JPH10303517A - Printed wiring board and electronic component connection method using the printed wiring board - Google Patents

Printed wiring board and electronic component connection method using the printed wiring board

Info

Publication number
JPH10303517A
JPH10303517A JP10748097A JP10748097A JPH10303517A JP H10303517 A JPH10303517 A JP H10303517A JP 10748097 A JP10748097 A JP 10748097A JP 10748097 A JP10748097 A JP 10748097A JP H10303517 A JPH10303517 A JP H10303517A
Authority
JP
Japan
Prior art keywords
side groove
wiring board
conductive adhesive
printed wiring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10748097A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
徹郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10748097A priority Critical patent/JPH10303517A/en
Publication of JPH10303517A publication Critical patent/JPH10303517A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain an electrical insulation between electrodes easily and securely by a method wherein a side groove for blocking the flow of conductive adhesive is provided between electrode terminals on a board and the width, length and depth of the side groove are specified. SOLUTION: A side groove for blocking the flow of conductive adhesive is provided on electrode terminals on a mounting board and the width of the side groove is 0.1-1.0 times of a distance between the electrode terminals and the length of the side groove is 1.0-3.0 times of the length of the electrode terminal and the depth of the groove is 20-500 μm. One of methods by which the side groove is formed in the board is such that a sheet in which holes are formed beforehand is applied when the uppermost layer of a non-conductor part is formed and a metal layer is provided on the sheet and patterned to form a wiring. Or, the side groove can be formed by etching, etc., after the wiring is formed. It is to be noted that the capacity of the side groove may be large enough to accommodate conductive adhesive overflowing the electrode of the wiring board when an electronic component is mounted on the wiring board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種電子部品の組み
立てなどに使用される導電性接着剤の塗布および各種電
子部品の実装基板への接合に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the application of a conductive adhesive used for assembling various electronic components and the like and the joining of various electronic components to a mounting board.

【0002】[0002]

【従来の技術】一般に各種電子部品の実装基板への接合
は、粒径約20mmのはんだ粉末とロジン系のフラックス
からなるソルダーペストを用いて行っている。例えば、
回路形成されたガラスエポキシ基板などのプリント配線
板上に、、配線の電極端子用ランド(以下、単に「電極
端子」と記す。)部を除きソルダーレジストを設け、次
いで電極端子部にメタルマスクを用いて約150mmの厚
みにソルダーペーストを印刷し、電子部品を電極端子上
に搭載しする。そして、約240℃でリフローし、はん
だを溶融して各種電子部品とをプリント配線板とを接合
している。
2. Description of the Related Art In general, various electronic components are bonded to a mounting board by using a solder paste made of a rosin-based flux and a solder powder having a particle size of about 20 mm. For example,
A solder resist is provided on a printed wiring board such as a glass epoxy substrate on which a circuit is formed, except for a land for an electrode terminal of wiring (hereinafter, simply referred to as an “electrode terminal”), and then a metal mask is formed on the electrode terminal part. A solder paste is printed to a thickness of about 150 mm using the electronic component, and electronic components are mounted on the electrode terminals. Then, reflow is performed at about 240 ° C., the solder is melted, and various electronic components are joined to the printed wiring board.

【0003】この工程で銅などの金属からなる電極端子
には溶融したはんだは良いぬれ性を示すが、プリント配
線板上に布設されるソルダーレジストにはぬれ性を示さ
ない。したがって、はんだ電極端子上に止まり電極端子
間に流れ出すことはなく、電極端子同士は良好な電気絶
縁が保たれている。
[0003] In this process, molten solder shows good wettability to the electrode terminals made of metal such as copper, but does not show wettability to the solder resist laid on the printed wiring board. Therefore, it does not stop on the solder electrode terminals and does not flow out between the electrode terminals, and good electrical insulation is maintained between the electrode terminals.

【0004】しかし最近になって環境保護の観点から、
工業製品の鉛使用が規制されるようになり、ソルダーペ
ーストによる各種電子部品の接合法も脱鉛化が求められ
ている。これに答えるものの一つとして、導電性接着剤
をソルダーペーストの代替材料として用いることが提案
されている。
However, recently, from the viewpoint of environmental protection,
The use of lead in industrial products has been regulated, and lead-free soldering methods for various electronic components are also required. As one of the answers to this, it has been proposed to use a conductive adhesive as a substitute for the solder paste.

【0005】一般に、導電性接着剤はエポキシ樹脂等の
有機バインダー、導電性粉末、反応性希釈剤および若干
の溶剤から構成されている。より具体的にはエポキシ
系、フェノール系、メラミン系、セルロース系、アクリ
ル系、ポリイミド系およびこれらの混合変性樹脂系等が
有機バインダーとして用いられ、導電性フィラーとして
銀系粉末が使用される。溶剤または反応性希釈剤は導電
性接着剤は導電性接着剤の粘度を調整するために有機バ
インダー用の樹脂を溶解することができるものが用いら
れる。
[0005] Generally, the conductive adhesive is composed of an organic binder such as an epoxy resin, a conductive powder, a reactive diluent, and some solvent. More specifically, epoxy-based, phenol-based, melamine-based, cellulose-based, acrylic-based, polyimide-based and mixed modified resin-based resins thereof are used as the organic binder, and silver-based powder is used as the conductive filler. As the solvent or the reactive diluent, a conductive adhesive that can dissolve a resin for an organic binder in order to adjust the viscosity of the conductive adhesive is used.

【0006】導電性接着剤はソルダーペースト同様にガ
ラエポ基板などに印刷することができ、熱硬化性樹脂で
あるエポキシ樹脂を用いているため、電子部品搭載後約
200℃で硬化させ接合させることができる。
The conductive adhesive can be printed on a glass epoxy substrate or the like in the same manner as the solder paste. Since the epoxy resin which is a thermosetting resin is used, it can be cured at about 200 ° C. after the electronic components are mounted and joined. it can.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ソルダ
ーペーストと大きく異なる点は導電性接着剤は電極端子
ばかりでなくソルダーレジストとも良いぬれ性を示し、
各種電子部品を電極端子に搭載する際部品の自重や接合
のための加圧で導電性接着剤が電極端子部より流れ出
し、電極間距離が短い場合には短絡を引起こす可能性が
高くなる。
However, a major difference from the solder paste is that the conductive adhesive exhibits good wettability not only with the electrode terminals but also with the solder resist.
When mounting various electronic components on the electrode terminals, the conductive adhesive flows out of the electrode terminals due to the weight of the components and the pressure for bonding, and when the distance between the electrodes is short, the possibility of causing a short circuit increases.

【0008】これを防止すべく低粘度の導電性接着剤を
用いてガラエポ基板などの実装基板に印刷しても、マス
クの開口面積より形成された導電性接着剤のパターンが
広がり易く、微細パターンではやはり電極間で短絡が生
じる。
[0008] Even if printing is performed on a mounting substrate such as a glass epoxy substrate using a low-viscosity conductive adhesive to prevent this, the pattern of the conductive adhesive formed tends to spread from the opening area of the mask, and the fine pattern In this case, a short circuit still occurs between the electrodes.

【0009】本発明は、上記の欠点を補うために容易に
かつ確実に電極間の電気絶縁を保つことを可能とする実
装用基板を提供しようとするものである。
An object of the present invention is to provide a mounting substrate which can easily and surely maintain electrical insulation between electrodes in order to compensate for the above-mentioned disadvantages.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の実装用基板は、基板上の電極端子間に導電性接着剤
の流れ防止側溝を設置したものであり、この側溝の幅を
電極端子間距離に対して0.1から1.0倍とし、長さ
を電極端子長さに対して1.0から3.0倍とし、深さ
を20から500ミクロンとするものである。
A mounting substrate according to the present invention for solving the above-mentioned problems is provided with a side groove for preventing the flow of a conductive adhesive between electrode terminals on the substrate. The distance between the terminals is 0.1 to 1.0 times, the length is 1.0 to 3.0 times the electrode terminal length, and the depth is 20 to 500 microns.

【0011】[0011]

【発明の実施の形態】本発明で用いる実装用基板は紙基
材片面板、紙基材両面板、ガラスエポキシ系基材片面
板、ガラスエポキシ系材両面板などが挙げられ、これは
単層もしくは多層板として使用することができる。さら
にアルミナ基板も使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The mounting substrate used in the present invention includes a single-sided paper substrate, a double-sided paper substrate, a single-sided glass epoxy-based substrate, and a double-sided glass epoxy-based material. Alternatively, it can be used as a multilayer board. Further, an alumina substrate can also be used.

【0012】本発明の基板に設ける側溝の容積は、基本
的には電極端子部よりあふれ出す導電性接着剤の量を考
慮して決めることになる。本発明で規定した大きさは通
常使用される量を考慮したものである。
The volume of the side groove provided on the substrate of the present invention is basically determined in consideration of the amount of the conductive adhesive overflowing from the electrode terminal portion. The size specified in the present invention takes into account the amount normally used.

【0013】本発明の代替法として電極端子の高さを高
くし、実質的に電極端子間の容積を増加させる方法も考
えられる。しかし、この場合、電極端子を構成する金属
層の厚い基板を用いて加工しなければならず、コストが
高くなる。また、実装の小型化に反することとなり、市
場に受け入れがたくなる。
As an alternative to the present invention, a method of increasing the height of the electrode terminals and substantially increasing the volume between the electrode terminals is also conceivable. However, in this case, processing must be performed using a substrate having a thick metal layer that forms the electrode terminals, which increases the cost. In addition, this is contrary to the miniaturization of the mounting, and is not easily accepted by the market.

【0014】また、基板の不導体部を薄くし、電極端子
部の高さを高くし、全体の厚みを同じにする方法も考え
られるが、これも上記と同様にコストが高くなる。
It is also conceivable to reduce the thickness of the non-conductor portion of the substrate, increase the height of the electrode terminal portion, and make the entire thickness the same, but this also increases the cost as in the above case.

【0015】本発明の基板において側溝を設ける手段の
一つとして、不導体部の最上層を形成する際にあらかじ
め穴のあいたシートを張り合わせ、その上に金属層を設
け、パターニングして配線を形成する方法を用いればよ
い。また、配線形成後にエッチング等により側溝を設け
てもよい。
As one of means for providing a side groove in the substrate of the present invention, a sheet having a hole is bonded in advance when forming the uppermost layer of the nonconductor portion, a metal layer is provided thereon, and a wiring is formed by patterning. Method may be used. Further, a side groove may be provided by etching or the like after the wiring is formed.

【0016】なお、本発明では側溝の形状を矩形とした
が、下記の実施例でわかるように、側溝の容量は、配線
板に電子部品を実装する際に、配線板の電極よりあふれ
出た導電性接着剤を収納できる容量であればよく、その
形状は本質的に問われるものではないことは言うまでも
ない。
In the present invention, the shape of the side groove is rectangular, but as will be understood from the following embodiments, the capacity of the side groove overflows from the electrode of the wiring board when the electronic component is mounted on the wiring board. It is needless to say that the capacity is sufficient as long as the conductive adhesive can be accommodated, and the shape is not essential.

【0017】[0017]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0018】(実施例1)フェーノルノボラック型エポ
キシ樹脂および潜在性アミン化合物と反応性希釈剤とし
てt―ブチルフェニルグリシジル―テル、フェニルグリ
シジエーテル、銀粉末として粒径が0.2から5.0ミ
クロンのフレーク状および球状の銀粉を70〜80重量
%となるように配合し、三本ロールで混練して導電性接
着剤樹脂を得た。
(Example 1) t-butylphenylglycidyl-ter, phenylglycidiether as a phenol-novolak type epoxy resin and a latent amine compound and a reactive diluent, and a silver powder having a particle size of 0.2 to 5. A flake-like and spherical silver powder of 0 micron was blended in an amount of 70 to 80% by weight and kneaded with a three-roll mill to obtain a conductive adhesive resin.

【0019】次に、幅0.3mm、長さ2mm、高さ1
5ミクロンの電極端子部を0.3mm間隔で設け、電極
端子部との間に、幅が電極端子部間隔の0.9倍で、長
さが電極端子部の2倍で、深さが100ミクロンの側溝
が設けられたガラスエボキシ基板を準備した。
Next, width 0.3 mm, length 2 mm, height 1
5 μm electrode terminal portions are provided at 0.3 mm intervals, and the width between the electrode terminal portions is 0.9 times the width of the electrode terminal portions, the length is twice the electrode terminal portions, and the depth is 100 mm. A glass epoxy substrate provided with micron side grooves was prepared.

【0020】厚さ150ミクロンのメタルマスクを用い
て電極端子部に導電性接着剤樹脂層を印刷し、チップ抵
抗を乗せ、気泡除去のために加圧し、その後150℃で
30分間保持し、導電性接着剤を硬化させた。その後、
チップ抵抗を剥離し、端子間の電気抵抗を測定した。測
定は市販のデジタルマルチメータで行った。その結果、
端子間の絶縁抵抗は108オーム以上であった。端子間
の絶縁抵抗が108オーム以上あった場合に良好な絶縁
状態が実現できていると判定できることから、本実施例
では側溝が有効に機能していることがわかる。
A conductive adhesive resin layer is printed on the electrode terminals using a 150-μm-thick metal mask, a chip resistor is placed on the electrode terminal, pressure is applied to remove air bubbles, and the pressure is maintained at 150 ° C. for 30 minutes. The adhesive was cured. afterwards,
The chip resistance was peeled off, and the electric resistance between the terminals was measured. The measurement was performed with a commercially available digital multimeter. as a result,
The insulation resistance between the terminals was 10 8 ohms or more. When the insulation resistance between the terminals is equal to or greater than 10 8 ohms, it can be determined that a good insulation state has been achieved. This indicates that the side grooves function effectively in this embodiment.

【0021】(実施例2)幅が電極端子部間隔の0.1
倍で、長さが電極端子部の3倍で、深さが500ミクロ
ンの側溝が設けられたガラスエボキシ基板を用いた以外
は実施例1と同様にして端子間の絶縁抵抗を測定した。
その結果、端子間の絶縁抵抗は108オーム以上であっ
た。
(Embodiment 2) The width is 0.1 of the electrode terminal interval.
The insulation resistance between the terminals was measured in the same manner as in Example 1 except that a glass oxy substrate, which was twice as long as the electrode terminal portion and had a depth of 500 μm, was provided.
As a result, the insulation resistance between the terminals was 10 8 ohm or more.

【0022】(実施例3)幅が電極端子部間隔の1倍
で、長さが電極端子部の1倍で、深さが150ミクロン
の側溝が設けられたガラスエボキシ基板を用いた以外は
実施例1と同様にして端子間の絶縁抵抗を測定した。そ
の結果、端子間の絶縁抵抗は108オーム以上であっ
た。
(Example 3) The embodiment was carried out except that a glass epoxy substrate having a width of one time of the electrode terminal part interval, a length of one time of the electrode terminal part and a depth of 150 μm was provided. The insulation resistance between the terminals was measured in the same manner as in Example 1. As a result, the insulation resistance between the terminals was 10 8 ohm or more.

【0023】(実施例4)幅が電極端子部間隔の1倍
で、長さが電極端子部の3倍で、深さが20ミクロンの
側溝が設けられたガラスエボキシ基板を用いた以外は実
施例1と同様にして端子間の絶縁抵抗を測定した。その
結果、端子間の絶縁抵抗は108オームであった。
(Example 4) The procedure was performed except that a glass epoxy substrate provided with a side groove having a width of 1 times the electrode terminal interval, a length of 3 times the electrode terminal, and a depth of 20 µm was used. The insulation resistance between the terminals was measured in the same manner as in Example 1. As a result, the insulation resistance between terminals was 10 8 ohms.

【0024】以上のことから、側溝の容積は塗布された
導電性接着剤の容積の70%程度以上であれば十分な効
果が得られることがわかった。
From the above, it has been found that a sufficient effect can be obtained if the volume of the side groove is about 70% or more of the volume of the applied conductive adhesive.

【0025】[0025]

【発明の効果】本発明の基板を用いて導電性接着剤によ
り電子部品を搭載すれば、電極端子より流れ出した導電
性接着剤が側溝にためられ、導電性接着剤と電極端子と
の縁が切れる。この結果、電極端子間に良好な絶縁性が
確保できる。
According to the present invention, when an electronic component is mounted on the substrate of the present invention using a conductive adhesive, the conductive adhesive flowing out of the electrode terminal is accumulated in the side groove, and the edge between the conductive adhesive and the electrode terminal is formed. Expires. As a result, good insulation between the electrode terminals can be ensured.

【0026】よって、得られる基板の信頼性も確保でき
る。
Therefore, the reliability of the obtained substrate can be ensured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上の電極端子間に導電性接着剤の
流れ防止側溝を設置したことを特徴とするプリント配線
板。
1. A printed wiring board having a groove for preventing flow of a conductive adhesive between electrode terminals on a substrate.
【請求項2】 側溝の幅が電極端子間距離に対して
0.1から1.0倍であり、長さが電極端子長さに対し
て1.0から3.0倍であり、深さが20から500ミ
クロンである請求項1記載の配線板。
2. The width of the side groove is 0.1 to 1.0 times the distance between the electrode terminals, the length is 1.0 to 3.0 times the length of the electrode terminal, and the depth is 2. The wiring board according to claim 1, wherein the thickness is 20 to 500 microns.
【請求項3】 電子部品とプリント配線板とを接合す
るに際し、導電性接着剤と請求項1または2記載のプリ
ント配線板を用いることを特徴とする電子部品の接合方
法。
3. A method of joining an electronic component, comprising: using a conductive adhesive and the printed wiring board according to claim 1 when joining the electronic component and the printed wiring board.
JP10748097A 1997-04-24 1997-04-24 Printed wiring board and electronic component connection method using the printed wiring board Pending JPH10303517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10748097A JPH10303517A (en) 1997-04-24 1997-04-24 Printed wiring board and electronic component connection method using the printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10748097A JPH10303517A (en) 1997-04-24 1997-04-24 Printed wiring board and electronic component connection method using the printed wiring board

Publications (1)

Publication Number Publication Date
JPH10303517A true JPH10303517A (en) 1998-11-13

Family

ID=14460294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10748097A Pending JPH10303517A (en) 1997-04-24 1997-04-24 Printed wiring board and electronic component connection method using the printed wiring board

Country Status (1)

Country Link
JP (1) JPH10303517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922304B2 (en) 2007-10-31 2011-04-12 Brother Kogyo Kabushiki Kaisha Liquid droplet jetting head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922304B2 (en) 2007-10-31 2011-04-12 Brother Kogyo Kabushiki Kaisha Liquid droplet jetting head

Similar Documents

Publication Publication Date Title
KR20050022303A (en) Circuit device
US4972989A (en) Through the lead soldering
JPH10303517A (en) Printed wiring board and electronic component connection method using the printed wiring board
US7410093B2 (en) Solder wave process for solder shunts for printed circuit board
JP2646688B2 (en) Electronic component soldering method
JP3842981B2 (en) Substrate manufacturing method, electronic component manufacturing method, and electronic component mounting method
JP2004235232A (en) Mounting structure of electronic component
JPH06120071A (en) Chip part
JP3872303B2 (en) Manufacturing method of chip resistor
JP2931940B2 (en) Printed circuit board connection structure
JP2007258654A (en) Circuit board land connection method and the circuit board
JP2007300038A (en) Electronic component package, and its manufacturing method
JPH0918123A (en) Method and structure for mounting electronic component on printed board
WO2020194440A1 (en) Printed wiring board and electronic device
JPS61172395A (en) Mounting of electronic components
JP2917537B2 (en) Mounting method of IC package for surface mounting
JP3065013B2 (en) Circuit board and circuit pattern forming method
JPH0548256A (en) Surface mounting method for printed circuit board
JPH05267536A (en) Packaging of electronic component
JP4437459B2 (en) Heat seal connector and connection method thereof
JPH02178992A (en) Manufacture of thick film circuit substrate
JP2769160B2 (en) Electronic component mounting method
JPH09326545A (en) Printed wiring board mounted with surface-mount component, printed wiring board, and chip surface mount component
JP2002158436A (en) Method for soldering circuit board
JPH01251786A (en) Electronic circuit device