JP2002292219A - Composite filter member - Google Patents

Composite filter member

Info

Publication number
JP2002292219A
JP2002292219A JP2001098825A JP2001098825A JP2002292219A JP 2002292219 A JP2002292219 A JP 2002292219A JP 2001098825 A JP2001098825 A JP 2001098825A JP 2001098825 A JP2001098825 A JP 2001098825A JP 2002292219 A JP2002292219 A JP 2002292219A
Authority
JP
Japan
Prior art keywords
filter
adsorbent
zeolite
dehumidifying
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001098825A
Other languages
Japanese (ja)
Inventor
Takehiko Yasujima
岳彦 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2001098825A priority Critical patent/JP2002292219A/en
Publication of JP2002292219A publication Critical patent/JP2002292219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Materials (AREA)
  • Drying Of Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite filter member which can remove malodor and harmful substances such as bacteria by the photocatalytic performance of a photoreactive semiconductor and by the adsorptivity of an adsorbent and which maintains excellent performance of removing harmful substances even under the condition of high humidity by the dehumidifying performance of at least one kind selected from a group of silica gel, allophane, sepiolite and zeolite. SOLUTION: The composite filter member is obtained by combining and integrating a deodorizing filter containing at least a photoreactive semiconductor and an adsorbent with a dehumidifying filter containing at least one kind selected from a group of silica gel, allophane, sepiolite and zeolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光反応性半導体の
光触媒能および吸着剤の吸着能によって悪臭や細菌など
の有害物質を除去可能であり、かつシリカゲル、アロフ
ェン、セピオライト、ゼオライトの群から選ばれる少な
くとも1種以上の除湿能によって高湿度条件下において
も優れた有害物質除去性能を保持する複合フィルタ部材
に関する。
The present invention relates to a photoreactive semiconductor capable of removing odorous substances such as odors and bacteria by the photocatalytic ability of a photoreactive semiconductor and the adsorbing ability of an adsorbent, and is selected from the group consisting of silica gel, allophane, sepiolite and zeolite. The present invention relates to a composite filter member that retains excellent harmful substance removal performance even under high humidity conditions by at least one or more types of dehumidification ability.

【0002】[0002]

【従来の技術】工場などにおける工業的に発生する悪臭
や有害化学物質、多量の廃棄物を排出する飲食店やホテ
ルなどのサービス産業における廃棄物に起因した悪臭な
どによる従来からの環境汚染の問題に加えて、最近のア
メニティ志向の高まりに伴い、一般生活空間、例えば室
内や自動車内の悪臭、有害化学物質などによる室内環境
汚染の問題がクローズアップされており、これら有害物
質の除去に対するニーズが急速に高まっている。
2. Description of the Related Art Problems of conventional environmental pollution caused by industrially generated odors and harmful chemical substances in factories, and odors caused by wastes in service industries such as restaurants and hotels that discharge a large amount of waste. In addition, with the recent rise in the amenity trend, the problem of indoor environmental pollution caused by odors in general living spaces, for example, indoors and automobiles, and harmful chemical substances has been highlighted, and the need for the removal of these harmful substances has been increasing. It is growing rapidly.

【0003】悪臭や有害化学物質などの有害物質の除去
方法としては、活性炭やゼオライトなどの多孔性物質、
いわゆる吸着剤による吸着除去が一般的である。しかし
ながら、吸着剤は大部分の有害物質に対して吸着作用し
か示さず、一定量の有害物質を吸着すると除去性能が著
しく低下する、あるいは、周囲の温度や有害物質の濃度
如何では一度吸着した有害物質が離脱してしまうなど、
その効果の持続性の点で問題があった。
[0003] As a method for removing harmful substances such as odors and harmful chemical substances, porous substances such as activated carbon and zeolite,
A so-called adsorption removal with an adsorbent is common. However, adsorbents show only an adsorption effect on most harmful substances, and the removal performance is significantly reduced when a certain amount of harmful substances are adsorbed, or harmful substances once adsorbed depending on the ambient temperature and concentration of harmful substances. Such as material detaching,
There was a problem with the persistence of the effect.

【0004】係る問題を解決するために、触媒を用いて
有害物質を分解除去する方法が考案されている。有害物
質の分解除去能を有する材料は各種知られているが、中
でも酸化チタンに代表される光反応性半導体が近年大き
な注目を集めている。例えば、Cundallらは、
J.Oil.Chem.Assoc.1978,61,
351において、酸化チタンに紫外線を照射した場合、
水とアルコールの混合系でアルコールが分解されること
を報告している。さらに特開昭61−135669号公
報においては、酸化亜鉛などの光反応性半導体に紫外線
を照射すると、悪臭物質である硫黄化合物が分解される
ことが報告されている。これら光反応性半導体による分
解反応においては、反応の進行に伴って光反応性半導体
が消費されることはなく、光に曝露されている限りその
分解能力は半永久的である。
In order to solve such a problem, a method of decomposing and removing harmful substances using a catalyst has been devised. A variety of materials having the ability to decompose and remove harmful substances are known, and among them, a photoreactive semiconductor represented by titanium oxide has attracted great attention in recent years. For example, Cundall et al.
J. Oil. Chem. Assoc. 1978, 61,
In 351, when the titanium oxide is irradiated with ultraviolet light,
It is reported that alcohol is decomposed in a mixed system of water and alcohol. Further, JP-A-61-135669 reports that when a photoreactive semiconductor such as zinc oxide is irradiated with ultraviolet rays, a sulfur compound which is a malodorous substance is decomposed. In the decomposition reaction by these photoreactive semiconductors, the photoreactive semiconductor is not consumed as the reaction proceeds, and its decomposition ability is semi-permanent as long as it is exposed to light.

【0005】光反応性半導体と吸着剤とを適宜組み合わ
せて用いることによって、優れた有害物質除去性能を得
ることが可能であり、係る構成の部材が数多く考案され
ている。しかしながら、高湿度条件下においては空気中
の水蒸気の濃度が極めて高く、通常低濃度で存在する臭
気や有害化学物質の光反応性半導体や吸着剤への吸着が
水蒸気によって阻害され、十分な有害物質除去性能が得
られないという課題があった。
By using an appropriate combination of a photoreactive semiconductor and an adsorbent, excellent harmful substance removal performance can be obtained, and many members having such a configuration have been devised. However, under high humidity conditions, the concentration of water vapor in the air is extremely high, and the adsorption of odors and harmful chemical substances, which are usually present at low concentrations, to photoreactive semiconductors and adsorbents is hindered by water vapor, and sufficient harmful substances There was a problem that the removal performance could not be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
の課題を克服した光反応性半導体の光触媒能および吸着
剤の吸着能によって悪臭や細菌などの有害物質を除去可
能であり、かつシリカゲル、アロフェン、セピオライ
ト、ゼオライトの群から選ばれる少なくとも1種以上の
除湿能によって高湿度条件下においても優れた有害物質
除去性能を保持する複合フィルタ部材を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned problems by removing the harmful substances such as odors and bacteria by the photocatalytic ability of a photoreactive semiconductor and the adsorbing ability of an adsorbent. Another object of the present invention is to provide a composite filter member which retains excellent harmful substance removal performance even under high humidity conditions by at least one kind of dehumidifying ability selected from the group consisting of allophane, sepiolite and zeolite.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決するために鋭意検討した結果、複合フィルタ部材
を発明するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have come to invent a composite filter member.

【0008】すなわち、少なくとも光反応性半導体およ
び吸着剤を含有してなる脱臭フィルタと、シリカゲル、
アロフェン、セピオライト、ゼオライトの群から選ばれ
る少なくとも1種以上を含有してなる除湿フィルタとを
複合一体化したことを特徴とする複合フィルタ部材の発
明である。
That is, a deodorizing filter containing at least a photoreactive semiconductor and an adsorbent, silica gel,
An invention of a composite filter member characterized in that a dehumidifying filter containing at least one selected from the group consisting of allophane, sepiolite and zeolite is combined and integrated.

【0009】[0009]

【発明の実施の形態】以下に、本発明の複合フィルタ部
材に係わる構成要素を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The components relating to the composite filter member of the present invention will be described below in detail.

【0010】まず、本発明の複合フィルタ部材を構成す
る脱臭フィルタについて、以下に説明する。本発明に係
わる脱臭フィルタは、少なくとも光反応性半導体および
吸着剤を含有してなるものであり、光反応性半導体の光
触媒作用および吸着剤の吸着作用によって、悪臭や有害
化学物質などの有害物質を吸着分解除去することができ
るものである。
First, a deodorizing filter constituting the composite filter member of the present invention will be described below. The deodorizing filter according to the present invention contains at least a photoreactive semiconductor and an adsorbent, and removes harmful substances such as malodors and harmful chemical substances by the photocatalytic action of the photoreactive semiconductor and the adsorption action of the adsorbent. It can be adsorbed, decomposed and removed.

【0011】まず、光反応性半導体について、以下に具
体的に説明する。本発明に係わる光反応性半導体は、有
害物質を分解除去する目的で使用されるものである。こ
こで云う光反応性半導体とは、0.5〜5eV、好まし
くは1〜3eVの禁止帯幅を有する光触媒反応を生ずる
半導体であって、光反応性半導体で生成した正孔、OH
ラジカルなどにより有害物質が分解される。光反応性半
導体の形状としては、粒子状のものが好ましく、比表面
積が10〜500m2/gの粒子を適宜選択して用いる。
First, the photoreactive semiconductor will be specifically described below. The photoreactive semiconductor according to the present invention is used for decomposing and removing harmful substances. The photoreactive semiconductor referred to here is a semiconductor that generates a photocatalytic reaction having a band gap of 0.5 to 5 eV, preferably 1 to 3 eV, and includes a hole, OH generated by the photoreactive semiconductor.
Harmful substances are decomposed by radicals. The photoreactive semiconductor is preferably in the form of particles, and particles having a specific surface area of 10 to 500 m 2 / g are appropriately selected and used.

【0012】このような光反応性半導体としては、特開
平2−273514号公報に開示されているものを挙げ
ることが可能であり、酸化亜鉛、三酸化タングステン、
酸化チタン、酸化セリウムなどの金属酸化物が好まし
く、これらの中でも、酸化チタンは、構造安定性、光反
応性半導体としての能力、取り扱い上の安全性などを考
慮した場合、特に好ましい材料である。酸化チタンとし
ては、従来汎用の酸化チタンの他、含水酸化チタン、メ
タチタン酸、オルソチタン酸、水酸化チタンと呼称され
ているチタン酸化物または水酸化物を全て包含する。酸
化チタンの製造方法としては、硫酸チタニル、塩化チタ
ン、有機チタン化合物などを必要に応じて核形成用種子
の共存下で加水分解する方法(加水分解法)、必要に応
じて核形成用種子を共存させながら、硫酸チタニル、塩
化チタン、有機チタン化合物などにアルカリ剤を添加し
て中和する方法(中和法)、加水分解および中和法で得
られた酸化チタンを焼成する方法(焼成法)などが挙げ
られ、何れの製法によって得られた酸化チタンでも用い
ることができる。
Examples of such a photoreactive semiconductor include those disclosed in JP-A-2-273514, such as zinc oxide, tungsten trioxide, and the like.
Metal oxides such as titanium oxide and cerium oxide are preferable. Among them, titanium oxide is a particularly preferable material in consideration of structural stability, ability as a photoreactive semiconductor, safety in handling, and the like. Examples of the titanium oxide include all titanium oxides or hydroxides called titanium oxide hydroxide, metatitanic acid, orthotitanic acid, and titanium hydroxide, in addition to conventional general-purpose titanium oxide. As a method for producing titanium oxide, a method of hydrolyzing titanyl sulfate, titanium chloride, an organic titanium compound or the like in the presence of seeds for nucleation as necessary (hydrolysis method), A method in which an alkaline agent is added to titanyl sulfate, titanium chloride, an organic titanium compound, etc. for neutralization while coexisting (neutralization method), and a method in which titanium oxide obtained by hydrolysis and neutralization is calcined (calcination method) And the like, and titanium oxide obtained by any of the production methods can be used.

【0013】次に、吸着剤について、以下に具体的に説
明する。本発明に係わる吸着剤は、悪臭や有害化学物質
などの有害物質の除去に係わる効果の即効性や容量を高
めることを目的として、光反応性半導体と共に用いられ
る。吸着剤を併用することによって、一時的に暗所にな
るような使用環境、紫外線量の少ない使用環境、あるい
は吸着過程が律速となる臭気成分が低濃度で存在するよ
うな使用環境においても、吸着剤の吸着作用によって高
度の有害物質除去性能を維持することが可能となる。
Next, the adsorbent will be specifically described below. The adsorbent according to the present invention is used together with a photoreactive semiconductor for the purpose of increasing the immediate effect and capacity of the effect relating to the removal of harmful substances such as odors and harmful chemical substances. By using the adsorbent together, even in a usage environment where the environment is temporarily dark, the amount of ultraviolet light is small, or the usage environment where the odor component that controls the adsorption process is present at a low concentration, it can be adsorbed. It is possible to maintain a high performance of removing harmful substances by the adsorbing action of the agent.

【0014】このような吸着剤としては、物理吸着作用
を有するものとして、活性炭、活性白土、ゼオライト、
セピオライト、シリカゲル、セラミック、活性アルミ
ナ、複合フィロケイ酸塩など、化学吸着作用を有するも
のとして、イオン交換樹脂、酸化鉄などの鉄系化合物、
有機酸など、物理化学吸着作用を有するものとして、添
着活性炭、添着ゼオライト、天然無機物などが挙げられ
る。これら従来汎用の吸着剤を各々単独で、あるいは複
数混合して用いることが可能である。
As such adsorbents, those having a physical adsorption action include activated carbon, activated clay, zeolite,
Sepiolite, silica gel, ceramic, activated alumina, composite phyllosilicate, etc., as those having a chemical adsorption action, ion-exchange resin, iron compounds such as iron oxide,
Examples of substances having a physicochemical adsorption action such as organic acids include impregnated activated carbon, impregnated zeolite, and natural inorganic substances. These conventional general-purpose adsorbents can be used alone or in combination.

【0015】本発明において、光反応性半導体および吸
着剤は適当な基材に内添または塗工することによって担
持・固定され、脱臭フィルタとして機能する。光反応性
半導体および吸着剤の支持体となる基材は、臭気成分を
通過させるための通気性、光反応性半導体を活性化させ
るための光透過性を有することが好ましい。このような
基材の形態としては、不織布あるいは多孔質フィルム状
のものが挙げられるが、坪量、通気性を制御し易く、加
工性にも優れている点から不織布が特に好ましい基材で
ある。
In the present invention, the photoreactive semiconductor and the adsorbent are carried and fixed by internally adding or coating a suitable substrate, and function as a deodorizing filter. The substrate serving as a support for the photoreactive semiconductor and the adsorbent preferably has air permeability for passing odor components and light transmissivity for activating the photoreactive semiconductor. Examples of the form of such a base material include a nonwoven fabric and a porous film, but a nonwoven fabric is a particularly preferred base material because it is easy to control the basis weight and air permeability and is excellent in workability. .

【0016】不織布を構成する素材としては、ポリアミ
ド系繊維、ポリエステル系繊維、ポリアルキレンパラオ
キシベンゾエート系繊維、ポリウレタン系繊維、ポリビ
ニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポ
リ塩化ビニル系繊維、ポリアクリロニトリル系繊維、ポ
リオレフィン系繊維、フェノール系繊維などの合成繊
維、ガラス繊維、金属繊維、アルミナ繊維、炭素繊維、
活性炭素繊維などの無機繊維、木材パルプ、麻パルプ、
コットンリンターパルプなどの天然繊維、再生繊維、あ
るいはこれらの繊維に親水性や難燃性などの機能を付与
した繊維などを使用することができる。
Materials constituting the nonwoven fabric include polyamide fibers, polyester fibers, polyalkylene paraoxybenzoate fibers, polyurethane fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, and polyacrylonitrile fibers. Synthetic fiber such as fiber, polyolefin fiber, phenol fiber, glass fiber, metal fiber, alumina fiber, carbon fiber,
Inorganic fiber such as activated carbon fiber, wood pulp, hemp pulp,
Natural fibers such as cotton linter pulp, regenerated fibers, or fibers obtained by imparting functions such as hydrophilicity and flame retardancy to these fibers can be used.

【0017】不織布の製造方法については特に制限はな
く、目的・用途に応じて、乾式法、湿式抄造法、メルト
ブローン法、スパンボンド法などで得られたウェブを水
流交絡法、ニードルパンチ法、ステッチボンド法などの
物理的方法、サーマルボンド法などの熱による接着方
法、レジンボンドなどの接着剤による方法で強度を発現
させる方法を適宜組み合わせて製造することができる。
The method for producing the nonwoven fabric is not particularly limited, and the web obtained by a dry method, a wet papermaking method, a melt blown method, a spunbond method, or the like may be subjected to a hydroentanglement method, a needle punch method, a stitch method, depending on the purpose and application. It can be produced by appropriately combining a physical method such as a bonding method, a bonding method using heat such as a thermal bonding method, or a method using a bonding agent such as a resin bond to develop strength.

【0018】不織布などの基材に光反応性半導体および
吸着剤を内添する場合には、例えば基材の製造時に基材
の素材と共に光反応性半導体および吸着剤を添加して製
造することによって、本発明の脱臭フィルタを製造する
ことができる。この時、カチオン性ポリアクリルアマイ
ド、ポリ塩化アルミニウムなどのカチオン性高分子凝集
剤や、該凝集剤と複合体を形成し、凝集を強化するよう
なアニオン性ポリアクリルアマイドなどのアニオン性高
分子凝集剤、コロイダルシリカ、ベントナイトなどのア
ニオン性無機微粒子を使用し、光反応性半導体および吸
着剤の凝集体を形成させておくことが好ましい。あるい
は、凝集体に微細繊維を含有せしめることで、凝集体の
機械的強度を一層向上させることも可能である。
When a photoreactive semiconductor and an adsorbent are internally added to a substrate such as a nonwoven fabric, for example, the photoreactive semiconductor and the adsorbent are added together with the material of the substrate at the time of production of the substrate. Thus, the deodorizing filter of the present invention can be manufactured. At this time, a cationic polymer flocculant such as a cationic polyacrylamide and polyaluminum chloride, and an anionic polymer flocculant such as an anionic polyacrylamide that forms a complex with the flocculant and enhances the flocculation. It is preferable to use an anionic inorganic fine particle such as an agent, colloidal silica and bentonite to form an aggregate of the photoreactive semiconductor and the adsorbent. Alternatively, it is also possible to further improve the mechanical strength of the aggregate by adding fine fibers to the aggregate.

【0019】一方、不織布などの基材上に光反応性半導
体および吸着剤を塗工する場合には、光反応性半導体お
よび吸着剤を基材に固定するための結着剤として、熱可
塑性樹脂の水性エマルジョン、皮膜形成性無機物、金属
酸化物複合熱可塑性高分子エマルジョンなどを各々単独
で、あるいは必要に応じて複数組み合わせて光反応性半
導体および吸着剤と混合し、各種ブレードコーター、ロ
ールコーター、エアナイフコーター、バーコーター、ロ
ッドブレードコーター、ショートドウェルコーター、ダ
イコーター、コンマコーター、リバースロールコータ
ー、キスコーター、ディップコーター、カーテンコータ
ー、エクストルージョンコーター、マイクログラビアコ
ーター、サイズプレスなどの各種塗工装置を用いて基材
に塗工することで本発明の脱臭フィルタを製造すること
ができる。
On the other hand, when a photoreactive semiconductor and an adsorbent are coated on a substrate such as a nonwoven fabric, a thermoplastic resin is used as a binder for fixing the photoreactive semiconductor and the adsorbent to the substrate. Aqueous emulsions, film-forming inorganic substances, metal oxide composite thermoplastic polymer emulsions, etc., each alone or, if necessary, in combination with a plurality of photoreactive semiconductors and adsorbents, mixed with various blade coaters, roll coaters, Using various coating equipment such as air knife coater, bar coater, rod blade coater, short dwell coater, die coater, comma coater, reverse roll coater, kiss coater, dip coater, curtain coater, extrusion coater, microgravure coater, size press, etc. By applying it to the substrate It is possible to produce a light of the deodorizing filter.

【0020】ここで云う熱可塑性樹脂の水性エマルジョ
ンとしては、水中で分散された熱可塑性高分子のことで
あって、高分子成分としては、アクリル樹脂、スチレン
−アクリル共重合体、スチレン−ブタジエン共重合体、
エチレン−酢酸ビニル共重合体、塩化ビニル−酢酸ビニ
ル共重合体、エチレン−酢酸ビニル−塩化ビニル共重合
体、ポリプロピレン、ポリエステル、フェノキシ樹脂、
フェノール樹脂、ブチラール樹脂などが挙げられる。
As used herein, the aqueous emulsion of a thermoplastic resin refers to a thermoplastic polymer dispersed in water. The polymer components include acrylic resin, styrene-acryl copolymer, and styrene-butadiene copolymer. Polymer,
Ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, polypropylene, polyester, phenoxy resin,
Phenol resin, butyral resin, and the like are included.

【0021】ここで云う皮膜形成性無機物としては、サ
ポナイト、ヘクトライト、モンモリロナイトなどのスメ
クタイト群、バーミキュライト群、カオリナイト、ハロ
イサイトなどのカオリナイト−蛇紋石群、セピオライト
などの天然粘土鉱物の他、コロイダルシリカ、コロイダ
ルアルミナおよびこれらの変性物、合成無機高分子化合
物などが例示され、該皮膜形成性無機物を各々単独で使
用しても構わないし、複数組み合わせて使用しても構わ
ない。
Examples of the film-forming inorganic substance mentioned here include smectites such as saponite, hectorite and montmorillonite, kaolinite-serpentine such as kaolinite and halloysite, natural clay minerals such as sepiolite, and colloidal. Examples thereof include silica, colloidal alumina, modified products thereof, and synthetic inorganic polymer compounds. The film-forming inorganic materials may be used alone or in combination of two or more.

【0022】上記変性物における変性とは、天然鉱物中
より不純物や特定の原子団を除去したり、天然鉱物構成
元素中の特定の元素を適当な方法で処理して他の元素と
交換したり、別の化合物(特に有機化合物)と共に化学
処理して特に鉱物表面の物性を改変することにより、元
来の天然鉱物固有の特性を伸長したり、あるいは新たな
特性を付与することであり、変性物の具体例としては、
Ca−モンモリロナイトを水の存在下で炭酸ナトリウム
などと処理してイオン交換を行ったNa−モンモリロナ
イトや、カチオン界面活性剤および/またはノニオン界
面活性剤と処理したものなどが挙げられる。
The denaturation of the above-mentioned denatured product refers to removal of impurities or specific atomic groups from natural minerals, treatment of specific elements in natural mineral constituent elements by an appropriate method, and exchange with other elements. To extend the properties inherent in natural minerals or to add new properties by chemically treating with another compound (especially an organic compound) to modify the physical properties of the mineral surface in particular. As a specific example of a thing,
Examples thereof include Na-montmorillonite obtained by treating Ca-montmorillonite with sodium carbonate or the like in the presence of water and performing ion exchange, and those treated with a cationic surfactant and / or a nonionic surfactant.

【0023】また、本発明で云う合成無機高分子化合物
とは、天然鉱物と同等の組成を得るべく、あるいは新た
な特性を付与するべく同等組成の特定の元素を他の元素
で置換したもので、2種類以上の化合物を反応させて得
られるものであって、天然雲母族の構造中の水酸基をフ
ッ素で置換したフッ素雲母や、合成スメクタイトなどが
挙げられる。フッ素雲母の代表例としては、フッ素金雲
母、フッ素四ケイ素雲母、テニオライトなどが挙げられ
る。
The synthetic inorganic high molecular compound referred to in the present invention is a compound obtained by substituting a specific element having the same composition with another element in order to obtain a composition equivalent to a natural mineral or to impart new properties. And a compound obtained by reacting two or more kinds of compounds, and examples thereof include a fluoromica in which a hydroxyl group in a structure of a natural mica family is substituted with fluorine, and a synthetic smectite. Representative examples of fluorine mica include fluorophlogopite, tetrasilicon mica, and teniolite.

【0024】ここで云う金属酸化物複合熱可塑性高分子
エマルジョンは、熱可塑性高分子エマルジョン表面を金
属酸化物が被覆している形状を有し、皮膜を形成した後
も高分子成分と金属酸化物成分が分離して海島構造を保
つ特性を有するものである。
The metal oxide composite thermoplastic polymer emulsion referred to here has a shape in which the surface of the thermoplastic polymer emulsion is covered with a metal oxide, and the polymer component and the metal oxide remain even after the film is formed. It has the property that the components separate to maintain the sea-island structure.

【0025】熱可塑性高分子エマルジョンとは、主に水
中で分散された熱可塑性高分子のことであって、高分子
成分としては、アクリル樹脂、スチレン−アクリル共重
合体、スチレン−ブタジエン共重合体、エチレン−酢酸
ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、エ
チレン−酢酸ビニル−塩化ビニル共重合体、ポリプロピ
レン、ポリエステル、フェノキシ樹脂、フェノール樹
脂、ブチラール樹脂などが挙げられる。
The thermoplastic polymer emulsion is a thermoplastic polymer mainly dispersed in water, and the polymer components include acrylic resin, styrene-acryl copolymer, and styrene-butadiene copolymer. And ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, polypropylene, polyester, phenoxy resin, phenol resin, and butyral resin.

【0026】また、ここで云う金属酸化物としては、コ
ロイダルシリカやコロイダルアルミナなどが挙げられ
る。金属酸化物複合熱可塑性高分子エマルジョン、例え
ばコロイダルシリカ複合熱可塑性高分子エマルジョン
は、特開昭59−71316号公報や、特開昭60−1
27371号公報に開示されているように、共重合性単
量体、分子内に重合性不飽和二重結合およびアルコキシ
シラン基を有する単量体やビニルシラン、コロイダルシ
リカを混合し、高分子成分を乳化重合して製造する過程
において、シリカ成分をエマルジョン表面に固定する方
法によって得られる。その方法としては、例えばInt
ernational Symposiumon Po
lymeric Microspheres Prin
ts,1991,181に記載されているように、オル
ソケイ酸エチルなどの水に相溶しない加水分解性のアル
コキシシランを用いて、あらかじめ形成されているエマ
ルジョンの表面にシリカ成分を析出、固定させる方法が
挙げられる。
The metal oxides mentioned here include colloidal silica and colloidal alumina. Metal oxide composite thermoplastic polymer emulsions, for example, colloidal silica composite thermoplastic polymer emulsions, are disclosed in JP-A-59-71316 and JP-A-60-1.
As disclosed in Japanese Patent No. 27371, a copolymerizable monomer, a monomer having a polymerizable unsaturated double bond and an alkoxysilane group in the molecule, vinyl silane, and colloidal silica are mixed to form a polymer component. In the process of producing by emulsion polymerization, it is obtained by a method of fixing a silica component to the emulsion surface. As the method, for example, Int
international Symposium Po
lymeric Microspheres Prin
ts, 1991, 181, a method of precipitating and fixing a silica component on the surface of a previously formed emulsion using a water-insoluble hydrolyzable alkoxysilane such as ethyl orthosilicate. Is mentioned.

【0027】上記の基材への光反応性半導体および吸着
剤の内添または塗工による担持・固定の他に、本発明の
脱臭フィルタに要求される特性を阻害しない範囲内にお
いて、適当な基材に、メッキ法やゾルゲル法などの湿式
法、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着
法、イオンプレーティング法、スパッタ法などの真空成
膜法、陽極酸化法などの従来公知の方法を用いて光反応
性半導体および吸着剤を担持・固定しても何等構わな
い。
In addition to carrying and fixing the photoreactive semiconductor and the adsorbent to the above-mentioned substrate by internal addition or coating, a suitable group may be used as long as the properties required for the deodorizing filter of the present invention are not impaired. Conventionally known materials such as a wet method such as a plating method and a sol-gel method, a resistance heating vacuum evaporation method, an electron beam heating vacuum evaporation method, an ion plating method, a vacuum film forming method such as a sputtering method, and an anodizing method. The photoreactive semiconductor and the adsorbent may be supported and fixed using the method.

【0028】次に、除湿フィルタについて、以下に具体
的に説明する。本発明に係わる除湿フィルタは、シリカ
ゲル、アロフェン、セピオライト、ゼオライトの群から
選ばれる少なくとも1種以上を含有してなる物であり、
空気中の水分を吸着除去する吸湿材として機能するもの
である。
Next, the dehumidifying filter will be specifically described below. The dehumidifying filter according to the present invention is a filter containing at least one selected from the group consisting of silica gel, allophane, sepiolite and zeolite,
It functions as a moisture absorbing material that adsorbs and removes moisture in the air.

【0029】まず、シリカゲルについて、以下に説明す
る。本発明に係わるシリカゲルは、コロイド状シリカ微
粒子の高密度の3次元凝集体であって、無定形二酸化ケ
イ素の多孔体である。シリカゲルの表面シラノール基
は、他の分子と水素結合を作り易い極性基であり、水分
子に代表される極性分子を選択的に吸着する。シリカゲ
ルの水蒸気吸着等温線は、相対湿度60〜90%に立ち
上がりがあり、低湿度条件下での吸湿量は小さいが、高
湿度条件下での吸湿量が極めて大きいという特徴があ
る。
First, the silica gel will be described below. The silica gel according to the present invention is a high-density three-dimensional aggregate of colloidal silica fine particles, and is a porous body of amorphous silicon dioxide. Silanol groups on the surface of silica gel are polar groups that easily form hydrogen bonds with other molecules, and selectively adsorb polar molecules represented by water molecules. The water vapor adsorption isotherm of silica gel rises at a relative humidity of 60 to 90%, and is characterized by a small amount of moisture absorption under low humidity conditions but an extremely large amount of moisture absorption under high humidity conditions.

【0030】次に、アロフェンについて、以下に説明す
る。本発明に係わるアロフェンは、非結晶質あるいは低
結晶質の含水ケイ酸アルミニウムであって、SiO2/A
23モル比が1.0〜2.0の範囲にあり、直径35
〜50オングストロームの中空球状の微細粒子の集合体
である。アロフェンの球壁には水分子が出入りできるよ
うな欠陥があり、シリカゲル同様、低湿度条件下での吸
湿量は小さいが、高湿度条件下での吸湿量が極めて大き
いという特徴がある。
Next, allophane will be described below. The allophane according to the present invention is a non-crystalline or low-crystalline hydrated aluminum silicate, which is SiO 2 / A
The l 2 O 3 molar ratio is in the range of 1.0 to 2.0 and the diameter is 35
It is an aggregate of hollow spherical fine particles of about 50 Å. Allophane's spherical wall has defects that allow water molecules to enter and exit, and, like silica gel, has a small amount of moisture absorption under low humidity conditions, but has an extremely large amount of moisture absorption under high humidity conditions.

【0031】次に、セピオライトについて、以下に説明
する。本発明に係わるセピオライトは、含水マグネシウ
ム質ケイ酸塩であって、水に対して極めてなじみが良
く、自重の100〜120%もの水分を吸保水する性質
がある。シリカゲル同様、低湿度条件下での吸湿量は小
さいが、高湿度条件下での吸湿量が極めて大きいという
特徴がある。
Next, sepiolite will be described below. The sepiolite according to the present invention is a hydrous magnesium silicate, and has a very good affinity for water, and has a property of absorbing and retaining water as much as 100 to 120% of its own weight. Similar to silica gel, the amount of moisture absorption under low humidity conditions is small, but the amount of moisture absorption under high humidity conditions is extremely large.

【0032】次に、ゼオライトについて、以下に説明す
る。本発明に係わるゼオライトとしては、天然ゼオライ
ト、合成ゼオライトの何れを用いても良く、各々単独
で、あるいは適宜組み合わせて用いることができる。
Next, the zeolite will be described below. As the zeolite according to the present invention, any of a natural zeolite and a synthetic zeolite may be used, and each can be used alone or in an appropriate combination.

【0033】天然ゼオライトとしては30種類以上のも
のが知られている。ホウフッ石、シャバサイト、クリノ
プチロライト、エリオナイト、フェリエライト、モルデ
ナイト、ダクフッ石、カイジュウジ石が代表的な天然ゼ
オライトであるが、これらの中でも量が多く、一般的に
用いられているものが、ホウフッ石、クリノプチロライ
ト、モルデナイトである。一方、合成ゼオライトとして
は、A型ゼオライト、X型ゼオライト、Y型ゼオライト
などが挙げられる。ゼオライトの細孔径については特に
制限はないが、水分子の径が2.8オングストロームで
あることを考慮すると、3〜4オングストローム程度の
細孔径を有するゼオライトが、共存ガスの影響をさして
受けることなく空気中の水分のみを選択的に吸着除去で
きる点で特に好ましい。
As natural zeolites, more than 30 kinds are known. Bornite, shabazite, clinoptilolite, erionite, ferrierite, mordenite, dacuffite, spicy stone are typical natural zeolites, and among these, the amount is large and those commonly used are , Fluorite, clinoptilolite, mordenite. On the other hand, examples of the synthetic zeolite include A-type zeolite, X-type zeolite, and Y-type zeolite. There is no particular limitation on the pore diameter of the zeolite, but considering that the diameter of the water molecule is 2.8 angstroms, the zeolite having a pore diameter of about 3 to 4 angstroms is not affected by the coexisting gas. It is particularly preferable in that only moisture in the air can be selectively adsorbed and removed.

【0034】ゼオライトは分子内の空孔に水分を取り込
んで吸湿するために水分の吸脱着が早く、かつ低湿度条
件下でも大容量の吸湿量を有している。しかしながら、
ゼオライトの場合、比較的低い相対湿度で吸湿量が頭打
ちとなるため、高湿度条件下の吸湿量については先のシ
リカゲル、アロフェン、セピオライトの方が優れてい
る。
Zeolite takes in moisture into pores in the molecule and absorbs moisture, so that it quickly absorbs and desorbs moisture and has a large amount of moisture absorption even under low humidity conditions. However,
In the case of zeolite, the amount of moisture absorption reaches a peak at a relatively low relative humidity, and thus the silica gel, allophane, and sepiolite are superior in the amount of moisture absorption under high humidity conditions.

【0035】なお、これらシリカゲル、アロフェン、セ
ピオライト、ゼオライトは単独で用いても十分な除湿性
能を発揮するが、各々の特徴を考慮して適宜組み合わせ
て用いることによって一層の高性能化を図ることも可能
である。
Although these silica gels, allophane, sepiolite and zeolite exhibit sufficient dehumidifying performance even when used alone, further improvement in performance can be achieved by appropriately combining them in consideration of their characteristics. It is possible.

【0036】本発明において、シリカゲル、アロフェ
ン、セピオライト、ゼオライトは適当な基材に内添また
は塗工することによって担持・固定され、除湿フィルタ
として機能する。なお、除湿フィルタの基材、シリカゲ
ル、アロフェン、セピオライト、ゼオライトの基材への
担時・固定手段としては、先の脱臭フィルタの項で述べ
た基材、手段を同様に用いることが出来る。
In the present invention, silica gel, allophane, sepiolite and zeolite are carried and fixed by internally adding or coating a suitable base material, and function as a dehumidifying filter. In addition, as a base for the dehumidifying filter and a means for attaching and fixing silica gel, allophane, sepiolite, and zeolite to the base, the bases and means described in the section of the deodorizing filter can be used in the same manner.

【0037】上記の脱臭フィルタと除湿フィルタを複合
一体化して本発明の複合フィルタ部材を得る。
The above-mentioned deodorizing filter and dehumidifying filter are combined and integrated to obtain the composite filter member of the present invention.

【0038】光反応性半導体と吸着剤とを適宜組み合わ
せて用いることによって、優れた有害物質除去性能を得
ることが可能であり、係る構成の部材が数多く考案され
ているが、空気中の水蒸気の濃度が極めて高い高湿度条
件下においては、通常低濃度で存在する臭気や有害化学
物質の光反応性半導体や吸着剤への吸着が水蒸気によっ
て阻害され、十分な有害物質除去性能が得られないとい
う課題があった。
By using an appropriate combination of a photoreactive semiconductor and an adsorbent, excellent harmful substance removal performance can be obtained. Many members having such a configuration have been devised. Under conditions of extremely high concentrations and high humidity, the adsorption of odors and harmful chemicals, which are usually present at low concentrations, to photoreactive semiconductors and adsorbents is impeded by water vapor, resulting in insufficient harmful substance removal performance. There were challenges.

【0039】本発明の複合フィルタ部材は高湿度条件下
においても、除湿フィルタによって湿分を選択的に吸着
除去することができるため、臭気や有害化学物質の光反
応性半導体や吸着剤への吸着が阻害されることがなく、
十分な有害物質除去性能を発揮することが出来る。
Since the composite filter member of the present invention can selectively adsorb and remove moisture even under high humidity conditions, it can adsorb odors and harmful chemical substances to photoreactive semiconductors and adsorbents. Is not disturbed,
Sufficient harmful substance removal performance can be exhibited.

【0040】さらに驚いたことに、除湿フィルタを併用
することで本発明の複合フィルタ部材の有害物質除去性
能の寿命が向上するという予想外の効果が得られること
が判った。当該効果が発現した機構は定かではないが、
除湿フィルタが複合されていない場合、低湿度条件下か
ら高湿度条件下まで様々な条件下に連続的に晒されるこ
とによって脱臭フィルタが伸縮し、この伸縮に起因して
光反応性半導体と吸着剤との複合状態において、例えば
光反応性半導体と吸着剤との接点が緩むなどの微妙な変
化が生じ、脱臭フィルタの吸着分解性能の経時劣化が進
行し易くなることなどが考えられる。
It was further surprisingly found that the combined use of the dehumidifying filter has an unexpected effect of improving the life of the harmful substance removing performance of the composite filter member of the present invention. The mechanism by which this effect has occurred is not clear,
When the dehumidifying filter is not combined, the deodorizing filter expands and contracts by being continuously exposed to various conditions from low humidity conditions to high humidity conditions. In the composite state of the deodorizing filter and the adsorbent, a slight change such as loosening of the contact point between the photoreactive semiconductor and the adsorbent may occur, and the adsorption / decomposition performance of the deodorizing filter may easily deteriorate with time.

【0041】本発明の複合フィルタ部材を構成するにあ
たって、脱臭フィルタ及び除湿フィルタの形態に特に制
限はなく、使用目的や要求される特性に応じて、例えば
シート状、プリーツ構造体、コルゲート構造体などの形
状のフィルタを各々単独で、あるいは適宜組み合わせて
用いることができる。更には、シート状の脱臭フィルタ
と除湿フィルタを積層又は貼り合わせにより一体化した
後、プリーツ構造体、コルゲート構造体としても何ら構
わない。
In constructing the composite filter member of the present invention, the form of the deodorizing filter and the dehumidifying filter is not particularly limited, and may be, for example, a sheet, a pleated structure, a corrugated structure, etc., according to the purpose of use and required characteristics. Can be used alone or in combination as appropriate. Further, after the sheet-like deodorizing filter and the dehumidifying filter are integrated by lamination or lamination, a pleated structure or a corrugated structure may be used.

【0042】ここで云うプリーツ構造体とは、濾材(こ
こではシート状の脱臭フィルタ又は除湿フィルタ)に山
谷状に折り加工を施した構造体のことである。プリーツ
構造体とすることによって、一定の通気面積に対して濾
材の面積を増やすことができるため、脱臭性能や除湿性
能の向上を図ることができる。加えて、圧力損失が低下
して通気性が改善されるといった利点もある。
The pleated structure referred to here is a structure obtained by folding a filter medium (here, a sheet-shaped deodorizing filter or dehumidifying filter) into a valley-like shape. By using the pleated structure, the area of the filter medium can be increased with respect to a certain ventilation area, so that the deodorizing performance and the dehumidifying performance can be improved. In addition, there is an advantage that pressure loss is reduced and air permeability is improved.

【0043】ここで云うコルゲート構造体とは、平板状
のライナと波型板状の中しんを交互に積層してなる、ま
たは中しん単独で積層してなる開孔を有するセル壁から
なる構造体であり、JIS Z 1516−1995「外
装用段ボール」に準拠して濾材(ここではシート状の脱
臭フィルタ又は除湿フィルタ)より作製することができ
る。コルゲート構造体は開孔構造であるために通気性に
極めて優れるばかりでなく、上記のプリーツ構造体同様
一定の通気面積に対して濾材の面積を増やすことができ
るため、脱臭性能や除湿性能の向上を図ることができ
る。
The corrugated structure referred to here is a structure comprising a cell wall having openings formed by alternately laminating a plate-shaped liner and a corrugated plate-shaped inner member, or by laminating the inner member alone. It can be made of a filter medium (here, a sheet-like deodorizing filter or dehumidifying filter) in accordance with JIS Z 1516-1995 “Corrugated cardboard for exterior”. The corrugated structure is not only extremely breathable due to its perforated structure, but also improves the deodorizing performance and dehumidifying performance because the area of the filter medium can be increased for a constant ventilation area like the pleated structure described above. Can be achieved.

【0044】本発明の複合フィルタ部材に要求される通
気性を阻害しない範囲内において、いかなる手段を用い
て脱臭フィルタと除湿フィルタを複合一体化しても構わ
ない。例えば、アクリル樹脂、スチレン−アクリル共重
合体、スチレン−ブタジエン共重合体、エチレン−酢酸
ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、エ
チレン−酢酸ビニル−塩化ビニル共重合体、ポリプロピ
レン、ポリエステル、フェノキシ樹脂、フェノール樹
脂、ブチラール樹脂などの熱可塑性樹脂を用いて接着す
る方法が挙げられる。あるいは、天然ゴム系、スチレン
−ブタジエン系、ポリイソブチレン系、イソプレン系な
どのゴム系粘着剤、アクリル系粘着剤、シリコーン系粘
着剤に代表される溶剤型粘着剤、アクリルエマルジョン
系、天然ゴムラテックス系、スチレンーブタジエンラテ
ックス系などのエマルジョン型粘着剤、スチレン−イソ
プレンブロック共重合体系、スチレン−ブタジエンブロ
ック共重合体系、スチレン−エチレン−ブチレンブロッ
ク共重合体系、エチレン−酢酸ビニル熱可塑性エラスト
マー系などのホットメルト型粘着剤、天然ゴム系、再生
ゴム系、ブチルゴム系などのカレンダー法型粘着剤、ポ
リビニルアルコール、ポリアクリルアミド、ポリビニル
メチルエーテル、ポリアクリル酸含有ポリマー、デキス
トリン、ポリビニルピロリドンなどを原料とする水溶性
型粘着剤、無溶剤の液状粘着剤を電子線、紫外線、過酸
化物、熱などによって硬化させる液状硬化型粘着剤など
に代表される無溶剤型粘着剤などの粘着剤を用いて接着
しても良く、必要に応じてロジン系、テルペン系、合成
石油樹脂系、フェノール樹脂系、キシレン樹脂系、脂環
族系石油樹脂、クマロンインデン樹脂、スチレン系樹
脂、ジシクロペンタジエン樹脂などの粘着付与剤を併用
しても良く、さらには使用目的に応じて強粘着タイプの
粘着剤、再剥離タイプの粘着剤を適宜使い分ければ良
い。この他にも、両面テープを用いて接着したり、適当
な枠材を用いて脱臭フィルタと除湿フィルタを一体化す
るなど、様々な複合一体化方法を用いることができる。
The deodorizing filter and the dehumidifying filter may be combined integrally by any means as long as the air permeability required for the composite filter member of the present invention is not impaired. For example, acrylic resin, styrene-acryl copolymer, styrene-butadiene copolymer, ethylene-vinyl acetate copolymer, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, polypropylene, polyester And a bonding method using a thermoplastic resin such as a phenoxy resin, a phenol resin, and a butyral resin. Alternatively, natural rubber, styrene-butadiene, polyisobutylene, isoprene rubber adhesive, acrylic adhesive, solvent adhesive represented by silicone adhesive, acrylic emulsion, natural rubber latex Emulsion-type pressure-sensitive adhesives such as styrene-butadiene latex, styrene-isoprene block copolymer, styrene-butadiene block copolymer, styrene-ethylene-butylene block copolymer, and ethylene-vinyl acetate thermoplastic elastomer Melt-type adhesives, calender-type adhesives such as natural rubber, recycled rubber and butyl rubber, polyvinyl alcohol, polyacrylamide, polyvinyl methyl ether, polymers containing polyacrylic acid, dextrin, polyvinylpyrrolidone, etc. Using a water-soluble pressure-sensitive adhesive, a solvent-free liquid pressure-sensitive adhesive such as a liquid-curable pressure-sensitive adhesive that cures a solventless liquid pressure-sensitive adhesive by electron beam, ultraviolet light, peroxide, heat, etc. Rosin, terpene, synthetic petroleum resin, phenolic resin, xylene resin, alicyclic petroleum resin, coumarone indene resin, styrene resin, dicyclopentadiene resin as required. Such a tackifier may be used in combination, and furthermore, a strong adhesive type adhesive and a re-peelable type adhesive may be appropriately used depending on the purpose of use. In addition, various composite integration methods such as bonding using a double-sided tape or integrating a deodorizing filter and a dehumidifying filter using an appropriate frame material can be used.

【0045】[0045]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明は本実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0046】予備操作1 [脱臭フィルタAの作製]ポリエステル繊維(繊度3デ
ニール、繊維長38mm)/ポリエステル繊維(繊度6
デニール、繊維長51mm)/レーヨン繊維(繊度3デ
ニール、繊維長51mm)=50/30/20の重量比
で解繊混合し40g/m2のウェブを作製し、該ウェブに
アクリルエマルジョン樹脂を有効成分換算で20g/m2
含浸、乾燥させて強度を付与して60g/m2の基材を作
製した。
Preparatory operation 1 [Preparation of deodorizing filter A] Polyester fiber (fineness: 3 denier, fiber length: 38 mm) / polyester fiber (fineness: 6)
Denier, fiber length: 51 mm) / rayon fiber (denier: 3 denier, fiber length: 51 mm) = 50/30/20 to prepare a 40 g / m 2 web, and an acrylic emulsion resin is used for the web. 20 g / m 2 in component conversion
The substrate was impregnated and dried to give strength, thereby producing a substrate of 60 g / m 2 .

【0047】光反応性半導体として、酸化チタン(日本
アエロジル製、P25S6)を30重量%、吸着剤とし
て複合フィロケイ酸塩(水澤化学工業製、ミズカナイト
AP)を30重量%、スチレン−アクリル系エマルジョ
ンを40重量%含有してなる塗液を上記基材に30g/
m2含浸塗工して、坪量90g/m2の脱臭フィルタAを作
製した。
30% by weight of titanium oxide (P25S6, manufactured by Nippon Aerosil), 30% by weight of composite phyllosilicate (Mizukanite AP, manufactured by Mizusawa Chemical Industries) as a photoreactive semiconductor, 30% by weight of styrene-acrylic emulsion A coating liquid containing 40% by weight was coated on the base material at 30 g /
m 2 impregnated with coating, to prepare a deodorizing filter A having a basis weight of 90 g / m 2.

【0048】予備操作2 [脱臭フィルタBの作製]芯鞘型熱融着性ポリエステル
繊維(ユニチカ製、メルティ4080、繊度2デニー
ル、繊維長5mm)40重量%、ポリエステル繊維(帝
人社製、テピルス、繊度0.5デニール、繊維長5m
m)40重量%、光反応性半導体として、酸化チタン
(日本アエロジル製P25S6)を10重量%、吸着剤
として活性炭(クラレケミカル製、クラレコールPW−
W5)10重量%を水中に添加し、水性スラリーを作製
した。該水性スラリーから円網抄紙機を用いて坪量10
0g/m2のウェブを抄造し、プレス、乾燥して脱臭フィ
ルタBを作製した。
Preparatory operation 2 [Preparation of deodorizing filter B] 40% by weight of a core-sheath type heat-fusible polyester fiber (manufactured by Unitika, Melty 4080, fineness: 2 denier, fiber length: 5 mm), polyester fiber (manufactured by Teijin Limited, Tepilus, Fineness 0.5 denier, fiber length 5m
m) 40% by weight, 10% by weight of titanium oxide (Nippon Aerosil P25S6) as a photoreactive semiconductor, and activated carbon (Kuraray Chemical PW-, Kuraray Chemical) as an adsorbent
W5) 10% by weight was added to water to prepare an aqueous slurry. From the aqueous slurry, a basis weight of 10
A web of 0 g / m 2 was formed, pressed and dried to prepare a deodorizing filter B.

【0049】予備操作3 [除湿フィルタAの作製]シリカゲル30重量%、ゼオ
ライト(合成ゼオライト、モレキュラーシーブ4A)3
0重量%、スチレンアクリル系エマルジョンを40重量
%を含有してなる塗液を上記予備操作1の基材1に30
g/m2の含浸塗工して、除湿フィルタAを作製した。
Preliminary operation 3 [Preparation of dehumidifying filter A] Silica gel 30% by weight, zeolite (synthetic zeolite, molecular sieve 4A) 3
A coating solution containing 0% by weight and 40% by weight of a styrene acrylic emulsion was applied to the substrate 1 of the preliminary operation 1 for 30 minutes.
g / m 2 was impregnated and applied to prepare a dehumidifying filter A.

【0050】予備操作4 [除湿フィルタBの作製]芯鞘型熱融着性ポリエステル
繊維(ユニチカ製、メルティ4080、繊度2デニー
ル、繊維長5mm)40重量%、ポリエステル繊維(帝
人社製、テピルス、繊度0.5デニール、繊維長5m
m)40重量%、セピオライト10重量%、アロフェン
10重量%を水中に添加し、水性スラリーを作製した。
Preliminary operation 4 [Preparation of dehumidifying filter B] 40% by weight of a core-sheath type heat-fusible polyester fiber (manufactured by Unitika, Melty 4080, fineness: 2 denier, fiber length: 5 mm), polyester fiber (manufactured by Teijin Limited, Tepils) Fineness 0.5 denier, fiber length 5m
m) 40% by weight, 10% by weight of sepiolite and 10% by weight of allophane were added to water to prepare an aqueous slurry.

【0051】該水性スラリーから円網抄紙機を用いて坪
量100g/m2のウェブを抄造し、プレス、乾燥して除
湿フィルタBを作製した。
From the aqueous slurry, a web having a basis weight of 100 g / m 2 was formed using a round paper machine, pressed and dried to prepare a dehumidifying filter B.

【0052】実施例1 予備操作1の脱臭フィルタAと予備操作3の除湿フィル
タAをそれぞれ200mm×200mmの大きさに切
り、ホットメルトスプレーによって貼り合わせて一体化
し、実施例1の複合フィルタ部材を作製した。
Example 1 The deodorizing filter A of the preparatory operation 1 and the dehumidifying filter A of the preparatory operation 3 were each cut into a size of 200 mm × 200 mm, bonded together by hot melt spraying, and integrated to form the composite filter member of Example 1. Produced.

【0053】実施例2 予備操作2の脱臭フィルタBを中しんおよびライナに用
いて、JIS Z 1516−1995「外装用段ボー
ル」に準拠して、ピッチ4.5mm、高さ2.1mmで
片面段ボールを形成し、該片面段ボールを積層接着して
200mm幅×200mm高×10mm厚の積層体を成
形し、コルゲート構造体を作製した。次いで、予備試作
3の除湿フィルタAを200mm幅×200mm高の大
きさに切り、4辺部を上記コルゲート構造体の一方の開
孔断面にホットメルトスプレーを用いて接着、一体化し
て、実施例2の複合フィルタ基材を作製した。
Example 2 A single-sided cardboard having a pitch of 4.5 mm and a height of 2.1 mm in accordance with JIS Z 1516-1995 "Corrugated cardboard for exterior" using the deodorizing filter B of the preparatory operation 2 for a middle lining and a liner. Was formed, and the single-sided cardboard was laminated and bonded to form a laminate having a width of 200 mm × 200 mm × 10 mm thick, thereby producing a corrugated structure. Next, the dehumidifying filter A of Preliminary Prototype 3 was cut into a size of 200 mm width × 200 mm height, and the four sides were bonded and integrated with one cross section of one opening of the corrugated structure using hot melt spray. The composite filter substrate of No. 2 was produced.

【0054】実施例3 予備操作3の除湿フィルタAに折り山ピッチ5mmでプ
リーツ加工を施し、200mm幅×200mm高×10
mm厚のプリーツ構造体を作製した。該プリーツ構造体
を実施例2の脱臭フィルタのコルゲート構造体の一方の
開孔面に枠材を用いて一体化して、実施例3の複合フィ
ルタ部材を作製した。
Example 3 The dehumidifying filter A of the preparatory operation 3 was pleated at a crest pitch of 5 mm, and was 200 mm wide × 200 mm high × 10 mm.
A pleated structure having a thickness of mm was produced. The pleated structure was integrated with one opening surface of the corrugated structure of the deodorizing filter of Example 2 using a frame material, to produce a composite filter member of Example 3.

【0055】実施例4 予備操作4の除湿フィルタBを中しんおよびライナに用
いて、JIS Z 1516−1995「外装用段ボー
ル」に準拠して、ピッチ4.5mm、高さ2.1mmで
片面段ボールを形成し、該片面段ボールを積層接着して
200mm幅×200mm高×10mm厚の積層体を成
形し、コルゲート構造体を作製した。次いで上記コルゲ
ート構造体と、実施例2の脱臭フィルタのコルゲート構
造体のそれぞれの開孔断面を合わせて積層し、枠材を用
いて一体化して実施例4の複合フィルタ部材を作製し
た。
Example 4 Single-sided cardboard having a pitch of 4.5 mm and a height of 2.1 mm in accordance with JIS Z 1516-1995 "Exterior cardboard" using the dehumidifying filter B of the preparatory operation 4 as a middle binder and a liner. Was formed, and the single-sided cardboard was laminated and bonded to form a laminate having a width of 200 mm × 200 mm × 10 mm thick, thereby producing a corrugated structure. Next, the corrugated structure described above and the corrugated structure of the deodorizing filter of Example 2 were laminated together with their open cross sections, and integrated using a frame material to produce a composite filter member of Example 4.

【0056】実施例5 実施例1の複合フィルタ部材に折り山ピッチ5mmでプ
リーツ加工を施し、200mm幅×200mm高×10
mm厚のプリーツ構造体とし、実施例5の複合フィルタ
部材を作製した。
Example 5 The composite filter member of Example 1 was pleated at a ridge pitch of 5 mm, and was 200 mm wide × 200 mm high × 10 mm.
A composite filter member of Example 5 was manufactured with a pleat structure having a thickness of mm.

【0057】比較例1 除湿フィルタを用いなかったことを除いて実施例1と同
様の方法で比較例1のフィルタ部材を作製した。
Comparative Example 1 A filter member of Comparative Example 1 was produced in the same manner as in Example 1 except that no dehumidifying filter was used.

【0058】比較例2 除湿フィルタを用いなかったことを除いて実施例2と同
様の方法で比較例2のフィルタ部材を作製した。
Comparative Example 2 A filter member of Comparative Example 2 was produced in the same manner as in Example 2 except that no dehumidifying filter was used.

【0059】以上、実施例1〜5および比較例1〜2で
得られた複合フィルタ部材を下記性能試験に従って評価
し、その結果を表1に示した。
The composite filter members obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were evaluated according to the following performance tests, and the results are shown in Table 1.

【0060】[脱臭性能:高湿度条件下での脱臭性能保
持率]アクリル樹脂製の筐体に1m3/分のシロッコファ
ン(試験時運転)および6Wのブラックライトを2本
(試験時点灯)取り付けた簡易空気清浄化装置に、実施
例および比較例の複合フィルタ部材を装着し、日本電機
工業会規格JEM1467「家庭用空気清浄機」に準じ
て脱臭性能試験を実施した。なお、試験は1サイクル
(タバコ燃焼本数5本)とし、相対湿度50%、80%
の2種類の湿度条件下で実施し(測定は温度23℃)、
各湿度条件下でのタバコ臭除去率(C;%)=(A+2B
+C)/4を測定した。ここでAはアンモニアの除去率
(%)、Bはアセトアルデヒドの除去率(%)、Cは酢酸の
除去率(%)である。相対湿度50%でのタバコ臭除去率
をC50、相対湿度80%でのタバコ臭除去率をC80と
し、(C80/C50)×100を高湿度条件下での脱臭性
能保持率とみなし、脱臭性能の指標とした。
[Deodorizing Performance: Retention Rate of Deodorizing Performance Under High Humidity Condition] A sirocco fan (operating at the time of test) of 1 m 3 / min and two 6 W black lights (lighted at the time of the test) in an acrylic resin housing. The composite filter members of Examples and Comparative Examples were attached to the attached simple air cleaning device, and a deodorizing performance test was performed according to the Japan Electrical Manufacturers' Association Standard JEM1467 “Home Air Cleaner”. The test was performed in one cycle (5 cigarettes were burned), and the relative humidity was 50% and 80%.
(Measured at a temperature of 23 ° C.)
Removal rate of tobacco odor under each humidity condition (C;%) = (A + 2B)
+ C) / 4. Where A is the removal rate of ammonia
(%), B is the acetaldehyde removal rate (%), and C is the acetic acid removal rate (%). The tobacco odor removal rate at a relative humidity of 50% is C50, and the tobacco odor removal rate at a relative humidity of 80% is C80. (C80 / C50) x 100 is regarded as the retention rate of the deodorizing performance under high humidity conditions. Index.

【0061】[脱臭性能の持続性:湿度変化負荷に対す
る脱臭性能保持率]温度23℃、相対湿度50%の条件
下で上記脱臭性能試験を行った実施例および比較例の複
合フィルタ部材について、温度23℃、相対湿度50%
の条件下に10時間放置し、次に温度23℃、相対湿度
80%の条件下に10時間放置することを1サイクルと
する湿度変化負荷を10サイクル繰り返した後、温度2
3℃、相対湿度50%の条件下で脱臭性能試験を行っ
た。湿度変化負荷試験前のタバコ臭除去率(%)をC
b、湿度変化負荷試験後のタバコ臭除去率(%)をCa
とし、(Ca/Cb)×100を湿度変化負荷に対する
脱臭性能保持率(%)とみなし、脱臭性能の持続性の指
標とした。
[Sustainability of Deodorizing Performance: Retention Rate of Deodorizing Performance to Load with Humidity Change] The composite filter members of Examples and Comparative Examples in which the above-mentioned deodorizing performance test was conducted under the conditions of a temperature of 23 ° C. and a relative humidity of 50% were tested. 23 ° C, 50% relative humidity
10 hours, and then 10 cycles of a humidity change load, in which the cycle is left for 10 hours at a temperature of 23 ° C. and a relative humidity of 80%.
A deodorizing performance test was performed under the conditions of 3 ° C. and 50% relative humidity. The tobacco odor removal rate (%) before the humidity change load test is C
b, Tobacco odor removal rate (%) after the humidity change load test was Ca
(Ca / Cb) × 100 was regarded as the retention rate (%) of the deodorizing performance with respect to the humidity change load, and was used as an index of the sustainability of the deodorizing performance.

【0062】以上の試験項目の結果を表1に示す。Table 1 shows the results of the above test items.

【0063】[0063]

【表1】 [Table 1]

【0064】実施例1〜5の複合フィルタ部材は、脱臭
性能およびその効果の持続性に優れ、高湿度条件下にお
いてさえも優れた有害物質除去性能を有することが判っ
た。
It was found that the composite filter members of Examples 1 to 5 were excellent in deodorizing performance and durability of the effect, and had excellent harmful substance removing performance even under high humidity conditions.

【0065】一方、比較例1および比較例2の除湿フィ
ルタを用いていないフィルタ部材は、高湿度条件下での
脱臭性能の低下、湿度変化負荷による脱臭性能の劣化が
認められた。
On the other hand, in the filter members without the dehumidifying filters of Comparative Examples 1 and 2, deterioration in deodorizing performance under high humidity conditions and deterioration in deodorizing performance due to humidity change load were observed.

【0066】[0066]

【発明の効果】本発明の複合フィルタ部材は、光反応性
半導体の光触媒能および吸着剤の吸着能によって悪臭や
細菌などの有害物質を除去可能な脱臭フィルタと、シリ
カゲル、アロフェン、セピオライト、ゼオライトの群か
ら選ばれる少なくとも1種以上を含有してなる除湿フィ
ルタとを複合一体化することによって、高湿度条件下に
おける有害物質除去性能の効果とその持続性を高めたも
のである。
The composite filter member of the present invention comprises a deodorizing filter capable of removing harmful substances such as odors and bacteria by the photocatalytic ability of a photoreactive semiconductor and the adsorbing ability of an adsorbent, and a silica gel, allophane, sepiolite and zeolite. By combining and integrating a dehumidifying filter containing at least one member selected from the group, the effect of harmful substance removal performance under high humidity conditions and its sustainability are enhanced.

【0067】また、発現機構は定かではないが、除湿フ
ィルタを併用することで本発明の複合フィルタ部材の有
害物質除去性能の寿命が向上するという予想外の効果が
得られることも判った。おそらくは除湿フィルタが複合
されていない場合、低湿度条件下から高湿度条件下まで
様々な条件下に連続的に晒されることによって脱臭フィ
ルタが伸縮し、この伸縮に起因して光反応性半導体と吸
着剤との複合状態において、例えば光反応性半導体と吸
着剤との接点が緩むなどの微妙な変化が生じ、脱臭フィ
ルタの吸着分解性能の経時劣化が進行し易くなることな
どが考えられる。
Although the mechanism of the expression is not clear, it was also found that the combined use of a dehumidifying filter has an unexpected effect that the life of the harmful substance removing performance of the composite filter member of the present invention is improved. Possibly, if the dehumidification filter is not combined, the deodorization filter expands and contracts due to continuous exposure under various conditions from low humidity conditions to high humidity conditions, and due to this expansion and contraction, it adsorbs to the photoreactive semiconductor In the composite state with the agent, it is conceivable that subtle changes such as loosening of the contact point between the photoreactive semiconductor and the adsorbent occur, and that the adsorption / decomposition performance of the deodorizing filter easily deteriorates with time.

【0068】従って、本発明の複合フィルタ部材は、空
気清浄機、エアコン、換気扇などの様々な空調機器にお
いて、空気清浄フィルタ部材として極めて有効に活用す
ることが可能である。
Therefore, the composite filter member of the present invention can be used very effectively as an air purifying filter member in various air conditioners such as an air purifier, an air conditioner, and a ventilation fan.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/34 ZAB B01J 35/02 J 4G069 53/38 B01D 53/34 ZAB 53/81 116B 53/86 ZAB 53/36 ZABJ B01J 35/02 Fターム(参考) 4C080 AA05 AA10 BB02 CC02 CC12 CC14 HH05 HH09 JJ03 KK08 LL10 LL12 MM02 MM03 MM04 MM05 MM06 MM14 MM22 NN01 NN02 NN03 NN05 NN22 NN24 NN25 NN26 NN27 NN28 QQ03 4D002 AB02 AC07 AC10 BA04 BA09 CA07 DA11 DA19 DA22 DA41 DA45 DA46 DA47 EA02 4D019 BA06 BA07 BA13 BA17 BB03 BB10 BB12 BC05 BC07 CA01 CA02 4D048 AA22 BA07X BA13X BA16Y BA19Y BA27Y BA41X BB08 CC36 CD01 EA01 EA04 4D052 GA01 GB03 HA00 HA01 HA03 HA19 HA39 4G069 AA03 BA02A BA04A BA04B BA07A BA15A BA15B BA22A BA22B BA38 BA48A BB04A BC35A BC43A BC60A BE09A BE09B CA17 EA10 EA13 EA21 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) B01D 53/34 ZAB B01J 35/02 J 4G069 53/38 B01D 53/34 ZAB 53/81 116B 53/86 ZAB 53/36 ZABJ B01J 35/02 F term (reference) 4C080 AA05 AA10 BB02 CC02 CC12 CC14 HH05 HH09 JJ03 KK08 LL10 LL12 MM02 MM03 MM04 MM05 MM06 MM14 MM22 NN01 NN02 NN03 NN05 NN22 NN24 NN24 NN24 NN24 NN24 NN24 DA22 DA41 DA45 DA46 DA47 EA02 4D019 BA06 BA07 BA13 BA17 BB03 BB10 BB12 BC05 BC07 CA01 CA02 4D048 AA22 BA07X BA13X BA16Y BA19Y BA27Y BA41X BB08 CC36 CD01 EA01 EA04 4D052 GA01 GB03 HA00 BA01 BA03 BA03 A BA48A BB04A BC35A BC43A BC60A BE09A BE09B CA17 EA10 EA13 EA21

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも光反応性半導体および吸着剤
を含有してなる脱臭フィルタと、シリカゲル、アロフェ
ン、セピオライト、ゼオライトの群から選ばれる少なく
とも1種以上を含有してなる除湿フィルタとを複合一体
化したことを特徴とする複合フィルタ部材。
1. A composite unit comprising a deodorizing filter containing at least a photoreactive semiconductor and an adsorbent and a dehumidifying filter containing at least one selected from the group consisting of silica gel, allophane, sepiolite and zeolite. A composite filter member comprising:
JP2001098825A 2001-03-30 2001-03-30 Composite filter member Pending JP2002292219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098825A JP2002292219A (en) 2001-03-30 2001-03-30 Composite filter member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098825A JP2002292219A (en) 2001-03-30 2001-03-30 Composite filter member

Publications (1)

Publication Number Publication Date
JP2002292219A true JP2002292219A (en) 2002-10-08

Family

ID=18952438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098825A Pending JP2002292219A (en) 2001-03-30 2001-03-30 Composite filter member

Country Status (1)

Country Link
JP (1) JP2002292219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163396A (en) * 2014-02-03 2015-09-10 国立大学法人信州大学 Photocatalyst filter and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163396A (en) * 2014-02-03 2015-09-10 国立大学法人信州大学 Photocatalyst filter and method for producing the same

Similar Documents

Publication Publication Date Title
JPH11342310A (en) Functional electret filter and its production and air purifier
JP2001058002A (en) Deodorant sheet and recordable deodorant sheet
JP2000117021A (en) Air cleaning filter
JP2001314491A (en) Air purifying filter
JP2000279505A (en) Deodorizing electret filter and manufacture thereof
JP4058210B2 (en) Photocatalyst member
JP2000126609A (en) Photocatalytic corrugated structure and photocatalytic deodorization member and photocatalytic deodorization unit using the same
JPH09154925A (en) Functional mesh sheet, deodorant element and deodorizing apparatus
JP2002292219A (en) Composite filter member
JP2001025668A (en) Photocatalytic corrugated filter
JP2004041277A (en) Deodorization filter
JP2005304844A (en) Composite deodorization filter
JP2002113078A (en) Malodor sensing deodorizing filter
JP2000153131A (en) Dust removing/deodorizing filter using photocatalyst
JPH11276562A (en) Absorptive catalyzer compound sheet
JP2002291856A (en) Titanium oxide containing filter member
JP2000152983A (en) Air cleaner
JPH09239011A (en) Functional sheet, element for gas treatment and gas treating device
JP3854012B2 (en) Photocatalyst member
JP2002028484A (en) Deodorizing filter
JP2002095912A (en) Method for manufacturing deodorizing filter
JP2000153115A (en) Air cleaning filter
JP2003088759A (en) Low temperature oxidation catalyst filter
JP2001137629A (en) Photocatalytic air cleaning filter
JP2001129066A (en) Remover for stinking material