JP2002313419A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2002313419A
JP2002313419A JP2001111746A JP2001111746A JP2002313419A JP 2002313419 A JP2002313419 A JP 2002313419A JP 2001111746 A JP2001111746 A JP 2001111746A JP 2001111746 A JP2001111746 A JP 2001111746A JP 2002313419 A JP2002313419 A JP 2002313419A
Authority
JP
Japan
Prior art keywords
vol
aqueous
secondary battery
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001111746A
Other languages
Japanese (ja)
Inventor
Koji Kanekiyo
浩司 兼清
Masataka Yamashita
正隆 山下
Tomotaka Hashimoto
知孝 橋本
Yuji Wakimoto
祐二 脇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001111746A priority Critical patent/JP2002313419A/en
Publication of JP2002313419A publication Critical patent/JP2002313419A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery having a high capacity, capable of preventing a swelling due to generation of gas from occurring, and having excellent low temperature characteristics. SOLUTION: This non-aqueous secondary battery comprises (A) a positive electrode having a specific surface area of 0.3 m<2> /g or more and formed of positive electrode active material, (B) a negative electrode formed of negative electrode active material, and (C) non-aqueous electrolyte formed of an electrolyte and a non-aqueous solvent. At least 25 to 4.0 vol.% of ethylene carbonate, 25 to 60 vol.% of ethyl methyl carbonate, and 10 to 40 vol.% of diethyl carbonate in volume ratio are contained as the solvent components of the non-aqueous electrolyte in the non-aqueous secondary battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で、ガス発
生に起因する膨れが抑制され、かつ、良好な低温特性を
もつ非水系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery having a high capacity, suppressing swelling due to gas generation, and having good low-temperature characteristics.

【0002】[0002]

【従来の技術】近年、電子携帯機器の発達に伴ない、そ
の駆動源となる電池の発達には著しいものがある。その
中でもリチウムイオン二次電池は高いエネルギー密度を
有することから特に注目を集めている。現在、一般的に
知られているリチウムイオン二次電池は、負極活物質に
は炭素素材、アモルファス合金、アモルファス金属酸化
物などの可逆的にリチウム吸蔵放出が可能な物質を、正
極活物質にはコバルト、ニッケル、マンガン等の遷移金
属を含むリチウム複合酸化物を用い、両極間をリチウム
イオンが移動することによって充放電を行う機構を有し
ている。両極に使用される活物質はエネルギー密度が高
いため電池の小型化、軽量化が可能となる。このため、
リチウムイオン二次電池は、小型化、軽量化が望まれる
カメラ一体型VTRあるいは携帯電話等の携帯機器に多
く使用されるようになってきている。特に、角型電池は
円筒型電池に比べ、電池パックなどへのスペース効率が
高いため、近年、需要が急速に伸びている。
2. Description of the Related Art In recent years, along with the development of electronic portable devices, there has been a remarkable progress in the development of batteries as driving sources thereof. Among them, lithium ion secondary batteries have attracted particular attention because of their high energy density. At present, generally known lithium ion secondary batteries use a material capable of reversibly inserting and extracting lithium such as a carbon material, an amorphous alloy, and an amorphous metal oxide as a negative electrode active material, and a positive electrode active material. Using a lithium composite oxide containing a transition metal such as cobalt, nickel, and manganese, a mechanism is provided for charging and discharging by moving lithium ions between the two electrodes. Since the active material used for both electrodes has a high energy density, the size and weight of the battery can be reduced. For this reason,
2. Description of the Related Art Lithium ion secondary batteries are increasingly used in portable devices such as a camera-integrated VTR or a mobile phone, for which reduction in size and weight is desired. In particular, the demand for a square battery is rapidly increasing in recent years because space efficiency for a battery pack or the like is higher than that of a cylindrical battery.

【0003】しかしながら、最近この角型電池におい
て、特に高温で長期間保存した場合などに、電池内部で
ガスが発生することによる外装缶の膨れが問題となって
いる。中でも、小型化・軽量化のため、外装缶に用いて
いる金属の肉厚を薄くしたり、強度は弱いが軽量な金属
であるアルミニウムなどを外装缶に用いた場合、この問
題がより顕著に現れている。従来、特開平9−2702
70号公報、特開平11−250932号公報、特開2
000−260400号公報、特開2000−2771
46号公報などで、これらの改良技術が提案されている
が、未だ充分に満足のいく結果が得られていないのが現
状である。
[0003] However, recently, in such a rectangular battery, particularly when stored at a high temperature for a long period of time, there is a problem that the outer can is swollen due to generation of gas inside the battery. In particular, this problem becomes more prominent when the thickness of the metal used for the outer can is reduced for downsizing and weight reduction, or when the outer can is made of aluminum or the like, which is a weak but lightweight metal. Is appearing. Conventionally, JP-A-9-2702
No. 70, JP-A-11-250932, JP-A-2
000-260400, JP-A-2000-2771
Although these improved techniques are proposed in Japanese Patent Publication No. 46, 46 and the like, at present, satisfactory results have not yet been obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高容量で、
ガス発生に起因する膨れが抑制され、かつ、良好な低温
特性をもつ非水電解質二次電池を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has a high capacity,
It is an object of the present invention to provide a non-aqueous electrolyte secondary battery in which swelling due to gas generation is suppressed and has good low-temperature characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記課題
を解決するために、電解液溶媒の種類及び混合体積比と
正極活物質の窒素ガス吸着BET比表面積に着目し、鋭
意研究を重ねた結果、3種類以上の電解液溶媒を混合
し、電解液溶媒の混合体積比がある特定範囲にあり、か
つ、正極活物質の窒素ガス吸着BET比表面積がある特
定範囲にあるとき、高容量で、ガス発生に起因する膨れ
が抑制され、かつ、低温特性に優れた非水系二次電池を
得ることができることを見出し、本発明を完成するに至
った。
Means for Solving the Problems In order to solve the above problems, the present inventors have focused on the type and mixing volume ratio of the electrolyte solvent and the BET specific surface area of the positive electrode active material for nitrogen gas adsorption, and have conducted intensive studies. As a result of the superposition, when three or more kinds of electrolyte solvents are mixed and the mixing volume ratio of the electrolyte solvents is in a certain range and the nitrogen gas adsorption BET specific surface area of the positive electrode active material is in a certain range, a high The inventors have found that a nonaqueous secondary battery having a capacity that suppresses swelling due to gas generation and has excellent low-temperature characteristics can be obtained, and has completed the present invention.

【0006】すなわち、本発明は、(A)比表面積が
0.3m2/g以上の正極活物質からなる正極と、
(B)負極活物質からなる負極と、(C)電解質と非水
溶媒とからなる非水電解液とから構成された非水系二次
電池において、非水電解液の溶媒成分として、少なくと
もエチレンカーボネート、エチルメチルカーボネート及
びジエチルカーボネートの3種を含み、非水電解液の溶
媒中に、エチレンカーボネートが25vol%以上40
vol%以下、エチルメチルカーボネートが25vol
%以上60vol%以下、ジエチルカーボネートが10
vol%以上40vol%以下の体積割合で含まれてい
ることを特徴とする非水系二次電池である。
That is, the present invention provides (A) a positive electrode comprising a positive electrode active material having a specific surface area of 0.3 m 2 / g or more;
In a non-aqueous secondary battery composed of (B) a negative electrode composed of a negative electrode active material and (C) a non-aqueous electrolyte composed of an electrolyte and a non-aqueous solvent, at least ethylene carbonate is used as a solvent component of the non-aqueous electrolyte. , Ethyl methyl carbonate and diethyl carbonate, and the solvent of the non-aqueous electrolyte contains 25% by volume or more of ethylene carbonate in an amount of 25 vol% or more.
vol% or less, 25 vol of ethyl methyl carbonate
% Or more and 60 vol% or less, and diethyl carbonate is 10% or less.
A non-aqueous secondary battery characterized by being contained in a volume ratio of not less than vol% and not more than 40 vol%.

【0007】非水電解液の溶媒成分として、更に、プロ
ピレンカーボネートが、非水電解液の全溶媒中に10v
ol%以下の体積割合で含まれていることが好ましい。
さらに、負極活物質に黒鉛質炭素が含まれていることが
好ましい。また、エチレン性不飽和カルボン酸エステル
モノマーを含むモノマー類を重合させて得られるポリマ
ーが、正極、負極及び非水電解液の少なくとも1つに含
まれていることが好ましい。
[0007] As a solvent component of the non-aqueous electrolyte, propylene carbonate further contains 10 v in all solvents of the non-aqueous electrolyte.
It is preferable that it is contained at a volume ratio of not more than ol%.
Further, it is preferable that the negative electrode active material contains graphitic carbon. Further, it is preferable that a polymer obtained by polymerizing monomers containing an ethylenically unsaturated carboxylic acid ester monomer is contained in at least one of the positive electrode, the negative electrode, and the nonaqueous electrolyte.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、正極活物質には、電気化学的にリチウ
ムイオンを吸蔵・放出可能な公知のもの全てが使用でき
るが、中でも、リチウムを含んだ材料が好ましい。例え
ば、リチウム複合金属酸化物LiXYZ2 (M
は、遷移金属元素のCo、Ni、Fe、Mn、Cr、
V、Ti、Cu、Zrの中から選ばれた少なくとも1種
の金属、Nは、Al、In、Sn、B、Mg、Si、G
e、Ga、Y、La、Ce、Pr、Nd、Smの中から
選ばれた少なくとも1種の金属、0<X≦1.1、0.
5≦Y≦1.0、0≦Z≦0.1)であることが好まし
く、さらには、一般式LiX CoY Z2 (Nは、A
l、In、Sn、B、Mg、Si、Ge、Ga、Y、L
a、Ce、Pr、Nd、Smの中から選ばれた少なくと
も1種の金属、0<X≦1.1、0.5≦Y≦1.0、
0≦Z≦0.1)を有するコバルト酸リチウム類がより
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, as the positive electrode active material, all known materials capable of electrochemically inserting and extracting lithium ions can be used, and among them, a material containing lithium is preferable. For example, a lithium composite metal oxide Li X M Y N Z O 2 (M
Represents transition metal elements Co, Ni, Fe, Mn, Cr,
At least one metal selected from V, Ti, Cu, and Zr, and N is Al, In, Sn, B, Mg, Si, G
e, at least one metal selected from Ga, Y, La, Ce, Pr, Nd, and Sm, 0 <X ≦ 1.1, 0.
It is preferably 5 ≦ Y ≦ 1.0,0 ≦ Z ≦ 0.1 ), furthermore, the general formula Li X Co Y N Z O 2 (N, A
1, In, Sn, B, Mg, Si, Ge, Ga, Y, L
at least one metal selected from a, Ce, Pr, Nd and Sm, 0 <X ≦ 1.1, 0.5 ≦ Y ≦ 1.0,
Lithium cobalt oxides having 0 ≦ Z ≦ 0.1) are more preferred.

【0009】本発明において、比表面積が0.3m2
g以上の正極活物質からなる正極を用いることが必要で
ある。正極活物質の比表面積が0.3m2/g未満の場
合には、低温での出力特性が悪化し、実用的でなくな
る。比表面積は、窒素ガスを用いてコールター社製のS
A3100を使用して測定したBET比表面積を表す。
正極集電体としては、アルミニウム、チタン、ステンレ
ス等の金属箔、エキスパンドメタル、パンチメタル、発
泡メタル、カーボンクロス、カーボンペーパー等が用い
られる。
In the present invention, the specific surface area is 0.3 m 2 /
It is necessary to use a positive electrode comprising at least g of the positive electrode active material. When the specific surface area of the positive electrode active material is less than 0.3 m 2 / g, the output characteristics at low temperatures are deteriorated and are not practical. The specific surface area was measured using Coalter's S
The BET specific surface area is measured using A3100.
As the positive electrode current collector, metal foil such as aluminum, titanium, and stainless steel, expanded metal, punched metal, foamed metal, carbon cloth, carbon paper, and the like are used.

【0010】負極活物質としては、電気化学的にリチウ
ムイオンを吸蔵・放出可能な公知のもの全てを使用する
ことができるが、例えば、黒鉛粉末、メソフェーズ炭素
繊維、メソフェーズ小球体等のカーボン及び金属、合
金、酸化物、窒化物等が好ましく用いられる。特に、負
極活物質に比重の大きな黒鉛質炭素を含んでいると、電
池缶内での活物質充填密度を上げることができ、高容量
化が可能であるためより好ましい。負極集電体として
は、銅、ニッケル、ステンレスなどの金属箔、エキスパ
ンドメタル、パンチメタル、発泡メタル、カーボンクロ
ス、カーボンペーパー等が用いられる。
As the negative electrode active material, any known materials capable of electrochemically storing and releasing lithium ions can be used. For example, carbon and metal such as graphite powder, mesophase carbon fiber, and mesophase small spheres can be used. , Alloys, oxides, nitrides and the like are preferably used. In particular, it is more preferable that the negative electrode active material contains graphitic carbon having a large specific gravity because the active material filling density in the battery can can be increased and the capacity can be increased. As the negative electrode current collector, metal foil such as copper, nickel, and stainless steel, expanded metal, punched metal, foamed metal, carbon cloth, carbon paper, and the like are used.

【0011】非水系電解液の電解質には、公知のいずれ
のものでも使用することができ、例えば、LiCl
4、LiAsF6、LiPF6、LiBF4、LiB(C
654、LiCl、LiBr、CF3SO3Li等が挙
げられる。非水系電解液の溶媒としては、エチレンカー
ボネート、エチルメチルカーボネート及びジエチルカー
ボネートの混合物が用いられる。さらに、この混合物に
プロピレンカーボネートを加えることが好ましい。非水
電解液の溶媒中に、エチレンカーボネートが25vol
%以上40vol%以下、好ましくは25vol%以上
35vol%以下、エチルメチルカーボネートが25v
ol%以上60vol%以下、好ましくは30vol%
以上55vol%以下、ジエチルカーボネートが10v
ol%以上40vol%以下、好ましくは15vol%
以上35vol%以下含まれる。
As the electrolyte of the non-aqueous electrolyte, any known electrolyte can be used.
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, LiCl, LiBr, include CF 3 SO 3 Li and the like. As a solvent of the non-aqueous electrolyte, a mixture of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate is used. Further, it is preferable to add propylene carbonate to this mixture. 25 vol of ethylene carbonate in the solvent of the non-aqueous electrolyte
% To 40 vol%, preferably 25 vol% to 35 vol%, ethyl methyl carbonate is 25 v
ol% or more and 60 vol% or less, preferably 30 vol%
Not less than 55 vol%, diethyl carbonate is 10 v
ol% or more and 40 vol% or less, preferably 15 vol%
Not less than 35 vol%.

【0012】非水電解液の溶媒中のエチレンカーボネー
ト及びジエチルカーボネートは、各々、含有率が40v
ol%を超えると、電解液の低温でのイオン伝導度が小
さくなり低温特性が実用的でなくなる。非水電解液の溶
媒中のエチルメチルカーボネートの含有率が25vol
%未満であると、電解液の低温でのイオン伝導度が小さ
くなって低温特性が実用的でなくなり、含有率が60v
ol%を越えると、高温保存などでのガス発生が大きく
膨れが抑制できなくなる。エチレンカーボネートの含有
率が25vol%未満、又は非水電解液の溶媒成分中の
ジエチルカーボネートの含有率が10vol%未満であ
ると、高温時での電気特性などが悪くなり、実用的でな
くなる。
Each of ethylene carbonate and diethyl carbonate in the solvent of the non-aqueous electrolyte has a content of 40 v
If it exceeds ol%, the ionic conductivity of the electrolyte at low temperature becomes small, and the low temperature characteristics become impractical. The content of ethyl methyl carbonate in the solvent of the non-aqueous electrolyte is 25 vol.
%, The ionic conductivity of the electrolyte at a low temperature becomes low, and the low-temperature characteristics become impractical.
When the amount exceeds ol%, gas generation during high-temperature storage or the like becomes large and swelling cannot be suppressed. If the content of ethylene carbonate is less than 25 vol%, or if the content of diethyl carbonate in the solvent component of the non-aqueous electrolyte is less than 10 vol%, the electrical properties at high temperatures are deteriorated, which is not practical.

【0013】上記の非水電解液の溶媒成分として、更
に、プロピレンカーボネートを、全溶媒中に体積割合と
して10vol%以下の割合で含まれていると、電解液
の低温でのイオン伝導度が大きくなり、低温特性がさら
に良くなるので好ましい。より好ましくは1vol%以
上10vol%、最も好ましく5〜10vol%であ
る。ただし、プロピレンカーボネートの含有率が、全溶
媒中で10vol%を越えると、高温保存時などにガス
の発生量が多くなり易く、電池容器の膨れが発生する。
When propylene carbonate is further contained as a solvent component of the nonaqueous electrolyte in a volume ratio of 10 vol% or less in all the solvents, the ionic conductivity of the electrolyte at a low temperature becomes large. This is preferable because the low-temperature characteristics are further improved. More preferably, it is 1 vol% or more and 10 vol%, most preferably 5 to 10 vol%. However, when the content of propylene carbonate exceeds 10 vol% in all the solvents, the amount of gas generated tends to increase during storage at a high temperature or the like, and the battery container swells.

【0014】非水電解液の溶媒成分中に、上記以外の溶
媒を含有することができる。このような溶媒は、特に制
限はなく、公知のいずれのものでも使用することができ
る。このような溶媒として、例えば、ジメチルカーボネ
ート、γ−ブチルラクトン、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等を挙げること
ができる。このような溶媒は、一種又は二種以上含まれ
ていてもよい。
[0014] The solvent component of the non-aqueous electrolyte may contain a solvent other than those described above. Such a solvent is not particularly limited, and any known solvent can be used. Examples of such a solvent include dimethyl carbonate, γ-butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran,
Examples thereof include 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile. One or more such solvents may be contained.

【0015】正極と負極の短絡防止のためのセパレータ
を設けることができる。このセパレーターとしては、通
常、ポリエチレン、ポリプロピレン等のポリオレフィン
樹脂の微多孔膜が用いられるが、セルロース、芳香族ポ
リアミド、フッ素樹脂、ポリオレフィン等の樹脂、又は
アルミナ、シリカ等の無機物の少なくとも1種もしくは
これらの混合物で構成される不織布、抄紙、多孔膜等の
構造体、固体電解質のフィルム等、いずれの形態であっ
てもよく、イオンの透過性が高く、かつ、正極と負極を
電気的に隔離する機能を有するものであればよい。
A separator for preventing short circuit between the positive electrode and the negative electrode can be provided. As the separator, a microporous film of a polyolefin resin such as polyethylene or polypropylene is usually used, but at least one of inorganic materials such as cellulose, aromatic polyamide, fluororesin, polyolefin, or alumina or silica, or a mixture thereof. Nonwoven fabric, papermaking, structure such as porous membrane, solid electrolyte film, etc. composed of a mixture of the above may be any form, high ion permeability, and electrically isolates the positive and negative electrodes What is necessary is just to have a function.

【0016】本発明において、二次電池の電池形態は特
に限定されず、円筒型、角形、薄角型、カード型、コイ
ン型、シート型などいかなる形態にも適用可能である
が、角形、薄角型、カード型、コイン型、シート型の形
態がより効果的である。更に、アルミニウム等の金属箔
の層とポリマーシートの層を接着剤にて接合したラミネ
ートフィルムを外装体に用いたシート型形状の電池にお
いては、電解液を膨潤させることのできるポリマーを正
極、負極及び非水電解液の少なくとも1つに含むこと
が、漏液防止の観点から好ましい。
In the present invention, the battery form of the secondary battery is not particularly limited, and can be applied to any form such as a cylindrical type, a square type, a thin type, a card type, a coin type and a sheet type. Square, card, coin, and sheet forms are more effective. Further, in a sheet-shaped battery using a laminate film in which a layer of a metal foil such as aluminum and a layer of a polymer sheet is bonded with an adhesive as an outer package, a polymer capable of swelling an electrolyte is used as a positive electrode, a negative electrode, And at least one of the non-aqueous electrolytes is preferable from the viewpoint of preventing liquid leakage.

【0017】電解液を膨潤させることのできるポリマー
としては、例えば、下記に示すようなエチレン性不飽和
カルボン酸エステルモノマーを含むモノマー類を重合さ
せて得られるホモ又はコポリマーが選ばれる。 1.アクリル酸エステル アクリル酸メチル、アクリル酸エチル、アクリル酸プロ
ピル、アクリル酸イソプロピル、アクリル酸n−ブチ
ル、アクリル酸イソブチル、アクリル酸n−アミル、ア
クリル酸イソアミル、アクリル酸n−ヘキシル、 アク
リル酸2−エチルヘキシルなど。
As the polymer capable of swelling the electrolytic solution, for example, a homo or copolymer obtained by polymerizing monomers containing an ethylenically unsaturated carboxylic acid ester monomer as shown below is selected. 1. Acrylic esters Methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate Such.

【0018】2.メタクリル酸エステル メタクリル酸メチル、メタクリル酸エチル、メタク リ
ル酸プロピル、メタクリル酸イソプロピル、メタクリル
酸n−ブチル、メタクリル酸イソブチル、メタクリル
酸n−アミル、メタクリル酸イソアミル、メタクリル酸
n−ヘキシル、メタクリル酸2−エチルヘキシルな
ど。
2. Methacrylates Methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacryl
N-Amyl acid, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate and the like.

【0019】3.クロトン酸エステル クロトン酸メチル、クロトン酸エチル、クロトン酸プロ
ピル、クロトン酸ブチル、クロトン酸イソブチル、クロ
トン酸n−アミル、クロトン酸イソアミル、クロトン酸
n−ヘキシル、クロトン酸2−エチルヘキシルなど。
3. Crotonic acid esters Methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, isobutyl crotonate, n-amyl crotonate, isoamyl crotonate, n-hexyl crotonate, 2-ethylhexyl crotonate and the like.

【0020】4.その他 メタクリル酸ジメチルアミノエチル、メタクリル酸ジエ
チルアミノエチルなどのアミノ基含有メタクリル酸エス
テル、メトキシポリエチレングリコールモノメタクリレ
ートなどアルコキシ基含有メタクリル酸エステルなど。
ポリマー中には、上記以外のモノマー成分が50wt%
未満含まれていてもよい。
4. Others Amino group-containing methacrylates such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate, and alkoxy group-containing methacrylates such as methoxypolyethylene glycol monomethacrylate.
The polymer contains 50 wt% of other monomer components.
May be included.

【0021】エチレン性不飽和カルボン酸エステルモノ
マーとして、アクリル酸エチルを主体としたポリマー
で、前記モノマー中にアクリル酸エチルが固形分として
80wt%以上含まれている場合、電解液を良く膨潤
し、得られた電池の性能が低下せず、特に良好な漏液耐
性を維持できる観点から、特に好ましい。また、前記エ
チレン性不飽和カルボン酸エステルモノマーを含むモノ
マー類を重合させて得られるポリマーは、架橋構造を有
していてもよい。架橋構造は、例えば、前記エチレン性
不飽和カルボン酸エステルモノマーに、自己架橋構造を
与える官能基を有するラジカル重合性モノマーを加え、
重合中又は重合後に架橋させることによって形成させる
ことができる。
When the ethylenic unsaturated carboxylic acid ester monomer is a polymer mainly composed of ethyl acrylate and the monomer contains ethyl acrylate in a content of 80 wt% or more, the electrolyte swells well, It is particularly preferable from the viewpoint that the performance of the obtained battery does not decrease and particularly good liquid leakage resistance can be maintained. Further, the polymer obtained by polymerizing monomers containing the ethylenically unsaturated carboxylic acid ester monomer may have a crosslinked structure. The crosslinked structure, for example, to the ethylenically unsaturated carboxylic acid ester monomer, a radical polymerizable monomer having a functional group that provides a self-crosslinked structure,
It can be formed by crosslinking during or after polymerization.

【0022】架橋構造を与えるモノマーの具体的な例と
しては、エポキシ基含有モノマー、例えば、グリシジル
アクリレート、グリシジルメタクリレート、アリルグリ
シジルエーテル、メチルグリシジルアクリレート、メチ
ルグリシジルメタクリレート、メチロール基含有モノマ
ー、例えば、N−メチロールアクリルアミド、N−メチ
ロールメタクリルアミド、ジメチロールアクリルアミ
ド、ジメチロールメタクリルアミド等、アルコキシメチ
ル基含有モノマー、例えば、N−メトキシメチルアクリ
ルアミド、N−メトキシメチルメタクリルアミド、N−
ブトキシメチルアクリルアミド、N−ブトキシメチルメ
タクリルアミド等、ヒドロキシル基含有モノマー、シリ
ル基含有モノマー、例えば、アクリルシラン等が挙げら
れる。
Specific examples of the monomer giving the crosslinked structure include epoxy group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, methyl glycidyl acrylate, methyl glycidyl methacrylate, and methylol group-containing monomers such as N- Alkoxymethyl group-containing monomers such as methylol acrylamide, N-methylol methacrylamide, dimethylol acrylamide, dimethylol methacrylamide, for example, N-methoxymethyl acrylamide, N-methoxymethyl methacrylamide, N-
Examples thereof include a hydroxyl group-containing monomer and a silyl group-containing monomer, such as butoxymethylacrylamide and N-butoxymethylmethacrylamide.

【0023】架橋構造を与えるモノマーの添加率は、前
記エチレン性不飽和カルボン酸エステルモノマーに対し
て0.1〜5wt%が好ましく、0.5〜3wt%がよ
り好ましい。0.1wt%未満では架橋構造が十分でな
く、架橋剤を未添加のものと比べてサイクル特性の相違
が少ない。5wt%を超える場合は、エチレン性不飽和
カルボン酸エステルモノマーを含むモノマー類を重合さ
せて得られるポリマーの膨潤度が低下することにより、
充分な漏液耐性が得られなくなる。
The proportion of the monomer giving a crosslinked structure is preferably from 0.1 to 5% by weight, more preferably from 0.5 to 3% by weight, based on the ethylenically unsaturated carboxylic acid ester monomer. If the content is less than 0.1 wt%, the crosslinked structure is not sufficient, and the difference in cycle characteristics is small as compared with the case where no crosslinking agent is added. When the content exceeds 5 wt%, the degree of swelling of a polymer obtained by polymerizing monomers including an ethylenically unsaturated carboxylic acid ester monomer is reduced.
Sufficient liquid leakage resistance cannot be obtained.

【0024】このポリマーを、正極あるいは負極に含有
させるには、エチレン性不飽和カルボン酸エステルモノ
マーを含むモノマー類を乳化重合することにより得られ
るラテックスを、電極上に塗布したり電極作成時の結着
剤として用いるなどの方法が挙げられる。電解液に含有
させる場合には、エチレン性不飽和カルボン酸エステル
モノマーを含むモノマー類を重合させて得られたポリマ
ーを電解液に直接分散させて、電池作成時に電解液を注
液して用いるなどの方法が挙げられる。
In order to incorporate this polymer into the positive electrode or the negative electrode, a latex obtained by emulsion-polymerizing monomers containing an ethylenically unsaturated carboxylic acid ester monomer is coated on the electrode or formed at the time of electrode formation. Examples of the method include a method of using as an adhesive. When contained in the electrolyte solution, a polymer obtained by polymerizing monomers containing an ethylenically unsaturated carboxylic acid ester monomer is directly dispersed in the electrolyte solution, and the electrolyte solution is injected and used when a battery is prepared. Method.

【0025】以下、本発明を実施例によりさらに詳しく
説明するが、本発明の範囲はこれに限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.

【0026】[0026]

【実施例1】正極材料として炭酸リチウム、酸化コバル
ト、酸化第二スズを混合後、大気中、850℃の温度で
8時間加熱してLiCo0.99Sn0.012を合成した。
合成したLiCo0.99Sn0.012の窒素ガス吸着BE
T比表面積は0.63m2/gであった。このLiCo
0.99Sn0.012100質量部に対して、導電材として
平均粒径3.3μmのグラファイト3質量部と平均粒径
0.04μmの非黒鉛質炭素粉末2.5質量部を混ぜ合
わせ、コンパウンドとした。このコンパウンド100質
量部に対して、ポリフッ化ビニリデンを3質量部加え、
N−メチルピロリドンを分散媒としてスラリーとした。
このとき、スラリーの固形分濃度は65wt%であっ
た。そのスラリーを厚さ20μmのアルミニウム箔上に
均一な厚さに塗工、乾燥の工程をそれぞれ2回行なって
両面塗布した。その後、ロールプレスを行ない正極を作
製した。得られた正極の塗布量は265g/m2であ
り、活物質かさ密度は2.95g/cm3であった。
Example 1 LiCo 0.99 Sn 0.01 O 2 was synthesized by mixing lithium carbonate, cobalt oxide, and stannic oxide as the positive electrode material, and then heating in air at 850 ° C. for 8 hours.
Ni gas adsorption BE of synthesized LiCo 0.99 Sn 0.01 O 2
The T specific surface area was 0.63 m 2 / g. This LiCo
To 0.99 Sn 0.01 O 2 100 parts by mass, 3 parts by mass of graphite having an average particle size of 3.3 μm and 2.5 parts by mass of non-graphitic carbon powder having an average particle size of 0.04 μm were mixed together as a conductive material. did. To 100 parts by mass of this compound, 3 parts by mass of polyvinylidene fluoride was added,
A slurry was prepared using N-methylpyrrolidone as a dispersion medium.
At this time, the solid content concentration of the slurry was 65% by weight. The slurry was applied on a 20-μm-thick aluminum foil to a uniform thickness, and the drying step was performed twice, and the slurry was applied on both sides. Thereafter, roll pressing was performed to produce a positive electrode. The coating amount of the obtained positive electrode was 265 g / m 2 , and the bulk density of the active material was 2.95 g / cm 3 .

【0027】次に、負極材料として天然黒鉛(平均粒
径:21.5μm)と石油ピッチ(軟化点80℃)を
1:3の質量比で真空中、300℃で1時間攪拌混合し
た。混合物をキノリンを用いて100℃で1時間濾過洗
浄を行った後に乾燥を施した。次いで、Ar雰囲気の焼
成炉内で1100℃、2時間焼成を行ない、有機物焼成
体被覆炭素材料とした。この被覆炭素材料を99質量部
とアセチレンブラック(電気化学工業株式会社製)を1
質量部の合計100質量部に対してカルボキシメチルセ
ルロースを1.4質量部、スチレン/ブタジエンラテッ
クスを固形分として1.8質量部、それぞれ混合し、水
を分散媒としてスラリーとした。このとき、スラリーの
固形分濃度は50wt%であった。これを厚さ12μm
の銅箔に均一な厚さに塗工、乾燥の工程をそれぞれ2回
行なって両面塗布した。その後、ロールプレスを行ない
負極を作製した。得られた負極の塗布量は両面で190
g/m 2であり、活物質かさ密度は1.34g/cm3
あった。
Next, natural graphite (average particle size) was used as a negative electrode material.
(Diameter: 21.5 μm) and petroleum pitch (softening point: 80 ° C)
The mixture was stirred and mixed at a mass ratio of 1: 3 at 300 ° C. for 1 hour in a vacuum.
Was. The mixture was filtered and washed with quinoline at 100 ° C. for 1 hour.
After cleaning, drying was performed. Next, firing in an Ar atmosphere
Firing at 1100 ° C for 2 hours in a furnace and firing organic matter
A body-coated carbon material was used. 99 parts by mass of this coated carbon material
And acetylene black (produced by Denki Kagaku Kogyo Co., Ltd.)
Carboxymethylse for 100 parts by mass
1.4 parts by mass of lulose, styrene / butadiene latex
Water, 1.8 parts by mass as solids
Was used as a dispersion medium to form a slurry. At this time, the slurry
The solid concentration was 50 wt%. This is 12μm thick
Coating and drying process twice on each copper foil
It was coated on both sides. After that, roll press
A negative electrode was manufactured. The coating amount of the obtained negative electrode was 190 on both sides.
g / m TwoAnd the bulk density of the active material is 1.34 g / cmThreeso
there were.

【0028】続いて、以上のように作製した正極及び負
極を3.8センチ×30センチの長方形に裁断し、それ
ぞれに集電用の電極タブを溶接した。この大きさに合わ
せて裁断したポリエチレン製多孔質セパレーターを挟ん
で捲回しコイル状とした。このコイルを厚み約0.3ミ
リ、大きさ約6ミリ×30ミリ×48ミリの薄角型アル
ミニウム製電池缶に挿入し、電極タブを注液口を有する
ふたに溶接した後、このふたを電池缶に溶接した。
Subsequently, the positive electrode and the negative electrode produced as described above were cut into a rectangle of 3.8 cm × 30 cm, and a current collecting electrode tab was welded to each. It was wound into a coil shape with a polyethylene porous separator cut to fit this size interposed therebetween. This coil was inserted into a thin square aluminum battery can having a thickness of about 0.3 mm and a size of about 6 mm × 30 mm × 48 mm, and the electrode tab was welded to a lid having a liquid inlet. Welded to battery can.

【0029】ふた部分にある注液口から電解液(電解質
は1モル/リットルのLiPF6、溶媒はエチレンカー
ボネート:エチルメチルカーボネート:ジエチルカーボ
ネート=33:50:17(体積%(vol%))の混
合液)を約3.3g注液し、注液口を溶接して電池缶を
密閉し、非水系二次電池を作製した。まず、この電池
を、1サイクル目は20℃で充電0.3C定電流の後、
4.2V定電圧でトータル充電時間8時間、放電0.5
C定電流で、放電終止電圧3.0Vの条件でおこない、
2サイクル目を20℃で充電0.5C定電流の後、4.
2V定電圧でトータル充電時間5時間、放電0.5C定
電流で、放電終止電圧3.0Vの条件でおこなった。こ
のときの2サイクル目の放電容量をこの電池の容量とし
た。この電池の容量は、665mAhであった。ここ
で、1Cとは、フル充電状態の充電電気量を1時間で放
電できる電流値をいう。
An electrolyte (electrolyte: 1 mol / l LiPF 6 , solvent: ethylene carbonate: ethyl methyl carbonate: diethyl carbonate = 33: 50: 17 (vol%)) was injected from the liquid inlet in the lid. About 3.3 g of the mixture was injected, the injection port was welded, and the battery can was sealed to produce a non-aqueous secondary battery. First, this battery is charged at 20 ° C. in the first cycle at a constant current of 0.3 C.
4.2V constant voltage, total charge time 8 hours, discharge 0.5
C at a constant current and a discharge end voltage of 3.0 V,
3. The second cycle, after charging at 20 ° C. and a constant current of 0.5 C,
The test was performed at a constant voltage of 2 V, a total charge time of 5 hours, a constant current of 0.5 C for discharging, and a discharge end voltage of 3.0 V. The discharge capacity in the second cycle at this time was defined as the capacity of this battery. The capacity of this battery was 665 mAh. Here, 1C refers to a current value at which a charged amount of electricity in a fully charged state can be discharged in one hour.

【0030】本発明では、1Cは650mAとして以下
の評価を行なった。次に、この電池の高温保存時の膨れ
を以下のように測定した。1サイクル目は20℃で充電
0.3C定電流の後、4.2V定電圧でトータル充電時
間8時間、放電0.5C定電流で、放電終止電圧3.0
Vの条件で行い、2サイクル目を20℃で充電0.5C
定電流の後、4.2V定電圧でトータル充電時間5時
間、放電0.5C定電流で、放電終止電圧3.0Vの条
件でおこなった。その後、3サイクル目を20℃で充電
0.5C定電流の後、4.2V定電圧でトータル充電時
間5時間行ない、1時間後に電池缶の厚みを測定した。
その後85℃のオーブンに24時間保存した後、室温に
取り出して1時間後に電池缶の厚みを測定した。この電
池において、85℃・24時間保存前後の厚み変化は
0.18mmであった。
In the present invention, the following evaluation was performed with 1C being 650 mA. Next, the swelling of this battery during high-temperature storage was measured as follows. In the first cycle, a constant current of 0.3 C was charged at 20 ° C., a total charge time of 8 hours at a constant voltage of 4.2 V, and a discharge termination voltage of 3.0 at a constant current of 0.5 C.
V under the condition of V, the second cycle is charged at 20 ° C. 0.5 C
After the constant current, the test was performed at a constant voltage of 4.2 V, a total charging time of 5 hours, a constant current of 0.5 C for discharging, and a discharge end voltage of 3.0 V. Thereafter, the third cycle was performed at a constant current of 0.5 C after charging at 20 ° C., and a total charging time of 5 hours was performed at a constant voltage of 4.2 V. After one hour, the thickness of the battery can was measured.
Thereafter, the battery can was stored in an oven at 85 ° C. for 24 hours, taken out to room temperature, and one hour later, the thickness of the battery can was measured. In this battery, the change in thickness before and after storage at 85 ° C. for 24 hours was 0.18 mm.

【0031】この電池の低温特性を以下のように測定し
た。1サイクル目は20℃で充電0.3C定電流の後、
4.2V定電圧でトータル充電時間8時間、放電0.5
C定電流で、放電終止電圧3.0Vの条件でおこない、
2サイクル目を20℃で充電0.5C定電流の後、4.
2V定電圧でトータル充電時間5時間、放電1C定電流
で、放電終止電圧3.0Vの条件でおこなった。その
後、3サイクル目を20℃で充電0.5C定電流の後、
4.2V定電圧でトータル充電時間5時間、放電は−2
0℃において1C定電流で、放電終止電圧3.0Vの条
件でおこなった。
The low temperature characteristics of this battery were measured as follows. In the first cycle, after charging at 0.3C constant current at 20 ° C,
4.2V constant voltage, total charge time 8 hours, discharge 0.5
C at a constant current and a discharge end voltage of 3.0 V,
3. The second cycle, after charging at 20 ° C. and a constant current of 0.5 C,
The test was performed at a constant voltage of 2 V, a total charging time of 5 hours, a constant current of 1 C for discharge, and a discharge end voltage of 3.0 V. After that, the third cycle was charged at 20 ° C. and after a constant current of 0.5 C.
4.2V constant voltage, total charge time 5 hours, discharge -2
The test was performed at 0 ° C. at a constant current of 1 C and a discharge end voltage of 3.0 V.

【0032】このときの、−20℃における1C定電流
での出力特性を(3サイクル目の放電容量)/(2サイ
クル目の放電容量)×100(%)として、−20℃に
おける1C定電流での出力特性を測定して、この電池の
低温特性とした。この電池の低温特性は32%であっ
た。これらの結果をまとめたものを表1に示す。
At this time, the output characteristic at a constant current of 1 C at −20 ° C. is (discharge capacity at the third cycle) / (discharge capacity at the second cycle) × 100 (%), and a constant current of 1 C at −20 ° C. And the low-temperature characteristics of this battery were measured. The low temperature characteristics of this battery were 32%. Table 1 summarizes these results.

【0033】[0033]

【実施例2〜16】実施例1の電解液について表1及び
表2の電解液溶媒組成のものを使用する以外は、実施例
1と同様の方法で非水系二次電池を作製した。この電池
の容量、85℃・24時間保存前後の厚み変化、低温特
性を実施例1と同様の方法で測定した。これらの結果を
まとめたものを、実施例2〜10は表1に、実施例11
〜16を表3に示す。
Examples 2 to 16 Non-aqueous secondary batteries were produced in the same manner as in Example 1 except that the electrolyte solutions of Examples 1 and 2 were used. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. The results are summarized in Tables 1 and 2 for Examples 2 to 10.
Table 16 are shown in Table 3.

【0034】[0034]

【比較例1〜11】実施例1の電解液について表1及び
表2の電解液溶媒組成のものを使用する以外は、実施例
1と同様の方法で非水系二次電池を作製した。この電池
の容量、85℃・24時間保存前後の厚み変化、低温特
性を実施例1と同様の方法で測定した。これらの結果を
まとめたものを表2に示す。
Comparative Examples 1 to 11 Non-aqueous secondary batteries were produced in the same manner as in Example 1 except that the electrolyte solutions of Examples 1 and 2 were used. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 2 summarizes these results.

【0035】[0035]

【実施例17,比較例12】実施例1の正極活物質につ
いて、窒素ガス吸着BET比表面積が表2のLiCoO
2を使用する以外は、実施例1と同様の方法で正極を作
製し、この正極を用いて実施例1と同様の方法で非水系
二次電池を作製した。この電池の容量、85℃・24時
間保存前後の厚み変化、低温特性を実施例1と同様の方
法で測定した。これらの結果をまとめたものを表3に示
す。
Example 17 and Comparative Example 12 For the positive electrode active material of Example 1, the nitrogen gas-adsorbed BET specific surface area was LiCoO 2 as shown in Table 2.
A positive electrode was produced in the same manner as in Example 1 except that No. 2 was used, and a non-aqueous secondary battery was produced in the same manner as in Example 1 using this positive electrode. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0036】[0036]

【実施例18,比較例13】実施例2の正極活物質につ
いて、窒素ガス吸着BET比表面積が表2のLiCoO
2を使用する以外は、実施例2と同様の方法で正極を作
製し、この正極を用いて実施例2と同様の方法で非水系
二次電池を作製した。この電池の容量、85℃・24時
間保存前後の厚み変化、低温特性を実施例1と同様の方
法で測定した。これらの結果をまとめたものを表3に示
す。
Example 18 and Comparative Example 13 With respect to the positive electrode active material of Example 2, the nitrogen gas adsorbed BET specific surface area was LiCoO 2 as shown in Table 2.
A positive electrode was produced in the same manner as in Example 2 except that No. 2 was used, and a non-aqueous secondary battery was produced in the same manner as in Example 2 using this positive electrode. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0037】[0037]

【実施例19,比較例14】実施例3の正極活物質につ
いて、窒素ガス吸着BET比表面積が表2のLiCoO
2を使用する以外は、実施例3と同様の方法で正極を作
製し、この正極を用いて実施例3と同様の方法で非水系
二次電池を作製した。この電池の容量、85℃・24時
間保存前後の厚み変化、低温特性を実施例1と同様の方
法で測定した。これらの結果をまとめたものを表3に示
す。
Example 19, Comparative Example 14 For the positive electrode active material of Example 3, the nitrogen gas adsorption BET specific surface area was LiCoO 2 as shown in Table 2.
A positive electrode was produced in the same manner as in Example 3 except that No. 2 was used, and a non-aqueous secondary battery was produced in the same manner as in Example 3 using this positive electrode. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0038】[0038]

【実施例20,比較例15】実施例4の正極活物質につ
いて、窒素ガス吸着BET比表面積が表2のLiCoO
2を使用する以外は、実施例4と同様の方法で正極を作
製し、この正極を用いて実施例4と同様の方法で非水系
二次電池を作製した。この電池の容量、85℃・24時
間保存前後の厚み変化、低温特性を実施例1と同様の方
法で測定した。これらの結果をまとめたものを表3に示
す。
Example 20 and Comparative Example 15 The positive electrode active material of Example 4 had a nitrogen gas adsorption BET specific surface area of LiCoO 2 as shown in Table 2.
A positive electrode was produced in the same manner as in Example 4 except that No. 2 was used, and a non-aqueous secondary battery was produced in the same manner as in Example 4 using this positive electrode. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0039】[0039]

【実施例21】実施例1の負極活物質について、平均粒
径18μmの繊維状グラファイトカーボン80質量部と
それに対して平均粒径4μmの黒鉛粉末を20質量部混
合した合計100質量部を使用する以外は、実施例1と
同様の方法で負極を作製し、この負極を用いて実施例1
と同様の方法で非水系二次電池を作製した。この電池の
容量、85℃・24時間保存前後の厚み変化、低温特性
を実施例1と同様の方法で測定した。これらの結果をま
とめたものを表3に示す。
Example 21 For the negative electrode active material of Example 1, a total of 100 parts by mass of a mixture of 80 parts by mass of fibrous graphite carbon having an average particle size of 18 μm and 20 parts by mass of graphite powder having an average particle size of 4 μm was used. A negative electrode was prepared in the same manner as in Example 1 except for the above, and the negative electrode was used in Example 1 using this negative electrode.
A non-aqueous secondary battery was produced in the same manner as in the above. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0040】[0040]

【実施例22】実施例1の負極について、負極活物質1
00質量部に対して、アクリル酸エチル80質量%、メ
タクリル酸メチル20質量%の組成で重合したポリマー
を含むラテックスを固形分として2質量部、カルボキシ
メチルセルロースを1.4質量部、スチレン/ブタジエ
ンラテックスを固形分として1.8質量部の割合で混合
し、水を分散媒としてスラリーとする以外は、実施例1
と同様の方法で負極を作製し、この負極を用いて実施例
1と同様の方法で非水系二次電池を作製した。この電池
の容量、85℃・24時間保存前後の厚み変化、低温特
性を実施例1と同様の方法で測定した。これらの結果を
まとめたものを表3に示す。
Example 22 The negative electrode of Example 1 was changed to the negative electrode active material 1
2 parts by mass of a latex containing a polymer polymerized with a composition of 80% by mass of ethyl acrylate and 20% by mass of methyl methacrylate as a solid content, 1.4 parts by mass of carboxymethyl cellulose, and styrene / butadiene latex with respect to 00 parts by mass. Example 1 was repeated except that water was used as a dispersion medium to form a slurry.
A negative electrode was prepared in the same manner as in Example 1, and a non-aqueous secondary battery was produced in the same manner as in Example 1 using this negative electrode. The capacity, the change in thickness before and after storage at 85 ° C. for 24 hours, and the low-temperature characteristics of this battery were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0041】[0041]

【実施例23】実施例22の電解液について、実施例1
3と同様のものを使用する以外は、実施例22と同様の
方法で非水系二次電池を作製した。この電池において、
容量、85℃・24時間保存前後の厚み変化、低温特性
を実施例1と同様の方法で測定した。これらの結果をま
とめたものを表3に示す。
[Embodiment 23] The electrolyte of Embodiment 22 is used in Embodiment 1
A non-aqueous secondary battery was fabricated in the same manner as in Example 22, except that the same battery as in No. 3 was used. In this battery,
The capacity, thickness change before and after storage at 85 ° C. for 24 hours, and low-temperature characteristics were measured in the same manner as in Example 1. Table 3 summarizes these results.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明の非水二次電池は、高容量で、ガ
ス発生に起因する膨れが抑制され、かつ、良好な低温特
性を有する。
The non-aqueous secondary battery of the present invention has a high capacity, swelling due to gas generation is suppressed, and has good low-temperature characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇本 祐二 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ07 AJ12 AK03 AL01 AL02 AL07 AL11 AM02 AM03 AM04 AM05 AM07 CJ08 DJ09 DJ16 DJ17 HJ07 5H050 AA06 AA08 AA13 AA15 BA17 CA07 CA08 CA09 CB01 CB02 CB08 CB11 DA09 EA23 GA10 HA07  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yuji Wakimoto 1-3-1 Yoko, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Asahi Kasei Corporation 5H029 AJ02 AJ03 AJ07 AJ12 AK03 AL01 AL02 AL07 AL11 AM02 AM03 AM04 AM05 AM07 CJ08 DJ09 DJ16 DJ17 HJ07 5H050 AA06 AA08 AA13 AA15 BA17 CA07 CA08 CA09 CB01 CB02 CB08 CB11 DA09 EA23 GA10 HA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)比表面積が0.3m2/g以上の
正極活物質からなる正極と、(B)負極活物質からなる
負極と、(C)電解質と非水溶媒とからなる非水電解液
とで構成された非水系二次電池において、非水電解液の
溶媒成分として、少なくともエチレンカーボネート、エ
チルメチルカーボネート及びジエチルカーボネートの3
種を含み、非水電解液の溶媒中に、エチレンカーボネー
トが25vol%以上40vol%以下、エチルメチル
カーボネートが25vol%以上60vol%以下、ジ
エチルカーボネートが10vol%以上40vol%以
下の体積割合で含まれていることを特徴とする非水系二
次電池。
1. A positive electrode comprising (A) a positive electrode active material having a specific surface area of 0.3 m 2 / g or more, (B) a negative electrode comprising a negative electrode active material, and (C) a non-aqueous solvent comprising an electrolyte and a non-aqueous solvent. In a non-aqueous secondary battery composed of an aqueous electrolyte, at least three of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate are used as solvent components of the non-aqueous electrolyte.
In the solvent of the non-aqueous electrolyte, ethylene carbonate is contained in a volume ratio of 25 vol% or more and 40 vol% or less, ethyl methyl carbonate is contained in a volume ratio of 25 vol% or more and 60 vol% or less, and diethyl carbonate is contained in a volume ratio of 10 vol% or more and 40 vol% or less. A non-aqueous secondary battery.
【請求項2】 非水電解液の溶媒成分として、更に、プ
ロピレンカーボネートが、非水電解液の溶媒中に10v
ol%以下の体積割合で含まれていることを特徴とする
請求項1記載の非水系二次電池。
2. The solvent component of the non-aqueous electrolyte further contains propylene carbonate in the solvent of the non-aqueous electrolyte at 10 V.
The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is contained in a volume ratio of not more than ol%.
【請求項3】 負極活物質に黒鉛質炭素が含まれている
ことを特徴とする請求項1又は2記載の非水系二次電
池。
3. The non-aqueous secondary battery according to claim 1, wherein the negative electrode active material contains graphitic carbon.
【請求項4】 エチレン性不飽和カルボン酸エステルモ
ノマーを含むモノマー類を重合させて得られるポリマー
が、正極、負極及び非水電解液の少なくとも1つに含ま
れていることを特徴とする請求項1〜3のいずれか1項
に記載の非水系二次電池。
4. A polymer obtained by polymerizing monomers containing an ethylenically unsaturated carboxylic acid ester monomer, wherein the polymer is contained in at least one of a positive electrode, a negative electrode and a non-aqueous electrolyte. The non-aqueous secondary battery according to any one of claims 1 to 3.
JP2001111746A 2001-04-10 2001-04-10 Non-aqueous secondary battery Withdrawn JP2002313419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111746A JP2002313419A (en) 2001-04-10 2001-04-10 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111746A JP2002313419A (en) 2001-04-10 2001-04-10 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2002313419A true JP2002313419A (en) 2002-10-25

Family

ID=18963295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111746A Withdrawn JP2002313419A (en) 2001-04-10 2001-04-10 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2002313419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156230A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2007188703A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009245799A (en) * 2008-03-31 2009-10-22 Jst Mfg Co Ltd Socket connector
JP2010199075A (en) * 2010-04-16 2010-09-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156230A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
US7438991B2 (en) 2004-11-30 2008-10-21 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell and method for charging same
JP4530822B2 (en) * 2004-11-30 2010-08-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP2007005242A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2007188703A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009245799A (en) * 2008-03-31 2009-10-22 Jst Mfg Co Ltd Socket connector
JP2010199075A (en) * 2010-04-16 2010-09-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method

Similar Documents

Publication Publication Date Title
EP1244157B1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
JP4687833B2 (en) Binder composition for secondary battery electrode and method for producing the same
JP4433509B2 (en) Binder composition for lithium ion secondary battery electrode and use thereof
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP2003151634A (en) Nonaqueous secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
US7241534B2 (en) Lithium polymer secondary cell
CN102368562A (en) Lithium ion battery
CN112786832A (en) Negative plate and lithium ion battery
JP2003229125A (en) Non-aqueous electrolyte battery
JPH1167216A (en) Nonaqueous electrolyte secondary battery
JP2003123767A (en) Collector, electrode, and battery
JP2001052699A (en) Lithium secondary battery
JP2023553144A (en) Electrochemical equipment and electronic devices
JP2006066298A (en) Lithium secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP2007134244A (en) Battery
JP2002313419A (en) Non-aqueous secondary battery
JP2020145062A (en) Negative electrode mixture for secondary battery, negative electrode for secondary battery, and secondary battery
JP2003045433A (en) Nonaqueous secondary battery
US20040048159A1 (en) Lithium polymer secondary battery
JP2005285462A (en) Nonaqueous electrolyte secondary battery
JP3383454B2 (en) Lithium secondary battery
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JPH11260411A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701