JP2002279998A - Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same - Google Patents

Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same

Info

Publication number
JP2002279998A
JP2002279998A JP2001081837A JP2001081837A JP2002279998A JP 2002279998 A JP2002279998 A JP 2002279998A JP 2001081837 A JP2001081837 A JP 2001081837A JP 2001081837 A JP2001081837 A JP 2001081837A JP 2002279998 A JP2002279998 A JP 2002279998A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
aqueous secondary
lithium
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001081837A
Other languages
Japanese (ja)
Inventor
Kazutaka Uchitomi
和孝 内富
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001081837A priority Critical patent/JP2002279998A/en
Publication of JP2002279998A publication Critical patent/JP2002279998A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for a non-aqueous secondary battery and the non-aqueous secondary battery, having superior cycle characteristics and negative dynamic characteristics, even when a positive electrode active material operating with a high potential of 4.5 V or more with reference to lithium is used. SOLUTION: This positive electrode for the non-aqueous secondary battery is prepared, by applying a lithium-containing composite oxide as the positive electrode active material, and using an amorphous carbon material of average particle size of 100 nm or less and a graphite carbon material of average particle size of 1-10 μm, and the non-aqueous secondary battery is manufactured, by using the positive electrode. As the lithium-containing composite oxide of the positive electrode active material, LiNix My Mn2-x-y O4 (where M is at least one kind of transition metal element, excluding Ni and Mn, 0.4<=x<=0.6, and 0<=y<=0.1) is preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池用正
極およびそれを用いた非水二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode for a non-aqueous secondary battery and a non-aqueous secondary battery using the same.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコンなど
のポータブル電子機器の発達や、電気自動車の実用化な
どに伴い、小型軽量でかつ高容量の二次電池が必要とさ
れるようになってきた。現在、この要求に応える高容量
二次電池として、正極材料としてLiCoO2 などの含
リチウム複合酸化物を用い、負極活物質として炭素系材
料を用いたリチウムイオン二次電池が商品化されてい
る。
2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and notebook computers and the practical use of electric vehicles, secondary batteries of small size, light weight and high capacity have been required. Was. At present, a lithium ion secondary battery using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material has been commercialized as a high-capacity secondary battery that meets this demand.

【0003】上記リチウムイオン二次電池は、エネルギ
ー密度が高く、かつ小型、軽量化が図れることから、ポ
ータブル電子機器の電源として注目されている。このリ
チウムイオン二次電池の正極活物質として使用されてい
るLiCoO2 は、製造が容易であり、かつ取り扱いが
容易なことから、好適な正極活物質として多用されてい
る。
The lithium ion secondary battery has attracted attention as a power source for portable electronic devices because it has a high energy density and can be reduced in size and weight. LiCoO 2 used as a positive electrode active material of this lithium ion secondary battery is frequently used as a suitable positive electrode active material because it is easy to manufacture and easy to handle.

【0004】ところで、正極活物質の高エネルギー密度
化を図るためには、高容量の正極活物質を用いる方法
と、高電位作動の正極活物質を用いる方法とがある。後
者の観点から、終止電圧を高電圧化したリチウムコバル
ト酸化物や、高電位作動のスピネル型リチウムマンガン
酸化物の検討がなされており、例えば、LiCoO2
Coの一部を他の金属で置換した場合は4.5V以上の
電圧での充放電が可能になることが報告されている。ま
た、マンガンサイトを別の遷移金属で置換したリチウム
マンガン酸化物、例えば、LiNix y Mn2-x-y
4 (ただし、MはNiおよびMn以外の少なくとも1種
の遷移金属元素で、0.4≦x≦0.6、0≦y≦0.
1)で表される含リチウム複合酸化物では、リチウム電
位に対して4.5V以上の作動電位が得られることが確
認されている(特開平09−147867号公報、特開
平11−73962号公報など)。
In order to increase the energy density of the positive electrode active material, there are a method using a high-capacity positive electrode active material and a method using a high-potential-operation positive electrode active material. From the viewpoint of the latter, lithium cobalt oxide having a higher end voltage and spinel-type lithium manganese oxide operating at high potential have been studied.For example, part of Co of LiCoO 2 is replaced with another metal. It has been reported that charging and discharging at a voltage of 4.5 V or more can be performed in such a case. Further, lithium manganese oxide substituted manganese site with another transition metal, for example, LiNi x M y Mn 2- xy O
4 (where M is at least one transition metal element other than Ni and Mn, and 0.4 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.
It has been confirmed that the lithium-containing composite oxide represented by 1) can obtain an operating potential of 4.5 V or more with respect to the lithium potential (Japanese Patent Application Laid-Open Nos. 09-147867 and 11-73962). Such).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記L
iNix y Mn2-x-y 4 を正極活物質として用いた
場合、リチウム基準でおよそ4.5Vの電位では、電解
質アニオンの黒鉛層間への挿入反応、例えば、下記の式
(1)に示すようなPF6 錯イオンの黒鉛層間への挿入
反応 C24+PF6 →C24(PF6 )+e- (1) が生じるため、正極の導電助剤として黒鉛系炭素材料を
用いた場合には、上記反応により黒鉛の層間距離が拡げ
られ、黒鉛粒子が膨張して活物質との間に隙間が生じ、
導電助剤としての機能が失われ、正極のサイクル特性お
よび負荷特性が劣化することが判明した。
However, the aforementioned L
When using iNi x M y Mn 2-xy O 4 as the positive electrode active material, a potential of approximately 4.5V based on lithium, shows insertion reaction into graphite layers of electrolyte anions, for example, the following formula (1) PF 6 insertion reaction C 24 + PF 6 → C 24 to graphite layers of complex ion (PF 6) + e as - for (1) occurs, in the case of using a graphite-based carbon material as a conductive additive in the positive electrode, Due to the above reaction, the interlayer distance of graphite is expanded, the graphite particles expand, and a gap is generated between the graphite and the active material,
It was found that the function as a conductive auxiliary agent was lost, and the cycle characteristics and load characteristics of the positive electrode were deteriorated.

【0006】一方、黒鉛化度が低い炭素材料、例えば非
晶質炭素材料では、層間が広く、PF6 錯イオンが挿入
されても、格子のサイズ変化が起こりにくいので良好な
導電性は保たれるが、比表面積が大きく嵩高いため、正
極の密度を設計値まで高めることが困難で、正極を高容
量化する上で障害になっていた。
On the other hand, in the case of a carbon material having a low degree of graphitization, for example, an amorphous carbon material, since the interlayer is wide and the size of the lattice does not easily change even if PF 6 complex ions are inserted, good conductivity is maintained. However, since the specific surface area is large and bulky, it is difficult to increase the density of the positive electrode to a design value, which has been an obstacle in increasing the capacity of the positive electrode.

【0007】本発明は、上記のような従来技術の問題点
を解決し、4.5V以上の高い作動電圧を有する材料を
正極活物質として用いた場合でも、サイクル特性および
負荷特性が優れた非水二次電池用正極および非水二次電
池を提供することを目的とする。
[0007] The present invention solves the above-mentioned problems of the prior art, and achieves excellent non-equilibrium cycle and load characteristics even when a material having a high operating voltage of 4.5 V or more is used as a positive electrode active material. An object is to provide a positive electrode for a water secondary battery and a non-aqueous secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明は、含リチウム複
合酸化物を正極活物質とし、導電助剤として平均粒径が
100nm以下の非晶質炭素材料と平均粒径が1〜10
μmの黒鉛系炭素材料とを用いて非水二次電池用正極を
構成するとともに、その正極を用いて非水二次電池を構
成することにより、前記課題を解決したものである。
According to the present invention, a lithium-containing composite oxide is used as a positive electrode active material, an amorphous carbon material having an average particle size of 100 nm or less as a conductive additive, and an average particle size of 1 to 10 nm.
The object has been achieved by forming a positive electrode for a non-aqueous secondary battery using a graphite-based carbon material of μm and forming a non-aqueous secondary battery using the positive electrode.

【0009】すなわち、本発明者らは、前記の一般式L
iNix y Mn2-x-y 4 (ただし、MはNiおよび
Mn以外の少なくとも1種の遷移金属元素で、0.4≦
x≦0.6、0≦y≦0.1)で表される含リチウム複
合酸化物が、リチウム基準で4.5V以上の高電位で作
動でき、高エネルギー密度化が容易であるという優れた
特性を有するものの、その反面、サイクル特性および負
荷特性を低下させやすいという問題点を有していること
に鑑み、そのような高電位作動の含リチウム複合酸化物
を正極活物質として用いた場合でも、導電助剤として平
均粒径が100nm以下の非晶質炭素材料と平均粒径が
1〜10μmの黒鉛系炭素材料とを用いる場合には、サ
イクル特性および負荷特性が優れた非水二次電池が得ら
れることを見出した。特に、黒鉛系炭素材料の平均粒径
Rgが正極活物質の含リチウム複合酸化物の平均粒径R
m以下である(すなわち、Rg≦Rmである)ときは、
さらに優れたサイクル特性および負荷特性が得られるこ
とも見出した。
That is, the present inventors have found that the above-mentioned general formula L
iNi x M y Mn 2-xy O 4 ( provided that, M is at least one transition metal element other than Ni and Mn, 0.4 ≦
x ≦ 0.6, 0 ≦ y ≦ 0.1), which is excellent in that it can operate at a high potential of 4.5 V or more on the basis of lithium, and is easy to achieve high energy density. Although having characteristics, in view of the fact that it has a problem that the cycle characteristics and load characteristics are easily reduced, even when such a high-potential-operation lithium-containing composite oxide is used as the positive electrode active material, In the case where an amorphous carbon material having an average particle size of 100 nm or less and a graphite-based carbon material having an average particle size of 1 to 10 μm are used as a conductive additive, a non-aqueous secondary battery having excellent cycle characteristics and load characteristics Was obtained. In particular, the average particle size Rg of the graphite-based carbon material is equal to the average particle size Rg of the lithium-containing composite oxide of the positive electrode active material.
m or less (that is, Rg ≦ Rm),
It has also been found that superior cycle characteristics and load characteristics can be obtained.

【0010】[0010]

【発明の実施の形態】本発明において用いる非晶質炭素
材料としては、例えば、アセチレンブラック、ケッチェ
ンブラックのようなカーボンブラック、気相成長炭素繊
維、カーボンナノチューブ、ピッチを紡糸して炭化処理
した炭化繊維などの繊維状の非晶質炭素などが挙げられ
る。そして、本発明においては、この非晶質炭素材料の
平均粒径が100nm以下であることを要するが、これ
は正極は作製する際に非晶質炭素材料の粒子を活物質粒
子の間隙に入り込みやすくし、充填性を高めるためであ
る。この非晶質炭素材料は、その平均粒径が小さいほど
電解液(液状電解質)の保持能力が大きく、正極特性を
高めるが、現実に得ることができる微小粒径にも限度が
あることから、平均粒径が1nm程度のものまでが実用
的である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an amorphous carbon material used in the present invention, for example, carbon black such as acetylene black and Ketjen black, vapor grown carbon fiber, carbon nanotube, and pitch are spun and carbonized. Examples include fibrous amorphous carbon such as carbonized fiber. In the present invention, it is necessary that the average particle size of the amorphous carbon material is 100 nm or less. This is because the amorphous carbon material enters the gap between the active material particles when the positive electrode is manufactured. This is to make it easier and enhance the filling property. The smaller the average particle size of the amorphous carbon material, the larger the ability to hold an electrolytic solution (liquid electrolyte) and the higher the positive electrode characteristics. However, since the fine particle size that can be actually obtained is limited, Practical ones with an average particle size of about 1 nm are practical.

【0011】また、本発明において用いる黒鉛系炭素材
料としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛な
どが挙げられる。そして、本発明においては、この黒鉛
系炭素材料の平均粒径が1〜10μmであることを要す
るが、これは、黒鉛系炭素材料の平均粒径が1μmより
小さい場合は、活物質粒子と接触する界面の面積が小さ
くなり、正極特性の低下を起こすからであり、黒鉛系炭
素材料の平均粒径が10μmより大きい場合は、充填
性、充填率の低下を起こすからである。なお、本発明に
おいて、非晶質炭素材料や黒鉛系炭素材料などの粒径
は、レーザー回折・散乱式粒度分布計により測定され
る。
The graphite-based carbon material used in the present invention includes, for example, natural graphite, artificial graphite, expanded graphite and the like. In the present invention, the average particle size of the graphite-based carbon material needs to be 1 to 10 μm. This is because when the average particle size of the graphite-based carbon material is smaller than 1 μm, The reason for this is that the area of the interfacial interface becomes smaller and the positive electrode characteristics are deteriorated. If the average particle size of the graphite-based carbon material is larger than 10 μm, the filling property and the filling rate are lowered. In the present invention, the particle size of the amorphous carbon material or the graphite-based carbon material is measured by a laser diffraction / scattering particle size distribution meter.

【0012】また、本発明において、導電助剤として用
いる炭素材料のうち、非晶質炭素材料としては、(00
2)面の層間距離(d002 )が0.344nm以上で、
比表面積が50〜1000m2 /gのものが好ましく、
黒鉛系炭素材料としては、(002)面の層間距離(d
002 )が0.344nm未満で、比表面積が0.1〜3
0m2 /gのものが好ましい。そして、全導電助剤のう
ち非晶質炭素材料の占める量は15重量%以上であるこ
とが好ましく、30重量%以上であることがより好まし
く、50重量%以上であることがさらに好ましい。すな
わち、非晶質炭素材料が15重量%以上であることによ
って、例えば、PF6 錯イオンの炭素材料への挿入反応
が生じても、格子サイズの変化を抑制して、導電性を保
ち得る。ただし、この非晶質炭素材料の量が多くなりす
ぎると正極の合剤密度が減少するため、全導電助剤中で
占める量としては85重量%以下が好ましい。
In the present invention, among the carbon materials used as the conductive additive, amorphous carbon materials include (00)
2) When the interlayer distance (d 002 ) of the plane is 0.344 nm or more,
Those having a specific surface area of 50 to 1000 m 2 / g are preferable,
As the graphite-based carbon material, the interlayer distance (d) of the (002) plane
002 ) is less than 0.344 nm and the specific surface area is 0.1 to 3
Those having 0 m 2 / g are preferred. The amount of the amorphous carbon material in all the conductive assistants is preferably 15% by weight or more, more preferably 30% by weight or more, and even more preferably 50% by weight or more. That is, when the amount of the amorphous carbon material is 15% by weight or more, even if, for example, an insertion reaction of the PF 6 complex ion into the carbon material occurs, the change in lattice size can be suppressed and the conductivity can be maintained. However, if the amount of the amorphous carbon material is too large, the mixture density of the positive electrode decreases, so that the amount occupied in all the conductive assistants is preferably 85% by weight or less.

【0013】また、正極合剤の密度をさらに高めるため
には、正極活物質の含リチウム複合酸化物の粒度分布測
定で得られる平均粒径(D50値)は1〜30μmである
ことが好ましく、黒鉛系炭素材料の平均粒径Rg(n
m)はこの正極活物質の平均粒径Rm(nm)以下であ
る(すなわち、Rg≦Rmである)ことが好ましい。こ
れを言い換えると、黒鉛系炭素材料の平均粒径Rgは正
極活物質の平均粒径より小さいか、または正極活物質の
平均粒径と同じであることが好ましい。そして、正極活
物質の含リチウム複合酸化物としては、一般式LiNi
x y Mn2-x-y4 (ただし、MはNiおよびMn以
外の少なくとも1種の遷移金属元素で、0.4≦x≦
0.6、0≦y≦0.1)で表されるものが好ましく、
また、その遷移金属元素としては、例えば、Cr、F
e、Co、Cu、Zn、Ti、Alなどが好ましく、そ
の中でも、Fe、Coを用いたものが良好な特性が得ら
れることから特に好ましい。
Further, in order to further increase the density of the positive electrode mixture has an average particle diameter (D 50 value) obtained by particle size distribution measurement of the lithium-containing composite oxide of the positive electrode active material is preferably from 1~30μm , The average particle size Rg (n
m) is preferably not more than the average particle diameter Rm (nm) of the positive electrode active material (that is, Rg ≦ Rm). In other words, the average particle size Rg of the graphite-based carbon material is preferably smaller than or equal to the average particle size of the positive electrode active material. As the lithium-containing composite oxide of the positive electrode active material, a general formula LiNi
x M y Mn 2-xy O 4 ( provided that, M is at least one transition metal element other than Ni and Mn, 0.4 ≦ x ≦
0.6, 0 ≦ y ≦ 0.1) is preferable,
Further, as the transition metal element, for example, Cr, F
e, Co, Cu, Zn, Ti, Al and the like are preferable, and among them, those using Fe and Co are particularly preferable because good characteristics can be obtained.

【0014】本発明の正極の作製にあたっては、非晶質
炭素材料と黒鉛系炭素材料とをあらかじめ混合して混合
物とし、その混合物を導電助剤として正極活物質や高分
子バインダーなどと混合して正極合剤を調製し、それを
溶剤に分散させて正極合剤含有ペーストを調製し(この
場合、高分子バインダーはあらかじめ溶剤に溶解または
分散させておいてから正極活物質などと混合してもよ
い)、この正極合剤含有ペーストを金属箔などからなる
集電体に塗布し、乾燥して正極合剤層を形成し、必要に
応じて加圧する工程を経て作製するのが好ましい。前記
のように非晶質炭素材料と黒鉛系炭素材料をあらかじめ
混合しておくと、本発明の効果をより適正に発現させる
ことができるが、正極の作製方法は、上記例示の方法に
限られることなく、他の方法によってもよい。
In preparing the positive electrode of the present invention, an amorphous carbon material and a graphite-based carbon material are mixed in advance to form a mixture, and the mixture is mixed with a positive electrode active material, a polymer binder, or the like as a conductive assistant. A positive electrode mixture is prepared and dispersed in a solvent to prepare a positive electrode mixture-containing paste (in this case, the polymer binder is dissolved or dispersed in a solvent in advance and then mixed with a positive electrode active material or the like. Good), it is preferable to apply the positive electrode mixture-containing paste to a current collector made of a metal foil or the like, dry it to form a positive electrode mixture layer, and pressurize as necessary. If the amorphous carbon material and the graphite-based carbon material are mixed in advance as described above, the effects of the present invention can be more appropriately exhibited, but the method of manufacturing the positive electrode is limited to the method described above. Alternatively, other methods may be used.

【0015】上記正極の作製にあたって使用する高分子
バインダーとしては、例えば、ポリフッ化ビニリデン、
ポリテトラフルオロエチレン、ポリアクリル酸、スチレ
ンブタジエンゴムなどが挙げられる。
As the polymer binder used for producing the positive electrode, for example, polyvinylidene fluoride,
Polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubber and the like can be mentioned.

【0016】上記正極と対向させる負極の活物質として
は、例えば、リチウムイオンをドープ・脱ドープできる
ものであればよく、そのような負極活物質としては、例
えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素
類、有機高分子化合物の焼成体、メソカーボンマイクロ
ビーズ、炭素繊維、活性炭などの炭素質材料が挙げられ
る。また、リチウムまたはリチウム含有化合物なども負
極活物質として使用することができる。このリチウム含
有化合物としては、例えば、錫酸化物、ケイ素酸化物、
ニッケル−ケイ素系合金、マグネシウム−ケイ素系合
金、タングステン酸化物、リチウム鉄複合酸化物などの
ほか、リチウム−アルミニウム、リチウム−鉛、リチウ
ム−インジウム、リチウム−ガリウム、リチウム−イン
ジウム−ガリウムなどのリチウム合金が挙げられる。こ
れら例示の負極活物質の中には、製造時にはリチウムを
含んでいないものもあるが、充電時にはリチウムを含ん
だ状態になる。
The negative electrode active material facing the positive electrode may be, for example, a material capable of doping and undoping lithium ions. Examples of such a negative electrode active material include graphite, pyrolytic carbons, and coke. , Glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon and other carbonaceous materials. Further, lithium or a lithium-containing compound can also be used as the negative electrode active material. As the lithium-containing compound, for example, tin oxide, silicon oxide,
Nickel-silicon alloys, magnesium-silicon alloys, tungsten oxides, lithium iron composite oxides, and lithium alloys such as lithium-aluminum, lithium-lead, lithium-indium, lithium-gallium, and lithium-indium-gallium Is mentioned. Some of these exemplified negative electrode active materials do not contain lithium at the time of manufacture, but contain lithium when charged.

【0017】負極は、上記負極活物質と必要に応じて添
加される導電助剤や前記正極の場合と同様のバインダー
とを混合して負極合剤を調製し、それを溶剤に分散させ
てペーストにし(バインダーはあらかじめ溶剤に溶解ま
たは分散させておいてから負極活物質などと混合しても
よい)、得られた負極合剤含有ペーストを集電体に塗布
し、乾燥して、負極合剤層を形成し、必要に応じて加圧
成形する工程を経ることによって作製される。ただし、
負極の作製方法は、上記例示の方法に限られることな
く、他の方法によってもよい。
For the negative electrode, a negative electrode mixture is prepared by mixing the negative electrode active material described above with a conductive auxiliary added as necessary and a binder similar to that for the positive electrode, and dispersing the mixture in a solvent to prepare a paste. (The binder may be dissolved or dispersed in a solvent in advance and then mixed with the negative electrode active material, etc.), and the obtained negative electrode mixture-containing paste is applied to a current collector, dried, and dried. It is produced by forming a layer and, if necessary, passing through a step of pressure molding. However,
The method for manufacturing the negative electrode is not limited to the method described above, and may be another method.

【0018】負極の作製にあたって用いる導電助剤とし
ては、例えば、グラファイト、アセチレンブラック、カ
ーボンブラック、ケッチェンブラック、炭素繊維のほ
か、金属粉末、金属繊維などが挙げられる。
Examples of the conductive additive used for producing the negative electrode include graphite, acetylene black, carbon black, Ketjen black, carbon fiber, metal powder, metal fiber and the like.

【0019】また、正極や負極の作製にあたって使用す
る集電体としては、正極には、例えば、アルミニウム、
ステンレス鋼、ニッケル、チタンまたはそれらの合金か
らなる箔、パンチドメタル、エキスパンドメタル、網な
どが挙げられ、負極には、例えば、銅、ステンレス鋼、
ニッケル、チタンまたはそれらの合金からなる上記と同
様の形態のものが挙げられるが、正極の集電体としては
特にアルミニウム箔が好ましく、負極の集電体としては
特に銅箔が好ましい。
As a current collector used for producing a positive electrode or a negative electrode, for example, aluminum,
Stainless steel, nickel, titanium or a foil made of titanium or an alloy thereof, punched metal, expanded metal, mesh and the like, the negative electrode, for example, copper, stainless steel,
The same form as described above composed of nickel, titanium or an alloy thereof may be mentioned, but the current collector of the positive electrode is particularly preferably aluminum foil, and the current collector of the negative electrode is particularly preferably copper foil.

【0020】本発明の非水二次電池において用いる非水
電解質としては、通常、非水系の液状電解質(以下、こ
れを「電解液」という)が用いられる。そして、その電
解液としては有機溶媒にリチウム塩などの電解質塩を溶
解させたものが用いられる。その有機溶媒としては、特
に限定されることはないが、例えば、ジメチルカーボネ
ート、ジエチルカーボネート、エチルメチルカーボネー
ト、メチルプロピルカーボネートなどの鎖状エステル、
あるいはエチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、ビニレンカーボネートなど
の誘電率の高い環状エステル、あるいは鎖状エステルと
環状エステルとの混合溶媒などが挙げられ、特に鎖状エ
ステルを主溶媒とした環状エステルとの混合溶媒が適し
ている。
As the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention, a non-aqueous liquid electrolyte (hereinafter, referred to as "electrolyte") is generally used. As the electrolyte, a solution in which an electrolyte salt such as a lithium salt is dissolved in an organic solvent is used. The organic solvent is not particularly limited, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, a chain ester such as methyl propyl carbonate,
Or ethylene carbonate, propylene carbonate, butylene carbonate, a cyclic ester having a high dielectric constant such as vinylene carbonate, or a mixed solvent of a chain ester and a cyclic ester, and the like. Mixed solvents are suitable.

【0021】電解液の調製にあたって上記有機溶媒に溶
解させる電解質塩としては、例えば、LiClO4 、L
iPF6 、LiBF4 、LiAsF6 、LiSbF6
LiCF3 SO3 、LiC4 9 SO3 、LiCF3
2 、Li2 2 4 (SO 3 2 、LiCn 2n+1
3 (n≧2)、LiN(RfSO2 2 、LiC(R
fSO2 3 、LiN(RfOSO2 2 〔ここでRf
はフルオロアルキル基〕などが単独でまたは2種以上混
合して用いられる。電解液中における電解質塩の濃度
は、特に限定されることはないが、0.3mol/l以
上が好ましく、0.4mol/l以上がより好ましく、
1.7mol/l以下が好ましく、1.5mol/l以
下がより好ましい。
When preparing the electrolytic solution, dissolve in the above organic solvent.
As the electrolyte salt to be dissolved, for example, LiClOFour, L
iPF6, LiBFFour, LiAsF6, LiSbF6,
LiCFThreeSOThree, LiCFourF9SOThree, LiCFThreeC
OTwo, LiTwoCTwoFFour(SO Three)Two, LiCnF2n + 1S
OThree(N ≧ 2), LiN (RfSOTwo)Two, LiC (R
fSOTwo)Three, LiN (RfOSOTwo)Two[Where Rf
Is a fluoroalkyl group) alone or as a mixture of two or more.
Used together. Electrolyte salt concentration in electrolyte
Is not particularly limited, but 0.3 mol / l or less
Above is preferable, and 0.4 mol / l or more is more preferable,
1.7 mol / l or less, preferably 1.5 mol / l or less
Below is more preferred.

【0022】本発明において、非水電解質としては、上
記電解液以外にも、上記電解液をポリマーなどからなる
ゲル化剤でゲル化したゲル状の電解質、さらには、固体
状の電解質も用いることができる。そのような固体状電
解質としては、無機系電解質のほか、有機系電解質など
も用いることができる。
In the present invention, as the non-aqueous electrolyte, besides the above-mentioned electrolyte, a gel electrolyte obtained by gelling the above-mentioned electrolyte with a gelling agent comprising a polymer or the like, or a solid electrolyte may be used. Can be. As such a solid electrolyte, an organic electrolyte and the like can be used in addition to the inorganic electrolyte.

【0023】[0023]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0024】実施例1 層間距離が0.363nm、比表面積が50m2 /g、
平均粒径が50nmの非晶質炭素材料2重量部と、層間
距離が0.334nm、比表面積が20m2 /g、平均
粒径が3.5μmの人造黒鉛4重量部とを混合し、さら
にその炭素材料混合物に平均粒径が5.1μmのLiN
0.5 Mn1.5 4 90重量部およびポリフッ化ビニリ
デン4重量部とを混合して正極合剤を調製し、それをN
−メチル−2−ピロリドンに分散させて正極合剤含有ペ
ーストを調製した。得られた正極合剤含有ペーストを厚
さ20μmのアルミニウム箔からなる集電体の片面に塗
布し、乾燥して正極合剤層を形成した後、直径15mm
に打ち抜いて円形の正極を作製した。なお、上記非晶質
炭素材料、人造黒鉛およびLiNi0.5 Mn1.5 4
平均粒径はHoneywell社製のレーザー式回折・
散乱式粒度分布計MICROTRAC HRA 932
0−X100によって測定した粒径に基づくものであ
る。また、上記LiNi0.5 Mn1.5 4 を一般式Li
Nix y Mn 2-x-y 4 に適合するように説明する
と、x=0.5、y=0である。
Example 1 The interlayer distance was 0.363 nm and the specific surface area was 50 m.Two/ G,
2 parts by weight of an amorphous carbon material having an average particle size of 50 nm and an interlayer
Distance is 0.334nm, specific surface area is 20mTwo/ G, average
Mix with 4 parts by weight of artificial graphite having a particle size of 3.5 μm,
The LiN having an average particle size of 5.1 μm is added to the carbon material mixture.
i0.5Mn1.5OFour90 parts by weight and polyvinyl fluoride
And 4 parts by weight of styrene to prepare a positive electrode mixture.
-Methyl-2-pyrrolidone dispersed in
A paste was prepared. Thick the obtained paste containing the positive electrode mixture.
On one side of a current collector made of aluminum foil with a thickness of 20 μm.
Cloth and drying to form a positive electrode mixture layer, then 15 mm in diameter
To produce a circular positive electrode. In addition, the above amorphous
Carbon material, artificial graphite and LiNi0.5Mn1.5O Fourof
The average particle size is measured by a laser diffractometer manufactured by Honeywell.
Scattering type particle size distribution meter MICROTRAC HRA 932
Based on particle size measured by 0-X100
You. In addition, the above-mentioned LiNi0.5Mn1.5OFourWith the general formula Li
NixMyMn 2-xyOFourExplain to fit
And x = 0.5 and y = 0.

【0025】実施例2 非晶質炭素材料を3重量部、人造黒鉛を3重量部とした
以外は、実施例1と同様に正極を作製した。
Example 2 A positive electrode was produced in the same manner as in Example 1 except that the amorphous carbon material was 3 parts by weight and the artificial graphite was 3 parts by weight.

【0026】実施例3 非晶質炭素材料を4重量部、人造黒鉛を2重量部とした
以外は、実施例1と同様に正極を作製した。
Example 3 A positive electrode was produced in the same manner as in Example 1 except that the amorphous carbon material was 4 parts by weight and the artificial graphite was 2 parts by weight.

【0027】実施例4 非晶質炭素材料を5重量部、人造黒鉛を1重量部とした
以外は、実施例1と同様に正極を作製した。
Example 4 A positive electrode was produced in the same manner as in Example 1 except that the amorphous carbon material was 5 parts by weight and the artificial graphite was 1 part by weight.

【0028】比較例1 人造黒鉛を用いず、非晶質炭素材料を6重量部とした以
外は、実施例1と同様に正極を作製した。
Comparative Example 1 A positive electrode was prepared in the same manner as in Example 1, except that artificial graphite was not used and the amorphous carbon material was 6 parts by weight.

【0029】比較例2 非晶質炭素材料を用いず、人造黒鉛を6重量部とした以
外は、実施例1と同様に正極を作製した。
Comparative Example 2 A positive electrode was produced in the same manner as in Example 1 except that the amorphous carbon material was not used and the artificial graphite was 6 parts by weight.

【0030】上記のように作製した実施例1〜4および
比較例1〜2の正極における正極合剤中の導電助剤の構
成を表1に示す。また、上記実施例1〜4および比較例
1〜2の正極と、参照極として金属リチウム箔を用い、
非水電解液としてエチレンカーボネートとジエチルカー
ボネートとの体積比2:5の混合溶媒にLiPF6
1.2mol/lの濃度で溶解させたものを用いて、モ
デルセルを組み立て、サイクル特性を調べた。その結果
を表2に示す。
Table 1 shows the constitution of the conductive auxiliary in the positive electrode mixture of the positive electrodes of Examples 1-4 and Comparative Examples 1-2 prepared as described above. Further, using the positive electrodes of Examples 1 to 4 and Comparative Examples 1 and 2, and a metal lithium foil as a reference electrode,
A model cell was assembled using a non-aqueous electrolyte obtained by dissolving LiPF 6 at a concentration of 1.2 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 2: 5, and cycle characteristics were examined. . Table 2 shows the results.

【0031】サイクル特性は、各モデルセルに対して、
参照極に対する正極の電位が5.1Vになるまで0.2
Cの定電流で充電し、その後、0.2Cの定電流で3.
5Vを終止電圧とする放電を行う充放電サイクルを繰り
返し、各サイクルごとの放電容量を調べることによって
行った。その1サイクル目の放電容量と20サイクル目
の放電容量を正極合剤1cm3 当たりに換算して表2に
示す。
The cycle characteristics are as follows for each model cell:
0.2 until the potential of the positive electrode with respect to the reference electrode becomes 5.1 V
2. Charge at a constant current of C, and then at a constant current of 0.2C.
A charge / discharge cycle in which discharge was performed with a final voltage of 5 V was repeated, and the discharge capacity of each cycle was examined. The discharge capacity at the first cycle and the discharge capacity at the 20th cycle are shown in Table 2 in terms of 1 cm 3 of the positive electrode mixture.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示すように、実施例1〜4は、1サ
イクル目の放電容量が大きく、また、20サイクル目の
放電容量も大きく、高容量で、かつサイクル特性が優れ
ていた。これに対して、導電助剤として非晶質炭素材料
のみを用いた比較例1は、サイクル数の増加に伴う放電
容量の低下は少ないものの、実施例1〜4に比べて1サ
イクル目の放電容量が小さく、高容量とはいいがたく、
また、導電助剤として黒鉛のみを用いた比較例2は、1
サイクル目の放電容量は大きいものの、20サイクル目
の放電容量が極端に低く、サイクル特性が劣っていた。
As shown in Table 2, in Examples 1 to 4, the discharge capacity in the first cycle was large, the discharge capacity in the 20th cycle was large, the capacity was high, and the cycle characteristics were excellent. On the other hand, in Comparative Example 1 in which only the amorphous carbon material was used as the conductive additive, the discharge capacity in the first cycle was smaller than that in Examples 1 to 4, although the decrease in the discharge capacity with the increase in the number of cycles was small. The capacity is small, but it is hard to say that it is high capacity,
Further, Comparative Example 2 using only graphite as a conductive additive was 1
Although the discharge capacity at the cycle was large, the discharge capacity at the 20th cycle was extremely low, and the cycle characteristics were inferior.

【0035】また、上記モデルセルに対して、前記と同
様に参照極に対する正極の電位が5.1Vになるまでの
0.2Cの定電流で充電した後、0.2Cおよび1Cの
各放電レートで3.5Vまで放電し、放電容量を測定し
た。その結果を表3に示す。なお、この表3においても
放電容量は正極合剤1cm3 あたりの放電容量で示して
いる。
Further, after charging the model cell at a constant current of 0.2 C until the potential of the positive electrode with respect to the reference electrode becomes 5.1 V in the same manner as described above, a discharge rate of 0.2 C and 1 C is applied. At 3.5 V to measure the discharge capacity. Table 3 shows the results. Also in Table 3, the discharge capacity is shown as a discharge capacity per 1 cm 3 of the positive electrode mixture.

【0036】[0036]

【表3】 [Table 3]

【0037】表3に示すように、実施例1〜4は、1C
の放電容量が大きく、かつ、その1Cの放電容量の0.
2Cの放電容量からの低下も少なく、負荷特性が優れて
いた。これに対して、導電助剤として非晶質炭素材料の
みを用いた比較例1では、1Cの放電容量は大きかった
ものの、0.1Cの放電容量が実施例1〜4に比べて小
さく、導電助剤として黒鉛のみを用いた比較例2では、
0.1Cの放電容量は大きかったものの、1Cの放電容
量が極端に小さく、負荷特性が悪かった。
As shown in Table 3, Examples 1 to 4
Has a large discharge capacity, and the discharge capacity of the 1C is 0.1.
There was little decrease from the discharge capacity of 2C, and the load characteristics were excellent. On the other hand, in Comparative Example 1 in which only the amorphous carbon material was used as the conductive additive, the discharge capacity at 1 C was large, but the discharge capacity at 0.1 C was smaller than those in Examples 1 to 4, and In Comparative Example 2 using only graphite as an auxiliary,
Although the discharge capacity at 0.1 C was large, the discharge capacity at 1 C was extremely small, and the load characteristics were poor.

【0038】つぎに、前記実施例1と同様に作製した正
極(ただし、正極合剤層は、前記モデルセルとは異な
り、アルミニウム箔からなる集電体の両面に形成されて
いる)を前記のように直径15mmの円形に打ち抜か
ず、54mm×480mmのシート状に切断し、その正
極を黒鉛を負極活物質とする負極および前記同様の非水
電解液と組み合わせて外径18mm、高さ65mmの円
筒形非水二次電池を作製して、その負荷特性を調べた。
Next, a positive electrode prepared in the same manner as in Example 1 (however, the positive electrode mixture layer is formed on both sides of a current collector made of aluminum foil, unlike the above-described model cell) is used. Cut into a sheet of 54 mm x 480 mm without punching into a circle having a diameter of 15 mm as described above, and combining the positive electrode with a negative electrode using graphite as a negative electrode active material and the same non-aqueous electrolyte as described above, having an outer diameter of 18 mm and a height of 65 mm. A cylindrical non-aqueous secondary battery was fabricated and its load characteristics were examined.

【0039】上記負極の作製にあたっては、負極活物質
として人造黒鉛を用い、その人造黒鉛とバインダーとし
てのポリフッ化ビニリデンとを重量比92:8の比率で
混合し、N−メチル−2−ピロリドンに分散させて、負
極合剤含有ペーストを調製した。得られた負極合剤含有
ペーストを厚さ10μmの銅箔からなる負極集電体の両
面に塗布し、乾燥して負極合剤層を形成した後、プレス
機で加圧成形し、リード体をスポット溶接した後、12
0℃で15時間真空乾燥した。
In preparing the negative electrode, artificial graphite was used as a negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder were mixed at a weight ratio of 92: 8, and mixed with N-methyl-2-pyrrolidone. By dispersing, a negative electrode mixture-containing paste was prepared. The obtained negative electrode mixture-containing paste is applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and then press-molded with a press to form a lead body. After spot welding, 12
Vacuum dried at 0 ° C. for 15 hours.

【0040】つぎに、上記のようにして得られた正極と
負極との間に厚さ25μmの微孔性ポリエチレンフィル
ムからなるセパレータを配置し、渦巻状に巻回して渦巻
状電極体とした後、有底円筒状の電池ケース内に挿入
し、正極リード体および負極リード体の溶接を行った
後、1.2mol/l LiPF6 /EC+DEC(体
積比1:1)からなる電解液〔すなわち、エチレンカー
ボネート(EC)とジエチルカーボネート(DEC)と
の体積比2:5の混合溶媒にLiPF6 を1.2mol
/l溶解させてなる非水電解液〕を注入し、ついで、上
記電池ケースの開口部を常法に従って封口し、図1に示
す構造で外径18mm、高さ65mmの筒形非水二次電
池を作製した。
Next, a separator made of a microporous polyethylene film having a thickness of 25 μm is disposed between the positive electrode and the negative electrode obtained as described above, and spirally wound to form a spiral electrode body. After inserting into a cylindrical battery case having a bottom and welding the positive electrode lead body and the negative electrode lead body, an electrolytic solution comprising 1.2 mol / l LiPF 6 / EC + DEC (volume ratio 1: 1) [that is, 1.2 mol of LiPF 6 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 2: 5
/ L dissolved non-aqueous electrolyte], and then the opening of the battery case is sealed in accordance with a conventional method, and a cylindrical non-aqueous secondary having an outer diameter of 18 mm and a height of 65 mm in the structure shown in FIG. A battery was manufactured.

【0041】ここで、図1に示す電池について説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用した集電体などは図示していない。
そして、それらの正極1と負極2はセパレータ3を介し
て渦巻状に巻回され、渦巻状電極体として上記特定の電
解液からなる非水電解質4と共に電池ケース5内に収容
されている。
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the current collectors used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are housed in a battery case 5 together with a nonaqueous electrolyte 4 made of the above specific electrolyte as a spiral electrode body.

【0042】電池ケース5は鉄製で、その表面にはニッ
ケルメッキが施され、電池ケース5の底部には上記渦巻
状電極体の挿入に先立って、ポリプロピレンからなる絶
縁体6が配置されている。封口板7は、アルミニウム製
で円板状をしていて、その中央部に薄肉部7aが設けら
れ、かつ上記薄肉部7aの周囲に電池内圧を防爆弁9に
作用させるための圧力導入口7bとしての孔が設けられ
ている。そして、この薄肉部7aの上面に防爆弁9の突
出部9aが溶接され、溶接部分11を構成している。な
お、上記の封口板7に設けた薄肉部7aや防爆弁9の突
出部9aなどは、図面上での理解がしやすいように、切
断面のみを図示しており、切断面後方の輪郭は図示を省
略している。また、封口板7の薄肉部7aと防爆弁9の
突出部9aとの溶接部分11も、図面上での理解が容易
なように、実際よりは誇張した状態に図示している。
The battery case 5 is made of iron, the surface of which is plated with nickel, and an insulator 6 made of polypropylene is arranged at the bottom of the battery case 5 before the spiral electrode body is inserted. The sealing plate 7 is made of aluminum and has a disk shape, a thin portion 7a is provided at the center thereof, and a pressure inlet 7b around the thin portion 7a for allowing the internal pressure of the battery to act on the explosion-proof valve 9. Hole is provided. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. In addition, the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 and the like are shown only in a cut surface so that the drawing can be easily understood, and the outline behind the cut surface is Illustration is omitted. Further, the welding portion 11 of the projecting portion 9a of the thin portion 7a and the explosion-proof valve 9 of the sealing plate 7 also, as is easily understood in the drawings, in fact than is illustrated in exaggerated state.

【0043】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられてい
る。防爆弁9は、アルミニウム製で円板状をしており、
その中央部には発電要素側(図1では、下側)に先端部
を有する突出部9aが設けられ、かつ薄肉部9bが設け
られ、上記突出部9aの下面が、前記したように、封口
板7の薄肉部7aの上面に溶接され、溶接部分11を構
成している。絶縁パッキング10は、ポリプロピレン製
で環状をしており、封口板7の周縁部の上部に配置さ
れ、その上部に防爆弁9が配置していて、封口板7と防
爆弁9とを絶縁するとともに、両者の間から電解液が漏
れないように両者の間隙を封止している。環状ガスケッ
ト12はポリプロピレン製で、リード体13はアルミニ
ウム製で、前記封口板7と正極1とを接続し、渦巻状電
極体の上部には絶縁体14が配置され、負極2と電池ケ
ース5の底部とはニッケル製のリード体15で接続され
ている。
The terminal plate 8 is made of rolled steel, has a nickel-plated surface, and has a hat-like shape with a peripheral edge formed in a flange shape. The terminal plate 8 is provided with a gas outlet 8a. . The explosion-proof valve 9 is made of aluminum and has a disk shape.
In the center thereof, a protruding portion 9a having a tip portion is provided on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided, and the lower surface of the protruding portion 9a is closed as described above. It is welded to the upper surface of the thin portion 7a of the plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral portion of the sealing plate 7, and the explosion-proof valve 9 is disposed above the insulating packing 10. The insulating packing 10 insulates the sealing plate 7 from the explosion-proof valve 9. The gap between the two is sealed so that the electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed above the spiral electrode body. The bottom portion is connected by a lead body 15 made of nickel.

【0044】この電池においては、封口板7の薄肉部7
aと防爆弁9の突出部9aとが溶接部分11で接触し、
防爆弁9の周縁部と端子板8の周縁部とが接触し、正極
1と封口板7とは正極側のリード体13で接続されてい
るので、通常の状態では、正極1と端子板8とはリード
体13、封口板7、防爆弁9およびそれらの溶接部分1
1によって電気的接続が得られ、電路として正常に機能
する。
In this battery, the thin portion 7 of the sealing plate 7
a and the projecting portion 9a of the explosion-proof valve 9 come into contact at the welded portion 11,
Since the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact with each other, and the positive electrode 1 and the sealing plate 7 are connected by the lead 13 on the positive electrode side, in a normal state, the positive electrode 1 and the terminal plate 8 Means a lead body 13, a sealing plate 7, an explosion-proof valve 9, and their welded parts 1
1 provides an electrical connection and functions normally as an electrical circuit.

【0045】そして、電池が高温にさらされるなど、電
池に異常事態が起こり、電池内部にガスが発生して電池
の内圧が上昇した場合には、その内圧上昇により、防爆
弁9の中央部が内圧方向(図1では、上側の方向)に変
形し、それに伴って溶接部分11で一体化されている封
口板7の薄肉部7aに剪断力が働いて該薄肉部7aが破
断するか、または防爆弁9の突出部9aと封口板7の薄
肉部7aとの溶接部分11が剥離した後、この防爆弁9
に設けられている薄肉部9bが開裂してガスを端子板8
のガス排出口8aから電池外部に排出させて電池の破裂
を防止することができるように設計されている。
When an abnormal situation occurs in the battery, such as when the battery is exposed to a high temperature, and gas is generated inside the battery and the internal pressure of the battery rises, the central pressure of the explosion-proof valve 9 is increased due to the rise in the internal pressure. It deforms in the direction of the internal pressure (upward direction in FIG. 1), and accordingly, a shearing force acts on the thin portion 7a of the sealing plate 7 integrated at the welded portion 11, whereby the thin portion 7a is broken or After the welding portion 11 between the projecting portion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 is peeled off, the explosion-proof valve 9
Of the terminal plate 8
The battery is designed to be able to be discharged from the battery outlet 8a to the outside of the battery to prevent the battery from bursting.

【0046】得られた電池について、25℃で、充電は
1Cで行い、放電は1サイクルずつ0.2C、0.5
C、1C、2Cと電流密度を変えて行って放電容量を測
定した。その結果を図2に示す。
The obtained battery was charged at 1 ° C. at 25 ° C., and discharged at 0.2 C, 0.5 C for each cycle.
The discharge capacity was measured by changing the current density to C, 1C, and 2C. The result is shown in FIG.

【0047】図2に示すように、上記電池は、4.5V
以上の電圧で放電し、2Cでの容量維持率(0.2C基
準)が97%と高く、負荷特性が優れていることから、
前記モデルセルで得られた優れたサイクル特性や負荷特
性は実装電池においても同様に有しているものと考えら
れる。
As shown in FIG. 2, the battery was 4.5 V
Since the battery was discharged at the above voltage, the capacity maintenance ratio at 2 C (based on 0.2 C) was as high as 97%, and the load characteristics were excellent,
It is considered that the excellent cycle characteristics and load characteristics obtained by the model cell are also possessed by the mounted battery.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
リチウム基準で4.5V以上の高電位で作動する正極活
物質を用いた場合でも、サイクル特性および負荷特性が
優れた非水二次電池用正極および非水二次電池を提供す
ることができる。
As described above, according to the present invention,
Even when a positive electrode active material that operates at a high potential of 4.5 V or more based on lithium is used, a positive electrode for a non-aqueous secondary battery and a non-aqueous secondary battery with excellent cycle characteristics and load characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水二次電池の一例を模式的に示
す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a non-aqueous secondary battery according to the present invention.

【図2】本発明に係る非水二次電池の放電特性を示す図
である。
FIG. 2 is a diagram showing discharge characteristics of the non-aqueous secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 非水電解質 1 positive electrode 2 negative electrode 3 separator 4 non-aqueous electrolyte

フロントページの続き (72)発明者 青山 茂夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ02 AJ05 AK03 AL02 AL03 AL07 AL08 AL12 AM03 AM05 AM07 AM16 BJ02 BJ14 DJ06 DJ16 EJ04 EJ14 HJ02 HJ05 5H050 AA02 AA07 BA17 CA07 CB02 CB03 CB08 CB09 CB12 DA10 EA09 EA10 EA24 HA02 HA05Continued on front page (72) Inventor Shigeo Aoyama 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. 5H029 AJ02 AJ05 AK03 AL02 AL03 AL07 AL08 AL12 AM03 AM05 AM07 AM16 BJ02 BJ14 DJ06 DJ16 EJ04 EJ14 HJ02 HJ05 5H050 AA02 AA07 BA17 CA07 CB02 CB03 CB08 CB09 CB12 DA10 EA09 EA10 EA24 HA02 HA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 含リチウム複合酸化物を正極活物質と
し、導電助剤として平均粒径が100nm以下の非晶質
炭素材料と平均粒径が1〜10μmの黒鉛系炭素材料と
を用いたことを特徴とする非水二次電池用正極。
An amorphous carbon material having an average particle size of 100 nm or less and a graphite-based carbon material having an average particle size of 1 to 10 μm are used as a conductive additive. A positive electrode for a non-aqueous secondary battery, comprising:
【請求項2】 上記含リチウム複合酸化物が、一般式L
iNix y Mn2- x-y 4 (ただし、MはNiおよび
Mn以外の少なくとも1種の遷移金属元素で、0.4≦
x≦0.6、0≦y≦0.1)で表されることを特徴と
する請求項1記載の非水二次電池用正極。
2. The lithium-containing composite oxide represented by the general formula L
iNixMyMn2- xyOFour(However, M is Ni and
0.4 at least one transition metal element other than Mn
x ≦ 0.6, 0 ≦ y ≦ 0.1)
The positive electrode for a non-aqueous secondary battery according to claim 1.
【請求項3】 上記黒鉛系炭素材料の平均粒径Rgが、
正極活物質の含リチウム複合酸化物の平均粒径Rm以下
である(すなわち、Rg≦Rmである)ことを特徴とす
る請求項1記載の非水二次電池用正極。
3. The graphite-based carbon material has an average particle size Rg,
2. The positive electrode for a non-aqueous secondary battery according to claim 1, wherein the average particle diameter of the lithium-containing composite oxide of the positive electrode active material is not more than Rm (that is, Rg ≦ Rm).
【請求項4】 請求項1〜3に記載の正極と、負極と、
非水電解質とを用いたことを特徴とする非水二次電池。
4. A positive electrode according to claim 1, a negative electrode,
A non-aqueous secondary battery using a non-aqueous electrolyte.
JP2001081837A 2001-03-22 2001-03-22 Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same Withdrawn JP2002279998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081837A JP2002279998A (en) 2001-03-22 2001-03-22 Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081837A JP2002279998A (en) 2001-03-22 2001-03-22 Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002279998A true JP2002279998A (en) 2002-09-27

Family

ID=18937864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081837A Withdrawn JP2002279998A (en) 2001-03-22 2001-03-22 Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002279998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123248A1 (en) * 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Powder for positive electrode and positive electrode composite
WO2011013552A1 (en) * 2009-07-29 2011-02-03 ソニー株式会社 Positive electrode for secondary battery, and secondary battery
JP2011108498A (en) * 2009-11-18 2011-06-02 Hitachi Maxell Ltd Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery
JP5111369B2 (en) * 2006-06-16 2013-01-09 シャープ株式会社 Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
WO2022102693A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123248A1 (en) * 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Powder for positive electrode and positive electrode composite
JP5111369B2 (en) * 2006-06-16 2013-01-09 シャープ株式会社 Positive electrode, manufacturing method thereof, and lithium secondary battery using the positive electrode
WO2011013552A1 (en) * 2009-07-29 2011-02-03 ソニー株式会社 Positive electrode for secondary battery, and secondary battery
CN102473920A (en) * 2009-07-29 2012-05-23 索尼公司 Positive electrode for secondary battery and secondary battery
US8709661B2 (en) 2009-07-29 2014-04-29 Sony Corporation Positive electrode for secondary battery, and secondary battery
CN106935798A (en) * 2009-07-29 2017-07-07 索尼公司 For the positive pole and secondary cell of secondary cell
JP2011108498A (en) * 2009-11-18 2011-06-02 Hitachi Maxell Ltd Positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and device including nonaqueous secondary battery
WO2022102693A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JP5958256B2 (en) Nonaqueous electrolyte secondary battery
WO2003003489A1 (en) Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
KR20150032014A (en) Silicon based anode active material and lithium secondary battery comprising the same
JP3588885B2 (en) Non-aqueous electrolyte battery
JP2011222300A (en) Battery
JP4911835B2 (en) Non-aqueous secondary battery manufacturing method and charging method
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2007165224A (en) Nonaqueous electrolytic secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2002087807A (en) Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2011192541A (en) Nonaqueous secondary battery
JP2003077534A (en) Nonaqueous secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2003272704A (en) Nonaqueous secondary battery
US20120156558A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2011192580A (en) Nonaqueous secondary battery
JP2002279998A (en) Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
JP2019169346A (en) Lithium ion secondary battery
JP5126851B2 (en) Lithium-containing transition metal chalcogenide, method for producing the same, and method for producing a non-aqueous secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2002216768A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603