2 (en) Method for producing composition comprising BaTiO3 as main component and method for producing multilayer ceramic capacitor
JP5541318B2 (en) Dielectric ceramic composition and ceramic electronic component
JP4208448B2 (en) Porcelain capacitor and manufacturing method thereof
US20120250216A1 (en) Semiconductor ceramic and a multilayer semiconductor ceramic capacitor
JP2009173473A (en) Dielectric porcelain composition and manufacturing method of multilayer ceramic capacitor using the same
WO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2005008471A (en) Method of manufacturing complex oxide powder, complex oxide powder, dielectric ceramic composition and lamination type electronic component
CN116003121A (en) Ceramic dielectric composition and chip type multilayer ceramic capacitor prepared from same
JP3139444B2 (en) Method for producing dielectric ceramic composition and method for producing multilayer ceramic capacitor
KR100703080B1 (en) Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same
JP5029717B2 (en) Method for producing ceramic electronic component and ceramic raw material powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060824