JP2002271003A - Method of mounting electronic component without soldering - Google Patents

Method of mounting electronic component without soldering

Info

Publication number
JP2002271003A
JP2002271003A JP2001061909A JP2001061909A JP2002271003A JP 2002271003 A JP2002271003 A JP 2002271003A JP 2001061909 A JP2001061909 A JP 2001061909A JP 2001061909 A JP2001061909 A JP 2001061909A JP 2002271003 A JP2002271003 A JP 2002271003A
Authority
JP
Japan
Prior art keywords
conductive
adhesive material
component
lead
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001061909A
Other languages
Japanese (ja)
Other versions
JP3872303B2 (en
Inventor
Morimitsu Wakabayashi
守光 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITO SEISAKUSHO KK
Original Assignee
SAITO SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITO SEISAKUSHO KK filed Critical SAITO SEISAKUSHO KK
Priority to JP2001061909A priority Critical patent/JP3872303B2/en
Publication of JP2002271003A publication Critical patent/JP2002271003A/en
Application granted granted Critical
Publication of JP3872303B2 publication Critical patent/JP3872303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate lead which is an environmental contaminant and is included in solder alloy by substituting solder with another method when mounting electronic components, and to eliminate a lead component included in a component constituent material from the reason that the heat resistance of solder used in the components themselves is relaxed due to a low-temperature mounting. SOLUTION: Unevenness is formed on a conductive connection surface of a board or on conductive connection surfaces of both the board and a component, and the board and the component are bonded to each other on the uneven surfaces with a conductive adhesive material to be connected to each other so that the continuity may be achieved between the board and the component. Then, the board and the component are fixed to each other at a temperature not higher than 180 deg.C, and then are mechanically fixed with an insulating adhesive, resulting in preventing the lateral extension of the adhesive material and enabling a high density mounting. By using no solder, a connection without using lead is realized. Since the heat-resistant temperature of the components can be lowered, the component constituent material can be made lead-free.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電子回路基板に電
子部品等を電気的に接続するとともに機械的にも固定す
る実装技術に関するものであり、とくに有害物質である
鉛を含有する合金であるはんだなどの材料を用いること
なく実装を行うこと、および部品自体に鉛を含まなくす
る、いわゆる鉛フリー実装技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting technology for electrically connecting electronic components and the like to an electronic circuit board and also for mechanically fixing the components, and more particularly, to a solder which is an alloy containing lead which is a harmful substance. The present invention relates to a so-called lead-free mounting technique for performing mounting without using a material such as lead, and for eliminating lead in a component itself.

【0002】[0002]

【従来の技術】電子部品の実装には、はんだ付けを行う
のが従来の常識であり他の方法はほとんど実用に供され
なかったが、近年はんだや部品自体に含まれる鉛が有害
な環境汚染物質であることからこの使用が禁止される方
向にあり、はんだに代わる材料もしくは、はんだ付けに
代わる方法が探索されている。しかしながら従来のはん
だ付けの特性レベルを実現するための鉛フリーはんだ合
金は従来の温度よりも約30度はんだ付け温度を上げな
ければならず、低融点のはんだ合金をつくるには、ビス
マスなどの材料をまぜればよいもののはんだ付け特性や
機械的強度に問題があり、従来のはんだにくらべて明ら
かに信頼性が劣る問題があった。またはんだ温度の上昇
は250℃の熱歪みを基板および部品に発生させること
となり、一部のLSIなどの部品においては致命的な問題
ともなるほか、液晶や電解コンデンサなど、もともと熱
に弱い電子部品は実装できない問題があった。他の方法
としては導電性接着剤を用いて接着により実装する方法
も知られているが、接着剤を厚く付着しなければ接着力
が不十分であり、厚くつけると部品をつけた際に接着材
料が横方向にはみ出して隣の回路と短絡を生じやすい問
題があった。また組み立てられる電子部品についてもは
んだの温度に耐えるようなものでなくてはならないた
め、鉛を含むガラスをベースとしたメタルグレーズなど
の材料が多く使われていたが、この鉛についても問題と
なっていた。別の方法としては異方性導電フィルムなど
の材料により接続する方法も知られているが、この方法
は完全な平面同士の接着で均等に圧力をかけられるよう
なものでなければ使いにくい問題があり一般の電子部品
の接続には向かない問題があった。
2. Description of the Related Art In mounting electronic components, soldering is a common sense in the past, and other methods have hardly been put to practical use. However, in recent years, lead contained in solder and components themselves has caused harmful environmental pollution. Because of the substance, this use is in the forbidden direction, and materials that can replace solder or methods that replace soldering are being searched for. However, for lead-free solder alloys to achieve the conventional soldering characteristic level, the soldering temperature must be raised by about 30 degrees from the conventional temperature. To make low-melting solder alloys, materials such as bismuth must be used. However, there is a problem in soldering characteristics and mechanical strength, and there is a problem that reliability is clearly inferior to conventional solder. In addition, the rise in solder temperature causes thermal distortion of 250 ° C on the substrate and components, which is a fatal problem for some LSIs and other components, and for electronic components that are originally sensitive to heat, such as liquid crystals and electrolytic capacitors. Had a problem that could not be implemented. As another method, there is also known a method of mounting by bonding using a conductive adhesive.However, if the adhesive is not attached thickly, the adhesive strength is insufficient, and if the adhesive is applied thickly, the adhesive is attached when attaching the parts. There is a problem in that the material protrudes in the lateral direction and easily causes a short circuit with an adjacent circuit. Also, since the electronic components to be assembled must be able to withstand the temperature of solder, materials such as metal glaze based on glass containing lead have been used in many cases, but this lead also poses a problem. I was As another method, a method of connecting with a material such as an anisotropic conductive film is also known, but this method is difficult to use unless pressure can be applied evenly by perfect plane-to-plane bonding. There was a problem that was not suitable for connection of general electronic components.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題の第一は電子回路の実装および電子部品自体に
おいて鉛を使わないこと、第二は高温を用いないこと、
第三は従来の接着方法で問題であった横方向へのはみ出
しによる短絡を防ぐに有効な方法を提供することにあ
る。
The first problem to be solved by the present invention is that lead is not used in the mounting of electronic circuits and the electronic components themselves, the second is that high temperatures are not used,
A third object is to provide an effective method for preventing a short circuit due to lateral protrusion which has been a problem in the conventional bonding method.

【0004】[0004]

【課題を解決するための手段】本発明においては電子部
品実装をはんだ付け法を用いないことにより、鉛を使わ
ないことおよび高温を用いないことの二点は実現し、さ
らに高温を用いないことにより電子部品の構成材料から
鉛を取り除くことを可能ならしめたものであり、 接着
方法における接着剤のはみ出しを防ぐ方法を以下のよう
に実現するものである。
In the present invention, by not using a soldering method for mounting electronic components, two points, that is, not using lead and not using high temperature, are realized, and not using high temperature. This makes it possible to remove lead from the components of electronic components, and realizes a method for preventing the adhesive from sticking out in the bonding method as follows.

【0005】従来導電性接着材料による電子部品の接着
には接着材料の厚さを確保することにより、部品と接着
材料との接触面を確保し接着力を確保することが行われ
ていた、またこの厚さには部品の接続面の平坦性やICな
どのように多数のリード線を持つ部品の足の並びの平坦
性のばらつきを吸収してすべての接続を確保する意味も
あった。しかしながらこの厚さは部品を実装した際に導
電性接着材料を横方向にはみ出させる効果をもち、実装
部品の位置決めのばらつきとあいまって隣のパターンと
の短絡を生じやすく、実用上はリードピッチで0.7ミ
リ以下のものには適用しがたく、近年すくなくとも0.
33ミリピッチが要求される実装には合わない問題があ
った。
Conventionally, in bonding electronic components with a conductive adhesive material, it has been practiced to secure a contact surface between the component and the adhesive material by securing a thickness of the adhesive material, and to secure an adhesive force. This thickness also has the meaning of securing all connections by absorbing the flatness of the connection surfaces of the components and the flatness of the foot arrangement of components having many lead wires such as ICs. However, this thickness has the effect of causing the conductive adhesive material to protrude in the horizontal direction when components are mounted, and is likely to cause a short circuit with the next pattern in combination with the variation in the positioning of the mounted components. It is hardly applicable to the ones of 0.7 mm or less, and in recent years, at least 0.
There is a problem that it is not suitable for mounting requiring a 33 mm pitch.

【0006】本発明では接続面に粗い凹凸または針状突
起が多数出ているような形状をつくり、その上に付着し
た導電性接着材料が押さえられても横方向への広がりは
少なく、凹凸もしくは針山の谷に押し付けられるような
方法で吸収するものである。また本発明では接続は必ず
しも面接着ではなく針の山のピークもしくは凸部の頂点
部分で電気的接続をおこなうので接着剤の押さえられる
量および広がりが少なく、深さ方向に吸収されるので広
がりをおさえることにつながる。機械的強度の確保は電
気的接続の後に絶縁性接着材料をディスペンスなどの方
法で付着することで補強することができる。このような
形で接続ピッチ0.33ミリにも対応可能である。
According to the present invention, a shape is formed in which a large number of rough irregularities or needle-like projections are formed on the connection surface. It absorbs in such a way that it is pressed against the valley of the needle mountain. Also, in the present invention, the connection is not necessarily surface bonding, but electrical connection is made at the peak of the needle peak or at the top of the projection, so that the amount and spread of the adhesive that is pressed is small, and the spread is absorbed because it is absorbed in the depth direction. It leads to holding down. Ensuring mechanical strength can be reinforced by attaching an insulating adhesive material by a method such as dispensing after electrical connection. In this manner, it is possible to cope with a connection pitch of 0.33 mm.

【0007】[0007]

【発明の実施の形態】本発明によれば導電性接着材料は
横方向への広がりがすくなく高密度の実装にも応用可能
である、また導電性はほとんどが金属粉末により担われ
ることから、レジンと金属粉の混成体である導電接着材
料よりも少ない接触面積であっても十分である、さらに
機械的な強度は絶縁性接着材料により全面的な接着を行
うので問題はない。またはんだ付けの高温にさらされな
いので、組み立てるべき電子部品においてはんだ付け性
を確保するためのはんだめっきが不要であり、部品自体
の耐熱性も不要であることから鉛を含むガラスなどの高
温耐熱性材料を用いないで部品を構成することが出来
る。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a conductive adhesive material can be applied to high-density mounting without widening in a lateral direction, and since the conductive property is mostly carried by metal powder, a resin is used. Even if the contact area is smaller than that of the conductive adhesive material which is a hybrid of metal powder and metal powder, there is no problem in mechanical strength since the entire surface is bonded by the insulating adhesive material. Also, since it is not exposed to the high temperature of soldering, solder plating is not required to secure solderability in the electronic components to be assembled. Parts can be configured without using materials.

【0008】[0008]

【実施例】本考案による低温度実装方法の実施例として
まず主要材料について述べる。 1 導電性接着材料 主として市販の印刷用の銀‐レジンペーストをもちいた
がカーボン‐レジン混合ペーストでも可能である、カー
ボン系は導電性には劣るが作業性、特に導電粉末の付着
性において銀系よりも優れている。 2 感磁性導電性粉末 ニッケルフレーク粉末に銀メッキを1‐3ミクロンの厚
さでコーティングしたもので、サイズは200メッシュ
パスのレベルであった。これはパターンの密度がひくい
0.5ミリピッチ程度であれば100メッシュパスレベ
ルでも可能であり、むしろ作業性は良好であった。コス
ト的観点から銀メッキなしのニッケルフレーク粉末を用
いることも可能であるが導電性はおとる。 3 導電体粒子 銀もしくは銅の粒子であり粒度をそろえる目的でたとえ
ば100メッシュ通過、400メッシュ残留程度で篩いわ
けをしたものである。この粒度については粗いほうが作
業性にすぐれるがパターン密度により選択される、一般
には粗くても50メッシュが上限である。細かな粒度の
ものは接着材料表面に付着することで粗い粒子の付着を
妨げることなどの理由から取り除いたほうがよい。銅な
ど酸化により導電性が劣化するような材料は作業直前に
サーフブライト処理などにより酸化膜を除去するのが望
ましい。他の金属材料についても採用可能であるがここ
では入手しやすい銅と銀について試みた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, main materials will be described as an embodiment of the low temperature mounting method according to the present invention. 1 Conductive adhesive material Commercially available silver-resin paste for printing was mainly used, but carbon-resin mixed paste is also possible. Carbon-based is poor in conductivity, but silver-based in workability, especially adhesion of conductive powder. Better than. 2. Magnetically-sensitive conductive powder Nickel flake powder was coated with silver plating to a thickness of 1-3 microns, and the size was 200 mesh pass level. This was possible even at the 100 mesh pass level if the pattern density was low, about 0.5 mm pitch, and the workability was rather good. From the viewpoint of cost, nickel flake powder without silver plating can be used, but conductivity is low. 3 Conductor particles Silver or copper particles which have been passed through, for example, 100 mesh and sieved with about 400 mesh remaining for the purpose of uniforming the particle size. The coarser the grain, the better the workability is, but it is selected depending on the pattern density. Generally, even if it is coarse, the upper limit is 50 mesh. Fine particles should be removed because they adhere to the surface of the adhesive material to prevent adhesion of coarse particles. For a material such as copper whose conductivity is deteriorated by oxidation, it is desirable to remove an oxide film by surfbright treatment or the like immediately before the operation. Although other metal materials can be adopted, copper and silver, which are easily available, are tried here.

【0009】つぎに作業について述べる 1 まず基板の導電体接続部に導電性接着材料のペース
トをスクリーン印刷法により指定のパターンで付着す
る、この際スクリーンのメッシュは125メッシュで印
刷厚さは20−30ミクロン、乾燥硬化後は10−20
ミクロンになるようなものであった。 2 この印刷直後の基板を平面型のフェライト磁石の表
面にシートを敷いた状態で磁石の中心付近に置き、上か
ら篩いを用いて感磁性導電粉末を全面にくまなく行き渡
るように振りかけた。フェライト磁石の磁力は表面で5
00ガウス以上あれば十分であり他の磁石でもかまわな
い。 3 この後全面にシートをかけてゴムなどを介して軽く
圧力を全面に行き渡るように印加し接着材料に導電粉末
を食い込ませるようにした。なお導電粉末は磁力線の方
向に整列する性質がありそのことから基板面に垂直に立
った状態に保たれており、この方向性をそこなわないよ
うに圧力印加をおこなっている。この押さえ工程はカー
ボン系など付着性のよい接着材料を用いた場合には省略
することも可能である。 4 この後磁石からほぼ垂直な方向に基板を引き上げて
取り出した後 接着されなかった感磁性導電粉を振り落
とし、必要な場合にはガラスなどを用いて再度全面をお
さえて平面性を確保する試みも行ったが通常この押さえ
の必要はない。 5 この後120℃5分の加熱硬化工程に通した、この
際感磁性導電粉の垂直方向性を保持するため磁石の上に
置いた状態で加熱すればより完璧である、その後表面側
からサマリウムコバルト磁石のような強力な磁石をもち
いて接着しなかった感磁性導電粉を取り除いた。この温
度に関しては用いる材料によりその最適条件を選べばよ
いが、通常はエポキシなどでは150℃以下,シリコン
系などでは180℃以下である。磁石の耐熱劣化などの
観点からも低い温度がのぞましい。 6 この基板に再度導電性接着材料をほぼ同じパターン
で印刷するかもしくはディスペンスすることにより感磁
性導電粉の付着した部分に付着した。この際の材料は先
の印刷材料よりは幾分固いものであり、厚さも50ミク
ロン以上を確保するためステンレスのエッチングによる
マスクをもちいている。この硬さは感磁性導電粉の表面
に導電接着材料が染み込んでしまわない程度のものであ
り、この後の工程で部品の接着が可能な程度のものであ
る。 7 この状態で電子部品を正確な位置に配置し実装し
た、この際圧力を印加して部品の電極部が感磁性導電粉
末の先端部を直接押さえる程度にまで押しこむようにし
た。この際部品の電極表面にも同様の方法で凹凸を施し
たものも試みている。この方法によれば導電粉同士が直
接接触する部分が多く発生するので導電性にすぐれると
ともに導電接着材料の横方向へのはみ出しはより少ない
効果があった。この部品への凹凸の形成方法については
後に詳述する。 8 この後再度加熱硬化した、条件は同じく120℃5
分であった。 9 この状態で回路機能テスト等に供し接続不良などが
ないかを検査し問題があれば速乾性の銀塗料を細い筆で
塗布する方法などにより修正した。 10 この後透明エポキシ接着剤を接着部の上から塗布
し硬化して部品の機械的接着強度を確保した。
Next, the operation is described. 1 First, a paste of a conductive adhesive material is adhered to a conductor connection portion of a substrate in a specified pattern by a screen printing method. In this case, the screen mesh is 125 mesh and the printing thickness is 20-. 30 microns, 10-20 after drying and curing
It was like a micron. 2. The substrate immediately after printing was placed near the center of the magnet with the sheet laid on the surface of the flat type ferrite magnet, and the magnetically conductive powder was sprinkled over the entire surface using a sieve from above. The magnetic force of the ferrite magnet is 5 on the surface.
More than 00 gauss is sufficient and other magnets may be used. 3. Thereafter, a sheet was applied to the entire surface, and a light pressure was applied to the entire surface through rubber or the like so that the conductive powder was eroded into the adhesive material. Note that the conductive powder has a property of being aligned in the direction of the line of magnetic force, so that it is kept vertically standing on the substrate surface, and pressure is applied so as not to impair this directionality. This pressing step can be omitted when an adhesive material having good adhesion such as carbon is used. 4. After that, pull up the substrate in a direction almost perpendicular from the magnet and take it out. Then, shake off the magnetically-sensitive conductive powder that has not been adhered, and if necessary, use glass or the like to hold down the entire surface again to ensure flatness. I did, but usually there is no need for this hold. 5 After that, it was passed through a heating and curing process at 120 ° C. for 5 minutes. At this time, it was more perfect to heat the magnetically sensitive conductive powder while it was placed on a magnet in order to maintain the perpendicularity. Using a strong magnet such as a cobalt magnet, the magnetically-sensitive conductive powder that did not adhere was removed. The optimum temperature may be selected depending on the material used. Usually, the temperature is 150 ° C. or less for epoxy or the like and 180 ° C. or less for silicon or the like. A low temperature is desirable from the viewpoint of heat deterioration of the magnet. 6 A conductive adhesive material was again printed on this substrate in substantially the same pattern or dispensed to adhere to the portion where the magnetically-sensitive conductive powder was attached. The material at this time is somewhat harder than the above-mentioned printing material, and a mask made of stainless steel is used to secure a thickness of 50 μm or more. This hardness is such that the conductive adhesive material does not permeate the surface of the magnetically sensitive conductive powder, and that the components can be bonded in the subsequent steps. 7. In this state, the electronic component was placed and mounted at an accurate position. At this time, pressure was applied so that the electrode portion of the component was pressed down to such a degree as to directly press the tip of the magnetically sensitive conductive powder. At this time, an attempt has been made to make the surface of the electrode of the component uneven by the same method. According to this method, there are many portions where the conductive powders are in direct contact with each other, so that the conductivity is excellent and the conductive adhesive material is less likely to protrude in the lateral direction. The method of forming the irregularities on this component will be described later in detail. 8 After that, it was cured by heating again under the same conditions of 120 ° C5.
Minutes. 9. In this state, a circuit function test and the like were performed to check for any connection failure. If there was a problem, the silver paint was dried by a method of applying a quick-drying silver paint with a thin brush. 10. Thereafter, a transparent epoxy adhesive was applied from above the bonded portion and cured to secure the mechanical adhesive strength of the component.

【0010】11 ここでこの方法に用いる部品の特徴
および部品の電極に凹凸を作る方法についてのべる。こ
こに用いる部品としては代表的なものとしてチップ抵抗
器とリード端子をもっているLSIなどの表面実装部品に
ついて説明する。
[0011] Here, the features of the components used in this method and the method of forming irregularities on the electrodes of the components will be described. A typical example of a component used here is a surface-mounted component such as an LSI having a chip resistor and a lead terminal.

【0011】チップ抵抗器の工程においては一般に平面
状のセラミック基板に印刷等によりガラスを含むメタル
グレーズ系材料をもちいてスクリーン印刷法により所定
形状に形成した後おおむね850℃で焼成して抵抗体や
電極を形成し、レーザーによるトリミングを行い、絶縁
保護および表示印刷などを行った基板をチョコレート形
状に一次分割し、分割側面に導電性材料を塗布し硬化さ
せた後個別に分割し、めっき工程において電極部分にニ
ッケルとはんだのめっきをかさねてはんだ付け性を確保
することをおこなっている。
In the step of forming a chip resistor, generally, a flat ceramic substrate is formed into a predetermined shape by screen printing using a metal glaze-based material containing glass by printing or the like, and then fired at about 850 ° C. Form electrodes, perform trimming by laser, divide the substrate that has been subjected to insulation protection and display printing, etc. into primary shapes, apply a conductive material to the divided sides, cure it, and divide it separately. The electrodes are plated with nickel and solder to ensure solderability.

【0012】本発明においてはまずめっきの工程をなく
することにより工程短縮と鉛を用いないことを可能にし
ている。さらに抵抗器や電極などの材料は、はんだの熱
にさらされないことからはんだ耐熱性への配慮が不要で
あり、鉛を含むガラスをベースとした従来の材料から鉛
を含まないレジンをベースとした材料に変更することが
できる。一例をあげれば抵抗材料としては150℃程度
で硬化するフェノール、エポキシなどのレジンにカーボ
ンブラックなどの導電粉末を混ぜたものや、さらには2
50℃以上の温度で硬化するドリルレジン(ポリイミド
系)をベースにカーボンブラックなどを混ぜたものなど
である。ドリルレジンによる抵抗や電極はその後の工程
で用いられるエポキシなどの材料の乾燥硬化温度よりも
はるかに高い温度で硬化処理されることから、工程変化
が少ない利点がある。電極材料としては前記の抵抗材料
の中で低抵抗値の材料を用いることも可能であるが銀粉
末などを前記レジン材料に混ぜたものがよい。この工程
においてはレジン系材料を用いて一般の工程と同様にセ
ラミック基板表面に抵抗体を印刷し、さらに表と裏の面
に電極を印刷しそれぞれ所定の乾燥硬化をおこない、レ
ーザーなどにより抵抗値のトリミングを行い、表側に絶
縁性保護材料をほどこす。この段階で裏面の電極で分割
線から0.1ミリほど離れた位置にさらに導電接着材料
を印刷し、先に基板について行ったと同様に磁界をかけ
た状態で感磁性導電材料粉末を振り掛けることにより凹
凸を持った電極部を形成する。この後チョコレート状に
分割し、側面に主として銀塗料などを塗布して表裏を導
通させる。これらの乾燥硬化温度は一般例に述べたガラ
ス系材料の場合の850℃と異なり、よく用いられるエ
ポキシ系材料では150℃以下、もっとも高いドリル系
材料でも300℃以下であり、はるかに低いものであ
る。これをさらに個別に分割することによりチップ抵抗
器が完成される。
In the present invention, by eliminating the plating step, it is possible to shorten the step and eliminate the use of lead. In addition, materials such as resistors and electrodes are not exposed to the heat of solder, so there is no need to consider solder heat resistance, and lead-based resin is used instead of lead-based glass-based materials. Can be changed to material. As an example, as a resistance material, a resin obtained by mixing a conductive powder such as carbon black with a resin such as phenol or epoxy which cures at about 150 ° C.
Examples thereof include a material obtained by mixing carbon black or the like based on a drill resin (polyimide) that cures at a temperature of 50 ° C. or more. The resistance by the drill resin and the electrode are cured at a temperature much higher than the drying and curing temperature of a material such as epoxy used in the subsequent process, and thus there is an advantage that the process change is small. As the electrode material, it is possible to use a material having a low resistance value among the above-mentioned resistance materials, but a material obtained by mixing silver powder or the like with the resin material is preferable. In this process, a resistor is printed on the surface of the ceramic substrate using a resin-based material in the same manner as in the general process, electrodes are printed on the front and back surfaces, and each of them is dried and hardened to a predetermined value. Is trimmed, and an insulating protective material is applied to the front side. At this stage, print the conductive adhesive material further at a position about 0.1 mm away from the dividing line with the electrode on the back side, and sprinkle the magnetically sensitive conductive material powder with the magnetic field applied in the same way as done for the substrate earlier To form an electrode part having irregularities. After that, it is divided into chocolate, and a silver paint or the like is mainly applied to the side surface to make the front and back conductive. These drying and curing temperatures are different from 850 ° C. in the case of the glass-based material described in the general example, and are 150 ° C. or less for the frequently used epoxy-based material, and 300 ° C. or less for the highest drill-based material, and are much lower. is there. This is further divided into individual parts to complete a chip resistor.

【0013】別の作り方として特に小型のチップ抵抗器
の場合、側面電極形成部にスリットを形成してスパッタ
ーなどの方法によりスリットの側面に薄膜を形成して表
裏を導通することも行われているが、この場合は側面電
極形成後に導電性接着材料を印刷することで同様に粉末
を接着し凹凸を形成すればよい、この際はスリット部か
ら離れたパターンなどは不要であり裏面の電極全面に印
刷してよい。
As another method, particularly in the case of a small chip resistor, a slit is formed in a side electrode forming portion, and a thin film is formed on the side surface of the slit by a method such as sputtering to conduct the front and back. However, in this case, the conductive adhesive material may be printed after the formation of the side surface electrode, and the powder may be similarly bonded to form irregularities. In this case, a pattern apart from the slit portion is unnecessary, and the entire surface of the back surface electrode is not required. You may print.

【0014】LSIなどの場合、リード線は平面に並ぶよ
うに作られており、この平面性を損なわないように治具
などを作りそこにはめ込んで印刷法により、リード部表
面に導電接着材料を付着し、先の方法と同様に感磁性導
電粉末をつける方法やマスクした状態で導電性接着材料
をスプレーにより付着する方法がある。できるならばリ
ードフレームを切断する以前にこれをやったほうがリー
ドの平面性を損ないにくく有利である。このリード部に
ついてもはんだ付け性は不要であり、鉛を含むはんだな
どの材料のめっきは不要である。以上のように本発明に
よれば接続のみならず、部品レベルでも鉛を含まない工
程が実現できるものである
In the case of an LSI or the like, the lead wires are formed so as to be arranged in a plane, and a jig or the like is formed so as not to impair the flatness, and a conductive adhesive material is applied to the surface of the lead portion by a printing method. In the same manner as the above method, there is a method of attaching a magnetically sensitive conductive powder or a method of spraying a conductive adhesive material in a masked state. If possible, it is more advantageous to do this before cutting the lead frame, since the flatness of the lead will not be impaired. This lead portion also does not require solderability, and does not require plating of a material such as solder containing lead. As described above, according to the present invention, not only the connection but also the process containing no lead can be realized even at the component level.

【0015】「その他の実施例」 12 先の実施例4項で感磁性粉末を付着後乾燥硬化す
る前の段階で、実装すべき部品の実装電極面に導電性接
着剤を付着し、感磁性導電粉に直接乗せて押さえる形で
実装した後乾燥硬化する方法も行った。この際磁力を印
加し感磁性導電粉の垂直性を保つようにした。部品に導
電性接着材料を塗布する方法としてはディスペンス法、
もしくはインクジェット法をもちいて定量を部品電極の
定位置に付着するようにした。この方法によれば乾燥硬
化工程が一度ですむ利点があるほか、感磁性導電粉がま
だ完全に固まっていないことからくる自由度があり部
品、基板の両面にたいする接触面積が増えることがわか
っている。また導電接着材料の広がりも感磁性導電粉の
自由度に吸収されることで小さく収まる利点もある。欠
点としては付着に寄与しない磁性導電粉の除去が不完全
であり、高密度実装の場合にこの遊離粉末が短絡不良の
原因になりやすいことがあげられる。
"Other Examples" 12 At the stage before the magnetic powder was applied and dried and hardened in the preceding Example 4, a conductive adhesive was applied to the mounting electrode surface of the component to be mounted, and A method of directly mounting on a conductive powder and holding it in a pressed state, followed by drying and curing was also performed. At this time, a magnetic force was applied to maintain the perpendicularity of the magnetically conductive powder. As a method of applying a conductive adhesive material to a part, a dispensing method,
Alternatively, a fixed amount was attached to a fixed position of the component electrode by using an ink jet method. This method has the advantage that only one drying and curing step is required, and it has been found that the magnetically conductive powder has not been completely solidified yet, so that the degree of freedom is increased and the contact area on both sides of the component and the substrate is increased. . There is also an advantage that the spread of the conductive adhesive material can be reduced to a small extent by being absorbed by the degree of freedom of the magnetically sensitive conductive powder. The drawback is that the removal of the magnetic conductive powder that does not contribute to the adhesion is incomplete, and in the case of high-density mounting, the loose powder tends to cause a short circuit failure.

【0016】13 主として基板面の導電接続面に凹凸
を形成する方法として、銅箔によるパターンを約50ミ
クロンのピッチで約20ミクロンの深さで凹凸を生ずる
ようにエッチングすることもおこなった。エッチングパ
ターンとしては20ミクロンの直径のレジストパターン
を50ミクロンピッチで配置するか、もしくは30ミク
ロンの直径の穴をあけたレジストパターンを50ミクロ
ンピッチで配置したものを用いた、またエッチングの深
さは銅箔の厚さの少なくとも半分以上とし、パターン間
に導電通路が残るならば底面に達するまでになってもよ
い。この際導電性接着材料はエッチングにより凹凸を形
成した面積よりも小さい面積に付着するようにした、ま
たその硬さは凹部に流れ込まない程度に調整した。この
方法によれば磁力などの印加が必要でない利点があるが
部品側接着面の凹凸の吸収が不十分になる場合があり、
前述の方法よりも厚く接着材料を塗布する必要があるこ
とから横方向へのはみ出し量も多めになることは避けら
れない。部品側の接着面に十分な量の導電接着材料を付
着し基板側の凹凸面に圧着する方法も有効であったが一
般に部品側の接着すべき電極の面積は小さく付着量は不
十分な場合が多いので部品と基板の両面にわけて付着す
る方法も有効である。この際においても部品側に凹凸を
つけたほうが有効である。
13 As a method of forming irregularities mainly on the conductive connection surface of the substrate surface, a copper foil pattern was also etched so as to form irregularities at a pitch of about 50 microns and a depth of about 20 microns. As the etching pattern, a resist pattern having a diameter of 20 μm was arranged at a pitch of 50 μm, or a resist pattern having a hole of 30 μm diameter was arranged at a pitch of 50 μm. The thickness may be at least half of the thickness of the copper foil, and may reach the bottom if conductive paths remain between the patterns. At this time, the conductive adhesive material was adhered to an area smaller than the area where the unevenness was formed by etching, and the hardness was adjusted so as not to flow into the recess. According to this method, there is an advantage that application of a magnetic force or the like is not required, but there is a case where absorption of unevenness on the component side adhesive surface becomes insufficient,
Since it is necessary to apply an adhesive material thicker than in the above-described method, it is inevitable that the amount of protrusion in the lateral direction becomes larger. It was also effective to apply a sufficient amount of conductive adhesive material to the adhesive surface of the component side and press it on the uneven surface of the board side, but in general, the area of the electrode to be bonded on the component side is small and the amount of adhesion is insufficient Therefore, it is also effective to use a method of adhering separately on both surfaces of the component and the substrate. In this case, it is more effective to make the parts side uneven.

【0017】14 凹凸を形成するほかの方法としては
基板面に30ミクロン程度に導電性接着材料を所定パタ
ーンに塗布したのち、100メッシュパス、400メッ
シュストップ程度の粒状導電体を基板の接着面にふりか
けた後、圧力をかけて接着部分に粒状導電体を接着する
方法も試みた。この後付着しなかった粒状導電体は振り
落として取り除いた。この際部品の接着面にも30ミク
ロン程度の厚さに導電接着材料を付着して粒状導電体の
上に配置して、基板側の導電接続部とは粒状導電体を介
して電気的接続が出来るような構造を形成し乾燥硬化を
おこなった。ここに述べた接着材料の厚みや粒体の粒径
は一例であってこれに限るものではない、しかしながら
この粒径は先に述べた感磁性導電粉の粒径に比較してか
なり大きなものであることが望ましい。別の方法として
部品電極側にも同様に粒状導電体を付着し双方の粒状導
電体面による粗面同士を対向させ導電性接着材料により
接続する方法も試みた。この方法によれば接着材料の広
がりがより少なくなる点で有利である。一方のみを感磁
性導電粉末による磁気的操作により粗面化したものであ
っても同様に処理できることは自明である。これらの方
法によれば磁性に関係なく材料を選択できる点において
有利である。また銅による粒状導電体の場合は表面の酸
化膜をサーフブライトなどの材料で除去処理したものを
用いている。
14 Another method of forming the irregularities is to apply a conductive adhesive material to the substrate surface in a predetermined pattern of about 30 μm, and then apply a granular conductor of about 100 mesh pass and about 400 mesh stops to the adhesive surface of the substrate. After sprinkling, a method was also attempted in which the granular conductor was bonded to the bonding portion by applying pressure. Thereafter, the particulate conductor that did not adhere was shaken off and removed. At this time, a conductive adhesive material is also attached to the adhesive surface of the component to a thickness of about 30 μm and arranged on the granular conductor, and the electrical connection with the conductive connection portion on the substrate side is made via the granular conductor. A structure capable of being formed was formed and dried and cured. The thickness of the adhesive material described above and the particle size of the granular material are merely examples and are not limited thereto. However, the particle size is considerably larger than the particle size of the magnetically conductive powder described above. Desirably. As another method, a method was also attempted in which a granular conductor was similarly attached to the component electrode side, and the rough surfaces formed by the surfaces of the two granular conductors were opposed to each other and connected by a conductive adhesive material. This method is advantageous in that the spread of the adhesive material is reduced. It is obvious that the same treatment can be performed even if only one of them is roughened by magnetic operation using a magnetically sensitive conductive powder. These methods are advantageous in that materials can be selected regardless of magnetism. In the case of a particulate conductor made of copper, a material obtained by removing a surface oxide film with a material such as surf bright is used.

【0018】[0018]

【発明の効果】本発明によれば高温で処理する必要のあ
るはんだ付けをなくすることが出来るので鉛を用いない
実装および部品自体に鉛を用いないことが可能となり、
高密度に実装することも可能になった。
According to the present invention, it is possible to eliminate soldering which needs to be processed at a high temperature, so that it is possible to use lead-free mounting and lead-free components.
High-density mounting is now possible.

【0019】[0019]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は基板側に感磁性導電粉末を付着した後
部品側導電接着材料部と対向させて接続させた方法を
断面模式図として示したものである。
FIG. 1 is a schematic cross-sectional view showing a method in which a magnetic-sensitive conductive powder is attached to a substrate side and then connected to a component-side conductive adhesive material portion so as to be opposed to each other.

【図2】 図2は基板側,部品側双方の接続面に感磁性
導電粉末を付着した後導電性接着材料を付着して双方を
導電接続したものの模式図である。
FIG. 2 is a schematic view showing a state in which a magnetically-sensitive conductive powder is applied to both a connection surface on a substrate side and a component side, and then a conductive adhesive material is applied and both are conductively connected.

【図3】 図3は基板側導体をエッチングにより凹凸を
つけて導電性接着材料により部品電極部と対向接着させ
たものを示す模式図である。
FIG. 3 is a schematic diagram showing a substrate-side conductor formed with irregularities by etching and adhered to a component electrode portion with a conductive adhesive material.

【図4】 図4は粒度のそろった粒状導電体を介して基
板側、部品側双方に導電性接着材料を塗布して接着し導
電接続を行う方法の模式図である。図1から図4のいず
れも絶縁性接着材料による補強接着の態様は示していな
いが、通常の接着方法ととくに異なるところはない。
FIG. 4 is a schematic view of a method of applying and bonding a conductive adhesive material to both a substrate side and a component side via a granular conductor having a uniform particle size to make a conductive connection. 1 to 4 do not show the mode of the reinforcing bonding using the insulating bonding material, but there is no particular difference from the normal bonding method.

【符号の説明】[Explanation of symbols]

1.基板本体 2.基板側導体 3.基板側導電接着材料 4.感磁性導電体(フレーク状感磁性導電体粉) 5.部品側導電接着材料 6.部品側導体(電極) 7.部品本体 8.基板側感磁性導電体(フレーク状感磁性導電体粉) 9.導電接着材料 10.部品側感磁性導電体(フレーク状感磁性導電体
粉) 11.導電接着材料 12.導電性粒体
1. Substrate body 2. 2. Board-side conductor 3. Substrate-side conductive adhesive material 4. Magnetic-sensitive conductor (flake-shaped magnetic-sensitive conductor powder) Component side conductive adhesive material 6. 6. Component side conductor (electrode) Part body 8. 8. Substrate-side magnetic-sensitive conductor (flake-shaped magnetic-sensitive conductor powder) Conductive adhesive material 10. 10. Part-side magnetic-sensitive conductor (flake-shaped magnetic-sensitive conductor powder) Conductive adhesive material 12. Conductive particles

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電性塗料もしくは導電性接着材料を用
いて電子部品を回路基板に実装する方法において、回路
基板の導電体接続面もしくは部品の接続電極面のいずれ
か一方もしくは双方の表面が粗い凹凸もしくは針状突起
で覆われていることにより、その表面に付着した導電性
接着材料もしくは導電性塗料が部品を基板面に実装した
際に横方向に広がるのを抑制されることを特徴とするも
の。
In a method of mounting an electronic component on a circuit board using a conductive paint or a conductive adhesive material, the surface of one or both of a conductor connecting surface of the circuit board and a connecting electrode surface of the component is rough. By being covered with irregularities or needle-like projections, the conductive adhesive material or the conductive paint adhered to the surface is suppressed from spreading laterally when the component is mounted on the board surface. thing.
【請求項2】 1項の粗面を形成する方法として接続面
に導電性接着材料を付着したのち、それが粘着性を失わ
ない間に、略針状の形状もしくはフレーク状の形状を有
するものを含むとともに磁気感応性を有する導電体粉末
を、磁界の存在下で磁力線の方向に整列されることによ
り、接続面に対し個々の感磁性導電体粉末粒子の長手方
向が略垂直に立つ形で導電性接着材料に付着せしめ硬化
させることにより実現することを特徴とするもの。
2. A method for forming a rough surface according to claim 1, wherein after the conductive adhesive material is adhered to the connection surface, the connection surface has a substantially needle-like or flake-like shape while maintaining the tackiness. Are aligned in the direction of the line of magnetic force in the presence of a magnetic field, so that the longitudinal direction of each magnetically sensitive conductive powder particle stands substantially perpendicular to the connection surface. It is realized by being adhered to a conductive adhesive material and cured.
【請求項3】 1項の粗面を形成する方法として、基板
側の導電パターンの接続部分にエッチング法をもちいて
密な針山形状もしくは多孔形状により凹凸を形成するこ
とを特徴とするもの。
3. The method of forming a rough surface according to claim 1, wherein the connecting portion of the conductive pattern on the substrate side is formed with a dense needle peak shape or a porous shape by using an etching method.
【請求項4】 1項の粗面を形成する方法として、接続
面の導電パターンの接続部分に導電接着材料を付着した
後、粒径のそろった導電体粒子を接着材料部分に付着す
ることにより形成することを特徴とするもの。
4. The method for forming a rough surface according to claim 1, wherein a conductive adhesive material is attached to a connection portion of the conductive pattern on the connection surface, and then conductive particles having a uniform particle diameter are attached to the adhesive material portion. Characterized by forming.
【請求項5】 2項において導電性粉末を接続面に垂直
に立てる形で付着する際にそれが乾燥硬化される前に、
他方の接続面にも導電性接着材料を付着し双方の接続面
が対向しその間を導電性粉末が接続する形に形成した後
硬化させることにより実装することを特徴とするもの。
5. The method according to claim 2, wherein when the conductive powder is applied in the form of standing perpendicular to the connection surface, it is dried and cured.
A conductive adhesive material is also adhered to the other connection surface, the two connection surfaces are opposed to each other, and a conductive powder is formed between the two connection surfaces.
【請求項6】 1項および3項における接続を行った
後、絶縁性接着材料により機械的接着力を補強すること
を特徴とするもの。
6. The method according to claim 1, wherein the mechanical adhesion is reinforced with an insulating adhesive material after the connection according to paragraphs 1 and 3 is performed.
【請求項7】 1項から5項までの各項において実装さ
れる電子部品および基板の接続表面はすくなくとも鉛を
含まない金属材料もしくは導電性塗料により形成されて
いることを特徴とするもの。
7. The electronic component and the connection surface of the substrate mounted in each of the above items 1 to 5 are formed of at least a lead-free metal material or a conductive paint.
【請求項8】 1項から6項までの各項における加熱硬
化処理はおおむね180℃以下の温度で実施されること
により、回路基板および導電性回路は従来のはんだ付け
温度に求められるレベルの高温耐熱性を有しない材料を
用いることが出来ることを特徴とするもの。
8. The heat curing treatment in each of the items 1 to 6 is carried out at a temperature of approximately 180 ° C. or less, so that the circuit board and the conductive circuit are at a high temperature required for a conventional soldering temperature. Characteristic in that a material having no heat resistance can be used.
【請求項9】 はんだ付けによらずおおむね180℃を
越えない低温度で本発明の実装方法もしくは他の実装方
法およびそれ以後の工程処理をなされる表面実装部品に
おいて、従来はんだ付け性を確保する目的やはんだ耐熱
性を確保する目的のために用いられていた鉛を含むめっ
き材料や鉛を含むガラスなどの材料を用いていないもの
であることを特徴とするもの。
9. A conventional soldering property is secured in a surface mounting component which is subjected to a mounting method of the present invention or another mounting method and a subsequent process at a low temperature not exceeding 180 ° C. regardless of soldering. It does not use materials such as lead-containing plating materials and lead-containing glass that have been used for the purpose or the purpose of securing solder heat resistance.
【請求項10】 はんだ付けによらずおおむね180℃
を越えない低温度で本発明の実装方法もしくは他の実装
方法およびそれ以後の工程処理をなされる表面実装部品
の製造工程において電極のはんだ付け性を付与すること
を目的として施されていためっきの工程を有しないこと
を特徴とするもの。
10. About 180 ° C. regardless of soldering
In the manufacturing process of the surface mounting component subjected to the mounting method of the present invention or another mounting method and a subsequent process at a low temperature not exceeding the plating, the plating applied for the purpose of imparting the solderability of the electrode is performed. Characterized by having no process.
JP2001061909A 2001-03-06 2001-03-06 Manufacturing method of chip resistor Expired - Fee Related JP3872303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001061909A JP3872303B2 (en) 2001-03-06 2001-03-06 Manufacturing method of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001061909A JP3872303B2 (en) 2001-03-06 2001-03-06 Manufacturing method of chip resistor

Publications (2)

Publication Number Publication Date
JP2002271003A true JP2002271003A (en) 2002-09-20
JP3872303B2 JP3872303B2 (en) 2007-01-24

Family

ID=18921124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061909A Expired - Fee Related JP3872303B2 (en) 2001-03-06 2001-03-06 Manufacturing method of chip resistor

Country Status (1)

Country Link
JP (1) JP3872303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064820B1 (en) * 2018-12-18 2020-01-10 (주)아이테드 A vision secureness module and an auto mobility device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064820B1 (en) * 2018-12-18 2020-01-10 (주)아이테드 A vision secureness module and an auto mobility device including the same

Also Published As

Publication number Publication date
JP3872303B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US5019944A (en) Mounting substrate and its production method, and printed wiring board having connector function and its connection method
US6598291B2 (en) Via connector and method of making same
US6406988B1 (en) Method of forming fine pitch interconnections employing magnetic masks
US7656677B2 (en) Multilayer electronic component and structure for mounting multilayer electronic component
EP1198162A2 (en) Electronic component mounted member and repair method thereof
US6303881B1 (en) Via connector and method of making same
KR100863443B1 (en) Anisotropic conductive paste and plasma display panel apparatus
JP3842981B2 (en) Substrate manufacturing method, electronic component manufacturing method, and electronic component mounting method
JP4256719B2 (en) Electronic component mounting body and manufacturing method thereof
JP2002271003A (en) Method of mounting electronic component without soldering
JPH09306231A (en) Conductive particulate and substrate
JPH0931419A (en) Anisotropic conductive adhesive film
JP2005217249A (en) Substrate equipped with land, and its manufacturing method
JP2646688B2 (en) Electronic component soldering method
JP2015119075A (en) Wiring circuit board
JPH06112640A (en) Circuit board
JP2800294B2 (en) Connection method of semiconductor IC
JP2002232104A (en) Wiring module
JP2007300038A (en) Electronic component package, and its manufacturing method
JP2002141647A (en) Bonding structure of printed-wiring board to electronic component
JPH10303517A (en) Printed wiring board and electronic component connection method using the printed wiring board
CN113963855A (en) Z-axis conductor and Z-axis conductive film, and preparation method and application thereof
JPH05114307A (en) Conductive resin
JPH08124421A (en) Conductive adhesive and method for connection of circuit member to board by using said adhesive
JPH0344945A (en) Mounting of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees