JP2002289189A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JP2002289189A
JP2002289189A JP2001084538A JP2001084538A JP2002289189A JP 2002289189 A JP2002289189 A JP 2002289189A JP 2001084538 A JP2001084538 A JP 2001084538A JP 2001084538 A JP2001084538 A JP 2001084538A JP 2002289189 A JP2002289189 A JP 2002289189A
Authority
JP
Japan
Prior art keywords
salt
negative electrode
electrolyte
battery
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001084538A
Other languages
Japanese (ja)
Other versions
JP4895335B2 (en
Inventor
Mayumi Koshiishi
真弓 輿石
Fusaji Kita
房次 喜多
Shoichi Tsujioka
辻岡  章一
Hiroshige Takase
高瀬  浩成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Maxell Holdings Ltd
Original Assignee
Central Glass Co Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Hitachi Maxell Ltd filed Critical Central Glass Co Ltd
Priority to JP2001084538A priority Critical patent/JP4895335B2/en
Publication of JP2002289189A publication Critical patent/JP2002289189A/en
Application granted granted Critical
Publication of JP4895335B2 publication Critical patent/JP4895335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous battery excellent in high temperature storage characteristics. SOLUTION: A nonaqueous battery comprises a nonaqueous electrolyte and a positive electrode and a negative electrode in which a compound containing Li and at least one kind of element selected from among Si, Sn, Al, B, Ga, In, Pb, Bi and Sb, or nitride containing Li as well as Co or Ni is active material. The nonaqueous battery is so configured that the negative electrode in 95% charged state against battery's specification capacity has a peak at least at 150-250 deg.C in a differential scanning thermal analysis. To attain this, the electrolyte is preferred to contain, as electrolyte salt, bis[trifluoro-2-oxido-2- trifluoro-methylpropionate(2-)-O,O] lithium borate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電池に関し、
さらに詳しくは、一次電池、二次電池のいずれも適用可
能で、高温貯蔵特性が優れた非水電池に関する。
The present invention relates to a non-aqueous battery,
More specifically, the present invention relates to a non-aqueous battery which is applicable to both primary batteries and secondary batteries and has excellent high-temperature storage characteristics.

【0002】[0002]

【従来の技術】リチウムイオン電池に代表される非水電
池は、高電圧、高エネルギー密度であることから、ます
ます需要が増えている。従来、この種の非水電池の負極
としては、グラファイトなどの炭素材料や、SiOなど
を集電体上に設けたものが用いられ、電解液(液状電解
質)にはLiPF6 などを有機溶媒に溶かしたものが用
いられていた。
2. Description of the Related Art Demand for non-aqueous batteries represented by lithium ion batteries is increasing due to their high voltage and high energy density. Conventionally, as a negative electrode of this type of nonaqueous battery, a carbon material such as graphite or a material provided with a SiO or the like on a current collector has been used. As an electrolyte (liquid electrolyte), LiPF 6 or the like is used as an organic solvent. Melted ones were used.

【0003】しかし、上記電池を充電状態で高温貯蔵す
ると、特に高容量の電池ほど、容量劣化が大きいという
問題があった。そこで、数種の従来電池を分解し、充電
状態の負極の示差走査熱分析を行ったところ、100〜
150℃の範囲に反応ピークが観察され、高温で容量を
劣化させる反応が生じることが示されていた。
[0003] However, when the above-mentioned battery is stored at a high temperature in a charged state, there is a problem that the capacity deterioration is particularly large for a battery having a high capacity. Thus, several types of conventional batteries were disassembled, and differential scanning calorimetry of the charged negative electrode was performed.
A reaction peak was observed in the range of 150 ° C., indicating that a reaction that deteriorated the capacity occurred at a high temperature.

【0004】高温での容量劣化を防ぐために、電解液に
リチウムボロンジサリチレート塩を有機溶媒に溶解した
ものを用いることが報告されている(特開平7−658
43号公報)。ところが、本発明者らが検討したところ
では、電池の高容量化を図るため、LiとSiやSnの
ようにLiと合金化可能な元素とを含む化合物や、Li
とCoまたはNiとを含む窒化物のような高容量の活物
質を用いた高容量負極(例えば、負極の単位重量あたり
の放電容量が450mAh/g以上となるような負極)
を用いて非水電池を構成した場合には、上記電解液を用
いても高温貯蔵時の容量劣化に対して充分に満足できる
改善効果は得られなかった。
[0004] In order to prevent capacity degradation at high temperatures, it has been reported that a solution prepared by dissolving lithium boron disalicylate salt in an organic solvent is used as an electrolyte (Japanese Patent Laid-Open No. 7-658).
No. 43). However, the present inventors have studied that in order to increase the capacity of the battery, a compound containing Li and an element that can be alloyed with Li, such as Si or Sn, or Li,
-Capacity negative electrode using a high-capacity active material such as nitride containing Co and Ni or Ni (for example, a negative electrode having a discharge capacity per unit weight of the negative electrode of 450 mAh / g or more)
When a non-aqueous battery was constituted by using the above, even when the above-mentioned electrolytic solution was used, a sufficiently satisfactory improvement effect on capacity deterioration during high-temperature storage was not obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の非水電池における問題点を解決し、上記高容量
活物質を用いた負極を用いて非水電池を構成した場合に
おいても、高温貯蔵特性が優れた非水電池を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the conventional non-aqueous battery, and can be applied to a case where a non-aqueous battery is formed using the negative electrode using the high capacity active material. Another object of the present invention is to provide a non-aqueous battery having excellent high-temperature storage characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために種々研究を重ねた結果、LiとSi、
Sn、Al、B、Ga、In、Pb、Bi、Sbよりな
る群から選ばれる少なくとも1種の元素とを含む化合物
またはLiとCoもしくはNiとを含む窒化物を活物質
とする負極、正極および非水系の電解質を有する非水電
池において、電池の規格容量に対して95%充電状態の
負極が、示差走査熱分析で少なくとも150〜250℃
の範囲にピークを持つことによって、高温貯蔵特性が優
れた非水電池を得ることができ、上記課題を解決できる
ことを見出した。さらに、このピークをP1とし、P1
のピーク温度をT(℃)としたときに、T−150〜T
−20(℃)の温度範囲にP1とは別のピークP2を持
ち、P2とP1の強度比(P2の強度/P1の強度)が
0.2〜6の範囲にあるときは、高温貯蔵特性だけでな
く、負荷特性にも優れた非水電池が得られることを見出
した。
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, have found that Li and Si,
A negative electrode, a positive electrode, and a compound containing at least one element selected from the group consisting of Sn, Al, B, Ga, In, Pb, Bi, and Sb and a nitride containing Li and Co or Ni; In a non-aqueous battery having a non-aqueous electrolyte, a negative electrode that is 95% charged with respect to the standard capacity of the battery is at least 150 to 250 ° C.
It has been found that a non-aqueous battery having excellent high-temperature storage characteristics can be obtained by having a peak in the range, and the above problem can be solved. Further, this peak is designated as P1, and P1
T-150 to T-
When the temperature has a peak P2 different from that of P1 in a temperature range of -20 (° C.) and the intensity ratio of P2 and P1 (the intensity of P2 / the intensity of P1) is in the range of 0.2 to 6, the high-temperature storage characteristics In addition, it has been found that a non-aqueous battery having excellent load characteristics can be obtained.

【0007】本発明において、電池の規格容量とは、電
池を1C(1時間率)の放電レートで放電したときの放
電容量をいい、その規格容量の95%充電状態(規格容
量の95%の電気量に相当するぶん充電された状態)で
示差走査熱分析を行うのは、示差走査熱分析で現れるピ
ーク位置が充電状態によって異なるという理由によるも
のである。
In the present invention, the standard capacity of a battery refers to a discharge capacity when the battery is discharged at a discharge rate of 1 C (one hour rate), and a charged state of 95% of the standard capacity (95% of the standard capacity). The reason why the differential scanning calorimetry is performed in the charged state corresponding to the amount of electricity) is that the peak position appearing in the differential scanning calorimetry differs depending on the state of charge.

【0008】上記のように、電池の規格容量に対して9
5%充電状態の負極が、示差走査熱分析で150〜25
0℃の範囲にピークを持つようにするには、例えば、ビ
ス〔トリフルオロ−2−オキシド−2−トリフルオロ−
メチルプロピオナト(2−)−O,O〕ホウ酸リチウム
などで例示されるような、周期表(ただし、短周期型の
周期表)のIIIb族〜Vb族の元素をアニオン中心と
して有するアニオンとアルカリ金属のカチオンとで構成
され、そのアニオン中心の元素に酸素原子を介してC=
O基、−SO2 基または−SO3 基が結合しさらにフル
オロアルキル基を有する有機金属塩を電解質塩として用
いて電解質を構成することによって達成することができ
る。また、それによって、高温貯蔵特性が優れた非水電
池を得ることができる。さらに、上記の有機金属塩を含
有する電解質に、例えばLiPF 6 、LiBF4 などの
一般式LiMFn (式中、MはP、As、SbまたはB
であり、nはMがP、AsまたはSbのときは6で、M
がBのときは4である)で表される無機リチウム塩また
はLiN(SO2 2 5 2 などの含フッ素有機リチ
ウムイミド塩を含有させることにより、上記と同じ条件
での負極の示差走査熱分析において、上記ピーク(P
1)のピーク温度〔T(℃)〕よりも20〜150
(℃)低温側の温度範囲においてP1とは別のピーク
(P2)を持ち、その強度比(P2の強度/P1の強
度)が0.2〜6の範囲となるので、高温貯蔵特性だけ
でなく、負荷特性にも優れた非水電池を得ることができ
る。
As described above, the standard capacity of the battery is 9%.
The negative electrode in a 5% charged state shows 150 to 25 by differential scanning calorimetry.
To have a peak in the range of 0 ° C, for example,
[Trifluoro-2-oxide-2-trifluoro-
Methylpropionato (2-)-O, O] lithium borate
Periodic table (however, short-period type
Elements of Group IIIb to Group Vb of the Periodic Table) are defined as anion centers.
Composed of anions and alkali metal cations
And the element at the center of the anion is represented by C =
O group, -SOTwoGroup or -SOThreeGroups are combined and more full
Uses organometallic salts with oloalkyl groups as electrolyte salts
Can be achieved by configuring the electrolyte
You. It also enables non-aqueous
You can get a pond. Furthermore, the above-mentioned organometallic salt is contained.
For example, LiPF 6, LiBFFourSuch as
General formula LiMFn(Where M is P, As, Sb or B
And n is 6 when M is P, As or Sb;
Is 4 when B is B) or an inorganic lithium salt represented by the formula:
Is LiN (SOTwoCTwoFFive)TwoFluorine-containing organic compounds such as
The same conditions as above
In the differential scanning calorimetry of the negative electrode, the peak (P
20 to 150 higher than the peak temperature [T (° C.)] of 1).
(° C) Different peak from P1 in low temperature range
(P2), and its intensity ratio (P2 intensity / P1 intensity)
Degree) is in the range of 0.2 to 6, so only high temperature storage characteristics
In addition, a non-aqueous battery with excellent load characteristics can be obtained.
You.

【0009】すなわち、LiとSi、Sn、Al、B、
Ga、In、Pb、BiおよびSbよりなる群から選ば
れる少なくとも1種の元素とを含む化合物またはLiと
CoもしくはNiとを含む窒化物のような高容量活物質
を用いた高容量負極を用いて非水電池を構成する場合に
おいても、電解質塩として上記有機金属塩を電解質中に
含有させることにより、高温貯蔵特性が優れた非水電池
を得ることができ、さらに、電解質塩として、この有機
金属塩とLiPF6 などの一般式LiMFn で表される
無機リチウム塩またはLiN(SO2 2 5 2 など
の含フッ素有機リチウムイミド塩とを併用することによ
り、高温貯蔵特性だけでなく、負荷特性にも優れた非水
電池を得ることができるのである。この場合、上記一般
式LiMFn で表される無機リチウム塩または含フッ素
有機リチウムイミド塩を併用する割合が多すぎると、高
温貯蔵特性を低下させる要因になるが、電池の規格容量
に対して95%充電状態の負極の示差走査熱分析を行っ
たときに、前記2つのピークP1およびP2に関し、P
2とP1の強度比(P2の強度/P1の強度)が0.2
〜6の範囲となるように併用する割合を調整することに
より、優れた高温貯蔵特性を保持しつつ、負荷特性をも
向上させることができる。
That is, Li and Si, Sn, Al, B,
A high-capacity negative electrode using a high-capacity active material such as a compound containing at least one element selected from the group consisting of Ga, In, Pb, Bi and Sb or a nitride containing Li and Co or Ni is used. Even when a non-aqueous battery is configured, a non-aqueous battery having excellent high-temperature storage characteristics can be obtained by including the above-mentioned organic metal salt in the electrolyte as an electrolyte salt. the combined use of a fluorine-containing organic lithium imide salt such as an inorganic lithium salt or LiN (SO 2 C 2 F 5 ) 2 represented by the general formula LiMF n, such as metal salts and LiPF 6, not only the high-temperature storage characteristics Thus, a non-aqueous battery having excellent load characteristics can be obtained. In this case, the proportion used in combination of an inorganic lithium salt or a fluorine-containing organic lithium imide salt represented by the general formula LiMF n is too large, it becomes a factor of lowering the high temperature storage characteristics, 95 relative to standard capacity of the battery % When the differential scanning calorimetry of the negative electrode in the% charged state was performed, the two peaks P1 and P2
The intensity ratio between P2 and P1 (P2 intensity / P1 intensity) is 0.2
By adjusting the ratio of combined use so as to fall within the range of ~ 6, load characteristics can be improved while maintaining excellent high-temperature storage characteristics.

【0010】本発明において、前記P2とP1の強度比
(P2の強度/P1の強度)の範囲を0.2〜6にして
いるのは、上記ピーク強度比を0.2以上にすることに
よって、負荷特性を充分に向上させ、前記のピーク強度
比を6以下にすることによって、高温貯蔵特性の低下を
防止するためである。
In the present invention, the range of the intensity ratio of P2 and P1 (the intensity of P2 / the intensity of P1) is set to 0.2 to 6 by setting the peak intensity ratio to 0.2 or more. The reason is that the load characteristics are sufficiently improved, and the peak intensity ratio is set to 6 or less, thereby preventing the deterioration of the high-temperature storage characteristics.

【0011】[0011]

【発明の実施の形態】本発明において、示差走査熱分析
によるピークの測定方法としては、上記非水電池を規格
容量の95%充電後、不活性雰囲気中で分解して負極を
取り出し、その一定量を示差走査熱分析測定用の高圧パ
ンに密閉して、外気に触れない状態で測定する方法によ
るものである。測定条件としては室温から400℃まで
10℃/minの昇温速度で測定するものとする。ま
た、ピーク強度は示差走査熱分析で測定された発熱強度
を、測定に用いた負極の負極合剤部分の重量で除した値
とする。なお、本発明は、示差走査熱分析でのP1の温
度範囲を規定することによって、高温貯蔵特性が優れた
非水電池を得られるようにしたものであって、P1より
高温側や低温側にピークが出現してもかまわない。さら
に、本発明においては、示差走査熱分析でのP2の温度
範囲と、P2とP1との強度比を規定することによっ
て、高温貯蔵特性および負荷特性の両方が優れた非水電
池を得られるようにしたものであって、P2より低温側
にピークが出現しても構わない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as a method of measuring a peak by differential scanning calorimetry, the above non-aqueous battery is charged to 95% of a specified capacity, then decomposed in an inert atmosphere, and a negative electrode is taken out. The amount is measured by sealing the amount in a high-pressure pan for differential scanning calorimetry and measuring the amount without touching the outside air. As measurement conditions, measurement is performed at a temperature rising rate of 10 ° C./min from room temperature to 400 ° C. The peak intensity is a value obtained by dividing the exothermic intensity measured by differential scanning calorimetry by the weight of the negative electrode mixture portion of the negative electrode used for the measurement. The present invention is to provide a non-aqueous battery having excellent high-temperature storage characteristics by defining the temperature range of P1 in the differential scanning calorimetry. A peak may appear. Furthermore, in the present invention, by defining the temperature range of P2 in the differential scanning calorimetry and the intensity ratio between P2 and P1, a non-aqueous battery excellent in both high-temperature storage characteristics and load characteristics can be obtained. The peak may appear on the lower temperature side than P2.

【0012】また、P1あるいはP2に相当するピーク
が複数本生じる場合もあるが、その場合には最も強度が
大きいピークをP1あるいはP2とする。
In some cases, a plurality of peaks corresponding to P1 or P2 may occur. In such a case, the peak having the highest intensity is defined as P1 or P2.

【0013】本発明において、周期表のIIIb族〜V
b族の元素をアニオン中心として有するアニオンとアル
カリ金属のカチオンとで構成され、そのアニオン中心の
元素に酸素原子を介してC=O基、−SO2 基または−
SO3 基が結合しさらにフルオロアルキル基を有する有
機金属塩としては、例えば、前記に例示のような次の構
造式
In the present invention, groups IIIb to V of the periodic table are used.
It is composed of an anion having a group b element as an anion center and an alkali metal cation, and a C = O group, -SO 2 group or-
Examples of the organometallic salt having an SO 3 group bonded thereto and further having a fluoroalkyl group include, for example, the following structural formulas as exemplified above.

【0014】[0014]

【化1】 で表されるビス〔トリフルオロ−2−オキシド−2−ト
リフルオロ−メチルプロピオナト(2−)−O,O〕ホ
ウ酸リチウムが、溶媒に溶解した時にイオン伝導度を高
くでき、負荷特性の低下を抑制できることから、特に好
適なものとして挙げられるが、それ以外にも、以下の構
造式で表される化合物などを用いることができる。な
お、上記有機金属塩におけるフルオロアルキル基の数は
2個以上が好ましく、特に4個以上が好ましい。
Embedded image Lithium bis [trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-O, O] borate represented by the formula: Since the reduction can be suppressed, it is particularly preferable, but other than that, a compound represented by the following structural formula can be used. In addition, the number of fluoroalkyl groups in the organic metal salt is preferably two or more, and particularly preferably four or more.

【0015】[0015]

【化2】 Embedded image

【0016】[0016]

【化3】 Embedded image

【0017】本発明において、一般式LiMFn で表さ
れる無機リチウム塩としては、LiPF6 、LiAsF
6 、LiSbF6 、LiBF4 が挙げられ、含フッ素有
機リチウムイミド塩としては、例えば、LiN(SO2
2 5 2 、LiN(SO 2 CF3 2 、LiN(S
2 CF3 )(SO2 4 9 )、LiN(SO2 4
9 2 、LiN(SO2 CF3 )(SO2 8 17
などが挙げられる。
In the present invention, the general formula LiMFnRepresented by
The inorganic lithium salt used is LiPF6, LiAsF
6, LiSbF6, LiBFFourWith fluorine-containing
As the lithium imide salt, for example, LiN (SOTwo
CTwoFFive)Two, LiN (SO TwoCFThree)Two, LiN (S
OTwoCFThree) (SOTwoCFourF9), LiN (SOTwoC Four
F9)Two, LiN (SOTwoCFThree) (SOTwoC8F17)
And the like.

【0018】本発明において、電解質としては、液状電
解質、その液状電解質をゲル化したゲル状電解質のいず
れも用い得るが、本発明においては、通常、電解液と呼
ばれる液状電解質が多用されるので、この液状電解質に
関し、以下、「電解液」という表現で詳細に説明する。
In the present invention, either a liquid electrolyte or a gel electrolyte obtained by gelling the liquid electrolyte can be used as the electrolyte. However, in the present invention, a liquid electrolyte called an electrolyte is usually used frequently. Hereinafter, this liquid electrolyte will be described in detail using the expression “electrolyte solution”.

【0019】電解液は、前記ビス〔トリフルオロ−2−
オキシド−2−トリフルオロ−メチルプロピオナト(2
−)−O,O〕ホウ酸リチウムなどの、周期表のIII
b族〜Vb族の元素をアニオン中心として有するアニオ
ンとアルカリ金属のカチオンとで構成され、そのアニオ
ン中心の元素に酸素原子を介してC=O基、−SO2
または−SO3 基が結合し、さらにフルオロアルキル基
を有する有機金属塩か、または前記有機金属塩とLiP
6 などの一般式LiMFn で表される無機リチウム塩
またはLiN(SO2 2 5 2 などの含フッ素有機
リチウムイミド塩を含む電解質塩を有機溶媒などの非水
溶媒に溶解させることによって調製されるが、その有機
溶媒としては、例えば、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、ジメトキシプロパン、1,
3−ジオキソラン、テトラヒドロフラン、2−メチル−
テトラヒドロフランなどのエーテル類、プロピレンカー
ボネート、エチレンカーボネート、γ−ブチロラクト
ン、ジエチルカーボネート、ジメチルカーボネート、エ
チルメチルカーボネートなどのエステル類、さらにはス
ルホランなどがそれぞれ単独でまたは2種以上の混合溶
媒として用いることができる。それらの中でも、エステ
ル類は高電圧下においても正極活物質との反応性が低く
貯蔵特性を向上させる効果が大きいので好ましい。この
エステル類は電解液の全構成溶媒中の30体積%以上で
あることが好ましく、このエステル類だけで電解液の全
構成溶媒を占めてもよい。
The electrolytic solution is the bis [trifluoro-2-
Oxide-2-trifluoro-methylpropionate (2
-)-O, O] lithium borate, etc.
It is composed of an anion having an element of group b to group Vb as an anion center and an alkali metal cation, and a COO group, —SO 2 group or —SO 3 group is bonded to the anion center element via an oxygen atom. And an organometallic salt having a fluoroalkyl group, or the organometallic salt and LiP
Inorganic lithium salt or LiN represented by the general formula LiMF n such F 6 (SO 2 C 2 F 5) an electrolyte salt containing a fluorine-containing organic lithium imide salts such as 2 be dissolved in the nonaqueous solvent such as an organic solvent The organic solvent is, for example, 1,2-dimethoxyethane,
1,2-diethoxyethane, dimethoxypropane, 1,
3-dioxolan, tetrahydrofuran, 2-methyl-
Ethers such as tetrahydrofuran, propylene carbonate, ethylene carbonate, γ-butyrolactone, diethyl carbonate, dimethyl carbonate, esters such as ethyl methyl carbonate, and sulfolane can be used alone or as a mixed solvent of two or more. . Among them, esters are preferable because they have low reactivity with the positive electrode active material even under a high voltage and have a large effect of improving storage characteristics. This ester is preferably 30% by volume or more of the total constituent solvent of the electrolytic solution, and the ester alone may occupy the total constituent solvent of the electrolytic solution.

【0020】上記有機金属塩の電解液中の含有量として
は、これを単独で用いる場合には、0.25〜1.6m
ol/lが好ましく、0.4〜0.8mol/lがより
好ましい。また、上記有機金属塩と一般式LiMFn
表される無機リチウム塩または含フッ素有機リチウムイ
ミド塩を併用して用いる場合には、有機金属塩の含有量
としては、0.25〜1.3mol/lが好ましく、
0.4〜0.8mol/lがより好ましく、一般式Li
MFn で表される無機リチウム塩または含フッ素有機リ
チウムイミド塩の含有量としては、0.25〜1.3m
ol/lが好ましく、0.5〜1.0mol/lがより
好ましい。そして、それらの電解質塩は、電解液中の含
有量の合計が0.5〜1.6mol/lであることが好
ましく、0.6〜1.4mol/lであることがより好
ましい。
The content of the above-mentioned organic metal salt in the electrolytic solution is 0.25 to 1.6 m when used alone.
ol / l is preferable, and 0.4 to 0.8 mol / l is more preferable. In the case of using in combination an inorganic lithium salt or a fluorine-containing organic lithium imide salt represented by the above organic metal salt the general formula LiMF n, the content of the organic metal salt, 0.25~1.3Mol / L is preferred,
0.4 to 0.8 mol / l is more preferable, and the general formula Li
The content of the inorganic lithium salt or a fluorine-containing organic lithium imide salt represented by MF n, 0.25~1.3m
ol / l is preferable, and 0.5 to 1.0 mol / l is more preferable. The total content of these electrolyte salts in the electrolytic solution is preferably 0.5 to 1.6 mol / l, more preferably 0.6 to 1.4 mol / l.

【0021】ゲル状電解質は、上記電解液をゲル化剤で
ゲル化させたものに相当するが、そのゲル化剤として
は、例えば、ポリフッ化ビニリデン、ポリエチレンオキ
サイド、ポリアクリルニトリルなどの直鎖状ポリマーま
たはそれらのコポリマー、紫外線や電子線などの活性光
線の照射によりポリマー化する多官能モノマー(例え
ば、ペンタエリスリトールテトラアクリレート、ジトリ
メチロールプロパンテトラアクリレート、エトキシ化ペ
ンタエリスリトールテトラアクリレート、ジペンタエリ
スリトールヒドロキシペンタアクリレート、ジペンタエ
リスリトールヘキサアクリレートなどの四官能以上のア
クリレートおよび上記アクリレートと同様の四官能以上
のメタクリレートなど)などが用いられる。ただし、モ
ノマーの場合、モノマーそのものが電解液をゲル化させ
るのではなく、上記モノマーをポリマー化したポリマー
がゲル化剤として作用する。
The gel electrolyte corresponds to a gel obtained by gelling the above-mentioned electrolytic solution with a gelling agent. Examples of the gelling agent include linear gels such as polyvinylidene fluoride, polyethylene oxide, and polyacrylonitrile. Polymers or their copolymers, polyfunctional monomers polymerized by irradiation with actinic rays such as ultraviolet rays or electron beams (eg, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate) And tetrafunctional or higher acrylates such as dipentaerythritol hexaacrylate and tetrafunctional or higher methacrylates similar to the above acrylates). However, in the case of a monomer, a polymer obtained by polymerizing the above-mentioned monomer acts as a gelling agent, instead of the monomer itself gelling the electrolytic solution.

【0022】上記のように多官能モノマーを用いて電解
液をゲル化させる場合、必要であれば、重合開始剤とし
て、例えば、ベンゾイル類、ベンゾインアルキルエーテ
ル類、ベンゾフェノン類、ベンゾイルフェニルフォスフ
ィンオキサイド類、アセトフェノン類、チオキサントン
類、アントラキノン類なども使用することができ、さら
に重合開始剤の増感剤としてアルキルアミン類、アミノ
エステル類なども使用することもできる。
When the electrolytic solution is gelled using a polyfunctional monomer as described above, if necessary, a polymerization initiator such as benzoyls, benzoin alkyl ethers, benzophenones, and benzoylphenylphosphine oxides may be used. , Acetophenones, thioxanthones, anthraquinones, etc., and alkylamines, aminoesters, etc., as sensitizers for the polymerization initiator.

【0023】本発明において、正極活物質としては、特
に限定されることはないが、例えば、リチウムニッケル
酸化物、リチウムコバルト酸化物、リチウムマンガン酸
化物(これらは、通常、LiNiO2 、LiCoO2
LiMn2 4 で表されるが、LiとNiの比、Liと
Coの比、LiとMnの比は化学量論組成から若干ずれ
ている場合が多いが、それでもかまわない)などのリチ
ウム複合金属酸化物が単独でまたは2種以上の混合物と
して、あるいはそれらの固溶体として用いられる。
In the present invention, the positive electrode active material is not particularly limited. For example, lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide (these are usually LiNiO 2 , LiCoO 2 ,
Although represented by LiMn 2 O 4 , the ratio of Li to Ni, the ratio of Li to Co, and the ratio of Li to Mn often slightly deviate from the stoichiometric composition, but it does not matter. The metal oxide is used alone or as a mixture of two or more kinds, or as a solid solution thereof.

【0024】正極は、例えば、上記正極活物質を含み、
必要に応じて鱗片状黒鉛、カーボンブラックなどの電子
伝導助剤を含み、さらにバインダーを含む正極合剤含有
ペーストを基体としての作用を兼ねる正極集電体の少な
くとも一部に塗布し、乾燥して正極合剤層を形成し、必
要に応じて加圧成形する工程を経て作製される。
The positive electrode contains, for example, the above-mentioned positive electrode active material,
As necessary, flaky graphite, including an electron conduction aid such as carbon black, and further applied to at least a part of the positive electrode current collector also serving as a base, the positive electrode mixture-containing paste containing a binder, and dried. It is produced through a step of forming a positive electrode mixture layer and, if necessary, performing pressure molding.

【0025】上記正極合剤含有ペーストの調製にあたっ
て、バインダーはあらかじめ有機溶剤に溶解させて溶液
状にしておき、その溶液を正極活物質などの固体粒子と
混合して正極合剤含有ペーストを調製することが好まし
い。
In preparing the paste containing the positive electrode mixture, the binder is previously dissolved in an organic solvent to prepare a solution, and the solution is mixed with solid particles such as a positive electrode active material to prepare a paste containing the positive electrode mixture. Is preferred.

【0026】バインダーとしては、例えば、ポリビニリ
デンフルオライド系ポリマー(主成分モノマーであるビ
ニリデンフルオライドを80重量%以上含有する含フッ
素モノマー群の重合体)やセルロース系ポリマーなどが
好ましい。また、ポリビニリデンフルオライド系ポリマ
ーとセルロース系ポリマーを併用してもよい。
As the binder, for example, a polyvinylidene fluoride-based polymer (a polymer of a fluorine-containing monomer group containing at least 80% by weight of vinylidene fluoride as a main component monomer) and a cellulose-based polymer are preferable. Further, a polyvinylidene fluoride-based polymer and a cellulose-based polymer may be used in combination.

【0027】上記の主成分モノマーであるビニリデンフ
ルオライドを80重量%以上含有する含フッ素系モノマ
ー群としては、ビニリデンフルオライド単独、あるいは
ビニリデンフルオライドと他のモノマーの少なくとも1
種以上との混合物が挙げられる。この他のモノマーとし
ては、例えば、ビニルフルオライド、トリフルオロエチ
レン、トリフルオロクロロエチレン、テトラフルオロエ
チレン、ヘキサフルオロプロピレン、フルオロアルキル
ビニルエーテルなどを挙げられる。
The fluorine-containing monomers containing at least 80% by weight of vinylidene fluoride as the main component monomer include vinylidene fluoride alone or at least one of vinylidene fluoride and another monomer.
Mixtures with more than one species. Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.

【0028】また、セルロース系ポリマーは、ポリビニ
リデンフルオライド系ポリマーが溶解する溶剤に溶解す
るものが好ましく、その具体例としては、例えば、メチ
ルセルロース、エチルセルロース、ヒドロキシプロピル
セルロース、ヒドロキシエチルメチルセルロース、ヒド
ロキシプロピルメチルセルロースなどが挙げられる。
The cellulose-based polymer is preferably soluble in a solvent in which the polyvinylidene fluoride-based polymer is dissolved. Specific examples thereof include methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, and hydroxypropylmethylcellulose. And the like.

【0029】上記正極合剤含有ペーストを調製するにあ
たって溶剤としては、ビニリデンフルオライド系ポリマ
ーやセルロース系ポリマーなどを溶解させるような溶剤
を使用することが好ましい。そのような溶剤としては、
例えば、N−メチル−2−ピロリドン、ジメチルアセト
アミド、ジメチルホルムアミド、テトラヒドロフランな
どを単独でまたは2種以上混合して用いることができ
る。
In preparing the paste containing the positive electrode mixture, it is preferable to use a solvent that dissolves a vinylidene fluoride-based polymer or a cellulose-based polymer. Such solvents include:
For example, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, tetrahydrofuran, or the like can be used alone or in combination of two or more.

【0030】また、本発明において、負極活物質として
は、LiとSi、Sn、Al、B、Ga、In、Pb、
BiおよびSbよりなる群から選ばれる少なくとも1種
の元素とを含む化合物またはLiとCoもしくはNiと
を含む窒化物である。前記化合物としてはLiとSi、
Sn、Al、B、Ga、Inなどを含む合金や酸化物が
挙げられる。なお、前記化合物は、負極作製時にLiを
含む化合物として形成されている必要はなく、活物質と
して作用する際にLiを含む化合物になればよい。すな
わち、SiやSnあるいはSiOなどをそのまま用いて
負極を作製しても、電池組立後に充放電を行う際にLi
との化合物が形成されるため、Liを含まない形態のも
のを使用することができることを意味する。また、前記
窒化物としては、例えば、一般式Li3-x M′y N(式
中、M′は少なくともCoまたはNiを含む1種以上の
元素を表し、−0.2≦x≦2で、0.1≦y≦0.8
である)で表される化合物が挙げられ、具体的には、例
えばLi2.6 Co0.4 N、Li2.5 Ni0.5 N、Li
2.5 Co0.4 Cu0.1 Nなどが挙げられる。この窒化物
についても、上記と同様に活物質として作用する際にL
iを含むようになるものであればよい。
In the present invention, as the negative electrode active material, Li and Si, Sn, Al, B, Ga, In, Pb,
It is a compound containing at least one element selected from the group consisting of Bi and Sb, or a nitride containing Li and Co or Ni. As the compound, Li and Si,
Alloys and oxides containing Sn, Al, B, Ga, In, and the like can be given. The compound does not need to be formed as a compound containing Li at the time of manufacturing the negative electrode, and may be a compound containing Li when acting as an active material. That is, even if a negative electrode is manufactured using Si, Sn, SiO, or the like as it is, Li
Means that a compound not containing Li can be used. As examples of the nitrides, for example, 'in y N (wherein, M' formula Li 3-x M represents one or more elements including at least Co and Ni, at -0.2 ≦ x ≦ 2 , 0.1 ≦ y ≦ 0.8
And specifically, for example, Li 2.6 Co 0.4 N, Li 2.5 Ni 0.5 N, Li
2.5 Co 0.4 Cu 0.1 N and the like. This nitride also acts as an active material in the same manner as described above.
What is necessary is just to include i.

【0031】本発明においては、上記化合物または窒化
物からなる負極活物質を単独で用いる場合だけでなく、
他の負極活物質と混合して用いる場合にも前記と同様の
優れた効果を得ることができる。上記特定の負極活物質
と混合して用いる他の負極活物質としては、例えば、炭
素材料や、チタン酸リチウムなどのリチウム含有複合酸
化物などが挙げられる。特に、炭素材料は良好な導電性
を有するので、上記特定の負極活物質と併用することに
より負極の導電性が向上し、サイクル特性を向上させる
ことができるので好ましい。
In the present invention, not only the case where the anode active material comprising the above compound or nitride is used alone,
The same excellent effects as described above can be obtained when used in combination with another negative electrode active material. Examples of other negative electrode active materials used by mixing with the specific negative electrode active material include a carbon material and a lithium-containing composite oxide such as lithium titanate. In particular, since the carbon material has good conductivity, it is preferable to use the carbon material in combination with the specific negative electrode active material because the conductivity of the negative electrode is improved and the cycle characteristics can be improved.

【0032】負極は、例えば、上記負極活物質に、必要
に応じて、例えば鱗片状黒鉛、カーボンブラックなどの
電子伝導助剤を添加し、さらに前記正極の場合と同様の
バインダーと溶剤を加え、混合して負極合剤含有ペース
トを調製し、その負極合剤含有ペーストを基体としての
作用を兼ねる負極集電体の少なくとも一部に塗布し、乾
燥して負極合剤層を形成し、必要に応じて加圧成形する
工程を経て作製される。また、この負極合剤含有ペース
トの調製にあたっても、バインダーはあらかじめ溶剤に
溶解させて溶液状にしておき、その溶液を負極活物質な
どと混合してもよい。
For the negative electrode, for example, if necessary, an electron conduction aid such as flake graphite, carbon black or the like is added to the negative electrode active material, and the same binder and solvent as in the positive electrode are added. Mix to prepare a negative electrode mixture-containing paste, apply the negative electrode mixture-containing paste to at least a part of the negative electrode current collector also serving as a substrate, and dry to form a negative electrode mixture layer. It is produced through a step of press molding accordingly. In preparing the paste containing the negative electrode mixture, the binder may be dissolved in a solvent in advance to form a solution, and the solution may be mixed with the negative electrode active material or the like.

【0033】本発明において、上記正極合剤含有ペース
トや負極合剤含有ペーストを正極集電体や負極集電体に
塗布する際の塗布方法としては、例えば、押出しコータ
ー、リバースローラー、ドクターブレード、アプリケー
ターなどを使用する方法をはじめ、各種の塗布方法を採
用することができる。
In the present invention, as a method of applying the above-mentioned paste containing the positive electrode mixture and the paste containing the negative electrode mixture to the positive electrode current collector and the negative electrode current collector, for example, an extrusion coater, a reverse roller, a doctor blade, Various application methods can be adopted, including a method using an applicator.

【0034】また、正極や負極の集電体としては、例え
ば、アルミニウム、ステンレス鋼、チタン、銅などの金
属製導電材料の箔、網、パンチドメタル、フォームメタ
ルなどが用いられるが、正極集電体としてはアルミニウ
ム箔が好適に用いられ、また、負極集電体としては銅箔
が好適に用いられる。
As the current collector for the positive electrode and the negative electrode, for example, foil, net, punched metal, foam metal of a conductive material made of metal such as aluminum, stainless steel, titanium, and copper are used. Aluminum foil is preferably used as the current collector, and copper foil is preferably used as the negative electrode current collector.

【0035】セパレータとしては、例えば、厚さ10〜
50μmで、開孔率30〜70%の微多孔性ポリエチレ
ンフィルム、微多孔性ポリプロピレンフィルム、微多孔
性エチレン−プロピレンコポリマーフィルムなどが好適
に用いられる。
As the separator, for example, a thickness of 10
A microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film having a pore size of 50 μm and a porosity of 30 to 70% is suitably used.

【0036】電池は、例えば、上記のように作製される
正極と負極との間にセパレータを介在させて渦巻状に巻
回して作製した渦巻状電極体やそれらを積層して作製し
た積層電極体を、ニッケルメッキを施した鉄やステンレ
ス鋼製の電池ケース内に挿入し、電解液を注入し、封口
する工程を経て作製される。また、上記電池には、通
常、電池内部に発生したガスをある一定圧力まで上昇し
た段階で電池外部に排出して、電池の高圧下での破裂を
防止するための防爆機構や、内部圧力に応じて作動する
電流遮断機構などが取り入れられる。
The battery is, for example, a spiral electrode body produced by spirally winding a positive electrode and a negative electrode produced as described above with a separator interposed therebetween, or a laminated electrode body produced by laminating them. Is inserted into a nickel-plated iron or stainless steel battery case, injected with an electrolytic solution, and sealed. In addition, the above-mentioned battery is generally provided with an explosion-proof mechanism for preventing the gas generated inside the battery from rising when the pressure has risen to a certain pressure and preventing the battery from bursting under a high pressure, and an internal pressure. A current cut-off mechanism or the like that operates in response to the change is introduced.

【0037】[0037]

【実施例】次に、本発明の実施例について説明する。た
だし、本発明はそれらの実施例のみに限定されるもので
はない。
Next, an embodiment of the present invention will be described. However, the present invention is not limited to only these examples.

【0038】実施例1 まず、この実施例1の非水電池の構成にあたって用いる
電解液の調製、正極および負極の作製について順次説明
し、ついで電池の組立について説明する。
Example 1 First, the preparation of an electrolytic solution and the preparation of a positive electrode and a negative electrode used in the construction of the nonaqueous battery of Example 1 will be described sequentially, and then the assembly of the battery will be described.

【0039】電解液の調製:電解質塩としてはLiPF
6 とビス〔トリフルオロ−2−オキシド−2−トリフル
オロ−メチルプロピオナト(2−)−O,O〕ホウ酸リ
チウム(以下、「LiBTO」と略す)を用い、それら
の電解質塩を溶解する溶媒としてはエチレンカーボネー
ト(以下、「EC」と略す)とメチルエチルカーボネー
ト(以下、「MEC」と略す)を用いた。そして、上記
ECとMECとの体積比が1:2の混合溶媒にLiPF
6 を0.8mol/lとLiBTOを0.4mol/l
溶解させて電解液を調製した。
Preparation of electrolyte: LiPF was used as the electrolyte salt.
6 and lithium bis [trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-O, O] borate (hereinafter abbreviated as “LiBTO”) to dissolve their electrolyte salts Ethylene carbonate (hereinafter abbreviated as “EC”) and methyl ethyl carbonate (hereinafter abbreviated as “MEC”) were used as the solvent. Then, LiPF is added to the mixed solvent in which the volume ratio of EC and MEC is 1: 2.
6 for 0.8 mol / l and LiBTO for 0.4 mol / l
This was dissolved to prepare an electrolytic solution.

【0040】正極の作製:まず、水酸化リチウム(Li
OH・H2 O)と酸化ニッケル(Ni2 3 )とを熱処
理してリチウムニッケル酸化物(通常、LiNiO2
表されるが、そのLiとNiの比は化学量論組成から若
干ずれていてもよい)を合成した。上記の合成は以下に
示すように行った。
Preparation of positive electrode: First, lithium hydroxide (Li
OH · H 2 O) and nickel oxide (Ni 2 O 3) and lithium nickel oxide by heat-treating (usually represented by LiNiO 2, the ratio of the Li and Ni have little deviation from the stoichiometric composition May be synthesized. The above synthesis was performed as shown below.

【0041】水酸化リチウムと酸化ニッケルとをLi/
Ni=1.05/1(モル比)の割合になるように秤量
した後、メノウ製の乳鉢で粉砕しつつ混合した。これを
酸素(O2 )気流中において500℃で2時間予備加熱
した後、昇温速度50℃/h以下で700℃で20時間
加熱して焼成した。なお、合成したリチウムニッケル酸
化物は水分に対して弱いため、粉砕などの取り扱いはア
ルゴンガスの雰囲気中で行った。
Lithium hydroxide and nickel oxide are converted to Li /
After weighing so that Ni = 1.05 / 1 (molar ratio), they were mixed while pulverized with an agate mortar. This was preheated in an oxygen (O 2 ) stream at 500 ° C. for 2 hours, and then heated at a temperature increase rate of 50 ° C./h or less at 700 ° C. for 20 hours for firing. Since the synthesized lithium nickel oxide is weak against moisture, handling such as pulverization was performed in an argon gas atmosphere.

【0042】上記のようにして合成したリチウムニッケ
ル酸化物90重量部と、電子伝導助剤としての鱗片状黒
鉛6重量部と、バインダーとしてのポリビニリデンフル
オライドを4重量部N−メチル−2−ピロリドンに溶解
させたバインダー溶液とを用い、それらを混合して正極
合剤含有ペーストを調製した。上記正極合剤含有ペース
トの調製は次に示すように行った。まず、N−メチル−
2−ピロリドンにポリビニリデンフルオライドを溶解し
て上記のバインダー溶液を調製し、このバインダー溶液
にリチウムニッケル酸化物と電子伝導助剤としての鱗片
状黒鉛を加え、混合することによって正極合剤含有ペー
ストを調製した。
90 parts by weight of the lithium nickel oxide synthesized as described above, 6 parts by weight of flake graphite as an electron conduction aid, and 4 parts by weight of polyvinylidene fluoride as a binder N-methyl-2- Using a binder solution dissolved in pyrrolidone, they were mixed to prepare a positive electrode mixture-containing paste. The preparation of the positive electrode mixture-containing paste was performed as follows. First, N-methyl-
A positive electrode mixture-containing paste is prepared by dissolving polyvinylidene fluoride in 2-pyrrolidone to prepare the above binder solution, adding lithium nickel oxide and flaky graphite as an electron conduction aid to the binder solution, and mixing. Was prepared.

【0043】そして、得られた正極合剤含有ペーストを
厚さ20μmのアルミニウム箔からなる正極集電体の一
方の面にアプリケーターを用いて塗布し、100〜12
0℃で乾燥して正極合剤層を形成した。また、上記正極
集電体の他方の面にも上記と同様の正極合剤含有ペース
トを塗布し、乾燥して正極合剤層を形成することによっ
て電極体を作製した。この電極体を100℃で8時間真
空乾燥後、ロールプレスして、シート状の正極を作製し
た。
Then, the obtained positive electrode mixture-containing paste was applied to one surface of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm using an applicator, and then applied to an electrode plate.
After drying at 0 ° C., a positive electrode mixture layer was formed. Further, the same positive electrode mixture-containing paste as described above was applied to the other surface of the positive electrode current collector, and dried to form a positive electrode mixture layer, thereby producing an electrode body. This electrode body was vacuum-dried at 100 ° C. for 8 hours and roll-pressed to produce a sheet-like positive electrode.

【0044】負極の作製:負極活物質としては人造黒鉛
(2800℃で合成)75重量部にシリコン粉末を25
重量部になる割合で混合したものを用いた。バインダー
としては正極合剤含有ペーストの調製にあたって用いた
ものと同様のポリビニリデンフルオライドをN−メチル
−2−ピロリドンに溶解させて溶液状にしておいたもの
を用いた。上記人造黒鉛とシリコン粉末の混合物94重
量部と上記バインダー溶液をポリビニリデンフルオライ
ドとして6重量部になる割合で混合して負極合剤含有ペ
ーストを調製した。
Preparation of negative electrode: As the negative electrode active material, 75 parts by weight of artificial graphite (synthesized at 2800 ° C.) were mixed with 25 parts of silicon powder.
What was mixed by the ratio which turns into a weight part was used. As the binder, a solution prepared by dissolving the same polyvinylidene fluoride as used in preparing the paste containing the positive electrode mixture in N-methyl-2-pyrrolidone was used. A negative electrode mixture-containing paste was prepared by mixing 94 parts by weight of the mixture of artificial graphite and silicon powder and 6 parts by weight of the binder solution as polyvinylidene fluoride.

【0045】得られた負極合剤含有ペーストを厚さ12
μmの銅箔からなる負極集電体の一方の面にアプリケー
ターを用いて塗布し、100〜120℃で乾燥して負極
合剤層を形成した。また、上記負極集電体の他方の面に
も上記と同様の負極合剤含有ペーストを塗布し、乾燥し
て負極合剤層を形成することによって電極体を作製し
た。この電極体を100℃で8時間真空乾燥後、ロール
プレスして、シート状の負極を作製した。
The obtained paste containing the negative electrode mixture was applied to a thickness of 12
One side of the negative electrode current collector made of a copper foil of μm was applied using an applicator and dried at 100 to 120 ° C. to form a negative electrode mixture layer. Further, the same negative electrode mixture-containing paste as described above was applied to the other surface of the negative electrode current collector, and dried to form a negative electrode mixture layer, thereby producing an electrode body. This electrode body was vacuum-dried at 100 ° C. for 8 hours and then roll-pressed to produce a sheet-shaped negative electrode.

【0046】筒形電池の組み立て:上記シート状の正極
を幅28mm×長さ220mmの帯状に切断し、シート
状の負極を幅30mm×長さ260mmの帯状に切断し
た。そして、それぞれの電極端部の合剤層の一部を剥が
して、金属箔を露出させた部分にアルミニウム製のリー
ド体を抵抗溶接し、厚み25μmで開孔率50%の微多
孔性ポリエチレンフィルムからなる帯状のセパレータを
上記帯状の正極と帯状の負極の間に介在させ、渦巻状に
巻回して渦巻状電極体を作製し、その渦巻状電極体をス
テンレス鋼製の電池ケースに挿入した。そして、負極側
のリード体の先端を絶縁体を貫通させて電池ケースの底
部に溶接し、さらに、電池ケースの開口部に絶縁体を挿
入し、溝を形成した後、封口板と正極側のリード体を溶
接した。そして、そのような工程を経て作製された発電
要素を内填した缶体を60℃で10時間真空乾燥した
後、乾燥雰囲気中で前記電解液2mlを注入した後、封
口して図1に示す構造でR5形(すなわち、外径15m
m、高さ40mmの筒形)非水電池を作製した。
Assembly of cylindrical battery: The above-mentioned sheet-shaped positive electrode was cut into a strip having a width of 28 mm × length 220 mm, and the sheet-shaped negative electrode was cut into a strip having a width of 30 mm × length 260 mm. Then, a part of the mixture layer at the end of each electrode is peeled off, and an aluminum lead body is resistance-welded to a portion where the metal foil is exposed, and a microporous polyethylene film having a thickness of 25 μm and a porosity of 50% is formed. Was interposed between the strip-shaped positive electrode and the strip-shaped negative electrode, spirally wound to produce a spirally wound electrode body, and the spirally wound electrode body was inserted into a stainless steel battery case. Then, the leading end of the lead body on the negative electrode side is welded to the bottom of the battery case by penetrating the insulator, and further, the insulator is inserted into the opening of the battery case to form a groove. The lead body was welded. Then, after the can body in which the power generating element manufactured through such a process was filled was vacuum-dried at 60 ° C. for 10 hours, 2 ml of the electrolytic solution was injected in a dry atmosphere, and the container was sealed and shown in FIG. The structure is R5 type (that is, 15m outside diameter)
m, 40 mm height).

【0047】ここで、図1に示す電池について説明する
と、1は前記の正極で、2は負極である。ただし、図1
では、繁雑化を避けるため、正極1や負極2の作製にあ
たって使用した集電体としての金属箔などは図示してい
ない。そして、これらの正極1と負極2はセパレータ3
を介して渦巻状に巻回され、渦巻状電極体にして、前記
の特定電解液からなる電解質4と共に電池ケース5内に
収容されている。
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, FIG.
Here, in order to avoid complication, a metal foil or the like as a current collector used in manufacturing the positive electrode 1 or the negative electrode 2 is not shown. The positive electrode 1 and the negative electrode 2 are connected to a separator 3
Are wound in a spiral shape, and are housed in a battery case 5 together with the electrolyte 4 made of the above-mentioned specific electrolyte as a spiral electrode body.

【0048】電池ケース5は前記のようにステンレス鋼
製で、その底部には上記渦巻状電極体の挿入に先立っ
て、ポリプロピレンからなる絶縁体6が配置されてい
る。封口板7は、アルミニウム製で円板状をしていて、
その中央部に薄肉部7aを設け、かつ上記薄肉部7aの
周囲に電池内圧を防爆弁9に作用させるための圧力導入
口7bとしての孔が設けられている。そして、この薄肉
部7aの上面に防爆弁9の突出部9aが溶接され、溶接
部分11を構成している。なお、上記の封口板7に設け
た薄肉部7aや防爆弁9の突出部9aなどは、図面上で
の理解がしやすいように、切断面のみを図示しており、
切断面後方の輪郭線は図示を省略している。また、封口
板7の薄肉部7aと防爆弁9の突出部9aとの溶接部分
11も、図面上での理解が容易なように、実際よりは誇
張した状態に図示している。
The battery case 5 is made of stainless steel as described above, and an insulator 6 made of polypropylene is arranged at the bottom of the battery case 5 before the spiral electrode body is inserted. The sealing plate 7 is made of aluminum and has a disk shape.
A thin portion 7a is provided at the center thereof, and a hole is provided around the thin portion 7a as a pressure inlet 7b for applying the internal pressure of the battery to the explosion-proof valve 9. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. It should be noted that the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 and the like are shown only in a cut plane so as to be easily understood in the drawings.
The outline behind the cut surface is not shown. Also, the welded portion 11 between the thin portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is shown in an exaggerated state in order to facilitate understanding in the drawings.

【0049】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられる。防
爆弁9は、アルミニウム製で円板状をしており、その中
央部には発電要素側(図1では、下側)に先端部を有す
る突出部9aが設けられ、かつ薄肉部9bが設けられ、
上記突出部9aの下面が、前記したように、封口板7の
薄肉部7aの上面に溶接され、溶接部分11を構成して
いる。絶縁パッキング10は、ポリプロピレン製で環状
をしており、封口板7の周縁部の上部に配置され、その
上部に防爆弁9が配置していて、封口板7と防爆弁9と
を絶縁するとともに、両者の間から液状の電解質が漏れ
ないように両者の間隙を封止している。環状ガスケット
12はポリプロピレン製で、リード体13はアルミニウ
ム製で、前記封口板7と正極1とを接続し、電極体の上
部には絶縁体14が配置され、負極2と電池ケース5の
底部とはニッケル製のリード体15で接続されている。
The terminal plate 8 is made of rolled steel, nickel-plated on its surface, and has a hat-like shape with a brim-shaped peripheral edge. The terminal plate 8 is provided with a gas outlet 8a. The explosion-proof valve 9 is made of aluminum and has a disk shape. A projection 9a having a tip portion is provided at a center portion of the explosion-proof valve 9 on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided. And
As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin portion 7a of the sealing plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is disposed above the insulating packing 10. The insulating packing 10 insulates the sealing plate 7 from the explosion-proof valve 9. The gap between the two is sealed so that the liquid electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed above the electrode body, and the negative electrode 2 and the bottom of the battery case 5 are connected. Are connected by a lead body 15 made of nickel.

【0050】この電池においては、封口板7の薄肉部7
aと防爆弁9の突出部9aとが溶接部分11で接触し、
防爆弁9の周縁部と端子板8の周縁部とが接触し、正極
1と封口板7とは正極側のリード体13で接続されてい
るので、通常の状態では、正極1と端子板8とはリード
体13、封口板7、防爆弁9およびそれらの溶接部分1
1によって電気的接続が得られ、電路として正常に機能
する。
In this battery, the thin portion 7 of the sealing plate 7
a and the protruding portion 9a of the explosion-proof valve 9 come into contact at the welded portion 11,
Since the peripheral edge of the explosion-proof valve 9 and the peripheral edge of the terminal plate 8 are in contact with each other, and the positive electrode 1 and the sealing plate 7 are connected by the lead 13 on the positive electrode side, in a normal state, the positive electrode 1 and the terminal plate 8 Is a lead body 13, a sealing plate 7, an explosion-proof valve 9, and their welded parts 1
1 provides an electrical connection and functions normally as an electrical circuit.

【0051】そして、電池が高温にさらされたり、過充
電によって発熱するなど、電池に異常事態が起こり、電
池内部にガスが発生して電池の内圧が上昇した場合に
は、その内圧上昇により、防爆弁9の中央部が内圧方向
(図1では、上側の方向)に変形し、それに伴って溶接
部分11で一体化されている封口板7の薄肉部7aに剪
断力が働いて該薄肉部7aが破断するか、または防爆弁
9の突出部9aと封口板7の薄肉部7aとの溶接部分1
1が剥離した後、この防爆弁9に設けられている薄肉部
9bが開裂してガスを端子板8のガス排出口8aから電
池外部に排出させて電池の破裂を防止することができる
ように設計されている。
When an abnormal situation occurs in the battery, such as exposure of the battery to a high temperature or heat generation due to overcharging, and gas is generated inside the battery to increase the internal pressure of the battery, the internal pressure rises. The central portion of the explosion-proof valve 9 is deformed in the direction of the internal pressure (upward direction in FIG. 1), and a shear force acts on the thin portion 7a of the sealing plate 7 integrated with the welded portion 11 in accordance with the deformation. 7a is broken, or a welded portion 1 between the projecting portion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7
After the exfoliation of the battery 1, the thin portion 9b provided on the explosion-proof valve 9 is cleaved to discharge gas from the gas outlet 8a of the terminal plate 8 to the outside of the battery so that the battery can be prevented from bursting. Designed.

【0052】実施例2 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiN(SO22 5 2 を0.8mol/l
とLiBTOを0.4mol/l溶解したものを用いた
以外は、実施例1と同様にR5形非水電池を作製した。
Example 2 LiN (SO 2 C 2 F 5 ) 2 was used as an electrolyte in a mixed solvent of EC and MEC at a volume ratio of 1: 2 to 0.8 mol / l.
An R5-type nonaqueous battery was produced in the same manner as in Example 1, except that 0.4 mol / l of LiBTO and LiBTO were used.

【0053】実施例3 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiPF6 を0.5mol/lとLiBTOを
0.7mol/l溶解したものを用いた以外は、実施例
1と同様にR5形非水電池を作製した。
Example 3 An electrolyte was prepared by dissolving 0.5 mol / l of LiPF 6 and 0.7 mol / l of LiBTO in a mixed solvent of EC and MEC at a volume ratio of 1: 2. An R5 type non-aqueous battery was manufactured in the same manner as in Example 1.

【0054】実施例4 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiBTOを1.2mol/l溶解したものを用
いた以外は、実施例1と同様にR5形非水電池を作製し
た。
Example 4 An R5 type non-electrolytic solution was prepared in the same manner as in Example 1 except that a solution prepared by dissolving 1.2 mol / l of LiBTO in a mixed solvent of EC and MEC in a volume ratio of 1: 2 was used as an electrolytic solution. A water battery was produced.

【0055】実施例5 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiPF6 を1.0mol/lとLiBTOを
0.2mol/l溶解したものを用いた以外は、実施例
1と同様にR5形非水電池を作製した。
Example 5 An electrolyte was prepared by dissolving 1.0 mol / l of LiPF 6 and 0.2 mol / l of LiBTO in a mixed solvent of EC and MEC at a volume ratio of 1: 2. An R5 type non-aqueous battery was manufactured in the same manner as in Example 1.

【0056】比較例1 負極活物質として、人造黒鉛(2800℃で合成)のみ
を用いた以外は、実施例1と同様にR5形非水電池を作
製した。
Comparative Example 1 An R5-type nonaqueous battery was produced in the same manner as in Example 1, except that only artificial graphite (synthesized at 2800 ° C.) was used as the negative electrode active material.

【0057】比較例2 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiPF6 を1.2mol/l溶解したものを用
いた以外は、実施例1と同様にR5形非水電池を作製し
た。
Comparative Example 2 R5 type electrolyte was used in the same manner as in Example 1, except that 1.2 mol / l of LiPF 6 was dissolved in a mixed solvent of EC and MEC at a volume ratio of 1: 2. A non-aqueous battery was manufactured.

【0058】比較例3 電解液として、ECとMECとの体積比が1:2の混合
溶媒にLiN(SO22 5 2 を1.2mol/l
溶解したものを用いた以外は、実施例1と同様にR5形
非水電池を作製した。
COMPARATIVE EXAMPLE 3 As an electrolytic solution, 1.2 mol / l of LiN (SO 2 C 2 F 5 ) 2 was used in a mixed solvent of EC and MEC in a volume ratio of 1: 2.
An R5-type nonaqueous battery was produced in the same manner as in Example 1 except that the dissolved battery was used.

【0059】上記のように作製して実施例1〜5および
比較例1〜3の電池について、その負極の示差走査熱分
析を行った。その結果を表1に示す。なお、示差走査熱
分析の方法は、次に示す通りである。
The negative electrodes of the batteries prepared as described above and of Examples 1 to 5 and Comparative Examples 1 to 3 were subjected to differential scanning calorimetry. Table 1 shows the results. The method of differential scanning calorimetry is as follows.

【0060】示差走査熱分析の方法:充放電電流をCで
表示した場合、R5形で700mAを1Cとして充放電
を行った。充電は1Cの電流制限回路を設けて4.2V
の定電圧で3時間行って電池の規格容量に対して100
%充電し、放電は電池の電極間電圧が2.75Vに達す
るまで行った。そして、2サイクル目の充電において充
電電気量が95%に達したときに充電を終了し、電池を
室温で1日放置し、不活性雰囲気中で分解し、負極を取
り出した。その負極の一定量を、示差走査熱分析測定用
の150気圧耐性の高圧パンに密閉して、外気に触れな
い状態で室温から400℃まで10℃/minの昇温速
度で示差走査熱分析の測定を行った。ピーク強度は示差
走査熱分析で測定された発熱強度を、測定に用いた負極
の負極合剤部分の重量で除した値とし、150〜250
℃の範囲に存在するピーク(P1)とそのピーク温度T
(℃)より20〜150℃低温側の温度範囲に存在する
ピーク(P2)の強度比(P2の強度/P1の強度)を
計算した。
Differential scanning calorimetry method: When the charging / discharging current was indicated by C, charging / discharging was carried out at 700 mA / C for R5 type. For charging, 4.2V by providing a current limiting circuit of 1C
3 hours at a constant voltage of 100
%, And discharge was performed until the voltage between the electrodes of the battery reached 2.75 V. Then, in the second cycle of charging, the charging was terminated when the charged amount of electricity reached 95%, the battery was left at room temperature for one day, decomposed in an inert atmosphere, and the negative electrode was taken out. A fixed amount of the negative electrode was sealed in a high-pressure pan having a resistance to 150 atm for differential scanning calorimetry measurement, and was subjected to differential scanning calorimetry at a heating rate of 10 ° C./min from room temperature to 400 ° C. without being exposed to outside air. A measurement was made. The peak intensity was defined as a value obtained by dividing the heat generation intensity measured by differential scanning calorimetry by the weight of the negative electrode mixture portion of the negative electrode used for measurement, and was 150 to 250.
(P1) and its peak temperature T in the range of
The intensity ratio (intensity of P2 / intensity of P1) of the peak (P2) existing in the temperature range of 20 to 150 ° C. lower than (° C.) was calculated.

【0061】また、上記のようにして作製した実施例1
〜5および比較例1〜3の電池について放電容量を測定
し、負極活物質の単位重量あたりの放電容量を求め、か
つ、負荷特性および高温貯蔵特性を調べた。その結果を
表1に示す。なお、放電容量の測定方法、負極活物質の
単位重量あたりの放電容量、負荷特性、高温貯蔵特性の
求め方は次に示す通りである。
Example 1 produced as described above
The discharge capacity of each of the batteries of Comparative Examples 1 to 5 and Comparative Examples 1 to 3 was measured, the discharge capacity per unit weight of the negative electrode active material was determined, and the load characteristics and the high-temperature storage characteristics were examined. Table 1 shows the results. The method for measuring the discharge capacity and the method for obtaining the discharge capacity per unit weight of the negative electrode active material, load characteristics, and high-temperature storage characteristics are as follows.

【0062】放電容量および負極活物質の単位重量あた
りの放電容量:充放電電流をCで表示した場合、R5形
で700mAを1Cとして充放電を行った。充電は1C
の電流制限回路を設けて4.2Vの定電圧で3時間行
い、放電は1Cで電池の電極間電圧が2.75Vに低下
するまで行った。そして、このときの放電容量を測定
し、その放電容量を、正極と対向している部分の負極の
活物質量で割った値を負極活物質の単位重量あたりの放
電容量(mAh/g)とした。
Discharge Capacity and Discharge Capacity per Unit Weight of Negative Electrode Active Material: When the charge / discharge current is indicated by C, charging / discharging was performed with R5 type at 700 mA as 1C. Charging is 1C
Was performed at a constant voltage of 4.2 V for 3 hours, and discharging was performed at 1 C until the voltage between the electrodes of the battery dropped to 2.75 V. Then, the discharge capacity at this time was measured, and the value obtained by dividing the discharge capacity by the amount of the active material of the negative electrode in the portion facing the positive electrode was defined as the discharge capacity per unit weight of the negative electrode active material (mAh / g). did.

【0063】負荷特性:充放電電流をCで表示した場
合、R5形で700mAを1Cとして充放電を行った。
充電は1Cの電流制限回路を設けて4.2Vの定電圧で
3時間行い、放電は1Cで電池の電極間電圧が2.75
Vに低下するまで行った。そして、このときの電池の充
放電の繰り返しにおいて、2サイクル目に2Cの放電を
行い、3サイクル目に再び1Cの放電を行い、それぞれ
放電容量を測定した。そして、この2サイクル目の2C
の放電容量を、3サイクル目の1Cの放電容量で割った
値に100をかけたものを負荷特性(%)とした。表1
には、その結果を負荷特性〔2C/1C(%)〕として
示す。
Load characteristics: When the charging / discharging current is indicated by C, charging / discharging was carried out with an R5 type at 700 mA as 1C.
Charging is performed at a constant voltage of 4.2 V for 3 hours by providing a current limiting circuit of 1 C, and discharging is performed at 1 C and a voltage between electrodes of the battery is 2.75.
It went until it fell to V. Then, in the repetition of charging and discharging of the battery at this time, 2C was discharged in the second cycle, and 1C was discharged again in the third cycle, and the discharge capacity was measured. And 2C of this second cycle
The load characteristic (%) was obtained by multiplying the value obtained by dividing the discharge capacity of No. 1 by the discharge capacity of 1C in the third cycle by 100. Table 1
Shows the results as load characteristics [2C / 1C (%)].

【0064】高温貯蔵特性:充放電電流をCで表示した
場合、R5形で700mAを1Cとして充放電を行っ
た。充電は1Cの電流制限回路を設けて4.2Vの定電
圧で3時間行い、放電は1Cで電池の電極間電圧が2.
75Vに低下するまで行った。そして、この1サイクル
目の放電容量を測定し、2サイクル目に4.2Vの充電
状態で試験を止め、60℃の恒温槽に2週間貯蔵した。
その後、電池を取り出し、室温まで戻した後、2サイク
ル目の放電を行って放電容量を測定し、それに基づい
て、自己放電率を調べた。すなわち、自己放電率は、上
記貯蔵前の1サイクル目の放電容量から貯蔵後の2サイ
クル目の放電容量を差し引いた値を、貯蔵前の1サイク
ル目の放電容量で割り、その値に100をかけることに
よって求めた。その結果を表1に示す。
High-temperature storage characteristics: When the charging / discharging current is indicated by C, charging / discharging was carried out at 700 mA / C for R5 type. Charging is performed at a constant voltage of 4.2 V for 3 hours by providing a 1 C current limiting circuit, and discharging is performed at 1 C with a voltage between the electrodes of the battery of 2.
The operation was performed until the voltage dropped to 75V. Then, the discharge capacity in the first cycle was measured, and the test was stopped at the charge state of 4.2 V in the second cycle, and stored in a 60 ° C. constant temperature bath for 2 weeks.
Thereafter, the battery was taken out, returned to room temperature, discharged in the second cycle, and the discharge capacity was measured. Based on the measurement, the self-discharge rate was examined. That is, the self-discharge rate is obtained by dividing a value obtained by subtracting the discharge capacity of the second cycle after storage from the discharge capacity of the first cycle before storage by the discharge capacity of the first cycle before storage, and dividing the value by 100. Asked by multiplying. Table 1 shows the results.

【0065】また、自己放電率測定後の電池を再充電
し、放電(3サイクル目の放電)を行った時の放電容量
(3サイクル目の放電容量)を測定し、貯蔵前の1サイ
クル目の放電容量から貯蔵後の3サイクル目の放電容量
を差し引いた値を、貯蔵前の1サイクル目の放電容量で
割り、その値に100をかけることによって劣化率を求
めた。その結果を表1に示す。
After the self-discharge rate was measured, the battery was recharged and the discharge capacity (discharge capacity at the third cycle) at the time of discharging (discharge at the third cycle) was measured. The value obtained by subtracting the discharge capacity at the third cycle after storage from the discharge capacity at storage was divided by the discharge capacity at the first cycle before storage, and the value was multiplied by 100 to determine the deterioration rate. Table 1 shows the results.

【0066】[0066]

【表1】 [Table 1]

【0067】表1に示す結果から明らかなように、実施
例1〜5の電池は、負極活物質の単位重量あたりの放電
容量が450mAh/g以上の高容量であるにもかかわ
らず、高温貯蔵特性の低下を示す自己放電率および劣化
率が小さく、高温貯蔵特性が優れ、かつ、負荷特性を示
す負荷特性〔2C/1C(%)〕の値が大きく、負荷特
性が優れていた。
As is evident from the results shown in Table 1, the batteries of Examples 1 to 5 exhibited high-temperature storage even though the discharge capacity per unit weight of the negative electrode active material was as high as 450 mAh / g or more. The self-discharge rate and the deterioration rate indicating a decrease in the characteristics were small, the high-temperature storage characteristics were excellent, and the value of the load characteristics [2C / 1C (%)] indicating the load characteristics was large, and the load characteristics were excellent.

【0068】これに対して、人造黒鉛のみを負極活物質
として用いた比較例1は、負極活物質の単位重量あたり
の放電容量が小さく、また、P1を有しない(すなわ
ち、LiBTOを含まない)比較例2〜3の電池は、負
極活物質の単位重量当たりの放電容量が450mAh/
g以上の高容量で負荷特性が良好であるものの、高温貯
蔵特性が悪かった。
On the other hand, in Comparative Example 1 in which only artificial graphite was used as the negative electrode active material, the discharge capacity per unit weight of the negative electrode active material was small, and P1 did not exist (that is, LiBTO was not contained). In the batteries of Comparative Examples 2 and 3, the discharge capacity per unit weight of the negative electrode active material was 450 mAh /
Although the load characteristics were good at a high capacity of at least g, the high-temperature storage characteristics were poor.

【0069】なお、上記実施例では、二次タイプの非水
電池で、高温貯蔵特性が優れていることを示したが、本
発明は、二次電池のみに限られることなく、一次電池に
も適用でき、その一次タイプの非水電池においても、高
温貯蔵特性が優れた非水電池を提供することができる。
In the above embodiment, it was shown that the secondary non-aqueous battery was excellent in high-temperature storage characteristics. However, the present invention is not limited to the secondary battery, but is applicable to the primary battery. A non-aqueous battery that can be applied and has excellent high-temperature storage characteristics can be provided even in the primary type of non-aqueous battery.

【0070】[0070]

【発明の効果】以上説明したように、本発明によれば、
高温貯蔵特性が優れた二次電池を提供することができ
る。
As described above, according to the present invention,
A secondary battery having excellent high-temperature storage characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電池の一例を模式的に示す断面図
である。
FIG. 1 is a cross-sectional view schematically showing one example of a non-aqueous battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解質 5 電池ケース 6 絶縁体 7 封口板 7a 薄肉部 8 端子板 8a ガス排出口 9 防爆弁 9a 突出部 10 絶縁パッキング 11 溶接部分 12 環状ガスケット 13 リード体 14 絶縁体 15 リード体 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte 5 Battery case 6 Insulator 7 Sealing plate 7a Thin part 8 Terminal plate 8a Gas outlet 9 Explosion-proof valve 9a Projection 10 Insulation packing 11 Welded part 12 Ring gasket 13 Lead body 14 Insulator 15 Lead body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 喜多 房次 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 辻岡 章一 埼玉県川越市今福中台2805番地 セントラ ル硝子株式会社化学研究所内 (72)発明者 高瀬 浩成 埼玉県川越市今福中台2805番地 セントラ ル硝子株式会社化学研究所内 Fターム(参考) 5H024 AA01 AA02 AA12 CC02 CC12 DD14 DD17 FF15 FF16 FF18 FF19 HH01 HH04 HH11 5H029 AJ00 AJ03 AK03 AL06 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ09 HJ01 HJ02 HJ14 HJ16 5H050 AA08 AA10 BA17 CA08 CA09 CB07 CB12 CB29 DA13 DA14 EA24 HA01 HA02 HA14 HA16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kita Fusuji 1-1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Inventor Shoichi Tsujioka 2805 Imafukunakadai, Kawagoe City, Saitama In-house Chemical Research Laboratory (72) Inventor Hironari Takase 2805 Imafukunakadai, Kawagoe-shi, Saitama Prefecture HH11 5H029 AJ00 AJ03 AK03 AL06 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ09 HJ01 HJ02 HJ14 HJ16 5H050 AA08 AA10 BA17 CA08 CA09 CB07 CB12 CB29 DA13 DA14 EA24 HA01 HA02 HA14 HA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 LiとSi、Sn、Al、B、Ga、I
n、Pb、BiおよびSbよりなる群から選ばれる少な
くとも1種の元素とを含む化合物またはLiとCoもし
くはNiとを含む窒化物を活物質とする負極、正極およ
び非水系の電解質を有する非水電池であって、電池の規
格容量に対して95%充電状態の負極が、示差走査熱分
析で少なくとも150〜250℃の範囲にピークを持つ
ことを特徴とする非水電池。
1. Li and Si, Sn, Al, B, Ga, I
Non-aqueous material having a negative electrode, a positive electrode, and a non-aqueous electrolyte containing a compound containing at least one element selected from the group consisting of n, Pb, Bi and Sb or a nitride containing Li and Co or Ni as an active material A non-aqueous battery, wherein the negative electrode, which is 95% charged with respect to the standard capacity of the battery, has a peak in a range of at least 150 to 250 ° C. by differential scanning calorimetry.
【請求項2】 前記150〜250℃の範囲に存在する
ピークをP1、そのピーク温度をT(℃)としたとき
に、T−150〜T−20(℃)の温度範囲にP1とは
別のピークP2を持ち、P2とP1の強度比(P2の強
度/P1の強度)が0.2〜6であることを特徴とする
請求項1記載の非水電池。
2. When the peak existing in the range of 150 to 250 ° C. is P1 and the peak temperature is T (° C.), the peak temperature is different from P1 in the temperature range of T-150 to T-20 (° C.). The non-aqueous battery according to claim 1, wherein the peak ratio P2 is equal to (P2) / P1 (P2 intensity / P1 intensity) is 0.2 to 6.
【請求項3】 非水系の電解質が、電解質塩として、周
期表のIIIb族〜Vb族の元素をアニオン中心として
有するアニオンとアルカリ金属のカチオンとで構成さ
れ、そのアニオン中心の元素に酸素原子を介してC=O
基、−SO2 基または−SO3 基が結合しさらにフルオ
ロアルキル基を有する有機金属塩を含むことを特徴とす
る請求項1または2記載の非水電池。
3. The non-aqueous electrolyte comprises, as an electrolyte salt, an anion having an element of group IIIb to group Vb of the periodic table as an anion center and a cation of an alkali metal, and an oxygen atom as an element at the center of the anion. Via C = O
The nonaqueous battery according to claim 1, further comprising an organic metal salt to which a group, a —SO 2 group or a —SO 3 group is bonded, and further has a fluoroalkyl group.
【請求項4】 非水系の電解質が、電解質塩として、前
記有機金属塩と、一般式LiMFn (式中、MはP、A
s、SbまたはBであり、nはMがP、AsまたはSb
のときは6で、MがBのときは4である)で表される無
機リチウム塩または含フッ素有機リチウムイミド塩とを
含むことを特徴とする請求項3記載の非水電池。
4. A non-aqueous electrolyte comprising, as an electrolyte salt, the organometallic salt and a general formula LiMF n (where M is P, A
s, Sb or B, n is M for P, As or Sb
4. The non-aqueous battery according to claim 3, further comprising an inorganic lithium salt or a fluorine-containing organic lithium imide salt represented by the formula (6), and when M is B, the formula is 4.)
【請求項5】 電解質塩が前記有機金属塩と無機リチウ
ム塩とからなり、前記有機金属塩がビス〔トリフルオロ
−2−オキシド−2−トリフルオロ−メチルプロピオナ
ト(2−)−O,O〕ホウ酸リチウムであり、前記無機
リチウム塩がLiPF6 であることを特徴とする請求項
4記載の非水電池。
5. An electrolyte salt comprising the organic metal salt and an inorganic lithium salt, wherein the organic metal salt is bis [trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-O, O ] is a lithium borate, a non-aqueous battery according to claim 4, wherein the inorganic lithium salt is LiPF 6.
【請求項6】 電解質塩が前記有機金属塩と無機リチウ
ム塩とからなり、前記有機金属塩がビス〔トリフルオロ
−2−オキシド−2−トリフルオロ−メチルプロピオナ
ト(2−)−O,O〕ホウ酸リチウムであり、前記含フ
ッ素有機リチウムイミド塩がLiN(SO2 2 5
2 であることを特徴とする請求項4記載の非水電池。
6. An electrolyte salt comprising the organic metal salt and an inorganic lithium salt, wherein the organic metal salt is bis [trifluoro-2-oxide-2-trifluoro-methylpropionato (2-)-O, O ] Lithium borate, wherein the fluorinated organic lithium imide salt is LiN (SO 2 C 2 F 5 )
The non-aqueous battery according to claim 4, wherein the two.
【請求項7】 負極の活物質が、LiとSiとを含む化
合物と炭素との混合物であって、炭素の重量に対するS
iの重量の割合が20%以上である混合物からなること
を特徴とする請求項1〜6のいずれかに記載の非水電
池。
7. The negative electrode active material is a mixture of a compound containing Li and Si and carbon, wherein S is based on the weight of carbon.
The nonaqueous battery according to any one of claims 1 to 6, comprising a mixture having a weight ratio of i of 20% or more.
JP2001084538A 2001-03-23 2001-03-23 Non-aqueous battery Expired - Fee Related JP4895335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084538A JP4895335B2 (en) 2001-03-23 2001-03-23 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084538A JP4895335B2 (en) 2001-03-23 2001-03-23 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JP2002289189A true JP2002289189A (en) 2002-10-04
JP4895335B2 JP4895335B2 (en) 2012-03-14

Family

ID=18940189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084538A Expired - Fee Related JP4895335B2 (en) 2001-03-23 2001-03-23 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP4895335B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172990A (en) * 2005-12-21 2007-07-05 Sony Corp Electrolyte and battery
JP2007257961A (en) * 2006-03-22 2007-10-04 Sony Corp Electrolyte solution and battery
JP2007258029A (en) * 2006-03-24 2007-10-04 Sony Corp Battery
JP2007257875A (en) * 2006-03-20 2007-10-04 Central Glass Co Ltd Electrolyte for nonaqueous electrolyte battery, electrolyte and nonaqueous electrolyte battery
US20100075233A1 (en) * 2008-09-25 2010-03-25 Sony Corporation Battery and electrode
WO2014007232A1 (en) * 2012-07-04 2014-01-09 株式会社カネカ Nonaqueous electrolyte secondary battery, secondary battery module, and method for using nonaqueous electrolyte secondary battery
JP2016035901A (en) * 2014-07-31 2016-03-17 株式会社東芝 Nonaqueous electrolyte battery, method of manufacturing nonaqueous electrolyte battery, and battery pack

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765843A (en) * 1993-06-18 1995-03-10 Hitachi Maxell Ltd Organic electrolyte battery
JPH09293515A (en) * 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd Electrode material and lithium secondary battery
JPH10144346A (en) * 1996-11-15 1998-05-29 Nippon Telegr & Teleph Corp <Ntt> Secondary battery containing nonaqueous solvent electrolytic solution
JPH10255768A (en) * 1997-03-11 1998-09-25 Masataka Wakihara Electrode and lithium secondary battery
JP2000516930A (en) * 1996-08-16 2000-12-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for preparing lithium borate complex
JP2001055396A (en) * 1999-07-10 2001-02-27 Merck Patent Gmbh Lithium complex salt for chemical cell
JP2002033126A (en) * 2000-05-08 2002-01-31 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte and battery
JP2002063935A (en) * 2000-06-09 2002-02-28 Central Glass Co Ltd Electrolyte for electrochemical device, its electrolytic solution or solid electrolyte and battery
JP2002184461A (en) * 2000-12-18 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery
JP2002193973A (en) * 2000-09-21 2002-07-10 Hitachi Ltd New organic borate compound, and nonaqueous electrolyte and lithium secondary battery using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765843A (en) * 1993-06-18 1995-03-10 Hitachi Maxell Ltd Organic electrolyte battery
JPH09293515A (en) * 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd Electrode material and lithium secondary battery
JP2000516930A (en) * 1996-08-16 2000-12-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for preparing lithium borate complex
JPH10144346A (en) * 1996-11-15 1998-05-29 Nippon Telegr & Teleph Corp <Ntt> Secondary battery containing nonaqueous solvent electrolytic solution
JPH10255768A (en) * 1997-03-11 1998-09-25 Masataka Wakihara Electrode and lithium secondary battery
JP2001055396A (en) * 1999-07-10 2001-02-27 Merck Patent Gmbh Lithium complex salt for chemical cell
JP2002033126A (en) * 2000-05-08 2002-01-31 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte and battery
JP2002063935A (en) * 2000-06-09 2002-02-28 Central Glass Co Ltd Electrolyte for electrochemical device, its electrolytic solution or solid electrolyte and battery
JP2002193973A (en) * 2000-09-21 2002-07-10 Hitachi Ltd New organic borate compound, and nonaqueous electrolyte and lithium secondary battery using the same
JP2002184461A (en) * 2000-12-18 2002-06-28 Central Glass Co Ltd Electrolyte for electrochemical device, electrolytic solution or solid electrolyte thereof, and battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172990A (en) * 2005-12-21 2007-07-05 Sony Corp Electrolyte and battery
JP2007257875A (en) * 2006-03-20 2007-10-04 Central Glass Co Ltd Electrolyte for nonaqueous electrolyte battery, electrolyte and nonaqueous electrolyte battery
JP2007257961A (en) * 2006-03-22 2007-10-04 Sony Corp Electrolyte solution and battery
JP4706528B2 (en) * 2006-03-22 2011-06-22 ソニー株式会社 Electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR101369537B1 (en) 2006-03-22 2014-03-04 소니 주식회사 Electrolytic Solution for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery
US8679683B2 (en) 2006-03-22 2014-03-25 Sony Corporation Electrolyte solution containing a cyclic imide salt and light metal salt and battery
JP2007258029A (en) * 2006-03-24 2007-10-04 Sony Corp Battery
US20100075233A1 (en) * 2008-09-25 2010-03-25 Sony Corporation Battery and electrode
WO2014007232A1 (en) * 2012-07-04 2014-01-09 株式会社カネカ Nonaqueous electrolyte secondary battery, secondary battery module, and method for using nonaqueous electrolyte secondary battery
JPWO2014007232A1 (en) * 2012-07-04 2016-06-02 株式会社カネカ Nonaqueous electrolyte secondary battery, secondary battery module, and method of using nonaqueous electrolyte secondary battery
JP2016035901A (en) * 2014-07-31 2016-03-17 株式会社東芝 Nonaqueous electrolyte battery, method of manufacturing nonaqueous electrolyte battery, and battery pack

Also Published As

Publication number Publication date
JP4895335B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP3675460B2 (en) Organic electrolyte and lithium battery using the same
JP4412778B2 (en) Polymer electrolyte battery
KR101671131B1 (en) Non-aqueous electrolyte solution secondary battery
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
CN108808098B (en) Method for manufacturing lithium ion secondary battery
JP2003197197A (en) Electrode plate, lithium battery using this, and manufacturing method for electrode plate
WO2007043624A1 (en) Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007265731A (en) Lithium ion secondary battery
JPH08236155A (en) Lithium secondary battery
JP4911835B2 (en) Non-aqueous secondary battery manufacturing method and charging method
JP2005317446A (en) Electrolyte and battery using the same
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP2009206091A (en) Nonaqueous electrolyte battery and negative electrode, and method for manufacturing the same
US11870055B2 (en) Surface-fluorinated silicon-containing electrodes
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2006066298A (en) Lithium secondary battery
JP4895335B2 (en) Non-aqueous battery
JPH1145720A (en) Lithium secondary battery
JP2005019149A (en) Lithium secondary battery
JP2002093405A (en) Nonaqueous secondary battery and its charging method
JP2003045433A (en) Nonaqueous secondary battery
JP2003151559A (en) Organic electrolyte battery
JP2004296420A (en) Organic electrolyte battery
KR20110119054A (en) Lithium polymer battery
US20210020918A1 (en) Negative electrode for electrochemical element and a lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4895335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees