JP2002320879A - Nozzle for forming composite structure, composite structure forming device and composite structure forming method - Google Patents

Nozzle for forming composite structure, composite structure forming device and composite structure forming method

Info

Publication number
JP2002320879A
JP2002320879A JP2001130638A JP2001130638A JP2002320879A JP 2002320879 A JP2002320879 A JP 2002320879A JP 2001130638 A JP2001130638 A JP 2001130638A JP 2001130638 A JP2001130638 A JP 2001130638A JP 2002320879 A JP2002320879 A JP 2002320879A
Authority
JP
Japan
Prior art keywords
nozzle
fine particles
substrate
composite structure
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001130638A
Other languages
Japanese (ja)
Other versions
JP4925520B2 (en
Inventor
Jun Aketo
純 明渡
Tomokazu Ito
朋和 伊藤
Tatsuro Yokoyama
達郎 横山
Atsushi Yoshida
篤史 吉田
Katsuhiko Mori
勝彦 森
Masakatsu Kiyohara
正勝 清原
Hironori Hatono
広典 鳩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2001130638A priority Critical patent/JP4925520B2/en
Publication of JP2002320879A publication Critical patent/JP2002320879A/en
Application granted granted Critical
Publication of JP4925520B2 publication Critical patent/JP4925520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nozzle of a structure capable of expelling particulate of a low velocity to be jetted. SOLUTION: The nozzle comprises a nozzle body 301, an aperture 302 in the upper part thereof and a turning plate 303 arranged above the same. The slit width of the turning plate 303 is the same as the width in the longitudinal direction of the nozzle opening or below the same. The particulates of the high velocity and the particulates of the low velocity are jetted from the aperture 302. The particulates of the low velocity spread radially but the particulates of the low velocity jetted from both sides in the longitudinal direction of the nozzle aperture 302 collide against the turning plate and are turned and therefore these particulates do not arrive at a substrate. Accordingly, only the particulates of the high velocity form an anchor layer on the substrate and therefore the uniform and homogeneous structure having good adhesion strength can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、脆性材料、金属材料ある
いは有機化合物の微粒子を基板に高速で衝突させて基板
上にこれらの構造物を形成するノズル、このノズルを組
み込んだ構造物形成装置および構造物の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle for forming fine structures of a brittle material, a metallic material, or an organic compound on a substrate by colliding the fine particles at high speed with a substrate, a structure forming apparatus incorporating the nozzle, and a structure forming apparatus. The present invention relates to a method for forming a structure.

【0002】[0002]

【従来の技術】超微粒子材料をノズルから基材に向けて
吹き付け堆積物を作製する方法としては、従来ガスデポ
ジション法(加集誠一郎:金属 1989年1月号)な
どが提案されている。これは金属やセラミックス等の超
微粒子をガス攪拌にてエアロゾル化し、微小なノズルを
通して加速せしめ、基材表面に超微粒子の圧粉体層を形
成させ、これを加熱して焼成させることにより被膜を形
成する方法である。
2. Description of the Related Art Conventionally, as a method of producing a deposit by spraying an ultrafine particle material from a nozzle toward a substrate, a gas deposition method (Seiichiro Kashu: Metal, January 1989) and the like have been proposed. In this method, ultrafine particles such as metals and ceramics are aerosolized by gas agitation and accelerated through a fine nozzle to form a compacted layer of ultrafine particles on the surface of the substrate, which is heated and fired to form a coating. It is a method of forming.

【0003】一方で基材上に脆性材料の薄膜若しくは厚
膜などの構造物を形成する方法として、例えば本発明者
らが提案した特開2000―212766公報に記載さ
れているような脆性材料超微粒子を用いた方法がある。
これは粒径が10nm〜5μmの超微粒子(前記先行技
術と異なり加熱蒸発させて得たものではない)に、イオ
ンビーム、原子ビーム、分子ビームあるいは低温プラズ
マなどを照射することにより、超微粒子を溶融せしめる
ことなく活性化し、この状態のまま基板に吹き付けるこ
とで、超微粒子相互の結合を促進するようにしたもので
ある。緻密で良好な膜物性を持ち、基材への良好な密着
性を有する堆積物を形成することを特徴とした製膜法で
ある。
On the other hand, as a method for forming a structure such as a thin film or a thick film of a brittle material on a base material, for example, a method for forming a brittle material over a brittle material as disclosed in Japanese Patent Application Laid-Open No. 2000-212766 proposed by the present inventors has been proposed. There is a method using fine particles.
This is achieved by irradiating an ultrafine particle having a particle size of 10 nm to 5 μm (which is not obtained by heating and evaporating unlike the above prior art) with an ion beam, an atomic beam, a molecular beam, low-temperature plasma, or the like, thereby It is activated without being melted, and is sprayed on the substrate in this state to promote the bonding between the ultrafine particles. This is a film forming method characterized by forming a deposit having dense and good film physical properties and good adhesion to a substrate.

【0004】また、特開平10−202171号公報に
は、ノズルと基板との間に所定の開口パターンを有する
マスクを設け、前記マスクの開口を通して超微粒子材料
を前記基板上に噴射し堆積させて微細形状の造形物を形
成する方法が開示されている。この方法においては、ノ
ズル、基板及びマスクは独立して駆動が可能であり、そ
れぞれが相対的に移動することを特徴としている。この
方法によって肩だれが少なく微細かつ高精度な形状の造
形物を作製することが可能である。
In Japanese Patent Application Laid-Open No. 10-202171, a mask having a predetermined opening pattern is provided between a nozzle and a substrate, and an ultrafine particle material is sprayed and deposited on the substrate through the opening of the mask. A method for forming a microscopic shaped object is disclosed. This method is characterized in that the nozzle, the substrate, and the mask can be driven independently, and each moves relatively. By this method, it is possible to produce a molded article having a small and highly precise shape with little shoulder droop.

【0005】[0005]

【発明が解決しようとする課題】上述のような微粒子を
加速してノズルから噴射させて基板に衝突させる手法の
場合、微粒子の速度はノズルの内壁に近い領域、すなわ
ち微粒子流束の外周領域では流束の中心領域に比べて遅
く、そのためこの領域の微粒子の圧粉体からなる堆積物
や構造物は密度が上がらなかったり、機械的強度が小さ
くなるなどの問題点があった。
In the above-described method in which the fine particles are accelerated and ejected from the nozzle to collide with the substrate, the speed of the fine particles is in a region close to the inner wall of the nozzle, that is, in the outer peripheral region of the fine particle flux. It is slower than the central region of the flux, so that the deposits and structures made of the compacts of fine particles in this region have problems such as an increase in density and a decrease in mechanical strength.

【0006】特開平10−202171号公報に記載の
ように独立して駆動が可能であるマスクを用いる場合に
おいては、ノズルとマスクの位置を相対的に変化させる
ため、やはり操作中微粒子流束の外周領域を常時除去す
るには不十分であり、従って堆積物中に強度の弱い構造
を部分的に内包するという障害があった。
In the case of using a mask that can be driven independently as described in Japanese Patent Application Laid-Open No. 10-202171, the position of the nozzle and the mask are relatively changed. There is an obstacle that the outer peripheral area is not always enough to be removed at all times, and thus the weak structure is partially included in the sediment.

【0007】[0007]

【課題を解決しようとする手段】すなわち本発明では上
記課題を解決すべく、微粒子を基材に向けて噴射させて
前記基材表面に前記微粒子の構成材料からなる構造物を
形成させる複合構造物形成用ノズルを、ノズル本体と、
微粒子を導入するための導入部と、微粒子を噴射させる
ための開口部と、前記ノズル本体に固着されるとともに
該開口部より下流側に延びる変向板を備えたものとし、
この変向板は前記開口部より噴射した微粒子流束のうち
の速度の遅い成分を基板に到達させない構成とした。
That is, in the present invention, in order to solve the above-mentioned problems, a composite structure in which fine particles are sprayed toward a base material to form a structure made of the constituent material of the fine particles on the surface of the base material. A forming nozzle, a nozzle body,
An introduction portion for introducing the fine particles, an opening for ejecting the fine particles, and a deflection plate fixed to the nozzle body and extending downstream from the opening,
The deflection plate is configured so that a component with a low speed in the flux of fine particles injected from the opening does not reach the substrate.

【0008】また、本発明では微粒子をノズルから基材
に向けて高速で噴射させて基材表面に微粒子の構成材料
からなる構造物を形成させる構造物作製装置を、微粒子
を含むエアロゾルを発生するエアロゾル発生器と、基材
に向けて前記エアロゾルを噴出するノズルと、このノズ
ルに前記エアロゾル発生器で発生したエアロゾルを供給
する搬送手段と、前記ノズルまたは基材を相対移動せし
める移動手段とを備えた構成とし、前記ノズルが移動す
る場合にはノズル本体に噴射した微粒子流束のうちの速
度の遅い成分を基板に到達させないための変向板を固着
し、ノズルが固定で基材が移動する場合にはノズルに固
着してもよいし、ノズルと基板との間に別体として固定
してもよい。
Further, in the present invention, a structure producing apparatus for forming a structure made of a constituent material of fine particles on a surface of a base material by spraying fine particles from a nozzle toward a substrate at a high speed generates an aerosol containing the fine particles. An aerosol generator, a nozzle for ejecting the aerosol toward a substrate, a conveying unit for supplying the aerosol generated by the aerosol generator to the nozzle, and a moving unit for relatively moving the nozzle or the substrate. When the nozzle moves, a deflecting plate is fixed to prevent a slow component of the fine particle flux injected into the nozzle body from reaching the substrate, and the base material moves with the nozzle fixed. In this case, it may be fixed to the nozzle or may be fixed separately between the nozzle and the substrate.

【0009】また、本発明では微粒子をノズルから基材
に向けて高速で噴射させて基材表面に微粒子の構成材料
からなる構造物を形成させる構造物作製方法において、
ノズルから噴射される微粒子流束のうちの外周部にあた
る速度の遅い流束成分の一部または全部が基板へ到達す
ることを阻止し、残りの速度の速い流束成分を選択的に
基板へ衝突させて、構造物の形成を行う。
The present invention also provides a method for fabricating a structure in which fine particles are ejected from a nozzle toward a substrate at a high speed to form a structure made of the constituent material of the fine particles on the surface of the substrate.
Prevents part or all of the low-velocity flux component that hits the outer periphery of the fine particle flux injected from the nozzle from reaching the substrate, and selectively collides the remaining high-speed flux component with the substrate. Then, a structure is formed.

【0010】これらの装置および方法により、ノズルか
ら噴射される微粒子のうち、速度の低い微粒子のみを選
択的に除去することで、機械的強度および基材との密着
性が低い構造物が形成されると言う不具合を解消するこ
とが可能となった。更に、構造物の外周部に見られた肩
だれを除くことも可能になる。
With these apparatuses and methods, a structure having low mechanical strength and low adhesion to a substrate is formed by selectively removing only low-velocity fine particles among fine particles ejected from a nozzle. It is now possible to resolve the problem of saying Furthermore, it becomes possible to remove the shoulder droop seen on the outer periphery of the structure.

【0011】特にこの変向板の採用は、微粒子として脆
性材料微粒子を使用するにおいて、基板をXおよびY方
向に操作させてノズル開口に比して大面積の構造物を形
成させるような場合に、微粒子流束の外周領域の微粒子
がまだ構造物が形成されていない基板表面に、流束の外
周領域であるがゆえに最初に到達して密着性が低いアン
カー層を形成し、これが基板操作とともに継続的に大面
積にわたって形成され、この上に構造物が形成されるこ
とによって構造物全体の密着性が低くなるという大きな
問題に対して顕著に改善ができる。
[0011] In particular, the use of the deflecting plate is used when the substrate is operated in the X and Y directions to form a structure having a larger area than the nozzle opening when fine particles of a brittle material are used. On the surface of the substrate where the structure is not yet formed, the fine particles in the outer peripheral region of the fine particle flux arrive first because of the outer peripheral region of the flux and form an anchor layer having low adhesion, and this forms with the operation of the substrate. It is formed over a large area continuously, and the formation of the structure thereon significantly reduces a major problem that the adhesion of the whole structure is reduced.

【0012】[0012]

【発明の実施の形態】微粒子(粒径数nm〜数十μm)を
搬送ガスを用いて高速で基板に衝突させる手法はガスデ
ポジション法と呼ばれており、金属や半導体、セラミッ
クスの微粒子を含むエアロゾルをノズルより高速噴出さ
せて高速で基板に吹き付け、微粒子の組成をもつ圧粉体
(粒子間において化学結合を有さず、で圧力によって押
し固められた状態)などの堆積層を形成させる構造物形
成法である。そのうち、本発明においては特に脆性材料
を含有する構造物を基板上にダイレクトで形成させる方
法を微粒子ビーム堆積法(Fine particles beam deposi
tion method)と呼ぶこととする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of causing fine particles (particle diameter: several nm to several tens of μm) to collide with a substrate at high speed using a carrier gas is called a gas deposition method. The aerosol containing gas is ejected from the nozzle at a high speed and sprayed onto the substrate at a high speed to form a deposited layer such as a compact having a composition of fine particles (a state in which the particles have no chemical bond and are compacted by pressure). This is a structure forming method. Among them, in the present invention, in particular, a method of directly forming a structure containing a brittle material on a substrate is referred to as a fine particle beam deposition method.
option method).

【0013】以下に微粒子ビーム堆積法の原理、及び作
用について説明する。セラミックスは自由電子をほとん
ど持たない共有結合性あるいはイオン結合性が強い原子
結合状態にある。それゆえ硬度は高いが衝撃に弱い。従
ってこれらの脆性材料に機械的衝撃力を印加した場合、
例えば結晶同士の界面などの劈開面にそって結晶格子の
ずれを生じたり、あるいは破砕されたりなどする。これ
らの現象が起こると、ずれ面や破面にはもともと内部に
存在し、別の原子と結合していた原子が剥き出しの状態
となり、すなわち新生面が形成される。この新生面の原
子一層の部分は、もともと安定した原子結合状態から外
力により強制的に不安定な表面状態に晒される。すなわ
ち表面エネルギーが高い状態となる。この活性面が隣接
した脆性材料表面や同じく隣接した脆性材料の新生面あ
るいは基板表面と接合して安定状態に移行する。外部か
らの連続した機械的衝撃力の付加は、この現象を継続的
に発生させ、微粒子の変形、破砕などの繰り返しにより
接合の進展、それによって形成された構造物の緻密化が
行われる。このようにして脆性材料の構造物が形成され
る。また構造物と基材との界面には、微粒子が衝突する
衝撃を受けて微細な凹凸が形成される。こうして構造物
が食い込んだアンカー層が形成されることにより、構造
物と基材の間に非常に大きな密着力が生み出される。
Hereinafter, the principle and operation of the fine particle beam deposition method will be described. Ceramics are in an atomic bonding state having little free electrons and strong covalent bonding or ionic bonding. Therefore, it has high hardness but is weak to impact. Therefore, when a mechanical impact force is applied to these brittle materials,
For example, a crystal lattice may be displaced along a cleavage plane such as an interface between crystals, or may be crushed. When these phenomena occur, the atoms originally existing inside the slip surface or the fracture surface and bonded to another atom are exposed, that is, a new surface is formed. The layer of one layer of atoms of the new surface is forcibly exposed to an unstable surface state by an external force from an originally stable atomic bond state. That is, the surface energy becomes high. The active surface is bonded to the surface of the adjacent brittle material or the newly formed surface of the adjacent brittle material or the surface of the substrate, and shifts to a stable state. The application of a continuous mechanical impact force from the outside causes this phenomenon to occur continuously, so that the deformation and crushing of the fine particles are repeated, so that the bonding progresses and the structure formed thereby is densified. In this way, a structure of a brittle material is formed. At the interface between the structure and the base material, fine asperities are formed due to the impact of the collision of the fine particles. The formation of the anchor layer into which the structure has penetrated results in a very large adhesion between the structure and the substrate.

【0014】構造物が形成されるか否か、また構造物の
強度やアンカー層による基材と構造物との密着強度を語
る場合、微粒子の速度の最適化は大きな要因であり、速
度の小さい粒子の衝突は、構造物を脆弱にし、かつ密着
性を低下させる原因となり好ましくない。これにはノズ
ルの形状に由来する微粒子流束外周部の速度の低い微粒
子の存在が大きな要因としてあった。
When talking about whether or not a structure is formed, and the strength of the structure and the adhesion strength between the substrate and the structure by the anchor layer, optimization of the speed of the fine particles is a major factor, and the speed of the fine particles is small. The collision of the particles is not preferable because it weakens the structure and decreases the adhesion. This was largely due to the presence of low-velocity fine particles at the outer periphery of the fine particle flux due to the nozzle shape.

【0015】以下に、微粒子ビーム堆積法の一適用例に
ついて図に基づき説明する。遊星ミルにより歪付与を行
なった平均粒径0.4μmの酸化アルミニウム微粒子粉
体を予め準備して、これを用いて微粒子ビーム堆積法に
より鉄基板上に構造物を形成させた。図1に使用した微
粒子ビーム堆積装置の装置図を示す。図1では、微粒子
ビーム堆積装置10は、窒素ガスボンベ101が、搬送
管102を介してエアロゾル発生器103に接続され、
その下流側に解砕器104が、さらに下流側に分級器1
05が設置されている。これらに通じている搬送管10
2の先に構造物作製室106内に設置されたノズルが配
置される。構造物作製室106は真空ポンプ109に接
続されている。エアロゾル発生器103は酸化アルミニ
ウム微粒子を内蔵している。
An application example of the fine particle beam deposition method will be described below with reference to the drawings. An aluminum oxide fine particle powder having an average particle diameter of 0.4 μm subjected to distortion by a planetary mill was prepared in advance, and a structure was formed on an iron substrate by a fine particle beam deposition method using the powder. FIG. 1 shows an apparatus diagram of the particle beam deposition apparatus used. In FIG. 1, the fine particle beam deposition apparatus 10 includes a nitrogen gas cylinder 101 connected to an aerosol generator 103 via a transfer pipe 102,
A crusher 104 is provided on the downstream side, and a classifier 1 is further provided on the downstream side.
05 is installed. The conveying pipe 10 communicating with these
A nozzle installed in the structure production chamber 106 is disposed at the end of the second. The structure production chamber 106 is connected to a vacuum pump 109. The aerosol generator 103 contains aluminum oxide fine particles.

【0016】以上の構成からなる微粒子ビーム堆積装置
10の作用を次に述べる。予め図示しない歪付与装置で
ある遊星ミルにて粉砕することにより、内部ひずみを与
えられた酸化アルミニウム微粒子を準備し、これをエア
ロゾル発生器103内に充填する。窒素ガスボンベ10
1より搬送管102を通じて混合粉末を装填したエアロ
ゾル発生器103内に窒素ガスを導入し、エアロゾル発
生器103を作動させて酸化アルミニウム微粒子を含む
エアロゾルを発生させる。エアロゾル中の微粒子は凝集
しており、おおよそ100μmの二次粒子を形成してい
るが、これを搬送管102を通じて解砕器104に導入
して一次粒子を多く含むエアロゾルに変換する。その後
分級器105に導入して、解砕器104では解砕しきれ
ずにエアロゾル中にまだ存在している粗大な二次粒子を
除去してさらに一次粒子リッチなエアロゾルに変換し、
導出する。その後構造物作製室106内に設置されたノ
ズルから高速で基板107に向けて微粒子ビームとして
噴射させつつ、基板107をXYステージ108により
揺動させて、基板107上の一定面積の上に厚膜構造物
を形成させた。この際、XYステージ108はプログラ
ムによって運転される。また、構造物作製室106は真
空ポンプ109により数kPaの減圧環境下に置かれ
る。
The operation of the particle beam deposition apparatus 10 having the above configuration will be described below. Aluminum oxide microparticles with internal strain are prepared by pulverizing in advance by a planetary mill, which is a distortion imparting device (not shown), and filled into the aerosol generator 103. Nitrogen gas cylinder 10
Nitrogen gas is introduced into the aerosol generator 103 loaded with the mixed powder from 1 through the transport pipe 102, and the aerosol generator 103 is operated to generate an aerosol containing aluminum oxide fine particles. The fine particles in the aerosol are agglomerated and form secondary particles of about 100 μm, which are introduced into the crusher 104 through the transport pipe 102 to be converted into an aerosol containing a large amount of primary particles. After that, it is introduced into the classifier 105, and the coarse secondary particles which cannot be completely crushed by the crusher 104 and are still present in the aerosol are removed and further converted into a primary particle-rich aerosol,
Derive. Thereafter, the substrate 107 is oscillated by the XY stage 108 while being sprayed as a fine particle beam toward the substrate 107 at a high speed from a nozzle provided in the structure manufacturing chamber 106, and a thick film is formed on a certain area on the substrate 107. A structure was formed. At this time, the XY stage 108 is operated by a program. The structure manufacturing chamber 106 is placed under a reduced pressure environment of several kPa by a vacuum pump 109.

【0017】次に、微粒子ビーム堆積法に関して本発明
に係る具体的な実施の形態を添付図面に基づいて説明す
る。 (実施例1)本発明で用いるノズル30は、図2に示す
ようにノズル本体301とその上部の10mm×0.4
mmの面積を有する開口部302とその上方約10mm
ほどのところに配置された変向板303とで構成されて
いる。変向板303のスリット幅はノズル開口の長手方
向の幅に対して同じか若しくはそれ以下である。
Next, a specific embodiment of the present invention relating to the fine particle beam deposition method will be described with reference to the accompanying drawings. (Embodiment 1) As shown in FIG. 2, a nozzle 30 used in the present invention has a nozzle body 301 and a 10 mm × 0.4
opening 302 having an area of about 10 mm and about 10 mm above the opening 302
And a deflecting plate 303 arranged at this point. The slit width of the deflection plate 303 is equal to or smaller than the longitudinal width of the nozzle opening.

【0018】以下に上記ノズルを用いて30mm×30
mmの面積を有する構造物を作製する場合の一例を図3
と共に説明する。前述の従来例同様、基板107はXY
ステージ109に制御されて、Y軸方向に30mm移動
し、次に図示したX軸の矢印方向にピッチ幅5mmを移
動した後、先ほど移動した方向とは逆にY軸方向に30
mm移動する。以上のプログラム運転を繰り返すことに
よって微粒子衝突箇所501を開始地点402から矢印
403に従って変化させ所望の面積401を確保した。
Hereinafter, 30 mm × 30 mm
FIG. 3 shows an example of manufacturing a structure having an area of 2 mm.
It is explained together with. As in the conventional example described above, the substrate 107 is made of XY
Under the control of the stage 109, it moves by 30 mm in the Y-axis direction, then moves by a pitch width of 5 mm in the arrow direction of the X-axis shown in the figure, and then moves in the Y-axis direction by 30 in the opposite direction to the previous movement.
mm. By repeating the above program operation, the particle collision location 501 was changed from the start point 402 according to the arrow 403, and a desired area 401 was secured.

【0019】次に本実施例の作用を説明する。ノズル本
体301の開口部302からは従来と同様にして速度の
速い微粒子404と速度の遅い微粒子405が噴射さ
れ、前述の通り速度の遅い微粒子405は放射状に広が
るが、ノズル開口部302の長手方向の両側から噴射さ
れた速度の遅い微粒子405は変向板に衝突して変向す
るため、基板107には到達しない。従って、速度の速
い微粒子404のみが基板上にアンカー層を形成するた
め、均一・均質かつ密着強度の良好な構造物502を得
ることが可能となった。
Next, the operation of this embodiment will be described. From the opening 302 of the nozzle main body 301, fine particles 404 having a high speed and fine particles 405 having a low speed are ejected in the same manner as in the related art, and the fine particles 405 having a low speed spread radially as described above. The particles 405 having a low velocity ejected from both sides of the colliding member collide with the deflecting plate to be deflected, and do not reach the substrate 107. Therefore, since only the fast particles 404 form the anchor layer on the substrate, it is possible to obtain a structure 502 that is uniform, uniform and has good adhesion strength.

【0020】更には、構造物502の外周部の断面形状
は肩だれが少なく、所望の寸法どおりの構造物が得られ
た。
Further, the cross-sectional shape of the outer peripheral portion of the structure 502 has a small shoulder, and a structure having desired dimensions was obtained.

【0021】ここで、厳密には開口部302の短辺方向
の両側からも速度の遅い微粒子が噴射されており、この
領域の微粒子も変向板によって基板に到達しないように
することが最も望ましいものの、ノズルの短辺方向が
0.4mmと非常に狭くなっておりこのため微粒子流束
の速度の遅い成分の領域は極めて少なく、またノズル/
基板の相対変位がノズル長辺方向に対しては比較的高速
で操作することを受けて、短辺方向の遅い微粒子を除く
場合と除かない場合での形成された構造物の密着強度に
は違いがあらわれなかった。従ってこのようなスリット
形状のノズルを用いる場合においては、工業利用上は長
辺方向の速度の遅い成分のみに対処した変向板を採用す
ることは有意義である。
Here, strictly speaking, fine particles having a low speed are also sprayed from both sides in the short side direction of the opening 302, and it is most desirable that the fine particles in this region are also prevented from reaching the substrate by the deflection plate. However, the short side direction of the nozzle is as narrow as 0.4 mm, so that the region of the component having a low particle flux velocity is extremely small.
Because the relative displacement of the substrate is operated at a relatively high speed in the long side direction of the nozzle, the adhesion strength of the formed structure is different between when the fine particles in the short side direction are removed and when they are not removed. Did not appear. Therefore, when such a slit-shaped nozzle is used, it is significant for industrial use to employ a deflection plate that deals only with a slow component in the long side direction.

【0022】また、ノズル開口部の形状は四角形でも良
いし、円形でも良い。固定された変向板の開口の形状も
それに対応させれば良いし、若しくは微細パターンを有
する形状にしても良い。密着強度、硬度などの良好な構
造物を得たい場合には、速度の速い微粒子流束404に
対して、少なくとも5分の1以下の速度のものを除去す
ることが望ましく、そのように変向板のサイズを決定さ
せればよい。
The shape of the nozzle opening may be square or circular. The shape of the opening of the fixed deflection plate may be made to correspond to it, or may be a shape having a fine pattern. When it is desired to obtain a good structure such as adhesion strength and hardness, it is desirable to remove at least one fifth or less of the speed of the fine particle flux 404 with high speed. The size of the plate may be determined.

【0023】微粒子流束は、場合によっては噴射後に広
がりをもつため、変向板のサイズは必ずしもノズル開口
の大きさよりも小さくなければならないというわけでは
ない。構造物が形成される適当な微粒子の速度範囲は5
0〜450m/sである。上記速度は微粒子が有する内
部歪と密接な関連を有する。即ち、内部歪があれば50
m/sでも構造物を形成できるが、内部歪がないと圧粉
体になる。内部歪が小さいと上記の速度は150m/s
以上が好ましい。
The size of the deflecting plate does not necessarily have to be smaller than the size of the nozzle opening, because the particle flux may spread after injection in some cases. A suitable fine particle velocity range at which the structure is formed is 5
0 to 450 m / s. The above speed is closely related to the internal strain of the fine particles. That is, if there is internal distortion, 50
Although a structure can be formed even at m / s, it becomes a green compact if there is no internal strain. When the internal strain is small, the above speed is 150 m / s
The above is preferred.

【0024】ここで、内部歪と形成される膜厚との関係
を速度を一定(250m/s)として実験した。その結
果を図4に示す。実験は、純度99.6%の酸化アルミ
ニウム微粒子に遊星ミルを用いて粉砕処理を行い、微粒
子のキャラクタリゼーションを変化させた後、超微粒子
ビーム堆積法によりアルミニウム基板上に構造物を形成
した。微粒子の内部歪はX線回折により測定し、歪量は
同微粒子に熱エージングを施して内部歪を除去したもの
を0%として基準にした。また、図4中のポイントA,
B,Cにおける微粒子のSEM写真(日立製インレンズ
SEM S−5000)を図5、図6及び図7に示す。
Here, the relationship between the internal strain and the film thickness to be formed was tested at a constant speed (250 m / s). The result is shown in FIG. In the experiment, aluminum oxide fine particles having a purity of 99.6% were pulverized using a planetary mill to change the characterization of the fine particles, and then a structure was formed on an aluminum substrate by ultrafine particle beam deposition. The internal strain of the fine particles was measured by X-ray diffraction, and the amount of strain was defined as 0% after removing the internal strain by subjecting the fine particles to thermal aging. Point A in FIG.
SEM photographs of the fine particles in B and C (Inlens SEM S-5000 manufactured by Hitachi) are shown in FIGS.

【0025】図4から1μmの膜厚を得るには0.01
〜2.50%の内部歪があれば十分であることが分る
が、安定した膜厚を得るには0.1〜2.0%の内部歪が
好ましい。クラックと内部歪との関係は、内部歪がない
場合には図5に示すようにクラックは発生しないが、内
部歪が一定値以上、本件の場合には2.0%以上となる
と完全にクラックが形成されてしまい、さらには脱落し
た断片が表面に付着して図6に示すような再凝集状態と
なってしまう。
FIG. 4 shows that 0.01 μm is required to obtain a film thickness of 1 μm.
It is understood that an internal strain of 2.50% is sufficient, but an internal strain of 0.1-2.0% is preferable for obtaining a stable film thickness. As shown in FIG. 5, the relationship between the crack and the internal strain is that no crack occurs when there is no internal strain, but when the internal strain becomes a certain value or more, in this case, 2.0% or more, the crack is completely cracked. Are formed, and the dropped-out fragments adhere to the surface, resulting in a re-aggregation state as shown in FIG.

【0026】このように微粒子に歪を与える粉砕処理
は、微粒子にかかる粉砕のための衝撃を大きく与えるこ
とのできる粉砕手段を用いるのが好ましい。微粒子に比
較的一様に大きな歪を付与することができるからであ
る。このような粉砕手段としては、セラミックスの粉砕
処理によく用いられるボールミルに比べて大きな重力加
速度を与えることの出来る振動ミルやアトライタ、遊星
ミルを用いるのが好ましく、とりわけボールミルに比べ
て格段に大きな重力加速度を与えることの出来る遊星ミ
ルを用いることが最も好ましい。微粒子の状態に着目す
れば、クラックは内部歪をキャンセルするものであるの
で、最も好ましいのは、クラックが生じる直前まで内部
歪が高まっている微粒子ということになる。図7に示す
状態は若干のクラックが生じているが、十分に内部歪が
残されている。
As described above, in the pulverization treatment for imparting distortion to the fine particles, it is preferable to use a pulverizing means capable of giving a large impact for the pulverization to the fine particles. This is because a large strain can be imparted to the fine particles relatively uniformly. As such a pulverizing means, it is preferable to use a vibrating mill, an attritor, or a planetary mill capable of giving a greater gravitational acceleration than a ball mill often used for pulverizing ceramics. Most preferably, a planetary mill capable of giving an acceleration is used. If attention is paid to the state of the fine particles, cracks cancel internal strain, so that the most preferable are fine particles whose internal strain is increased until just before the crack occurs. In the state shown in FIG. 7, although some cracks have occurred, sufficient internal strain remains.

【0027】以下に微粒子ビーム堆積法の比較例につい
て添付図面を基に説明する。 (比較例)比較例の微粒子ビーム堆積法に用いるノズル
の概略図を図8に示す。ノズル201の上部には10m
m×0.4mmの面積の開口部が設けられている。
A comparative example of the fine particle beam deposition method will be described below with reference to the accompanying drawings. (Comparative Example) FIG. 8 is a schematic view of a nozzle used in the fine particle beam deposition method of the comparative example. 10m above the nozzle 201
An opening having an area of mx 0.4 mm is provided.

【0028】大面積の構造物を作製する場合、ノズルと
基板を相対的に2次元で移動させることが必須となり、
薄膜を幾重にも重ねていくことになる。図9に30mm
×30mmの面積を有する構造物作製プログラムの一例
を示す。ただし、図示したノズルは簡略化のため長手方
向の断面図で示している。基板107はXYステージ1
09に制御されて、Y軸方向に30mm移動し、次に図
示したX軸の矢印方向にピッチ幅5mmを移動した後、
先ほど移動した方向とは逆にY軸方向に30mm移動す
る。以上のプログラム運転を繰り返すことによって微粒
子衝突箇所408を開始地点402から矢印403に従
って変化させ所望の面積401を確保した。
When manufacturing a large-area structure, it is necessary to move the nozzle and the substrate relatively two-dimensionally.
The thin films will be stacked in layers. 9 mm
An example of a structure manufacturing program having an area of × 30 mm is shown. However, the illustrated nozzle is shown in a longitudinal sectional view for simplification. Substrate 107 is XY stage 1
09, moved 30 mm in the Y-axis direction, and then moved the pitch width 5 mm in the X-arrow direction shown in the drawing,
It moves 30 mm in the Y-axis direction opposite to the direction in which it has just moved. By repeating the above program operation, the particle collision point 408 was changed from the start point 402 according to the arrow 403, and a desired area 401 was secured.

【0029】以下に比較例の作用を説明する。ノズル2
01の開口部202の中心部からは速度の速い微粒子流
束404が、開口部202の長辺方向の両側からは速度
の遅い微粒子流束405が噴射される。ノズル/基板位
置の相対変位により第一層目には、速度の速い微粒子流
束404が主立ってアンカー層を形成した堆積層406
と、速度の遅い微粒子405のみによってアンカー層を
形成した堆積層407が形成される。二層目以上の堆積
層は双方の流束の微粒子が散在して不均一に積層した状
態となった。
The operation of the comparative example will be described below. Nozzle 2
A high-velocity fine particle flux 404 is ejected from the center of the opening 202 of the opening 01 and a low-velocity fine particle flux 405 is jetted from both sides in the long side direction of the opening 202. Due to the relative displacement of the nozzle / substrate position, a high-speed fine particle flux 404 mainly forms a deposition layer 406 on which an anchor layer is formed in the first layer.
Then, the deposition layer 407 in which the anchor layer is formed only by the slow particles 405 is formed. The second and higher deposited layers were in a state in which fine particles of both fluxes were scattered and were unevenly stacked.

【0030】ノズルから微粒子が噴射される際の微粒子
流束の速度分布はおおよそ図10に示す601で与えら
れる。噴射される微粒子流束において、ノズル内壁の影
響を受けてノズル中心から外側へ向かうに従い含まれる
微粒子の速度の低下が見られる。また構造物作製室の真
空度が低いため、図に示すように微粒子流束は噴射後ノ
ズル開口面積以上に広がっていく現象も見られている。
流束の外周部の微粒子は従って運動エネルギーが小さ
く、衝突後の基板に対するアンカー効果も小さくなり、
基板に対する密着強度が低下する。得られた構造物の中
心部602(406と同じ)の密着強度は1112kg
f/cm2であったのに対して、外周部603(407
と同じ)の密着強度は457kgf/cm2まで低下し
た。また、速度の遅い微粒子407が積層して堆積物中
に散在することにより、堆積物の耐摩耗性や硬度も低下
した。また流束の広がりは構造物の外周部での肩だれを
ひきおこす。
The velocity distribution of the particle flux when the particles are ejected from the nozzle is approximately given by 601 shown in FIG. In the ejected particle flux, the velocity of the contained particles decreases from the center of the nozzle toward the outside under the influence of the inner wall of the nozzle. Further, since the degree of vacuum in the structure manufacturing chamber is low, a phenomenon in which the fine particle flux spreads beyond the nozzle opening area after injection has been observed as shown in the figure.
The fine particles on the outer periphery of the flux therefore have low kinetic energy and a small anchoring effect on the substrate after collision,
The adhesion strength to the substrate decreases. The adhesion strength of the center part 602 (same as 406) of the obtained structure is 1112 kg.
f / cm 2 , the outer peripheral portion 603 (407
The same as above) decreased to 457 kgf / cm 2 . In addition, the abrasion resistance and hardness of the deposit also decreased due to the lamination of the slow-moving fine particles 407 in the deposit. Also, the spread of the flux causes shoulder droop at the outer periphery of the structure.

【0031】[0031]

【本発明の効果】以上のように、本発明にかかる前記ノ
ズルを用いることで、ノズルから噴射される速度の遅い
微粒子を排除でき、基板との密着強度が高く、その他機
械強度にも優れた大面積の構造物を作製することが可能
である。特に、ノズル本体に変向板が固着されているの
で、基材表面に大面積の構造物を形成すべくノズルが移
動しても、確実に速度の遅い微粒子が基材表面に到達す
ることを防止でき、一定以上の速度の微粒子のみを基材
表面に打ち付けることが可能になる。
As described above, by using the nozzle according to the present invention, fine particles ejected from the nozzle at a low speed can be eliminated, the adhesion strength to the substrate is high, and the mechanical strength is excellent. A large-area structure can be manufactured. In particular, since the deflection plate is fixed to the nozzle body, even if the nozzle moves to form a large-area structure on the surface of the substrate, it is ensured that the low-speed fine particles reach the surface of the substrate. It is possible to strike only fine particles having a speed equal to or higher than a certain value on the substrate surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製膜中の微粒子ビーム堆積装置の構造物作製室
内概略図
FIG. 1 is a schematic diagram of a structure manufacturing chamber of a particle beam deposition apparatus during film formation.

【図2】本発明の微粒子ビーム堆積法に用いるノズルの
概略図
FIG. 2 is a schematic view of a nozzle used in the fine particle beam deposition method of the present invention.

【図3】実施例での大面積構造物作製例を示す図FIG. 3 is a diagram showing an example of manufacturing a large-area structure in an example.

【図4】脆性材料微粒子の内部歪と膜厚との関係を示す
グラフ
FIG. 4 is a graph showing the relationship between internal strain of brittle material fine particles and film thickness.

【図5】図4のポイントAにおける微粒子のSEM写真5 is an SEM photograph of the fine particles at point A in FIG.

【図6】図4のポイントBにおける微粒子のSEM写真6 is an SEM photograph of the fine particles at point B in FIG.

【図7】図4のポイントCにおける微粒子のSEM写真FIG. 7 is an SEM photograph of the fine particles at point C in FIG.

【図8】従来の微粒子ビーム堆積法に用いるノズルの概
略図
FIG. 8 is a schematic view of a nozzle used in a conventional fine particle beam deposition method.

【図9】従来技術での大面積構造物作製例を示す図FIG. 9 is a diagram showing an example of manufacturing a large-area structure according to the related art.

【図10】微粒子ビーム速度分布を示す図FIG. 10 is a diagram showing a particle beam velocity distribution.

【符号の簡単な説明】[Brief description of reference numerals]

10…微粒子ビーム堆積装置、101…ガスボンベ、1
02…搬送管、103…エアロゾル発生器、104…解
砕器、105…分級器、106…構造物作製室、107
…基板、108…XYステージ、109…真空ポンプ、
201…従来型ノズル、202…ノズル開口部、30…
ノズル、301…ノズル本体、302ノズル開口部、3
03…変向板、401…構造物の作製予定面積、402
…製膜開始地点、403…基板/ノズルの相対的な移動
方向、404…速度の速い微粒子、405…ノズル開口
の長編方向の外周から噴射された速度の遅い微粒子、4
06…速度の速い微粒子404がアンカー層を形成した
堆積層、407…速度の遅い微粒子405がアンカー層
を形成した堆積層、408…微粒子衝突箇所、501…
速度の速い微粒子404の衝突箇所、502…構造物、
601…微粒子の速度分布、602…構造物中心部、6
03…構造物外周部。
10: Particle beam deposition device, 101: Gas cylinder, 1
02: conveying pipe, 103: aerosol generator, 104: crusher, 105: classifier, 106: structure production room, 107
... substrate, 108 ... XY stage, 109 ... vacuum pump,
201 ... conventional nozzle, 202 ... nozzle opening, 30 ...
Nozzle, 301 ... Nozzle body, 302 Nozzle opening, 3
03: turning plate, 401: planned area of structure, 402
... film formation start point, 403 ... relative movement direction of the substrate / nozzle, 404 ... fast speed fine particles, 405 ... slow speed fine particles ejected from the outer perimeter of the nozzle opening in the lengthwise direction, 4
06: a deposited layer in which fast particles 404 formed an anchor layer; 407: a deposited layer in which slow particles 405 formed an anchor layer; 408: a particle collision location;
Collision location of high-speed fine particles 404, 502 ... structure,
601: velocity distribution of fine particles, 602: central part of structure, 6
03 ... outer periphery of the structure.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 24/04 C23C 24/04 (72)発明者 伊藤 朋和 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 横山 達郎 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 吉田 篤史 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 森 勝彦 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 清原 正勝 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 鳩野 広典 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 Fターム(参考) 4D073 AA01 BB06 DB04 DB18 DB19 4D075 AA01 AD16 CA47 EA02 EB01 4F033 AA01 BA05 CA02 DA01 EA01 LA01 4K044 AA01 AA02 AA06 AA13 BA01 BA11 BA13 CA23 CA27 CA53 CA71 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 24/04 C23C 24/04 (72) Inventor Tomokazu Ito 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture No. 1 Toto Kiki Co., Ltd. (72) Inventor Tatsuro Yokoyama 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Toko Kiki Co., Ltd. 2-1-1, Toto Kiki Co., Ltd. (72) Inventor Katsuhiko Mori 2-1-1, Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Toto Kiki Co., Ltd. (72) Masakatsu Kiyohara Kitakyushu, Fukuoka (2-1) Inventor Hironori Hatono 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Totoki Equipment Co., Ltd. Term (Reference) 4D073 AA01 BB06 DB04 DB18 DB19 4D075 AA01 AD16 CA47 EA02 EB01 4F033 AA01 BA05 CA02 DA01 EA01 LA01 4K044 AA01 AA02 AA06 AA13 BA01 BA11 BA13 CA23 CA27 CA53 CA71

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 微粒子を基材に向けて噴射させて前記基
材表面に前記微粒子の構成材料からなる構造物を形成さ
せる複合構造物形成用ノズルにおいて、前記ノズルは、
ノズル本体と、微粒子を導入するための導入部と、微粒
子を噴射させるための開口部と、該開口部より下流側に
設けられ、前記開口部より噴射した微粒子流束のうちの
外周部にあたる速度の遅い流束成分の一部または全部を
基板に到達させないようにするための変向板とを具備
し、前記変向板はノズル本体に固定されていることを特
徴とする複合構造物形成用ノズル。
1. A composite structure forming nozzle for spraying fine particles toward a base material to form a structure made of the constituent material of the fine particles on the surface of the base material, wherein the nozzle comprises:
A nozzle body, an introduction portion for introducing the fine particles, an opening for injecting the fine particles, and a speed provided on the downstream side of the opening and corresponding to the outer peripheral portion of the flux of the fine particles injected from the opening. A deflection plate for preventing part or all of the slow flux component from reaching the substrate, wherein the deflection plate is fixed to the nozzle body. nozzle.
【請求項2】 前記微粒子は、脆性材料の微粒子である
ことを特徴とする請求項1に記載の複合構造物形成用ノ
ズル。
2. The composite structure forming nozzle according to claim 1, wherein the fine particles are fine particles of a brittle material.
【請求項3】 前記開口部はスリット状であり、その長
手方向の外縁部に変向板が固定されていることを特徴と
する請求項1又は請求項2に記載の複合構造物形成用ノ
ズル。
3. The nozzle for forming a composite structure according to claim 1, wherein the opening has a slit shape, and a deflection plate is fixed to an outer edge in a longitudinal direction of the opening. .
【請求項4】 微粒子を含むエアロゾルを発生するエア
ロゾル発生器と、基材に向けて前記エアロゾルを噴出す
るノズルと、このノズルに前記エアロゾル発生器で発生
したエアロゾルを供給する搬送手段と、前記ノズルを基
材に対して相対的に移動せしめる移動手段とを備えた複
合構造物形成装置において、前記ノズルは噴射した微粒
子流束のうちの速度の遅い成分を基板に到達させないた
めの変向板をノズル本体に固着していることを特徴とす
る複合構造物形成装置。
4. An aerosol generator for generating an aerosol containing fine particles, a nozzle for ejecting the aerosol toward a substrate, a conveying means for supplying the aerosol generated by the aerosol generator to the nozzle, and the nozzle In the composite structure forming apparatus having a moving means for moving the relative to the substrate, the nozzle is provided with a deflecting plate for preventing a slow component of the ejected fine particle flux from reaching the substrate. A composite structure forming apparatus fixed to a nozzle body.
【請求項5】 微粒子を含むエアロゾルを発生するエア
ロゾル発生器と、基材に向けて前記エアロゾルを噴出す
るノズルと、このノズルに前記エアロゾル発生器で発生
したエアロゾルを供給する搬送手段と、前記基材を移動
せしめる移動手段とを備えた複合構造物形成装置におい
て,前記ノズルと基材との間に噴射した微粒子流束のう
ちの速度の遅い成分を基板に到達させないための変向板
をノズルに一体又は別体として固定していることを特徴
とする複合構造物形成装置。
5. An aerosol generator for generating an aerosol containing fine particles, a nozzle for ejecting the aerosol toward a substrate, a conveying means for supplying the aerosol generated by the aerosol generator to the nozzle, and In a composite structure forming apparatus provided with a moving means for moving a material, a deflection plate for preventing a low-speed component of a fine particle flux injected between the nozzle and a substrate from reaching a substrate is provided with a nozzle. A composite structure forming apparatus fixed integrally or separately to the apparatus.
【請求項6】 前記微粒子は、脆性材料の微粒子である
ことを特徴とする請求項4または請求項5に記載の構造
物作製装置。
6. The structure manufacturing apparatus according to claim 4, wherein the fine particles are fine particles of a brittle material.
【請求項7】 前記開口部はスリット状であり、その長
手方向の外縁部に変向板が固定されていることを特徴と
する請求項4乃至請求項6のいずれかに記載の構造物作
製装置。
7. The structure according to claim 4, wherein the opening has a slit shape, and a deflecting plate is fixed to an outer edge in a longitudinal direction of the opening. apparatus.
【請求項8】 微粒子をノズルから基材に向けて噴射さ
せて前記基材表面に前記微粒子の構成材料からなる構造
物を形成させる構造物作製方法において、ノズルから噴
射される微粒子流束のうちの外周部にあたる速度の遅い
流束成分の一部または全部が基板へ到達することを阻止
し、残りの速度の速い流束成分を選択的に基板へ衝突さ
せて、前記構造物の形成を行うことを特徴とした構造物
形成方法。
8. A method for producing a structure in which fine particles are ejected from a nozzle toward a base material to form a structure made of the constituent material of the fine particles on the surface of the base material, wherein A part or all of the low-velocity flux component corresponding to the outer peripheral portion is prevented from reaching the substrate, and the remaining high-velocity flux component selectively collides with the substrate to form the structure. A method for forming a structure, comprising:
【請求項9】 前記微粒子は、脆性材料の微粒子である
ことを特徴とする請求項8に記載の構造物形成方法。
9. The method according to claim 8, wherein the fine particles are fine particles of a brittle material.
JP2001130638A 2001-04-27 2001-04-27 Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method Expired - Lifetime JP4925520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001130638A JP4925520B2 (en) 2001-04-27 2001-04-27 Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001130638A JP4925520B2 (en) 2001-04-27 2001-04-27 Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method

Publications (2)

Publication Number Publication Date
JP2002320879A true JP2002320879A (en) 2002-11-05
JP4925520B2 JP4925520B2 (en) 2012-04-25

Family

ID=18978971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001130638A Expired - Lifetime JP4925520B2 (en) 2001-04-27 2001-04-27 Composite structure forming nozzle, composite structure forming apparatus, and composite structure forming method

Country Status (1)

Country Link
JP (1) JP4925520B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure
JP2006032485A (en) * 2004-07-13 2006-02-02 Brother Ind Ltd Method of forming piezoelectric film
JP2007084925A (en) * 2005-08-24 2007-04-05 Brother Ind Ltd Film forming apparatus and method of film formation
JP2010096421A (en) * 2008-10-16 2010-04-30 Noritz Corp Circulation adapter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4744083B1 (en) * 1968-12-02 1972-11-07
JPS62163758A (en) * 1985-12-20 1987-07-20 ノ−ドソン コ−ポレ−シヨン Adjustable flat pattern powder spray gun
JPH04188503A (en) * 1990-11-22 1992-07-07 Vacuum Metallurgical Co Ltd Method and apparatus for manufacture of ceramic dielectric products
JPH09103716A (en) * 1995-10-12 1997-04-22 Ransburg Ind Kk Powder spray gun and cap for same
JPH10202171A (en) * 1997-01-27 1998-08-04 Agency Of Ind Science & Technol Method for fine shaping and its device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4744083B1 (en) * 1968-12-02 1972-11-07
JPS62163758A (en) * 1985-12-20 1987-07-20 ノ−ドソン コ−ポレ−シヨン Adjustable flat pattern powder spray gun
JPH04188503A (en) * 1990-11-22 1992-07-07 Vacuum Metallurgical Co Ltd Method and apparatus for manufacture of ceramic dielectric products
JPH09103716A (en) * 1995-10-12 1997-04-22 Ransburg Ind Kk Powder spray gun and cap for same
JPH10202171A (en) * 1997-01-27 1998-08-04 Agency Of Ind Science & Technol Method for fine shaping and its device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure
JP2006032485A (en) * 2004-07-13 2006-02-02 Brother Ind Ltd Method of forming piezoelectric film
JP2007084925A (en) * 2005-08-24 2007-04-05 Brother Ind Ltd Film forming apparatus and method of film formation
JP2010096421A (en) * 2008-10-16 2010-04-30 Noritz Corp Circulation adapter

Also Published As

Publication number Publication date
JP4925520B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP3554735B2 (en) Composite structure, method of manufacturing the same, and manufacturing apparatus
JP3348154B2 (en) Composite structure, method of manufacturing the same, and manufacturing apparatus
JP3500393B2 (en) Composite structure and manufacturing method thereof
Lee et al. Growth process of α‐Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition
EP1666636A1 (en) Vacuum cold spray process
JP2002235181A (en) Composite structure, its manufacturing method and fabricating device
JP2001181859A (en) Method and apparatus for manufacturing composite structure
JP2003277948A (en) Composite structure and method for manufacturing the same
JP2002320879A (en) Nozzle for forming composite structure, composite structure forming device and composite structure forming method
JP2003119575A (en) Method and apparatus for forming composite structure
KR101336755B1 (en) Thin film coating method of hard metal
JP3850257B2 (en) Low temperature forming method for brittle material structures
JP2003277949A (en) Composite structure and method and apparatus for forming the same
JP2004256920A (en) Composite structure, and method and device for producing the same
JP2021059754A (en) Method of manufacturing magnetic particle formation
JP2003117450A (en) Method and apparatus for forming composite structure
JP3874683B2 (en) Composite structure manufacturing method
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
US20100092662A1 (en) Rough Bonding Agent Layers by Means of HS-PVD or Cold Spray
US11473200B2 (en) Fine and micro feature cold spray deposition of semiconductors, magnetic and other brittle functional materials
JP2004107757A (en) Composite structure
Park et al. Microstructural features correlated with the electrical properties and plasticity-based deposition of silver particles through the vacuum kinetic spray process
JP2003183847A (en) Process and apparatus for manufacturing composite structure
JP2005256017A (en) Apparatus and method for arranging particles
JP2002312910A (en) Magnetic mead and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term