JP2002289194A - Titanium dioxide powder as material for manufacturing lithium ion secondary battery electrode active material, lithium titanate as lithium ion secondary battery electrode active material, and manufacturing method thereof - Google Patents

Titanium dioxide powder as material for manufacturing lithium ion secondary battery electrode active material, lithium titanate as lithium ion secondary battery electrode active material, and manufacturing method thereof

Info

Publication number
JP2002289194A
JP2002289194A JP2001090753A JP2001090753A JP2002289194A JP 2002289194 A JP2002289194 A JP 2002289194A JP 2001090753 A JP2001090753 A JP 2001090753A JP 2001090753 A JP2001090753 A JP 2001090753A JP 2002289194 A JP2002289194 A JP 2002289194A
Authority
JP
Japan
Prior art keywords
lithium
active material
secondary battery
lithium titanate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001090753A
Other languages
Japanese (ja)
Other versions
JP4949561B2 (en
Inventor
Masayuki Oshiki
正行 押木
Yoshiyuki Arai
良幸 新井
Tetsuya Yamawaki
徹也 山脇
Eiji Nishimura
栄二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2001090753A priority Critical patent/JP4949561B2/en
Publication of JP2002289194A publication Critical patent/JP2002289194A/en
Application granted granted Critical
Publication of JP4949561B2 publication Critical patent/JP4949561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium titanate ion secondary battery electrode active material, manufacturing method thereof, and material for manufacturing thereof, whose charge/discharge capacity is higher, with high coulomb efficiency, being excellent in cycle life. SOLUTION: A titanium oxide powder whose primary particle size is 1.0 μm or less while rutilating coefficient is 15-100% is mixed with lithium compound, which is baked to collect a lithium titanate whose primary particle size is 1.0 μm or less, thus providing a lithium titanate as a lithium ion secondary battery electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腕時計等の携帯機
器用電源やパソコン等のバックアップ用電源等に用いら
れるリチウムイオン二次電池の電極活物質として好適な
チタン酸リチウムおよびその製造方法ならびにその原料
としての二酸化チタンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium titanate suitable as an electrode active material for a lithium ion secondary battery used as a power supply for portable equipment such as a wristwatch and a backup power supply for a personal computer and the like, and a method for producing the same. It relates to titanium dioxide as a raw material.

【0002】[0002]

【従来の技術】近年電子機器の小型軽量化が進み、その
ような機器の駆動用またはバックアップ用の電源である
二次電池にも、小型かつ軽量で、しかも、高エネルギー
密度のものが切望されている。また、最近環境保護のた
め電気自動車用や家庭での夜間電力貯蔵用等、より大容
量の蓄電システムの開発が急務となっている。そこで本
出願人は、リチウム二次電池材料電極活物質として、L
Ti12(ときにはLi4/3Ti5/3
で表される)で表されるチタン酸リチウムに注目し、こ
の材料の開発を継続中であって、特開2000−170
90号公報に開示されているように、チタン酸リチウム
材料の改良技術を開発している。
2. Description of the Related Art In recent years, electronic devices have been reduced in size and weight, and a secondary battery which is a power source for driving or backing up such devices has been desired to be small, light, and have a high energy density. ing. Recently, there is an urgent need to develop a large-capacity power storage system for use in electric vehicles or for storing nighttime electric power at home for environmental protection. Therefore, the present applicant has proposed that L
i 4 Ti 5 O 12 (sometimes Li 4/3 Ti 5/3 O 4
Attention has been paid to lithium titanate represented by the formula (1), and development of this material is ongoing.
As disclosed in Japanese Patent Publication No. 90, a technique for improving a lithium titanate material is being developed.

【0003】[0003]

【発明が解決しようとする課題】従来公知のチタン酸リ
チウム材を電極活物質に採用した電池では、初期放電容
量がある程度高くても、サイクル寿命が短い、あるいは
サイクル寿命が長くても充放電容量が大きくない、クー
ロン効率が低い等、総合面で実用上十分とは言えなかっ
た。
In a battery employing a conventionally known lithium titanate material as an electrode active material, even if the initial discharge capacity is high to some extent, the cycle life is short, or the charge / discharge capacity is long even if the cycle life is long. Was not large enough and the Coulomb efficiency was low.

【0004】本発明は上記課題を解決するためになされ
たものであって、本発明の目的は以下の通りである。 (1)充放電容量が一層高く、クーロン効率も高く、サ
イクル寿命に優れたチタン酸リチウムイオン二次電池電
極(正極または負極)活物質の提供。 (2)同活物質の製造方法の提供。 (3)同活物質の製造原料の提供。 なお、以下の説明において「チタン酸リチウム」を「目
的物質」と表現する場合がある。
[0004] The present invention has been made to solve the above problems, and the objects of the present invention are as follows. (1) To provide a lithium titanate ion secondary battery electrode (positive electrode or negative electrode) active material having higher charge / discharge capacity, higher coulombic efficiency, and excellent cycle life. (2) Providing a method for producing the active material. (3) Provision of raw materials for producing the active material. In the following description, “lithium titanate” may be referred to as “target substance”.

【0005】[0005]

【課題を解決するための手段】本発明者の研究によれ
ば、チタン酸リチウムの製造原料としての二酸化チタン
(以下TiOで表すことがある)として、一次粒子径
(BET径とも言う)が1.0μm以下、好ましくは
0.1〜0.8μmであって、ルチル化率が15〜10
0%の二酸化チタン粉を用い、さらに、該二酸化チタン
粉とリチウム化合物との混合物を焼成して得た一次粒子
径が1.0μm以下、好ましくは0.1〜0.8μmの
チタン酸リチウムの微粉をリチウムイオン電池電極の活
物質として用いると、電池の充放電容量、クーロン効
率、サイクル寿命が著しく高まることを発見し、本発明
の完成に至った。
According to the study of the present inventors, the primary particle diameter (also referred to as BET diameter) of titanium dioxide (hereinafter sometimes referred to as TiO 2 ) as a raw material for producing lithium titanate is described. 1.0 μm or less, preferably 0.1 to 0.8 μm, and the rutile ratio is 15 to 10
0% titanium dioxide powder, and a primary particle diameter obtained by calcining a mixture of the titanium dioxide powder and a lithium compound is 1.0 μm or less, preferably 0.1 to 0.8 μm. The inventors have found that the use of fine powder as an active material of a lithium ion battery electrode significantly increases the charge / discharge capacity, coulomb efficiency, and cycle life of the battery, and has completed the present invention.

【0006】本発明は上記知見に基づいてなされたもの
であり、第1の発明に係るリチウムイオン二次電池電極
活物質製造原料としての二酸化チタン粉は、一次粒子径
が1.0μm以下で、かつ、ルチル化率が15〜100
%であることを特徴とする。また、第2の発明に係るリ
チウムイオン二次電池電極活物質としてのチタン酸リチ
ウムは、第1の発明の二酸化チタン粉とリチウム化合物
との混合物を焼成して得られ、その一次粒子径が1.0
μm以下であることを特徴とする。また、第3の発明に
係るリチウムイオン二次電池電極活物質としてのチタン
酸リチウムの製造方法は、第1の発明の二酸化チタン粉
とリチウム化合物との混合物を焼成し、一次粒子径が
1.0μm以下のチタン酸リチウムを採取することを特
徴とする。
The present invention has been made based on the above findings. The titanium dioxide powder as a raw material for producing an electrode active material for a lithium ion secondary battery according to the first invention has a primary particle diameter of 1.0 μm or less, And a rutile ratio of 15 to 100.
%. Further, lithium titanate as an electrode active material for a lithium ion secondary battery according to the second invention is obtained by firing a mixture of the titanium dioxide powder of the first invention and a lithium compound, and has a primary particle diameter of 1%. .0
μm or less. Further, in the method for producing lithium titanate as an electrode active material for a lithium ion secondary battery according to the third invention, a mixture of the titanium dioxide powder and the lithium compound according to the first invention is fired to have a primary particle diameter of 1. It is characterized in that lithium titanate of 0 μm or less is collected.

【0007】[0007]

【発明の実施の形態】以下、本発明についてより詳しく
説明する。本発明の目的物質であるチタン酸リチウム
は、リチウムイオン二次電池電極の活物質として使用さ
れるものであって、基本的には一般式LiTi
12で表わされ、Li/Ti原子比は0.68〜0.8
2、Xは3〜5、Yは4〜6の範囲にあり、具体的に
は、LiTi12(Li4/3Ti5/3あるいは
Li[Li1/3Ti5/3]Oで表される場合がある)
で表されるスピネル型の結晶構造を有する単相のチタン
酸リチウムを主成分とするもので、部分的にLiTi
やTiOが混じっていても良く、単相化率で言え
ば90%以上のものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Lithium titanate, which is a target substance of the present invention, is used as an active material of a lithium ion secondary battery electrode, and is basically of the general formula Li X Ti YO
12 , and the Li / Ti atomic ratio is 0.68 to 0.8.
2, X is in the range of 3 to 5, and Y is in the range of 4 to 6. Specifically, Li 4 Ti 5 O 12 (Li 4/3 Ti 5/3 O 4 or Li [Li 1/3 Ti 5 / 3] may be represented by O 4)
Lithium titanate single phase having a spinel crystal structure represented in as a main component, partially Li 2 Ti
O 3 and TiO 2 may be mixed, and the single-phase ratio is 90% or more.

【0008】(1)出発原料 本発明のチタン酸リチウムを製造する原料は、以下に述
べるリチウム化合物と二酸化チタン粉(以下TiO
と表す)である。原料であるリチウム化合物は、塩、酸
化物、水酸化物のいずれでも良く、炭酸リチウム、水酸
化リチウム、硝酸リチウム、酸化リチウム、蓚酸リチウ
ム、酢酸リチウムが挙げられ、これらから選択される1
種または2種以上が使用されるが、これらに限定される
ものではない。該リチウム化合物は、後述するTiO
粉とともに焼成するために、TiO粉との均一な接触
が図られなければならない。該リチウム化合物とTiO
粉との乾式混合粉を焼成する場合、使用するリチウム
化合物の平均粒径(レーザー光散乱法によるメジアン
径)が100μm以下、好ましくは50μm以下の粉が
好適である。とりわけ炭酸リチウム粉の場合、予め十分
に粉砕して上記平均粒径にしておく。別の混合手段とし
て、例えば水酸化リチウムを水溶液としておき、これを
TiO粉に含侵させておき、これを予備乾燥し、焼成
すると好ましい目的物を得ることができる。全般に、使
用するリチウム化合物は純度99.0重量%、好ましく
は99.5重量%以上のものが良い。
(1) Starting Materials The starting materials for producing the lithium titanate of the present invention are the following lithium compounds and titanium dioxide powder (hereinafter referred to as TiO 2 powder). The lithium compound as a raw material may be any of a salt, an oxide, and a hydroxide, and examples thereof include lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, lithium oxalate, and lithium acetate.
Species or two or more are used, but are not limited thereto. The lithium compound is TiO 2 described below.
In order to fire with the powder, a uniform contact with the TiO 2 powder must be achieved. The lithium compound and TiO
When baking a dry mixed powder with the two powders, a powder having an average particle diameter (median diameter measured by a laser light scattering method) of the lithium compound used of 100 μm or less, preferably 50 μm or less is suitable. Particularly, in the case of lithium carbonate powder, the powder is sufficiently pulverized in advance to have the above average particle diameter. As another mixing means, for example, lithium hydroxide is prepared as an aqueous solution, which is impregnated in TiO 2 powder, which is pre-dried and fired to obtain a preferable target product. In general, the lithium compound used has a purity of 99.0% by weight, preferably 99.5% by weight or more.

【0009】(2)二酸化チタン粉(TiO粉) 一方の原料である本発明のTiO粉は、その一次粒子
径(BET法による)が1.0μm以下で、ルチル化率
が15〜100%の粉である。該原料としてのTiO
粉の一次粒子径が、生成物であるチタン酸リチウムの電
池特性に大きな影響をもたらす。具体的には1.0μm
より小さい一次粒子径のTiO粉を使用して製造した
チタン酸リチウムは、初期放電容量およびサイクル充放
電容量が非常に高く、かつクーロン効率も極めて高い性
能を発揮する。とりわけ一次粒子径が0.1〜0.8μ
m、特には0.1〜0.6μmのTiO粉を用いて製
造したチタン酸リチウムはサイクル寿命が長い。
[0009] (2) Titanium dioxide powder TiO 2 powder of the present invention, which is a (TiO 2 powder) one of the raw materials, (by BET method) that the primary particle diameter of at 1.0μm or less, rutile content is 15 to 100 % Powder. TiO 2 as the raw material
The primary particle size of the powder greatly affects the battery characteristics of the product lithium titanate. Specifically, 1.0 μm
Lithium titanate produced using TiO 2 powder having a smaller primary particle diameter has very high initial discharge capacity and cycle charge / discharge capacity, and exhibits extremely high Coulomb efficiency. Especially the primary particle size is 0.1-0.8μ
m, in particular, lithium titanate produced using TiO 2 powder of 0.1 to 0.6 μm has a long cycle life.

【0010】本発明の目的物を製造するには、ルチル化
率15%以上のTiO粉が、リチウム化合物との均質
混合、結果として一次粒子径が小さなチタン酸リチウム
を合成する上で好ましい。とりわけ平均粒径が小さいT
iO粉では、リチウム化合物との混合時に、ルチル化
率が高い方、具体的には30%以上、がリチウム化合物
粉との焼成の際、一次粒子の成長が抑制され、微細な結
晶粒が得られ電池特性に優れたチタン酸リチウムが得ら
れる。なお、本発明でのルチル化率は、X線回折分析に
より、2θ=27.5゜(ルチル型)と同25.4゜
(アナターゼ型)における回折積分強度を検量線に基づ
き求め、その相対値をルチル化率と称する。
In order to produce the object of the present invention, TiO 2 powder having a rutile ratio of 15% or more is preferable for homogeneously mixing with a lithium compound and consequently for synthesizing lithium titanate having a small primary particle diameter. Especially T with small average particle size
In the iO 2 powder, when mixed with a lithium compound, the one with a higher rutile ratio, specifically, 30% or more, suppresses the growth of primary particles during firing with the lithium compound powder, and fine crystal grains are formed. Thus, lithium titanate having excellent battery characteristics is obtained. The rutile ratio in the present invention was determined by X-ray diffraction analysis, based on the calibration curve, for the diffraction integrated intensity at 2θ = 27.5 ° (rutile type) and 25.4 ° (anatase type). The value is called the rutile ratio.

【0011】(3)チタン酸リチウムの合成 チタン酸リチウム化合物の合成に当たっては、上記リチ
ウム化合物とTiO粉とを、チタン酸リチウムのLi
/Ti比(原子比)の目標値、例えば0.68〜0.8
2の範囲から選択される値に合わせて、両原料を計量し
て混合する。両原料の混合には、振動ミル、ボールミル
等が適宜使用される。該原料混合物は、バルク状のま
ま、あるいは0.5t/cm程度の圧力で圧縮して成
形体として焼成に供される。別の混合手段として、上記
混合粉を水あるいは水系媒体10〜50重量%のスラリ
ーにして十分撹拌した後、加熱あるいはスプレー噴霧に
よって乾燥させ、これを焼成に供しても良い。あるい
は、水に溶解しやすいリチウム化合物を水溶液にしてこ
れをTiO粉に含浸させ、乾燥後に焼成しても良い。
(3) Synthesis of lithium titanate In synthesizing a lithium titanate compound, the lithium compound and TiO 2 powder are mixed with lithium titanate Li
/ Ti target (atomic ratio), for example, 0.68 to 0.8
The two materials are weighed and mixed according to a value selected from the range of 2. A vibration mill, a ball mill or the like is appropriately used for mixing both raw materials. The raw material mixture is subjected to sintering as a molded body as it is in a bulk state or compressed at a pressure of about 0.5 t / cm 2 . As another mixing means, the mixed powder may be made into a slurry of water or an aqueous medium of 10 to 50% by weight, sufficiently stirred, dried by heating or spraying, and subjected to firing. Alternatively, a lithium compound which is easily dissolved in water may be converted into an aqueous solution, impregnated with TiO 2 powder, fired after drying.

【0012】焼成については、第1段階ではやや低い温
度で仮焼し、次いで第2段階として温度を高めて焼成す
る方法(本焼成)、あるいは一定の温度に保持して連続
焼成する方法のいずれかを採用すれば良い。仮焼条件と
しては、温度600〜700℃で、30分〜5時間程度
加熱が好ましい。本焼成は700〜950℃、好ましく
は720〜950℃に加熱するか、仮焼生成物を炉から
取り出して成形体を破砕しながら再混合し、これを再度
成形体にして上記本焼成の温度に加熱する。焼成温度は
原料TiO粉の粒子径に関係するようであって、概し
てTiO粉の一次粒子径が0.1〜0.5μmの場合
は、焼成温度は700〜850℃、一次粒子径が0.5
〜1.0μmのTiO粉の場合は、焼成温度は800
〜950℃が、目的物であるチタン酸リチウムの一次粒
子径、純度(単相化度と言う)、ひいては電池特性面か
ら好ましい。
Regarding the firing, either a method of calcining at a slightly lower temperature in the first stage and then firing at a higher temperature as a second stage (main firing) or a method of continuous firing while maintaining the temperature at a constant level Or just adopt it. As calcination conditions, heating at a temperature of 600 to 700 ° C. for about 30 minutes to 5 hours is preferable. In the main firing, the product is heated to 700 to 950 ° C., preferably 720 to 950 ° C., or the calcined product is taken out of the furnace and remixed while crushing the formed body. Heat to The firing temperature seems to be related to the particle size of the raw material TiO 2 powder. Generally, when the primary particle size of the TiO 2 powder is 0.1 to 0.5 μm, the firing temperature is 700 to 850 ° C. and the primary particle size is 0.5
In the case of TiO 2 powder of ~ 1.0 μm, the firing temperature is 800
A temperature of from 950 ° C. to 950 ° C. is preferable from the viewpoint of the primary particle diameter and the purity (referred to as a degree of single phase) of lithium titanate, which is the target substance, and the battery characteristics.

【0013】焼成温度が950℃を超えると焼成過程で
焼結が進行し、一次粒子径が大きくなりすぎる危険性が
ある。
If the firing temperature exceeds 950 ° C., sintering proceeds during the firing process, and there is a risk that the primary particle diameter becomes too large.

【0014】焼成の目安であるが、焼成温度と時間は、
TiO残留度に基づき選定すると好ましい。すなわ
ち、焼成生成物のTiOの粉末X線回折ピーク(27
゜)での強度の、LiTi12の粉末X線回折ピ
ーク(18゜)での強度に対する割合、すなわち相対強
度比(以下「TiO残留度」と言う)が0.1以下、
好ましくは0.05以下になるように焼成するのが好ま
しい。単相化率[(1−TiO残留度)×100]で
表せば、90%以上、好ましくは95%である。焼成雰
囲気は、酸素、空気、窒素、アルゴン等から適宜選択す
れば良いが、とりわけ窒素あるいはアルゴンガスが、焼
成して得たチタン酸リチウムのサイクル寿命が長く、電
池特性に優れる観点から好ましい。
As a guide for firing, the firing temperature and time are as follows:
It is preferable to select based on the TiO 2 residual degree. That is, the powder X-ray diffraction peak of the fired product TiO 2 (27
The ratio of the intensity at ゜) to the intensity at the powder X-ray diffraction peak (18 °) of Li 4 Ti 5 O 12 , that is, the relative intensity ratio (hereinafter referred to as “TiO 2 residual degree”) is 0.1 or less;
It is preferable to bake so as to be preferably 0.05 or less. If indicated by the single-phase rate [(1-TiO 2 residual degree) × 100], 90% or more, preferably 95%. The firing atmosphere may be appropriately selected from oxygen, air, nitrogen, argon, and the like. In particular, nitrogen or argon gas is preferable from the viewpoint of long cycle life of lithium titanate obtained by firing and excellent battery characteristics.

【0015】(4)チタン酸リチウム このようにして得られたチタン酸リチウムは、焼成炉か
ら取り出し、冷却後、必要に応じ解砕し、さらに必要に
応じて粉砕や分級等の手段により目的の一次粒子径のチ
タン酸リチウムを採取する。さて、本発明のリチウムイ
オン電池電極活物質の特徴は、上記TiO粉を焼成し
て得た、一次粒子径が1.0μm以下、より好ましくは
0.1〜0.8μmである。さらに好ましい態様は一次
粒子径0.1〜0.6μmであるとともに、電極形成時
での取り扱い容易性の面から平均粒径(二次粒子径)が
1〜30μm、より好ましくは3〜20μmのものであ
る。焼成品から目的とするチタン酸リチウム粉を得るに
は、焼成品を弱く解砕する程度で十分であるが、解砕し
た後に篩別して平均粒径を調節するか、あるいは粉砕等
の適宜手段によれば良い。
(4) Lithium titanate The lithium titanate thus obtained is taken out of the firing furnace, cooled, and then crushed if necessary, and further, if necessary, crushed or classified by means such as crushing or classification. A lithium titanate having a primary particle size is collected. The feature of the lithium ion battery electrode active material of the present invention is that the primary particle diameter obtained by firing the TiO 2 powder is 1.0 μm or less, more preferably 0.1 to 0.8 μm. A further preferred embodiment has a primary particle diameter of 0.1 to 0.6 μm and an average particle diameter (secondary particle diameter) of 1 to 30 μm, more preferably 3 to 20 μm from the viewpoint of easy handling during electrode formation. Things. In order to obtain the desired lithium titanate powder from the fired product, it is sufficient to weakly crush the fired product, but after crushing, sieving and adjusting the average particle size, or by appropriate means such as grinding or the like Good.

【0016】本発明のチタン酸リチウム粉の重要な点
は、“特定のTiO粉”を用いて得た“特定のチタン
酸リチウム”であり、これを活物質に使用した場合、電
池特性(容量とサイクル特性)が一段と向上するのであ
る。
An important point of the lithium titanate powder of the present invention is “specific lithium titanate” obtained by using “specific TiO 2 powder”. When this is used as an active material, the battery characteristics ( The capacity and cycle characteristics) are further improved.

【0017】以上の説明で明らかなように、本発明の好
ましい実施態様は以下の通りである。 チタン酸リチウム原料としてのTiO粉が、一次粒
子径が0.1〜0.8μm、平均粒径が1〜30μm、
ルチル化率が15〜100%である。 チタン酸リチウムとしては、一次粒子径が0.1〜
0.8μm、平均粒径が1〜30μm、ルチル化率が1
5〜100%のTiO粉をリチウム化合物とともに焼
成して得たものであって、一次粒子径が0.1〜0.8
μmである。 上記チタン酸リチウムの一次粒子径が0.1〜0.6
μmである。 上記チタン酸リチウムを製造するに当たり、一次粒子
径が0.1〜0.8μm、ルチル化率が15〜100%
のTiO粉をリチウム化合物とともに焼成し、一次粒
子径が0.1〜0.8μm、平均粒径が1〜30μmの
チタン酸リチウム粉を採取する。
As apparent from the above description, preferred embodiments of the present invention are as follows. TiO 2 powder as a lithium titanate raw material has a primary particle diameter of 0.1 to 0.8 μm, an average particle diameter of 1 to 30 μm,
The rutile ratio is 15 to 100%. As lithium titanate, the primary particle diameter is 0.1 to
0.8 μm, average particle size is 1 to 30 μm, rutile ratio is 1
5 to 100% TiO 2 powder obtained by firing together with a lithium compound, having a primary particle diameter of 0.1 to 0.8.
μm. The primary particle diameter of the lithium titanate is 0.1 to 0.6.
μm. In producing the lithium titanate, the primary particle diameter is 0.1 to 0.8 μm, and the rutile ratio is 15 to 100%.
The TiO 2 powder were fired with a lithium compound in a primary particle diameter of 0.1 to 0.8 [mu] m, an average particle size collected lithium titanate powder 1 to 30 [mu] m.

【0018】次に、本発明のチタン酸リチウムを用いた
二次電池について説明する。上記本発明のチタン酸リチ
ウム粉に公知の導電剤やバインダーを混合し、正極また
は負極とする。導電材としては、例えば黒鉛、カ−ボン
ブラック、アセチレンブラック、ケッチェンブラック、
炭素繊維粉等が用いられる。バインダーとしては、PT
FE(ポリテトラフルオロエチレン)等のフッ素系高分
子、ポリビニルアルコール、ポリビニルクロライド、ポ
リ弗化ビニリデン、ポリエチレン、ポリプロピレン、エ
チレン−プロピレンラバー等を挙げることができる。
Next, a secondary battery using the lithium titanate of the present invention will be described. A known conductive agent or binder is mixed with the lithium titanate powder of the present invention to form a positive electrode or a negative electrode. As the conductive material, for example, graphite, carbon black, acetylene black, Ketjen black,
Carbon fiber powder or the like is used. As binder, PT
Examples thereof include fluorine-based polymers such as FE (polytetrafluoroethylene), polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, polyethylene, polypropylene, and ethylene-propylene rubber.

【0019】該電池は、上記チタン酸リチウムを活物質
として使用した負極または正極と、電解質とから構成さ
れる。電解質は溶媒とリチウム塩から構成され、溶媒と
してプロピレンカ−ボネ−ト、エチレンカーボネ−ト、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメチルスルホ
キシド、アセトニトリル、ニトロメタン等から適宜選択
される。リチウム塩としては、LiPF 、LiCl
、LiCFSO、LiN(CFSO
LiBF等を挙げることができる。
The battery comprises a negative electrode or a positive electrode using the above-mentioned lithium titanate as an active material, and an electrolyte. The electrolyte is composed of a solvent and a lithium salt, and propylene carbonate, ethylene carbonate,
It is appropriately selected from butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, acetonitrile, nitromethane and the like. Lithium salts include LiPF 6 , LiCl
O 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 ,
LiBF 4 and the like can be mentioned.

【0020】以上のように、本発明のTiO粉によっ
て本発明のチタン酸リチウム活物質が得られ、このチタ
ン酸リチウムをリチウムイオン二次電池の正極材または
負極材として使用することによって、放電容量が高く、
充放電サイクル特性が極めて良好なリチウムイオン二次
電池を得ることができる。
As described above, the lithium titanate active material of the present invention can be obtained from the TiO 2 powder of the present invention, and the lithium titanate is used as a positive electrode material or a negative electrode material of a lithium ion secondary battery to discharge. High capacity,
A lithium ion secondary battery having extremely good charge / discharge cycle characteristics can be obtained.

【0021】[0021]

【実施例】以下、実施例に基づいて本発明をより詳しく
説明する。 [実施例1]原料として、表1に示す試料番号「TO−
1」の二酸化チタン粉末(東邦チタニウム(株)製、純
度99.9%)と、純度99.0%の炭酸リチウム粉末
(和光純薬工業(株)製)とを、Li/Ti比0.80
となるように秤量採取した。両粉末を水スラリー化(2
5重量%)してこれをボールミル中で2時間撹拌した
後、120度で乾燥させた。乾燥した混合粉を焼成炉に
挿入し、窒素気流中で750℃で4.5時間保持(仮
焼)した後、850℃と950℃の2段階で合計4時間
焼成(本焼成)した。次いで、焼成品を乳鉢で解砕し、
これをボールミルで15時間粉砕し、表2に示す試料番
号「LTO−1」のチタン酸リチウムを得た。また、X
線回折によるLTO−1の格子定数は8.365Åであ
った。
The present invention will be described in more detail with reference to the following examples. [Example 1] As a raw material, a sample number "TO-
1) (purity 99.9%, manufactured by Toho Titanium Co., Ltd.) and lithium carbonate powder (manufactured by Wako Pure Chemical Industries, Ltd.) having a purity of 99.0%, with a Li / Ti ratio of 0.1. 80
Was weighed and collected. Both powders were converted to water slurry (2
After stirring for 2 hours in a ball mill, the mixture was dried at 120 ° C. The dried mixed powder was inserted into a firing furnace, and kept at 750 ° C. for 4.5 hours (calcination) in a nitrogen stream, and then fired (main firing) at two stages of 850 ° C. and 950 ° C. for a total of 4 hours. Next, the fired product is crushed in a mortar,
This was pulverized with a ball mill for 15 hours to obtain lithium titanate having a sample number “LTO-1” shown in Table 2. Also, X
The lattice constant of LTO-1 by line diffraction was 8.365 °.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】なお、表2の各物性は次のようにして求め
た。 ・BET比表面積(一次粒子の比表面積) 分析装置としてユアサアイオニクス社製:マルチソーブ
16型を用い、窒素ガス吸着法により測定した。 ・一次粒子径 BET比表面積値に基づき、粒子を球形とみなして算出
した。 ・平均粒径 分析装置として堀場製作所社製:LA700を用い、レ
ーザー光散乱方式により体積基準による50%値(D5
0)を求め、これを平均粒径とした。
The physical properties in Table 2 were determined as follows. -BET specific surface area (specific surface area of primary particles) It was measured by a nitrogen gas adsorption method using a multisorb type 16 manufactured by Yuasa Ionics Inc. as an analyzer. -Primary particle diameter Based on the BET specific surface area value, the particle was calculated assuming that the particle was spherical.・ Average particle size 50% value (D5) based on volume by laser light scattering method using LA700 manufactured by Horiba, Ltd.
0) was determined, and this was defined as the average particle size.

【0025】[実施例2]原料として、表1に示す試料
番号「TO−2」の二酸化チタン粉末(東邦チタニウム
(株)製、純度99.9%)を用いた以外は実施例1と
同様にして、表2に示す試料番号「LTO−2」のチタ
ン酸リチウムを得た。X線回折によるLTO−2の格子
定数は8.364Åであった。
Example 2 Same as Example 1 except that titanium dioxide powder of sample number "TO-2" shown in Table 1 (purity: 99.9%, manufactured by Toho Titanium Co., Ltd.) was used as a raw material. As a result, lithium titanate having a sample number of "LTO-2" shown in Table 2 was obtained. The lattice constant of LTO-2 determined by X-ray diffraction was 8.364 °.

【0026】[実施例3]原料として、表1に示す試料
番号「TO−3」の二酸化チタン粉末(東邦チタニウム
(株)製、純度99.9%)を用い、本焼成を900℃
で4時間の1段階とし、さらに焼成後のボールミルによ
る粉砕時間を5時間とした以外は、実施例1と同様にし
て、表2に示す試料番号「LTO−3」のチタン酸リチ
ウムを得た。X線回折によるLTO−3の格子定数は
8.363Åであった。
Example 3 Titanium dioxide powder (produced by Toho Titanium Co., Ltd., purity: 99.9%) having a sample number of “TO-3” shown in Table 1 was used as a raw material.
In the same manner as in Example 1 except that the pulverizing time by a ball mill after firing was changed to one stage of 4 hours, and lithium titanate of sample number "LTO-3" shown in Table 2 was obtained. . The lattice constant of LTO-3 by X-ray diffraction was 8.363 °.

【0027】[実施例4]原料として、表1に示す試料
番号「TO−4」の二酸化チタン粉末(東邦チタニウム
(株)製、純度99.9%)を用いた以外は実施例1と
同様にして、表2に示す試料番号「LTO−4」のチタ
ン酸リチウムを得た。X線回折によるLTO−4の格子
定数は8.364Åであった。
Example 4 The same as Example 1 except that the titanium dioxide powder (purity 99.9%, manufactured by Toho Titanium Co., Ltd.) of sample number "TO-4" shown in Table 1 was used as a raw material. As a result, lithium titanate having a sample number of "LTO-4" shown in Table 2 was obtained. The lattice constant of LTO-4 by X-ray diffraction was 8.364 °.

【0028】[実施例5]水酸化リチウムの15重量%
水溶液に、表1の二酸化チタン粉末「TO−4」を加
え、超音波により撹拌し、スラリーをスプレーにより1
90℃の熱風で噴霧し、造粒・乾燥した。次いで、窒素
雰囲気下にて750℃で4時間焼成した。得られた焼成
品を解砕して表2に示す試料番号「LTO−5」のチタ
ン酸リチウムを得た。X線回折によるLTO−5の格子
定数は8.363Åであった。
Example 5 15% by weight of lithium hydroxide
The titanium dioxide powder “TO-4” shown in Table 1 was added to the aqueous solution, and the mixture was stirred by ultrasonic waves.
It was sprayed with hot air of 90 ° C., granulated and dried. Then, it was baked at 750 ° C. for 4 hours in a nitrogen atmosphere. The obtained fired product was crushed to obtain lithium titanate having a sample number “LTO-5” shown in Table 2. The lattice constant of LTO-5 by X-ray diffraction was 8.363 °.

【0029】[比較例1]原料として、表1に示す試料
番号「TO−5」の二酸化チタン粉末(東邦チタニウム
(株)製、純度99.9%)と、純度99.0%の炭酸
リチウム粉末(和光純薬工業(株)製)とを、Li/T
i比0.80となるように秤量採取した。両粉末を水ス
ラリー化(25重量%)してこれをボールミル中で2時
間混合した後、120度で乾燥させた。乾燥した混合粉
を焼成炉に挿入し、窒素気流中で750℃で4.5時間
保持(仮焼)した後、900℃で本焼成した。次いで、
焼成品を乳鉢で解砕し、篩別して篩下を採取し、表2に
示す試料番号「LTO−6」のチタン酸リチウムを得
た。X線回折によるLTO−6の格子定数は8.369
Åであった。
[Comparative Example 1] As raw materials, titanium dioxide powder having a sample number "TO-5" shown in Table 1 (purity 99.9%, manufactured by Toho Titanium Co., Ltd.) and lithium carbonate having a purity of 99.0% were used. Powder (manufactured by Wako Pure Chemical Industries, Ltd.) and Li / T
The sample was weighed and collected so that the i ratio became 0.80. Both powders were slurried in water (25% by weight), mixed in a ball mill for 2 hours, and dried at 120 ° C. The dried mixed powder was inserted into a firing furnace, held at 750 ° C. for 4.5 hours in a nitrogen stream (calcination), and then fired at 900 ° C. Then
The calcined product was crushed in a mortar, sieved, and the sieved material was collected to obtain lithium titanate having a sample number of “LTO-6” shown in Table 2. The lattice constant of LTO-6 by X-ray diffraction is 8.369.
Was Å.

【0030】[比較例2]比較例1のLTO−5をボー
ルミルで4時間粉砕し、表2に示す試料番号「LTO−
7」のチタン酸リチウムを得た。X線回折によるLTO
−7の格子定数は8.368Åであった。
Comparative Example 2 The LTO-5 of Comparative Example 1 was pulverized with a ball mill for 4 hours.
7 "was obtained. LTO by X-ray diffraction
The lattice constant of −7 was 8.368 °.

【0031】[比較例3]比較例1のLTO−5をボー
ルミルで20時間粉砕し、表2に示す試料番号「LTO
−8」のチタン酸リチウムを得た。X線回折によるLT
O−8の格子定数は8.367Åであった。
Comparative Example 3 LTO-5 of Comparative Example 1 was pulverized with a ball mill for 20 hours.
-8 "of lithium titanate was obtained. LT by X-ray diffraction
The lattice constant of O-8 was 8.367 °.

【0032】−リチウムイオン電池特性の評価− 上記実施例1および2、上記比較例1〜3のチタン酸リ
チウム粉末について、以下の条件でリチウムイオン電池
特性を評価した。 ・試験極の作成 チタン酸リチウム粉末、アセチレンブラックおよびPT
FE(ポリテトラフルオロエチレン)粉末を、重量比で
8.5:1.1:0.4の割合で混練し、この混練物を
チタン網上で加圧成形した後、減圧乾燥して試験極(負
極)とした。 ・評価用電池の作成 正極となる対極にリチウム−アルミニウム合金、参照極
にリチウム箔を使用し、ポリエチレン製細孔膜からなる
セパレータとともに三極セルを組み立てた。電解液に
は、PC(プロピレンカーボネート)、EC(エチレン
カーボネート)およびDME(1,2−ジメトキシエタ
ン)を体積比で1:1:1の割合で混合した溶媒に、電
解質としてLiPFを1モル/lの濃度に溶解して調
整したものを用いた。 ・充放電容量の測定 電流密度をチタン酸リチウムの1.0g当たり35mA
とし、カットオフ電位を充電時2.5V、放電時1.2
Vとして、30℃のアルゴン雰囲気下で行った。充放電
操作を繰り返し行い、得られた充放電曲線から充電容
量、放電容量および充電容量に対する放電容量の割合で
あるクーロン効率を求めた。その結果を表3および図1
に示す。
-Evaluation of Lithium Ion Battery Characteristics- The lithium ion battery characteristics of the lithium titanate powders of Examples 1 and 2 and Comparative Examples 1 to 3 were evaluated under the following conditions.・ Preparation of test electrode Lithium titanate powder, acetylene black and PT
FE (polytetrafluoroethylene) powder was kneaded at a weight ratio of 8.5: 1.1: 0.4, and the kneaded product was pressed on a titanium mesh, dried under reduced pressure, and dried under reduced pressure. (Negative electrode). Preparation of Battery for Evaluation Using a lithium-aluminum alloy as a counter electrode serving as a positive electrode and a lithium foil as a reference electrode, a three-electrode cell was assembled together with a separator composed of a polyethylene porous membrane. The electrolyte solution was a solvent in which PC (propylene carbonate), EC (ethylene carbonate) and DME (1,2-dimethoxyethane) were mixed at a volume ratio of 1: 1: 1, and 1 mol of LiPF 6 as an electrolyte. A solution prepared by dissolving to a concentration of / l was used.・ Measurement of charge / discharge capacity The current density was 35 mA per 1.0 g of lithium titanate.
And the cut-off potential is 2.5 V when charging and 1.2 V when discharging.
As V, it carried out in argon atmosphere of 30 degreeC. The charge / discharge operation was repeatedly performed, and the charge capacity, the discharge capacity, and the Coulomb efficiency, which is the ratio of the discharge capacity to the charge capacity, were obtained from the obtained charge / discharge curve. Table 3 and FIG.
Shown in

【0033】[0033]

【表3】 [Table 3]

【0034】表3から明らかなように、比較例3(LT
O−7)の一次粒子径は0.27μmであって実施例1
〜4(LTO−1〜4)とほぼ同じであるが、初期放電
容量、10〜20サイクル目での充放電容量は134〜
135mAh/g以下であった。これに比べ、本発明の
TiO粉(表1のTO−1およびTO−2)を用いて
製造した本発明のチタン酸リチウム粉(例えばLTO−
1およびLTO−2)は、初期放電容量、10〜20サ
イクル目での充放電容量のいずれも150mAh/g以
上の高い容量を示し、クーロン効率も100%近い性能
を発揮した。
As apparent from Table 3, Comparative Example 3 (LT
O-7) of Example 1
~ 4 (LTO-1 ~ 4), but the initial discharge capacity and the charge / discharge capacity at the 10th to 20th cycles are 134 ~
It was 135 mAh / g or less. In comparison, the lithium titanate powder of the present invention (for example, LTO- powder) produced using the TiO 2 powder of the present invention (TO-1 and TO-2 in Table 1).
1 and LTO-2) showed a high capacity of 150 mAh / g or more in both the initial discharge capacity and the charge / discharge capacity at the 10th to 20th cycles, and exhibited a Coulomb efficiency of nearly 100%.

【0035】図2に示すように、比較例1〜3(LTO
−6〜8)は、初期放電容量は130〜140mAh/
gであるが、5サイクル程度で急激に容量が低下した。
一方、本発明のTiO粉を用いて製造した本発明のチ
タン酸リチウム粉を用いた電池では、高い容量が維持さ
れている。また、粉砕により平均粒径を小さくした比較
例2および3(LTO−7,8)は、粉砕していない比
較例1(LTO−6)に比べて、初期放電容量およびサ
イクル特性がともに優れている。しかしながら、反応生
成物を粉砕することによる向上効果よりも、原料として
のTiO粉の選択効果の方が大きい。
As shown in FIG. 2, Comparative Examples 1 to 3 (LTO
-6 to 8), the initial discharge capacity is 130 to 140 mAh /
g, but the capacity rapidly decreased in about 5 cycles.
On the other hand, in the battery using the lithium titanate powder of the present invention manufactured using the TiO 2 powder of the present invention, high capacity is maintained. Further, Comparative Examples 2 and 3 (LTO-7, 8) in which the average particle size was reduced by pulverization were superior in both the initial discharge capacity and the cycle characteristics to Comparative Example 1 (LTO-6) which was not pulverized. I have. However, the effect of selecting TiO 2 powder as a raw material is larger than the effect of improving the reaction product by grinding.

【0036】このように、原料としてのTiO粉の一
次粒子径は、その反応生成物であるチタン酸リチウムの
電池特性に予期しない影響を及ぼす。したがって、原料
TiO粉と反応生成物の選択により、生成物であるチ
タン酸リチウムの電池電極活物質としての性能が飛躍的
に向上する。
Thus, the primary particle size of the TiO 2 powder as a raw material has an unexpected effect on the battery characteristics of the reaction product lithium titanate. Therefore, by selecting the raw material TiO 2 powder and the reaction product, the performance of the product lithium titanate as a battery electrode active material is dramatically improved.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
原料の二酸化チタン粉の一次粒子径およびルチル化率
と、同原料を用いて生成したチタン酸リチウムの一次粒
子径を適宜な範囲に限定したことにより、充放電容量が
一層高く、クーロン効率も高く、サイクル寿命に優れた
チタン酸リチウムイオン二次電池電極活物質を得ること
ができるといった効果を奏する。
As described above, according to the present invention,
By limiting the primary particle size and rutile ratio of the raw material titanium dioxide powder and the primary particle size of lithium titanate produced using the same raw material to an appropriate range, the charge / discharge capacity is higher and the coulomb efficiency is higher. This has the effect that an electrode active material of a lithium titanate ion secondary battery having excellent cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で行った充放電容量の測定値を示す線
図である。
FIG. 1 is a diagram showing measured values of charge / discharge capacity performed in an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 10/40 H01M 10/40 Z (72)発明者 山脇 徹也 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 西村 栄二 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 Fターム(参考) 4G047 CA02 CA06 CB04 CC03 CD04 5H029 AJ05 AJ06 AK03 AL03 AL12 AM02 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ12 DJ16 EJ03 EJ05 HJ00 HJ02 HJ05 HJ13 5H050 AA07 AA08 BA17 CA07 CB03 FA17 GA02 GA10 GA12 HA00 HA02 HA05 HA13 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01M 10/40 H01M 10/40 Z (72) Inventor Tetsuya Yamawaki 3-3-Chigasaki, Chigasaki-shi, Kanagawa 5 Toho Titanium Co., Ltd. (72) Inventor Eiji Nishimura 3-3-5 Chigasaki, Chigasaki-shi, Kanagawa F-term in Toho Titanium Co., Ltd. CJ02 CJ08 CJ12 DJ16 EJ03 EJ05 HJ00 HJ02 HJ05 HJ13 5H050 AA07 AA08 BA17 CA07 CB03 FA17 GA02 GA10 GA12 HA00 HA02 HA05 HA13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子径が1.0μm以下で、かつ、
ルチル化率が15〜100%であることを特徴とするリ
チウムイオン二次電池電極活物質製造原料としての二酸
化チタン粉。
(1) a primary particle diameter of 1.0 μm or less, and
A titanium dioxide powder as a raw material for producing an electrode active material for a lithium ion secondary battery, having a rutile ratio of 15 to 100%.
【請求項2】 一次粒子径が0.1〜0.8μmである
ことを特徴とする請求項1に記載のリチウムイオン二次
電池電極活物質製造原料としての二酸化チタン粉。
2. The titanium dioxide powder as a raw material for producing an electrode active material for a lithium ion secondary battery according to claim 1, wherein the primary particle diameter is 0.1 to 0.8 μm.
【請求項3】 請求項1に記載の二酸化チタン粉とリチ
ウム化合物との混合物を焼成して得られ、その一次粒子
径が1.0μm以下であることを特徴とするリチウムイ
オン二次電池電極活物質としてのチタン酸リチウム。
3. An electrode active material for a lithium ion secondary battery, obtained by firing a mixture of the titanium dioxide powder according to claim 1 and a lithium compound, and having a primary particle size of 1.0 μm or less. Lithium titanate as a substance.
【請求項4】 一次粒子径が0.1〜0.8μmで、か
つ、二次粒子径が1〜15μmであることを特徴とする
請求項3に記載のリチウムイオン二次電池電極活物質と
してのチタン酸リチウム。
4. The electrode active material for a lithium ion secondary battery according to claim 3, wherein the primary particle diameter is 0.1 to 0.8 μm and the secondary particle diameter is 1 to 15 μm. Lithium titanate.
【請求項5】 一般式LiTi12(Li/Ti
原子比が0.68〜0.82、Xは3〜5の整数、Yは
4〜6の整数)で表される化合物の1種または2種以上
であって、X/Y比が0.68〜0.82であることを
特徴とする請求項3に記載のリチウムイオン二次電池電
極活物質としてのチタン酸リチウム。
5. A compound of the general formula Li X Ti YO 12 (Li / Ti
Atomic ratio of 0.68 to 0.82, X is an integer of 3 to 5, Y is an integer of 4 to 6), and the X / Y ratio is 0. The lithium titanate as the electrode active material for a lithium ion secondary battery according to claim 3, wherein the lithium titanate is 68 to 0.82.
【請求項6】 LiTi12を主成分とした結晶
化率90%以上の化合物であることを特徴とする請求項
3に記載のリチウムイオン二次電池電極活物質としての
チタン酸リチウム。
6. The lithium titanate as a lithium ion secondary battery electrode active material according to claim 3, wherein the compound is a compound mainly composed of Li 4 Ti 5 O 12 and having a crystallization ratio of 90% or more. .
【請求項7】 請求項1に記載の二酸化チタン粉とリチ
ウム化合物との混合物を焼成し、一次粒子径が1.0μ
m以下のチタン酸リチウムを採取することを特徴とする
リチウムイオン二次電池電極活物質としてのチタン酸リ
チウムの製造方法。
7. A mixture of the titanium dioxide powder according to claim 1 and a lithium compound, which is fired to have a primary particle diameter of 1.0 μm.
A method for producing lithium titanate as an electrode active material for a lithium ion secondary battery, wherein lithium titanate having a particle size of m or less is collected.
JP2001090753A 2001-03-27 2001-03-27 Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same Expired - Fee Related JP4949561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090753A JP4949561B2 (en) 2001-03-27 2001-03-27 Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090753A JP4949561B2 (en) 2001-03-27 2001-03-27 Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002289194A true JP2002289194A (en) 2002-10-04
JP4949561B2 JP4949561B2 (en) 2012-06-13

Family

ID=18945498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090753A Expired - Fee Related JP4949561B2 (en) 2001-03-27 2001-03-27 Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4949561B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530248A2 (en) 2003-11-07 2005-05-11 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2005239461A (en) * 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate
JP2007087875A (en) * 2005-09-26 2007-04-05 Toshiba Corp Non-aqueous electrolyte battery and battery pack
JP2008511528A (en) * 2004-08-31 2008-04-17 コミサリア、ア、レネルジ、アトミク Dense mixed titanium lithium oxide powdery compound, method for producing the compound, and electrode comprising the compound
JP2009037807A (en) * 2007-07-31 2009-02-19 Gs Yuasa Corporation:Kk Nonaqueous electrolytic battery
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2010165688A (en) * 2010-03-16 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2010267462A (en) * 2009-05-14 2010-11-25 Toyota Central R&D Labs Inc Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2011051891A (en) * 2010-10-19 2011-03-17 Ishihara Sangyo Kaisha Ltd Method for producing lithium titanate and lithium battery using the lithium titanate
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8039151B2 (en) 2005-07-07 2011-10-18 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2012109279A (en) * 2012-03-09 2012-06-07 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery, and battery pack
JP2012113950A (en) * 2010-11-24 2012-06-14 Hitachi Chem Co Ltd Lithium-titanium compound particle, method for producing the same, electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012086557A1 (en) * 2010-12-24 2012-06-28 京セラ株式会社 Lithium rechargeable battery
US8273480B2 (en) 2009-01-15 2012-09-25 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2012147864A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
WO2012147856A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Titanium raw material for lithium titanate production and method for producing lithium titanate using same
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
US20130108928A1 (en) * 2011-11-02 2013-05-02 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide and manufacturing method thereof, as well as battery electrode and lithium ion secondary battery using same
CN103094547A (en) * 2011-11-02 2013-05-08 太阳诱电株式会社 Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP5435301B2 (en) * 2009-01-14 2014-03-05 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2014055080A (en) * 2012-09-11 2014-03-27 Sakai Chem Ind Co Ltd Titanium dioxide composition and method for producing the same, and lithium titanate
US8758940B2 (en) 2012-03-29 2014-06-24 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
WO2015025796A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
JP2015505801A (en) * 2011-11-30 2015-02-26 ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. Method for producing lithium-titanium composite oxide doped with different metals, and lithium-titanium composite oxide doped with different metals produced thereby
JP2015125835A (en) * 2013-12-26 2015-07-06 東邦チタニウム株式会社 Powdery lithium titanate, production method therefor, and lithium ion battery using the same
CN106044851A (en) * 2013-03-29 2016-10-26 株式会社久保田 Titanium oxide compound, and electrode and lithium ion secondary battery each manufactured using same
JP2017216225A (en) * 2016-05-27 2017-12-07 パナソニックIpマネジメント株式会社 Electrochemical device
WO2018003929A1 (en) * 2016-06-30 2018-01-04 宇部興産株式会社 Lithium titanate powder and active material for power storage device electrode, and electrode sheet and power storage device using same
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
KR101914557B1 (en) 2011-12-20 2018-11-05 삼성에스디아이 주식회사 Methods of preparing lithium titanium oxide for providing lithium secondary batteries with enhanced properties and lithium secondary batteries containing the same
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254411A (en) * 1994-01-21 1995-10-03 Renata Ag Primary or secondary electrochemical generator with nanoparticle electrode
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254411A (en) * 1994-01-21 1995-10-03 Renata Ag Primary or secondary electrochemical generator with nanoparticle electrode
JP2000302547A (en) * 1999-02-16 2000-10-31 Toho Titanium Co Ltd Production of lithium titanate, lithium ion battery and its negative electrode

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4554911B2 (en) * 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2005142047A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP1530248A2 (en) 2003-11-07 2005-05-11 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP4668539B2 (en) * 2004-02-25 2011-04-13 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
JP2005239461A (en) * 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate
JP2008511528A (en) * 2004-08-31 2008-04-17 コミサリア、ア、レネルジ、アトミク Dense mixed titanium lithium oxide powdery compound, method for producing the compound, and electrode comprising the compound
US8039151B2 (en) 2005-07-07 2011-10-18 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
JP2007087875A (en) * 2005-09-26 2007-04-05 Toshiba Corp Non-aqueous electrolyte battery and battery pack
US8420264B2 (en) 2007-03-30 2013-04-16 Altairnano, Inc. Method for preparing a lithium ion cell
JP2009037807A (en) * 2007-07-31 2009-02-19 Gs Yuasa Corporation:Kk Nonaqueous electrolytic battery
JP5435301B2 (en) * 2009-01-14 2014-03-05 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
US8273480B2 (en) 2009-01-15 2012-09-25 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2010267462A (en) * 2009-05-14 2010-11-25 Toyota Central R&D Labs Inc Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010165688A (en) * 2010-03-16 2010-07-29 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
JP2011051891A (en) * 2010-10-19 2011-03-17 Ishihara Sangyo Kaisha Ltd Method for producing lithium titanate and lithium battery using the lithium titanate
JP2012113950A (en) * 2010-11-24 2012-06-14 Hitachi Chem Co Ltd Lithium-titanium compound particle, method for producing the same, electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9209451B2 (en) 2010-12-24 2015-12-08 Kyocera Corporation Lithium rechargeable battery comprising a lithium titanate sintered body
KR101497990B1 (en) * 2010-12-24 2015-03-03 쿄세라 코포레이션 Lithium rechargeable battery
JP5174283B2 (en) * 2010-12-24 2013-04-03 京セラ株式会社 Lithium secondary battery
WO2012086557A1 (en) * 2010-12-24 2012-06-28 京セラ株式会社 Lithium rechargeable battery
CN103069621A (en) * 2010-12-24 2013-04-24 京瓷株式会社 Lithium rechargeable battery
JP5927182B2 (en) * 2011-04-28 2016-06-01 石原産業株式会社 Method for producing lithium titanate precursor and method for producing lithium titanate
KR20140028003A (en) * 2011-04-28 2014-03-07 이시하라 산교 가부시끼가이샤 Titanium raw material for lithium titanate production and method for producing lithium titanate using same
CN103429536A (en) * 2011-04-28 2013-12-04 石原产业株式会社 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
KR20140006902A (en) * 2011-04-28 2014-01-16 이시하라 산교 가부시끼가이샤 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
CN103429536B (en) * 2011-04-28 2017-05-10 石原产业株式会社 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
EP2703354A1 (en) * 2011-04-28 2014-03-05 Ishihara Sangyo Kaisha, Ltd. Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
TWI564248B (en) * 2011-04-28 2017-01-01 石原產業股份有限公司 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electric accumulator and storage device
WO2012147864A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
JP5990512B2 (en) * 2011-04-28 2016-09-14 石原産業株式会社 Titanium raw material for producing lithium titanate and method for producing lithium titanate using such raw material
US9428396B2 (en) 2011-04-28 2016-08-30 Ishihara Sangyo Kaisha, Ltd Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active material, and electricity storage device
KR101907082B1 (en) * 2011-04-28 2018-10-11 이시하라 산교 가부시끼가이샤 Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
US9786912B2 (en) 2011-04-28 2017-10-10 Ishihara Sangyo Kaisha, Ltd. Titanium raw material for lithium titanate production and method for producing lithium titanate using same
WO2012147856A1 (en) * 2011-04-28 2012-11-01 石原産業株式会社 Titanium raw material for lithium titanate production and method for producing lithium titanate using same
EP2703354A4 (en) * 2011-04-28 2015-03-25 Ishihara Sangyo Kaisha Method for producing lithium titanate precursor, method for producing lithium titanate, lithium titanate, electrode active substance, and storage device
KR101867643B1 (en) * 2011-04-28 2018-06-15 이시하라 산교 가부시끼가이샤 Titanium raw material for lithium titanate production and method for producing lithium titanate using same
US20130108928A1 (en) * 2011-11-02 2013-05-02 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide and manufacturing method thereof, as well as battery electrode and lithium ion secondary battery using same
JP2013095646A (en) * 2011-11-02 2013-05-20 Taiyo Yuden Co Ltd Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using the same
CN103094547A (en) * 2011-11-02 2013-05-08 太阳诱电株式会社 Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
JP2015505801A (en) * 2011-11-30 2015-02-26 ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. Method for producing lithium-titanium composite oxide doped with different metals, and lithium-titanium composite oxide doped with different metals produced thereby
KR101914557B1 (en) 2011-12-20 2018-11-05 삼성에스디아이 주식회사 Methods of preparing lithium titanium oxide for providing lithium secondary batteries with enhanced properties and lithium secondary batteries containing the same
JP2012109279A (en) * 2012-03-09 2012-06-07 Toshiba Corp Negative electrode active material, nonaqueous electrolyte battery, and battery pack
US8758940B2 (en) 2012-03-29 2014-06-24 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide, and battery electrode and lithium ion secondary battery using same
JP2014055080A (en) * 2012-09-11 2014-03-27 Sakai Chem Ind Co Ltd Titanium dioxide composition and method for producing the same, and lithium titanate
US10020503B2 (en) 2013-03-25 2018-07-10 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
CN106044851A (en) * 2013-03-29 2016-10-26 株式会社久保田 Titanium oxide compound, and electrode and lithium ion secondary battery each manufactured using same
JPWO2015025796A1 (en) * 2013-08-19 2017-03-02 国立研究開発法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
CN105473506A (en) * 2013-08-19 2016-04-06 独立行政法人产业技术综合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
US9856148B2 (en) 2013-08-19 2018-01-02 National Institute Of Advanced Industrial Science And Technology Method for producing titanium oxide using porous titanium compound impregnated with solution
WO2015025796A1 (en) * 2013-08-19 2015-02-26 独立行政法人産業技術総合研究所 Method for producing titanium oxide using porous titanium compound impregnated with solution
US10217995B2 (en) 2013-09-18 2019-02-26 Kabushiki Kaisha Toshiba Active material for battery, nonaqueous electrolyte battery, and battery pack
JP2015125835A (en) * 2013-12-26 2015-07-06 東邦チタニウム株式会社 Powdery lithium titanate, production method therefor, and lithium ion battery using the same
JP2017216225A (en) * 2016-05-27 2017-12-07 パナソニックIpマネジメント株式会社 Electrochemical device
WO2018003929A1 (en) * 2016-06-30 2018-01-04 宇部興産株式会社 Lithium titanate powder and active material for power storage device electrode, and electrode sheet and power storage device using same
JPWO2018003929A1 (en) * 2016-06-30 2019-06-13 宇部興産株式会社 Lithium titanate powder and electrode active material for electrode of electric storage device, and electrode sheet and electric storage device using the same

Also Published As

Publication number Publication date
JP4949561B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
JP4540167B2 (en) Method for producing lithium titanate
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
JPH0950810A (en) Electrode active material for non-aqueous electrolytic battery and manufacture thereof
JP2004335278A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
JP2005011713A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
JP5813277B1 (en) Spinel-type lithium cobalt manganese-containing composite oxide
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2003272629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003123748A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP3030764B2 (en) Spinel-type lithium manganese oxide, method for producing the same, and use thereof
JPH09251854A (en) Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JP3429633B2 (en) Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP6649369B2 (en) Method for producing 5V-class spinel-type lithium manganese-containing composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees