JP2002298849A - Secondary electric power source - Google Patents

Secondary electric power source

Info

Publication number
JP2002298849A
JP2002298849A JP2001103633A JP2001103633A JP2002298849A JP 2002298849 A JP2002298849 A JP 2002298849A JP 2001103633 A JP2001103633 A JP 2001103633A JP 2001103633 A JP2001103633 A JP 2001103633A JP 2002298849 A JP2002298849 A JP 2002298849A
Authority
JP
Japan
Prior art keywords
carbon material
secondary power
power supply
graphite
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001103633A
Other languages
Japanese (ja)
Inventor
Isamu Kuruma
勇 車
Takeshi Morimoto
剛 森本
Manabu Tsushima
学 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001103633A priority Critical patent/JP2002298849A/en
Priority to PCT/JP2002/003305 priority patent/WO2002082568A1/en
Publication of JP2002298849A publication Critical patent/JP2002298849A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary electric powder source of a high capacity, a high breakdown voltage and superior charging and discharging cycle reliability. SOLUTION: This secondary electric power source includes a positive electrode including activated carbon, a negative electrode including composite carbon material of graphite carbon material particle, having an interval between [002] surfaces measured by X-ray diffraction 0.334 to 0.337 nm and having a surface covered by low crystallinity carbon material, and organic electrolyte containing lithium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧及び放電容
量が高く、大電流充放電におけるサイクル信頼性に優れ
る二次電源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage and a high discharge capacity and having excellent cycle reliability in large current charging and discharging.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が提案され
ている。また、特開平8−107048には、リチウム
イオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的
方法又は電気化学的方法でリチウムイオンを吸蔵させた
炭素材料を負極に用いる電池が提案されている。特開平
9−55342には、リチウムイオンを吸蔵、脱離しう
る炭素材料をリチウムと合金を形成しない多孔質集電体
に担持させる負極を有する、上限電圧4Vの二次電源が
提案されている。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.356 nm.
There has been proposed a secondary power supply having an upper limit voltage of 3 V using an electrode in which lithium ions are previously stored in a carbon material as a negative electrode. Japanese Patent Application Laid-Open No. H08-107048 proposes a battery using, as a negative electrode, a carbon material which can occlude and desorb lithium ions by absorbing lithium ions in advance by a chemical method or an electrochemical method. Japanese Patent Application Laid-Open No. 9-55342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium.

【0004】正極に活性炭を用い、負極にリチウムイオ
ンを吸蔵、脱離しうる炭素材料を用いた二次電源は、従
来の正極、負極ともに活性炭を用いた電気二重層キャパ
シタより高耐電圧かつ高容量とすることができる。特
に、この二次電源において負極にリチウムイオン吸蔵脱
離電位の卑な黒鉛系炭素材料を用いると、より高容量に
できる。
A secondary power source using activated carbon for the positive electrode and a carbon material capable of occluding and releasing lithium ions for the negative electrode has a higher withstand voltage and higher capacity than conventional electric double layer capacitors using activated carbon for both the positive electrode and the negative electrode. It can be. In particular, when a graphite-based carbon material having a low lithium ion occlusion / desorption potential is used for the negative electrode in this secondary power supply, higher capacity can be achieved.

【0005】また、電気二重層キャパシタ、上記二次電
源以外に、高性能な二次電源としてはリチウムイオン二
次電池がある。リチウムイオン二次電池は電気二重層キ
ャパシタに比べて高電圧で作動でき高容量という性質を
有するが、抵抗が高く、急速充放電サイクルによる寿命
が電気二重層キャパシタに比べ著しく短い問題があっ
た。なお、二次電池も電気二重層キャパシタも二次電源
の1種であるが、本明細書では、以下、正極に活性炭を
含み、負極にリチウムイオンを吸蔵、脱離しうる炭素材
料を含む特定の構成の二次電源を単に二次電源という。
In addition to the electric double layer capacitor and the above-mentioned secondary power source, a high-performance secondary power source is a lithium ion secondary battery. Lithium-ion secondary batteries have the property of being able to operate at higher voltages and have higher capacities than electric double-layer capacitors, but have the problems of high resistance and a significantly shorter life due to rapid charge / discharge cycles than electric double-layer capacitors. Note that both the secondary battery and the electric double layer capacitor are one type of secondary power supply, but in the present specification, hereinafter, a specific electrode containing activated carbon in the positive electrode and a carbon material capable of inserting and extracting lithium ions in the negative electrode The secondary power supply having the configuration is simply referred to as a secondary power supply.

【0006】[0006]

【発明が解決しようとする課題】正極に活性炭を用い、
負極にリチウムイオンを吸蔵、脱離しうる炭素材料を用
いた二次電源は、リチウムイオン二次電池に比べると急
速充放電サイクルに対する耐久性は優れているが、電気
二重層キャパシタに比べると急速充放電サイクルに対す
る耐久性が不充分である。これは電気二重層キャパシタ
と構成の異なる負極と負極における電極反応の違いに起
因すると考えられる。
SUMMARY OF THE INVENTION Activated carbon is used for the positive electrode,
A secondary power supply using a carbon material capable of absorbing and desorbing lithium ions for the negative electrode is more durable to rapid charge / discharge cycles than a lithium ion secondary battery, but is quicker to charge than an electric double layer capacitor. The durability to the discharge cycle is insufficient. This is considered to be due to the difference in electrode reaction between the negative electrode and the negative electrode having a different configuration from the electric double layer capacitor.

【0007】リチウムイオンを吸蔵、脱離しうる炭素材
料には、黒鉛系炭素材料(X線回折による[002]面
の面間隔が0.337nm以下)と低結晶性炭素材料
(X線回折による[002]面の面間隔が0.338〜
0.380nm)がある。黒鉛系炭素材料はリチウムイ
オン吸蔵、脱離の電位が特に卑で、平坦な充放電曲線を
示す。そのため、実用的使用条件における放電容量は3
50〜370mAh/gであり、低結晶性炭素材料の実
用的使用条件における放電容量の200〜300mAh
/gに比べて大きい。また、低結晶性炭素材料は黒鉛系
炭素材料より密度が低いため、黒鉛系炭素材料を用いた
二次電源の方がより高いエネルギが得られる。
[0007] Carbon materials capable of absorbing and desorbing lithium ions include graphite-based carbon materials (having a [002] plane spacing of 0.337 nm or less by X-ray diffraction) and low-crystalline carbon materials (by X-ray diffraction [ 002] is 0.338 to
0.380 nm). Graphite-based carbon materials have a particularly low potential for occlusion and desorption of lithium ions, and exhibit a flat charge / discharge curve. Therefore, the discharge capacity under practical use conditions is 3
50 to 370 mAh / g, and a discharge capacity of 200 to 300 mAh under practical use conditions of a low crystalline carbon material.
/ G. Further, since the density of the low-crystalline carbon material is lower than that of the graphite-based carbon material, higher energy can be obtained by the secondary power source using the graphite-based carbon material.

【0008】一方、二次電源における急速充放電サイク
ルに対する耐久性は、主に負極の炭素材料に依存してお
り、負極の炭素材料のX線回折による[002]面の面
間隔と急速充放電サイクルに対する耐久性との間に相関
関係が存在し、[002]面の面間隔が大きい炭素材料
を用いるほど急速充放電サイクルに対する耐久性が良
い。すなわち、[002]面の面間隔が小さい黒鉛系炭
素材料に比べて、[002]面の面間隔が大きい低結晶
性炭素材料の方がサイクル特性は良い。つまり、黒鉛系
炭素材料はという点では優れるものの、急速充放電に対
する耐久性が不充分である。一方、低結晶性炭素材料は
容量は不充分であるが、急速充放電に対する耐久性が優
れている。
On the other hand, the durability of the secondary power supply to the rapid charge / discharge cycle mainly depends on the carbon material of the negative electrode, and the surface spacing of the [002] plane and the rapid charge / discharge of the carbon material of the negative electrode by X-ray diffraction. There is a correlation between the durability to the cycle and the durability to the rapid charge / discharge cycle is better as the carbon material having a larger [002] plane spacing is used. That is, as compared with a graphite-based carbon material having a small [002] plane spacing, a low crystalline carbon material having a large [002] plane spacing has better cycle characteristics. That is, although the graphite-based carbon material is excellent in terms of, it has insufficient durability against rapid charge and discharge. On the other hand, the low-crystalline carbon material has insufficient capacity but has excellent durability against rapid charge and discharge.

【0009】また、二次電源の電解液の溶媒としては、
正極活性炭に対し安定であり耐電圧が高いことからプロ
ピレンカーボネート(以下、PCという。)を主体とす
ることが好ましいが、黒鉛系炭素材料負極を用いた場
合、充電時にPCが負極上で電気分解し、充電できない
という問題がある。一方、黒鉛系炭素材料ではなく低結
晶性炭素を負極に用いた場合は、PCの電気分解は起こ
りにくい。
[0009] As a solvent for the electrolyte of the secondary power supply,
It is preferable to use mainly propylene carbonate (hereinafter referred to as PC) because it is stable with respect to the positive electrode activated carbon and has a high withstand voltage. However, when a graphite-based carbon material negative electrode is used, the PC is electrolyzed on the negative electrode during charging. And there is a problem that it cannot be charged. On the other hand, when low-crystalline carbon is used for the negative electrode instead of the graphite-based carbon material, electrolysis of PC hardly occurs.

【0010】そこで本発明は、上記問題を解決するため
に特に負極について検討することにより、高耐電圧であ
り急速充放電サイクルに対する耐久性が優れ、かつ高容
量でエネルギ密度が高い二次電源を提供することを目的
とする。
In order to solve the above-mentioned problems, the present invention examines a negative electrode in particular to provide a secondary power supply having high withstand voltage, excellent durability against rapid charge / discharge cycles, high capacity and high energy density. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明は、活性炭を含む
正極と、X線回折により測定される[002]面の面間
隔が0.334〜0.337nmである黒鉛系炭素材料
粒子の表面が低結晶性炭素材料により被覆された複合炭
素材料を含む負極と、リチウム塩を含む有機電解液と、
を有することを特徴とする二次電源を提供する。
The present invention relates to a positive electrode containing activated carbon and a surface of graphite-based carbon material particles having a [002] plane spacing of 0.334 to 0.337 nm as measured by X-ray diffraction. A negative electrode including a composite carbon material coated with a low crystalline carbon material, an organic electrolyte including a lithium salt,
And a secondary power supply characterized by having:

【0012】また、本発明は、活性炭を含む正極と、X
線回折により測定した場合に測定される[002]面の
面間隔は0.334〜0.337nmでありかつラマン
スペクトルにより測定した場合に1580cm-1近傍と
1360cm-1近傍になだらかなピークを示す炭素材料
を含む負極と、リチウム塩を含む有機電解液と、を有す
ることを特徴とする二次電源を提供する。
Further, the present invention provides a positive electrode containing activated carbon,
Spacing of [002] plane to be measured as determined by ray diffraction shows a gentle peak in the vicinity of 1580 cm -1 vicinity and 1360 cm -1 as measured by it and the Raman spectrum at 0.334~0.337nm A secondary power source is provided, comprising: a negative electrode containing a carbon material; and an organic electrolyte containing a lithium salt.

【0013】本明細書において、リチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする負極と集電体とを
接合して一体化させたものを負極体という。正極体につ
いても同様の定義とする。
In this specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of occluding and releasing lithium ions with a current collector. The same definition applies to the positive electrode body.

【0014】リチウムイオン二次電池は、正極はリチウ
ム含有遷移金属酸化物を主体とする電極、負極はリチウ
ムイオンを吸蔵、脱離しうる炭素材料を主体とする電極
であり、充電によりリチウムイオンが正極のリチウム含
有遷移金属酸化物から脱離し、負極のリチウムイオンを
吸蔵、脱離しうる炭素材料へ吸蔵され、放電により負極
からリチウムイオンが脱離し、正極にリチウムイオンが
吸蔵される。したがって、本質的には電解液中のリチウ
ムイオンは電池の充放電に関与しない。
In the lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Is released from the lithium-containing transition metal oxide, and is stored in a carbon material capable of storing and releasing lithium ions of the negative electrode. The lithium ions are released from the negative electrode by discharge, and the lithium ions are stored in the positive electrode. Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0015】一方、本発明における二次電源は、充電に
より電解液中のアニオンが正極の活性炭に吸着し、電解
液中のリチウムイオンが負極のリチウムイオンを吸蔵、
脱離しうる炭素材料へ吸蔵される。そして放電により負
極からリチウムイオンが脱離し、正極ではアニオンが脱
着する。すなわち、二次電源では充放電に電解液の溶質
が本質的に関与しており、リチウムイオン二次電池とは
充放電の機構が異なっている。そしてリチウムイオン二
次電池のように、正極活物質自体にリチウムイオンが吸
蔵、脱離することがなく、リチウムイオンの吸蔵、脱離
にともなう正極の劣化がないため、本発明の二次電源は
充放電サイクルによる劣化が少なく、長期的信頼性に優
れている。
On the other hand, in the secondary power supply according to the present invention, the anion in the electrolytic solution is adsorbed to the activated carbon of the positive electrode by charging, and the lithium ions in the electrolytic solution occlude the lithium ions in the negative electrode.
Occluded in desorbable carbon material. Then, lithium ions are desorbed from the negative electrode by discharge, and anions are desorbed from the positive electrode. That is, in the secondary power supply, the solute of the electrolytic solution is essentially involved in charging and discharging, and the charging and discharging mechanism is different from that of the lithium ion secondary battery. And, unlike a lithium ion secondary battery, lithium ions do not occlude and desorb in the positive electrode active material itself, and there is no deterioration of the positive electrode due to occlusion and desorption of lithium ions. Deterioration due to charge / discharge cycles is small and long-term reliability is excellent.

【0016】本発明者らは、二次電源において、初期充
電による電解液の分解や、急速充放電による容量劣化の
原因について鋭意検討した結果、以下のことを見出し
た。黒鉛系炭素材料を用いた負極の場合、例えばエチレ
ンカーボネート(以下、ECという。)を主溶媒として
用いると、初期充放電を行う際、電解液の分解により黒
鉛表面に、リチウムイオン伝導性を有するSEI(So
lid Electrolyte Interfac
e)被膜が形成され、溶媒のさらなる電気分解を抑制で
きる。しかし、急速な充放電において、層状構造の黒鉛
結晶子の層間にリチウムイオンの吸蔵/脱離が繰り返し
行われると、結晶子縦方向の寸法が10%程度伸縮変化
することにより、黒鉛表面の被膜は機械的に破壊され、
さらに電解液の分解が起こって修復される。この破壊、
修復は繰り返され、その際二次電源システム内の電解液
が消費され、二次電源の容量の低下につながっていると
考えられる。一方、低結晶性炭素材料は面間隔が大き
く、充放電を繰り返しても黒鉛のような寸法変化が伴わ
ないため、表面における劣化がほとんど発生しない。
The present inventors have intensively studied the causes of the decomposition of the electrolytic solution due to the initial charging and the deterioration of the capacity due to the rapid charging and discharging of the secondary power supply, and have found the following. In the case of a negative electrode using a graphite-based carbon material, for example, when ethylene carbonate (hereinafter, referred to as EC) is used as a main solvent, the graphite surface has lithium ion conductivity due to decomposition of an electrolytic solution during initial charge and discharge. SEI (So
lid Electrolyte Interfac
e) A coating is formed and further electrolysis of the solvent can be suppressed. However, in a rapid charge / discharge cycle, if lithium ions are repeatedly inserted and extracted between layers of graphite crystallites having a layered structure, the size in the vertical direction of the crystallites expands and contracts by about 10%, so that the coating on the graphite surface is reduced. Is mechanically destroyed,
Further, decomposition of the electrolytic solution occurs and the electrolyte is repaired. This destruction,
It is believed that the restoration is repeated, during which the electrolyte in the secondary power supply system is consumed, leading to a decrease in the capacity of the secondary power supply. On the other hand, a low-crystalline carbon material has a large interplanar spacing and does not involve a dimensional change unlike graphite even when charge and discharge are repeated, so that deterioration on the surface hardly occurs.

【0017】本発明者らは、低結晶性炭素材料のように
充放電サイクル耐久性に優れかつ黒鉛系炭素材料のよう
に容量が高い炭素材料を検討した。その結果、黒鉛系炭
素材料の粒子の表面を低結晶性炭素材料が均一にかつほ
ぼ完全に被覆した複合炭素材料を使用すると、黒鉛系炭
素材料表面での上記SEI被膜の劣化や電解液の分解を
防げることを見いだした。
The present inventors have studied a carbon material having excellent charge / discharge cycle durability such as a low-crystalline carbon material and a high capacity such as a graphite-based carbon material. As a result, when a composite carbon material in which the surface of the graphite-based carbon material particles is uniformly and almost completely covered with the low-crystalline carbon material is used, the deterioration of the SEI coating on the surface of the graphite-based carbon material and the decomposition of the electrolytic solution Was found to be able to prevent.

【0018】黒鉛系炭素材料の粒子を低結晶性炭素で被
覆する方法としては、例えば以下の方法が挙げられる。
X線回折により測定される[002]面の面間隔が0.
334〜0.337nmである黒鉛系炭素材料の粒子
を、例えば各種の樹脂、タール又はピッチ等の溶液に浸
漬させるなどしてあらかじめ樹脂、タール又はピッチ等
で被覆した後、樹脂、タール又はピッチを炭化する方
法。黒鉛系炭素材料の粒子表面を有機ガスと接触させ、
このガスを不活性ガス雰囲気中又は真空中で熱分解する
ことにより、黒鉛系炭素材料の粒子表面に低結晶性炭素
材料の被膜を形成する化学気相蒸着(CVD)法や化学
気相含浸法(CVI)法等。
As a method for coating particles of the graphite-based carbon material with low-crystalline carbon, for example, the following method can be mentioned.
The [002] plane spacing measured by X-ray diffraction is 0.
After the particles of the graphite-based carbon material having a size of 334 to 0.337 nm are coated with a resin, tar, or pitch in advance by, for example, immersing them in a solution of various resins, tar, or pitch, the resin, tar, or pitch is removed. How to carbonize. The particle surface of the graphite-based carbon material is brought into contact with an organic gas,
This gas is thermally decomposed in an inert gas atmosphere or in a vacuum to form a film of a low-crystalline carbon material on the surface of the graphite-based carbon material, a chemical vapor deposition (CVD) method or a chemical vapor impregnation method. (CVI) method and the like.

【0019】なかでも、より完全に均一に黒鉛系炭素材
料の粒子を被覆することができる点で、CVD法とCV
I法が好ましい。CVD法やCVI法を行う際に用いる
有機ガスとしては、メタン、エタン、プロパン、エチレ
ン、アセチレン、ブタン、ペンタン、トルエン、キシレ
ン、スチレン、ナフタレン、ベンゼン、エチルベンゼ
ン、ニトロベンゼン、クロロベンゼンからなる群から選
ばれる1種以上が好ましく使用できる。また、CVD法
やCVI法で処理する場合の熱処理温度は700〜12
00℃が好ましく、さらには800〜1100℃が好ま
しい。
Above all, the CVD method and the CV method are advantageous in that the particles of the graphite-based carbon material can be more completely and uniformly coated.
Method I is preferred. The organic gas used when performing the CVD method or the CVI method is selected from the group consisting of methane, ethane, propane, ethylene, acetylene, butane, pentane, toluene, xylene, styrene, naphthalene, benzene, ethylbenzene, nitrobenzene, and chlorobenzene. One or more types can be preferably used. The heat treatment temperature in the case of processing by the CVD method or the CVI method is 700 to 12
00 ° C is preferable, and 800 to 1100 ° C is more preferable.

【0020】本発明における複合炭素材料は、X線回折
(線源:CuKα)により測定される[002]面の面
間隔は0.334〜0.337nmであることが好まし
く、ラマンスペクトル(励起波長:514.5nm)に
おいて1580cm-1近傍と1360cm-1近傍になだ
らかな弱いピークを示しているものであることが好まし
い。本発明で使用される複合炭素材料の1例のX線回折
パターンを図1に、ラマンスペクトルを図2に示す。
The composite carbon material in the present invention preferably has a [002] plane spacing of 0.334 to 0.337 nm as measured by X-ray diffraction (ray source: CuKα), and has a Raman spectrum (excitation wavelength). : 514.5 nm) is preferably one that shows weak peaks gentle near 1580 cm -1 vicinity and 1360 cm -1 in. FIG. 1 shows an X-ray diffraction pattern and FIG. 2 shows a Raman spectrum of one example of the composite carbon material used in the present invention.

【0021】ラマンスペクトルは、炭素の表面解析を行
うものであるが、図2における1580cm-1近傍のピ
ークは低結晶性炭素材料のGバンド、1360cm-1
傍のピークは低結晶性炭素材料のDバンドを示してい
る。これらのピークがなだらかで弱いことは、表面には
ほぼ低結晶性炭素材料のみが存在していることを示して
いる。また、図1は結晶性の高い炭素材料であることを
示しており、低結晶性炭素材料に由来するピークは2θ
=26.5°付近で結晶性の高い炭素材料由来のピーク
と重なっていることがこのピークを拡大するとうかがえ
るが、はっきりとは確認しにくい。
[0021] Raman spectra, but performs a surface analysis of carbon, G band of 1580 cm -1 near the peak of the low crystalline carbon material in FIG. 2, the peak of 1360 cm -1 vicinity of the low crystalline carbon material The D band is shown. The gentleness and weakness of these peaks indicates that almost only low-crystalline carbon material exists on the surface. FIG. 1 shows that the carbon material has high crystallinity, and the peak derived from the low-crystalline carbon material has 2θ.
Although it seems that this peak expands when it overlaps with a peak derived from a highly crystalline carbon material at around = 26.5 °, it is difficult to confirm clearly.

【0022】複合炭素材料中、黒鉛系炭素材料に対する
低結晶性炭素材料の割合は、2〜30質量%であること
が好ましく、特に5〜25質量%、さらには10〜20
質量%であることが好ましい。上記割合が低すぎると、
黒鉛系炭素材料の表面が低結晶性炭素材料により完全に
覆われることは困難であり、充放電サイクル耐久性が充
分に高まらないおそれがある。一方、低結晶性炭素材料
の割合が高すぎると、負極全体の容量が低くなる。
In the composite carbon material, the ratio of the low-crystalline carbon material to the graphite-based carbon material is preferably 2 to 30% by mass, more preferably 5 to 25% by mass, further preferably 10 to 20% by mass.
It is preferable that the content is mass%. If the ratio is too low,
It is difficult to completely cover the surface of the graphite-based carbon material with the low-crystalline carbon material, and there is a possibility that the charge / discharge cycle durability may not be sufficiently improved. On the other hand, if the proportion of the low-crystalline carbon material is too high, the capacity of the entire negative electrode decreases.

【0023】本発明における正極に含まれる活性炭は、
比表面積が800〜3000m2/gであることが好ま
しい。活性炭の原料、賦活条件は限定されないが、例え
ば原料としてはやしがら、フェノール樹脂、石油コーク
ス等が挙げられ、賦活方法としては水蒸気賦活法、溶融
アルカリ賦活法等が挙げられる。特にやしがら又はフェ
ノール樹脂を原料として水蒸気賦活して得られる活性炭
が好ましい。正極の抵抗を低くするために、正極中に導
電材として導電性のカーボンブラック又は黒鉛を含ませ
ておくのも好ましく、このとき導電材は正極中に0.1
〜30質量%含まれることが好ましい。
The activated carbon contained in the positive electrode of the present invention is:
The specific surface area is preferably from 800 to 3000 m 2 / g. The raw material and the activation conditions of the activated carbon are not limited. Examples of the raw material include bean, phenolic resin, petroleum coke, and the like. Examples of the activation method include a steam activation method and a molten alkali activation method. Activated carbon obtained by activating steam from coconut or phenolic resin is particularly preferred. In order to lower the resistance of the positive electrode, it is also preferable to include conductive carbon black or graphite as a conductive material in the positive electrode.
Preferably, it is contained in an amount of from 30 to 30% by mass.

【0024】正極体の作製方法としては、例えば活性炭
粉末と導電材との混合物にバインダとしてポリテトラフ
ルオロエチレンを混合し、混練した後シート状に成形し
て正極とし、これを集電体に導電性接着剤を用いて固定
する方法がある。また、バインダとしてポリフッ化ビニ
リデン、ポリアミドイミド、ポリイミド等を溶解したワ
ニスに活性炭粉末と導電材粉末とを分散させ、この液を
ドクターブレード法等によって集電体上に塗工し、乾燥
して得てもよい。正極中に含まれるバインダの量は、正
極体の強度と容量等の特性とのバランスから1〜20重
量%であることが好ましい。
As a method of manufacturing the positive electrode body, for example, a mixture of activated carbon powder and a conductive material is mixed with polytetrafluoroethylene as a binder, kneaded, and then formed into a sheet to form a positive electrode. There is a method of fixing using a conductive adhesive. In addition, the activated carbon powder and the conductive material powder are dispersed in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, etc. are dissolved as a binder, and this liquid is coated on a current collector by a doctor blade method or the like, and dried to obtain a powder. You may. The amount of the binder contained in the positive electrode is preferably 1 to 20% by weight in view of the balance between the strength of the positive electrode body and characteristics such as capacity.

【0025】本発明における負極体は、正極同様ポリテ
トラフルオロエチレンをバインダとして負極炭素材料と
混合し混練してシート状に成形して負極を形成し、導電
性接着剤を用いて集電体に接着させて得ることができ
る。また、ポリフッ化ビニリデン、ポリアミドイミド又
はポリイミドをバインダとし、バインダとなる樹脂又は
その前駆体を有機溶媒に溶解させた溶液に負極炭素材料
を分散させ、集電体に塗工し、乾燥させて得る方法もあ
る。これらの方法のなかで集電体に塗工する方法がより
好ましい。
In the present invention, the negative electrode body is formed by mixing and kneading with a negative electrode carbon material using polytetrafluoroethylene as a binder, forming a negative electrode by using a conductive adhesive, and forming a negative electrode. It can be obtained by bonding. Further, polyvinylidene fluoride, polyamideimide or polyimide as a binder, a negative electrode carbon material is dispersed in a solution in which a resin serving as a binder or a precursor thereof is dissolved in an organic solvent, applied to a current collector, and dried. There are ways. Among these methods, the method of coating the current collector is more preferable.

【0026】集電体に前記溶液を塗工して負極体を得る
方法において、バインダとなる樹脂又はその前駆体を溶
解させる溶媒は限定されないが、バインダを構成する樹
脂又はその前駆体を容易に溶解でき、入手も容易である
ことからN−メチル−2−ピロリドン(以下、NMPと
いう)が好ましい。ここで、ポリアミドイミドの前駆体
及びポリイミドの前駆体とは、加熱することにより重合
してそれぞれポリアミドイミド及びポリイミドとなるも
のをいう。
In the method of obtaining the negative electrode body by applying the solution to the current collector, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited, but the resin constituting the binder or the precursor thereof can be easily prepared. N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) is preferable because it can be dissolved and is easily available. Here, the term "polyamideimide precursor" and "polyimide precursor" refer to those which are polymerized by heating to become polyamideimide and polyimide, respectively.

【0027】本発明において、負極におけるリチウムイ
オンを吸蔵、脱離しうる炭素材料とバインダとの重量比
は70:30〜96:4が好ましい。バインダが30重
量%より多いと、負極容量が小さくなる。バインダが4
質量%未満であると、バインダとしての効果が弱くな
り、負極と集電体との剥離が多くなる。
In the present invention, the weight ratio of the carbon material capable of occluding and releasing lithium ions in the negative electrode to the binder is preferably 70:30 to 96: 4. When the amount of the binder is more than 30% by weight, the capacity of the negative electrode becomes small. 4 binders
When the content is less than mass%, the effect as a binder is weakened, and the separation between the negative electrode and the current collector is increased.

【0028】本発明における有機電解液の溶媒として
は、正極に使用される活性炭に対する電気化学的耐久性
に優れ低温特性が良好である点からPCを含む溶媒が好
ましい。また、ハイレート充放電サイクル特性が良好で
ある点ではECを含む溶媒が好ましい。そのほかに、ブ
チレンカーボネート、ジメチルカーボネート、エチルメ
チルカーボネート、ジエチルカーボネート、スルホラ
ン、ジメトキシエタン等も使用でき、これらは単独で使
用しても2種以上の混合溶媒として使用してもよい。
As the solvent for the organic electrolytic solution in the present invention, a solvent containing PC is preferable because it has excellent electrochemical durability to activated carbon used for the positive electrode and good low-temperature characteristics. Further, a solvent containing EC is preferable in that high-rate charge / discharge cycle characteristics are good. In addition, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane and the like can be used, and these may be used alone or as a mixed solvent of two or more.

【0029】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6、LiBF4、LiClO4、Li
N(SO2CF32、CF3SO3Li、LiC(SO2
3 3、LiAsF6及びLiSbF6からなる群から選
ばれる1種以上が好ましい。電解液中のリチウム塩の濃
度は0.1〜2.5モル/L、さらには0.5〜2モル
/Lが好ましい。
Lithium contained in the organic electrolyte of the present invention
Um salt is LiPF6, LiBFFour, LiClOFour, Li
N (SOTwoCFThree)Two, CFThreeSOThreeLi, LiC (SOTwoC
FThree) Three, LiAsF6And LiSbF6Selected from the group consisting of
One or more types are preferred. Concentration of lithium salt in electrolyte
The degree is 0.1 to 2.5 mol / L, and further 0.5 to 2 mol.
/ L is preferred.

【0030】[0030]

【実施例】次に、実施例(例1〜3)と比較例(例4〜
5)により本発明をさらに具体的に説明するが、本発明
はこれらにより限定されない。なお、例1〜5のセルの
作製及び測定は、すべて露点が−60℃以下のアルゴン
グローブボックス中で行った。
EXAMPLES Next, Examples (Examples 1 to 3) and Comparative Examples (Examples 4 to 5)
The present invention will be described more specifically with reference to 5), but the present invention is not limited thereto. The production and measurement of the cells of Examples 1 to 5 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0031】[例1]平均粒径12μm、[002]面
の面間隔が0.335nmの黒鉛系粒子をフェノール樹
脂溶液に含浸し、真空脱気してから濾過し、アルゴンガ
ス雰囲気下で、室温から800℃まで4時間かけて昇温
し、800℃で4時間保持して作製した炭素材料を、ポ
リフッ化ビニリデンをNMPに溶解した溶液に分散させ
て、銅からなる集電体に塗布して乾燥し、集電体上に負
極を形成した。負極中のリチウムイオンを吸蔵、脱離し
うる炭素材料とポリフッ化ビニリデンとは質量比で9:
1であった。これをさらにロールプレス機でプレスし、
負極の面積を1cm×1cm、厚さを15μmとし、減
圧下で150℃にて10時間熱処理し、負極体を得た。
Example 1 A phenol resin solution was impregnated with graphite-based particles having an average particle size of 12 μm and a [002] plane spacing of 0.335 nm, degassed in vacuo, filtered, and treated under an argon gas atmosphere. The temperature was raised from room temperature to 800 ° C. over 4 hours, and the carbon material prepared by holding at 800 ° C. for 4 hours was dispersed in a solution in which polyvinylidene fluoride was dissolved in NMP, and applied to a current collector made of copper. And dried to form a negative electrode on the current collector. The carbon material capable of occluding and releasing lithium ions in the negative electrode and polyvinylidene fluoride have a mass ratio of 9:
It was one. This is further pressed with a roll press machine,
The area of the negative electrode was 1 cm × 1 cm, the thickness was 15 μm, and heat treatment was performed at 150 ° C. under reduced pressure for 10 hours to obtain a negative electrode body.

【0032】なお、上記炭素材料のX線回折パターンと
ラマンスペクトルを測定したところ、炭素材料全体とし
ての[002]面の面間隔は0.335nmであり、ラ
マンスペクトルでは1360cm-1近傍と1580cm
-1近傍になだらかな弱いピークが確認された。
When the X-ray diffraction pattern and Raman spectrum of the carbon material were measured, the [002] plane spacing of the entire carbon material was 0.335 nm, and the Raman spectrum was near 1360 cm -1 and 1580 cm
A gentle weak peak was observed near -1 .

【0033】次に、フェノール樹脂を原料として水蒸気
賦活法によって得られた比表面積2000m2/gの活
性炭80質量%、導電性カーボンブラック10質量%、
及びバインダとしてポリテトラフルオロエチレン10質
量%からなる混合物を、エタノールを加えて混練し、圧
延した後、200℃で2時間真空乾燥して厚さ150μ
mの電極シートを得た。この電極シートから1cm×1
cmの電極を得て、ポリアミドイミドをバインダとする
導電性接着剤を用いてアルミニウム箔に接合し、減圧下
で260℃にて10時間熱処理し、正極体を得た。
Next, 80% by mass of activated carbon having a specific surface area of 2000 m 2 / g and 10% by mass of conductive carbon black obtained by a steam activation method using a phenol resin as a raw material.
And a mixture consisting of 10% by mass of polytetrafluoroethylene as a binder, kneaded with ethanol, rolled, and then vacuum dried at 200 ° C. for 2 hours to a thickness of 150 μm.
m electrode sheets were obtained. 1cm x 1 from this electrode sheet
cm electrode was obtained, bonded to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated under reduced pressure at 260 ° C. for 10 hours to obtain a positive electrode body.

【0034】上記正極体と上記負極体とを、ポリプロピ
レン製セパレータを介してそれぞれの電極面を対向さ
せ、挟持板で挟持して素子を作製した。PCとエチルメ
チルカーボネートと(質量比1:1)の混合溶媒を用
い、LiBF4を1モル/Lの濃度で溶解した溶液を電
解液とし、前記素子を充分に含浸させて、4.2Vから
2.75Vまでの範囲で初期容量を測定した。その後、
充放電電流10mA/cm 2で、4.0Vから2.75
Vまでの範囲で充放電サイクルを行い、2000サイク
ル後の容量を測定し、容量の変化率を算出した。結果を
表1に示す。
The positive electrode body and the negative electrode body are
The respective electrode surfaces face each other with a ren separator
Then, the device was sandwiched by a sandwiching plate to produce an element. PC and ethylme
Use a mixed solvent of chill carbonate and (mass ratio 1: 1)
Yes, LiBFFourIs dissolved at a concentration of 1 mol / L.
With a solution, fully impregnated with the device, 4.2V
The initial capacity was measured in the range up to 2.75V. afterwards,
Charge / discharge current 10mA / cm TwoFrom 4.0V to 2.75
Charge / discharge cycles up to V, 2000 cycles
The capacity after the heating was measured, and the rate of change of the capacity was calculated. The result
It is shown in Table 1.

【0035】[例2]平均粒径12μm、[002]面
の面間隔が0.335nmの黒鉛系炭素材料粒子に対
し、800℃でベンゼン蒸気を導入し、所定時間CVD
法を行い、黒鉛系炭素材料粒子の表面が低結晶性炭素材
料により被覆された炭素材料を得た。ここで得られた炭
素材料を負極活性物質として用いた以外は例1と同様に
して二次電源を得て、例1と同様に評価した。結果を表
1に示す。
Example 2 A benzene vapor was introduced at 800 ° C. into graphite-based carbon material particles having an average particle diameter of 12 μm and a [002] plane spacing of 0.335 nm, and the CVD was performed for a predetermined time.
By performing the method, a carbon material in which the surfaces of the graphite-based carbon material particles were coated with a low-crystalline carbon material was obtained. A secondary power source was obtained in the same manner as in Example 1 except that the obtained carbon material was used as a negative electrode active material, and evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0036】[例3]電解液として、1モル/LのLi
BF4をECとエチルメチルカーボネートの混合溶媒
(質量比で1:1)に溶解した溶液を用いた以外は例1
と同様にして二次電源を得て、例1と同様に評価した。
結果を表1に示す。
Example 3 1 mol / L of Li as an electrolyte
Example 1 except that a solution of BF 4 dissolved in a mixed solvent of EC and ethyl methyl carbonate (1: 1 by mass) was used.
A secondary power source was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1.
Table 1 shows the results.

【0037】[例4]平均粒径12μm、[002]面
の面間隔が0.335nmの未処理の黒鉛系炭素材料粒
子を負極活性物質として用いた以外は例1と同様にして
二次電源を得て、例1と同様に評価した。結果を表1に
示す。
Example 4 A secondary power source was prepared in the same manner as in Example 1 except that untreated graphite-based carbon material particles having an average particle diameter of 12 μm and a [002] plane spacing of 0.335 nm were used as the negative electrode active material. Was obtained and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0038】[例5]平均粒径15μm、[002]面
の面間隔が0.373nmの非結晶性炭素を負極活性物
質として用いた以外は例1と同様にして二次電源を得
て、例1と同様に評価した。結果を表1に示す。
Example 5 A secondary power source was obtained in the same manner as in Example 1, except that amorphous carbon having an average particle size of 15 μm and a [002] plane spacing of 0.373 nm was used as a negative electrode active material. Evaluation was performed in the same manner as in Example 1. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】本発明によれば、活性炭正極と、黒鉛系
炭素材料粒子の表面に低結晶性炭素の被覆層を形成した
複合炭素材料を負極として用いたため、容量が大きく、
耐電圧が高く、かつ急速充放電サイクル信頼性の高い二
次電源を提供できる。
According to the present invention, the activated carbon positive electrode and the composite carbon material in which the low-crystalline carbon coating layer is formed on the surface of the graphite-based carbon material particles are used as the negative electrode.
A secondary power supply with high withstand voltage and high reliability of rapid charge / discharge cycle can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用される複合炭素材料の1例のX線
回折パターン。
FIG. 1 is an X-ray diffraction pattern of one example of a composite carbon material used in the present invention.

【図2】本発明で使用される複合炭素材料の1例のラマ
ンスペクトル。
FIG. 2 is a Raman spectrum of one example of a composite carbon material used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01M 10/40 A 10/40 H01G 9/00 301A 301D Fターム(参考) 4G046 EA02 EA03 EA05 EA06 EB02 EB04 EB06 EC02 EC06 4K030 AA09 AA10 BA27 BB01 FA10 LA11 5H029 AJ03 AJ05 AK08 AL06 AL07 AL18 AM03 AM07 CJ02 CJ08 CJ22 DJ16 DJ17 HJ00 HJ01 HJ13 5H050 AA07 AA08 BA17 CA16 CB07 CB08 CB29 DA13 FA17 FA18 FA19 GA02 GA10 GA22 HA00 HA01 HA13 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/02 H01M 10/40 A 10/40 H01G 9/00 301A 301D F-term (Reference) 4G046 EA02 EA03 EA03 EA05 EA06 EB02 EB04 EB06 EC02 EC06 4K030 AA09 AA10 BA27 BB01 FA10 LA11 5H029 AJ03 AJ05 AK08 AL06 AL07 AL18 AM03 AM07 CJ02 CJ08 CJ22 DJ16 DJ17 HJ00 HJ01 HJ13 5H050 AA07 AA08 BA17 CA16 CB07 GA02 FA17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】活性炭を含む正極と、X線回折により測定
される[002]面の面間隔が0.334〜0.337
nmである黒鉛系炭素材料粒子の表面が低結晶性炭素材
料により被覆された複合炭素材料を含む負極と、リチウ
ム塩を含む有機電解液と、を有することを特徴とする二
次電源。
1. A surface interval between a positive electrode containing activated carbon and a [002] plane measured by X-ray diffraction is 0.334 to 0.337.
A secondary power supply comprising: a negative electrode containing a composite carbon material in which the surface of graphite-based carbon material particles having a particle size of nm is coated with a low-crystalline carbon material;
【請求項2】活性炭を含む正極と、X線回折により測定
した場合に測定される[002]面の面間隔は0.33
4〜0.337nmでありかつラマンスペクトルにより
測定した場合に1580cm-1近傍と1360cm-1
傍になだらかなピークを示す炭素材料を含む負極と、リ
チウム塩を含む有機電解液と、を有することを特徴とす
る二次電源。
2. A plane distance between a positive electrode containing activated carbon and a [002] plane measured by X-ray diffraction is 0.33.
A negative electrode containing a carbon material showing a gentle peak in the vicinity of 1580 cm -1 vicinity and 1360 cm -1 when a is and was measured by Raman spectrum 4~0.337Nm, to have a, and an organic electrolyte containing a lithium salt Characteristic secondary power supply.
【請求項3】前記複合炭素材料は、X線回折により測定
した場合に測定される[002]面の面間隔が0.33
4〜0.337nmであり、かつラマンスペクトルによ
り測定した場合に1580cm-1近傍と1360cm-1
近傍になだらかなピークを示している請求項1に記載の
二次電源。
3. The composite carbon material has a [002] plane spacing of 0.33 as measured by X-ray diffraction.
A 4~0.337Nm, and 1580 cm -1 vicinity and 1360 cm -1 as measured by Raman spectrum
2. The secondary power supply according to claim 1, wherein the secondary power supply has a gentle peak in the vicinity.
【請求項4】前記複合炭素材料中、前記黒鉛系炭素材料
に対する前記低結晶性炭素材料の割合が2〜30質量%
である請求項1又は3に記載の二次電源。
4. In the composite carbon material, the ratio of the low-crystalline carbon material to the graphite-based carbon material is 2 to 30% by mass.
The secondary power supply according to claim 1, wherein:
【請求項5】前記低結晶性炭素材料は、気相の有機物の
熱分解により前記黒鉛系炭素材料の表面に生成した炭素
である請求項1、3又は4に記載の二次電源。
5. The secondary power source according to claim 1, wherein the low-crystalline carbon material is carbon generated on the surface of the graphite-based carbon material by thermal decomposition of an organic substance in a gas phase.
【請求項6】前記有機電解液の溶媒は、プロピレンカー
ボネート又はエチレンカーボネートを含む請求項1〜4
いずれかに記載の二次電源。
6. The organic electrolyte solution according to claim 1, wherein the solvent contains propylene carbonate or ethylene carbonate.
Secondary power supply according to any of the above.
【請求項7】請求項1〜6のいずれかに記載の二次電源
の製造方法であって、前記複合炭素材料は、X線回折に
より測定される[002]面の面間隔が0.334〜
0.337nmである黒鉛系炭素材料の粒子をメタン、
エタン、プロパン、エチレン、アセチレン、ブタン、ペ
ンタン、トルエン、キシレン、スチレン、ナフタレン、
ベンゼン、エチルベンゼン、ニトロベンゼン、クロロベ
ンゼンからなる群から選ばれる1種以上の有機ガスに接
触させ、前記ガスを熱分解させて前記黒鉛系炭素材料の
粒子表面に低結晶性炭素材料被膜を形成することにより
得ることを特徴とする二次電源の製造方法。
7. The method for manufacturing a secondary power supply according to claim 1, wherein said composite carbon material has a [002] plane spacing measured by X-ray diffraction of 0.334. ~
0.337 nm graphite-based carbon material particles are
Ethane, propane, ethylene, acetylene, butane, pentane, toluene, xylene, styrene, naphthalene,
Contacting with at least one organic gas selected from the group consisting of benzene, ethylbenzene, nitrobenzene, and chlorobenzene, and thermally decomposing the gas to form a low-crystalline carbon material film on the surface of the graphite-based carbon material particles; A method for manufacturing a secondary power supply, comprising:
JP2001103633A 2001-04-02 2001-04-02 Secondary electric power source Withdrawn JP2002298849A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001103633A JP2002298849A (en) 2001-04-02 2001-04-02 Secondary electric power source
PCT/JP2002/003305 WO2002082568A1 (en) 2001-04-02 2002-04-02 Secondary power source and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103633A JP2002298849A (en) 2001-04-02 2001-04-02 Secondary electric power source

Publications (1)

Publication Number Publication Date
JP2002298849A true JP2002298849A (en) 2002-10-11

Family

ID=18956660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103633A Withdrawn JP2002298849A (en) 2001-04-02 2001-04-02 Secondary electric power source

Country Status (2)

Country Link
JP (1) JP2002298849A (en)
WO (1) WO2002082568A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109909A1 (en) * 2005-04-15 2006-10-19 Enerland Co., Ltd. Hybrid electrical energy storage system
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2006332627A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
JP2007087714A (en) * 2005-09-21 2007-04-05 Hitachi Chem Co Ltd Energy storage device
WO2007139130A1 (en) * 2006-05-31 2007-12-06 Sanyo Electric Co., Ltd. High-voltage charge type nonaqueous electrolyte secondary battery
JP2011204822A (en) * 2010-03-25 2011-10-13 Jm Energy Corp Lithium-ion capacitor
JP2012195563A (en) * 2011-02-28 2012-10-11 Jm Energy Corp Lithium ion capacitor
JP2012204748A (en) * 2011-03-28 2012-10-22 Jm Energy Corp Lithium ion capacitor
US9208958B2 (en) 2011-02-28 2015-12-08 Jm Energy Corporation Lithium ion capacitor
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
JP2016146261A (en) * 2015-02-06 2016-08-12 株式会社リコー Nonaqueous electrolyte power storage element
JP2017031486A (en) * 2015-08-05 2017-02-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Silicon-alloy/carbon-composite and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265174A (en) * 1989-04-05 1990-10-29 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage unit
JPH05217604A (en) * 1992-02-07 1993-08-27 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
JPH09171815A (en) * 1991-06-17 1997-06-30 Sharp Corp Carbon negative electrode for secondary battery
JP2001345122A (en) * 2000-06-01 2001-12-14 Asahi Glass Co Ltd Secondary power source and method of manufacturing secondary power source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265174A (en) * 1989-04-05 1990-10-29 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage unit
JPH09171815A (en) * 1991-06-17 1997-06-30 Sharp Corp Carbon negative electrode for secondary battery
JPH05217604A (en) * 1992-02-07 1993-08-27 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
JP2001345122A (en) * 2000-06-01 2001-12-14 Asahi Glass Co Ltd Secondary power source and method of manufacturing secondary power source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109909A1 (en) * 2005-04-15 2006-10-19 Enerland Co., Ltd. Hybrid electrical energy storage system
JP2006332627A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
WO2006118120A1 (en) * 2005-04-26 2006-11-09 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
US8142930B2 (en) 2005-04-26 2012-03-27 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
JP2007087714A (en) * 2005-09-21 2007-04-05 Hitachi Chem Co Ltd Energy storage device
JP5127706B2 (en) * 2006-05-31 2013-01-23 三洋電機株式会社 High voltage rechargeable non-aqueous electrolyte secondary battery
WO2007139130A1 (en) * 2006-05-31 2007-12-06 Sanyo Electric Co., Ltd. High-voltage charge type nonaqueous electrolyte secondary battery
US8021787B2 (en) 2006-05-31 2011-09-20 Sanyo Electric Co., Ltd. High-voltage charge type nonaqueous electrolyte secondary cell
JP2011204822A (en) * 2010-03-25 2011-10-13 Jm Energy Corp Lithium-ion capacitor
JP2012195563A (en) * 2011-02-28 2012-10-11 Jm Energy Corp Lithium ion capacitor
US9208958B2 (en) 2011-02-28 2015-12-08 Jm Energy Corporation Lithium ion capacitor
JP2012204748A (en) * 2011-03-28 2012-10-22 Jm Energy Corp Lithium ion capacitor
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
JP2016146261A (en) * 2015-02-06 2016-08-12 株式会社リコー Nonaqueous electrolyte power storage element
JP2017031486A (en) * 2015-08-05 2017-02-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Silicon-alloy/carbon-composite and production method thereof

Also Published As

Publication number Publication date
WO2002082568A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
US11018337B2 (en) Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP3800799B2 (en) Electric double layer capacitor
EP3113261B1 (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery,
TWI670879B (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP6867821B2 (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
JP6491040B2 (en) Lithium ion secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
JPH0955342A (en) Electric double layer capacitor
JP4096438B2 (en) Secondary power supply
Arumugam et al. Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications
CN107078286B (en) Negative electrode composition for electricity storage device, negative electrode comprising same, electricity storage device, and method for producing negative electrode for electricity storage device
WO2016031977A1 (en) Negative electrode material for power storage device, manufacturing method thereof, and lithium ion power storage device
JP2002270175A (en) Secondary power source
JP2006338963A (en) Lithium ion capacitor
JP2002298849A (en) Secondary electric power source
JP2003031220A (en) Secondary power source
KR20170032905A (en) Carbon nanotube-based lithium ion battery
JP4731974B2 (en) Lithium ion capacitor
JP4705404B2 (en) Lithium ion capacitor
JP4099970B2 (en) Secondary power supply
JP3807854B2 (en) Electric double layer capacitor
JP4039071B2 (en) Secondary power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110607