JP2002270570A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same

Info

Publication number
JP2002270570A
JP2002270570A JP2001062817A JP2001062817A JP2002270570A JP 2002270570 A JP2002270570 A JP 2002270570A JP 2001062817 A JP2001062817 A JP 2001062817A JP 2001062817 A JP2001062817 A JP 2001062817A JP 2002270570 A JP2002270570 A JP 2002270570A
Authority
JP
Japan
Prior art keywords
processing chamber
manufacturing
semiconductor device
semiconductor
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001062817A
Other languages
Japanese (ja)
Inventor
Naoyuki Koto
直行 小藤
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001062817A priority Critical patent/JP2002270570A/en
Publication of JP2002270570A publication Critical patent/JP2002270570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation of characteristics due to absorption of moisture by a highly hygroscopic porous low-permittivity insulating material. SOLUTION: A sample 2 containing a low-permittivity insulating material is placed in a decompression chamber 1, and irradiated with a microwave by using a magnetron 7 under exhaustion and decompression to dry the material 2. This drying process is performed immediately before the drying process in CVD, sputtering, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
に係わり、特に、半導体装置の製造プロセスにおいてウ
エット工程で吸湿した材料の乾燥技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of semiconductor devices, and more particularly to a technique for drying materials absorbed in a wet process in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】半導体装置の製造プロセスにおいて、吸
湿したウエハを乾燥させる方法としては、従来、スピン
ドライヤ(例えば、コクサン製SPD−180N(製品
名))などのように、ウエハを回転させ遠心力で水分を
飛ばす方法がある。
2. Description of the Related Art In a semiconductor device manufacturing process, as a method of drying a moisture-absorbed wafer, conventionally, a wafer is rotated by centrifugal force as in a spin dryer (for example, SPD-180N (product name) manufactured by Kokusan). There is a way to blow off the moisture.

【0003】[0003]

【発明が解決しようとする課題】将来、高速動作の半導
体装置の製造過程では、層間絶縁膜として誘電率2.5
以下の低誘電率絶縁材料(Low−K)を使うことが必
須になる。しかし、誘電率2.5以下の絶縁材料は、一
般に多孔質材料であるため、薬液処理・水洗処理・CM
P(chemical mechanical polishing)処理などの液体
と接する工程(ウエット工程)で吸湿してしまう。この
吸湿は、水分子が絶縁材料の分子間内に入り込んだ状態
である。このため、従来のスピンドライヤの回転方式で
は、吸湿した絶縁材料を乾燥させることができない。
In the future, in the process of manufacturing a high-speed semiconductor device, a dielectric constant of 2.5 will be used as an interlayer insulating film.
It is essential to use the following low dielectric constant insulating material (Low-K). However, an insulating material having a dielectric constant of 2.5 or less is generally a porous material, and therefore, is subjected to chemical treatment, water washing, and CM.
Moisture is absorbed in a process (wet process) in contact with a liquid such as P (chemical mechanical polishing) processing. This moisture absorption is a state in which water molecules enter between the molecules of the insulating material. For this reason, with the conventional spin dryer rotation method, the insulating material that has absorbed moisture cannot be dried.

【0004】そこで、本発明の目的は、吸湿した絶縁材
料を短時間で乾燥させる方法を提供し、信頼性の高い半
導体装置の製造方法および半導体製造装置を提供するこ
とにある。
It is an object of the present invention to provide a method for drying a moisture-absorbing insulating material in a short time, and to provide a highly reliable method for manufacturing a semiconductor device and a semiconductor manufacturing apparatus.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、吸湿した絶縁材料から生じる蒸気を排
気する手段を有する減圧処理室内に、吸湿した絶縁材料
を含む試料を載置して、前記処理室内に電磁波を導入す
ることによって短時間で乾燥させることができる。ま
た、前記電磁波がマイクロ波であればさらに短時間で乾
燥させることができる。
In order to achieve the above object, according to the present invention, a sample containing a moisture-absorbing insulating material is placed in a reduced-pressure processing chamber having means for exhausting vapor generated from the moisture-absorbing insulating material. Thus, drying can be performed in a short time by introducing electromagnetic waves into the processing chamber. If the electromagnetic waves are microwaves, drying can be performed in a shorter time.

【0006】吸湿した絶縁材料を減圧下に置いた場合、
絶縁材料の最表面の水分子は瞬間的に蒸発する。しか
し、この蒸発熱によって絶縁材料内部の水分子が凝固す
るため、内部の水分子が蒸発しにくい。
When the moisture-absorbing insulating material is placed under reduced pressure,
Water molecules on the outermost surface of the insulating material evaporate instantaneously. However, since the water molecules inside the insulating material solidify due to the heat of evaporation, the water molecules inside the insulating material hardly evaporate.

【0007】吸湿した絶縁材料を減圧下に載置して、さ
らに、減圧処理室内に電磁波を導入した場合、前記電磁
波によって水分子が振動加熱されるため凝固しない。こ
のため、吸湿した絶縁材料を短時間で乾燥させることが
できる。
When the moisture-absorbing insulating material is placed under reduced pressure and an electromagnetic wave is further introduced into the reduced-pressure processing chamber, water molecules are vibrated and heated by the electromagnetic wave, so that they do not solidify. Therefore, the insulating material that has absorbed moisture can be dried in a short time.

【0008】また、半導体で用いられる低誘電率の絶縁
材料は、電磁波を吸収しない特徴があるため、電磁波加
熱によって絶縁材料が劣化することもない。
In addition, since the low dielectric constant insulating material used for the semiconductor has a characteristic that it does not absorb electromagnetic waves, the insulating material does not deteriorate due to electromagnetic wave heating.

【0009】電磁波のうち、特に、マイクロ波は水分子
の振動加熱の周波数と共鳴するため、効率良く水分子を
振動加熱できる。このため、電磁波としてマイクロ波を
用いれば低電力で効率良く短時間に乾燥させることがで
きる。
Among the electromagnetic waves, microwaves, in particular, resonate with the frequency of vibration heating of water molecules, so that water molecules can be heated efficiently by vibration. For this reason, if microwaves are used as electromagnetic waves, drying can be efficiently performed in a short time with low power.

【0010】このように、本発明は、半導体装置の製造
過程にあって、半導体基板に液体を含む処理を施すウエ
ット工程と、ウエット工程で吸湿した半導体基板を減圧
処理室内に置き、電磁波を導入する工程とを有してなる
ことを特徴とする半導体装置の製造方法を提供する。
As described above, according to the present invention, in the process of manufacturing a semiconductor device, a wet process of performing a process including a liquid on a semiconductor substrate, the semiconductor substrate absorbed in the wet process is placed in a reduced pressure processing chamber, and an electromagnetic wave is introduced. And a method of manufacturing a semiconductor device.

【0011】また、本発明は、上記構成において、上記
電磁波が、マイクロ波であり、かつ、上記減圧処理室内
の圧力を減少させながらマイクロ波を導入してなること
を特徴とする半導体装置の製造方法を提供する。
Further, according to the present invention, in the above structure, the electromagnetic wave is a microwave, and the microwave is introduced while reducing the pressure in the decompression processing chamber. Provide a way.

【0012】また、本発明は、誘電率2.5以下の絶縁
材料を含む半導体装置の製造過程にあって、半導体基板
に液体を含む処理を施すウエット工程と、ウエット工程
で吸湿した半導体基板を、排気設備を備えた減圧処理室
内に配置し、減圧処理室内に107以上1012Hz以下
の電磁波を導入する工程とを有してなることを特徴とす
る半導体装置の製造方法を提供する。
The present invention is also directed to a process of manufacturing a semiconductor device including an insulating material having a dielectric constant of 2.5 or less. And a step of introducing an electromagnetic wave of 10 7 or more and 10 12 Hz or less into the reduced-pressure processing chamber.

【0013】また、本発明は、上記構成において、上記
減圧処理室の圧力を、電磁波導入中に減少させることを
特徴する半導体装置の製造方法を提供する。
Further, the present invention provides a method of manufacturing a semiconductor device according to the above configuration, wherein the pressure in the decompression processing chamber is reduced during the introduction of the electromagnetic wave.

【0014】さらに、本発明は、ドライ処理法により半
導体基板上に所定の膜を堆積させるための第1の減圧処
理室を有する半導体製造装置において、第1の減圧処理
室以外に第2の減圧処理室を有し、かつ、第2の減圧処
理室にマイクロ波を導入する機構を具備してなることを
特徴とする半導体製造装置を提供する。
Further, according to the present invention, there is provided a semiconductor manufacturing apparatus having a first reduced pressure processing chamber for depositing a predetermined film on a semiconductor substrate by a dry processing method. A semiconductor manufacturing apparatus having a processing chamber and a mechanism for introducing microwaves into a second reduced-pressure processing chamber is provided.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面に基
いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図2は、本発明の一実施例を
示し、マイクロ波を用いて誘電率2〜3の誘電材料、す
なわち低誘電率絶縁材料を乾燥させるための装置であ
る。本装置は、減圧処理室1、試料2を載置するための
試料台3、減圧処理室1を排気するための排気機構4、
マイクロ波を発生するマグネトロン7、減圧処理室1に
マイクロ波を導入するための導波管5、および導波管5
と減圧処理室を分ける窓6を具備している。
(Embodiment 1) FIG. 2 shows an embodiment of the present invention, which is an apparatus for drying a dielectric material having a dielectric constant of 2 to 3, ie, a low dielectric constant insulating material, using microwaves. The apparatus includes a decompression processing chamber 1, a sample table 3 on which a sample 2 is placed, an exhaust mechanism 4 for evacuating the decompression processing chamber 1,
A magnetron 7 for generating microwaves, a waveguide 5 for introducing microwaves into the reduced pressure processing chamber 1, and a waveguide 5
And a window 6 for separating the vacuum processing chamber.

【0017】本装置において、吸湿した低誘電率絶縁材
料を含む試料2を試料台3に載置した後に、(A)排気
・減圧する方法、(B)排気・減圧しながらマイクロ波
を減圧処理室1に導入する方法の二つの方法で、試料を
乾燥させた。(A)、(B)および(C)従来のスピン
ドライヤの3つの方法における絶縁材料中の残留水分量
と乾燥時間の関係を、図1に示す。
In this apparatus, a sample 2 containing a low-dielectric-constant insulating material that has absorbed moisture is placed on a sample stage 3 and then (A) a method of evacuating and depressurizing; The sample was dried in two ways, by introducing it into chamber 1. (A), (B) and (C) FIG. 1 shows the relationship between the amount of residual moisture in the insulating material and the drying time in the three methods of the conventional spin dryer.

【0018】本発明による排気・減圧処理とマイクロ波
照射を組み合わせた(B)の方法では、(A)の方法や
(C)のスピンドライヤ方法に比べ、著しく短い時間で
水分含有量が1/1000に達しており、乾燥能力が高
いことがわかる。本例では、残留水分が1/1000に
なるためには、(A)の減圧排気による乾燥法では約2
0時間(7×104秒)程度要するのに対して、(B)
の本発明による乾燥法では約15秒程しか必要としな
い。
In the method (B) in which the exhaust / decompression treatment and the microwave irradiation according to the present invention are combined, the water content is reduced to 1 / in a remarkably short time compared with the method (A) or the spin dryer method (C). It has reached 1000, indicating that the drying ability is high. In this example, in order to reduce the residual moisture to 1/1000, the drying method by evacuation under reduced pressure in FIG.
It takes about 0 hours (7 × 10 4 seconds), whereas (B)
The drying method according to the invention requires only about 15 seconds.

【0019】本実施例では、マイクロ波を用いたが、1
7以上1012Hz以下の電磁波を用いても同様の効果
がある。また、前記減圧処理室内の圧力は、電磁波導入
中に一定もしくは減少させる。
In this embodiment, microwaves are used.
The same effect even with less electromagnetic 0 7 or 10 12 Hz. Further, the pressure in the decompression processing chamber is kept constant or reduced during the introduction of the electromagnetic wave.

【0020】(実施例2)図3は、本発明による乾燥方
法を半導体装置の多層配線工程に適用した一実施例であ
る。
(Embodiment 2) FIG. 3 shows an embodiment in which the drying method according to the present invention is applied to a multilayer wiring process of a semiconductor device.

【0021】本配線工程では、図3の工程フローに従っ
て、(1)ストッパ膜(例えば、SiN)をCVD(ch
emical vapor deposition)法で形成、(2)多孔質の
低誘電率絶縁膜である多孔質Low−Kの塗布、(3)
エッチングマスクAとなる、例えば、酸化シリコン(T
EOS)をCVD法で堆積、(4)エッチングマスクB
となる、ストッパ膜と同質の材料(例えば、SiN)の
膜をCVD法で堆積、(5)レジストパターニング、
(6)マスクBのドライエッチング、(7)レジスト剥
離、(8)レジストパターニング、(9)マスクAのド
ライエッチング、(10)SiNをマスクにした低誘電
率絶縁膜(多孔質Low−K)の異方性ドライエッチン
グ、(11)マスクAのTEOSをドライ除去、(1
2)TEOSをマスクにした低誘電率絶縁膜(多孔質L
ow−K)の異方性ドライエッチング、(13)マスク
BのSiNをドライ除去、(14)アミン系薬液を用い
たウエット洗浄までを行う。
In this wiring step, (1) a stopper film (for example, SiN) is formed by CVD (ch) according to the process flow of FIG.
(2) Application of porous Low-K which is a porous low dielectric constant insulating film, (3)
For example, silicon oxide (T
EOS) is deposited by the CVD method. (4) Etching mask B
A film of the same material as the stopper film (for example, SiN) is deposited by the CVD method, (5) resist patterning,
(6) dry etching of mask B, (7) resist stripping, (8) resist patterning, (9) dry etching of mask A, (10) low dielectric constant insulating film using SiN as a mask (porous Low-K) Dry etching of (11) TEOS of mask A, (1)
2) Low dielectric constant insulating film using TEOS as a mask (porous L
ow-K) anisotropic dry etching, (13) dry removal of SiN of the mask B, and (14) wet cleaning using an amine-based chemical solution.

【0022】次の工程(15)では、(14)のウエッ
ト洗浄で吸湿した低誘電率絶縁膜(多孔質Low−Kを
含む試料を実施例1の方法よって乾燥させる(マイクロ
波乾燥)。乾燥した試料に(16)スパッタ法を用いて
Ta、TaNの順に堆積させ、(17)スパッタ法でC
uを堆積させ、(18)Cuをメッキで堆積させる。
In the next step (15), the sample containing the low dielectric constant insulating film (porous Low-K) absorbed by the wet cleaning in (14) is dried by the method of Example 1 (microwave drying). (16) Ta and TaN are deposited in this order on the sample by sputtering, and (17) C is deposited on the sample by sputtering.
u is deposited, and (18) Cu is deposited by plating.

【0023】次の工程(19)では、(18)で堆積さ
せたCuをCMPで除去し、(20)TaNおよびTa
をCMPで除去し、(21)アミン系薬液を用いたウエ
ット洗浄でCuの汚染を除去する。
In the next step (19), the Cu deposited in (18) is removed by CMP, and (20) TaN and Ta
Are removed by CMP, and (21) Cu contamination is removed by wet cleaning using an amine-based chemical solution.

【0024】次のウエット工程(22)で吸湿した低誘
電率絶縁膜(多孔質Low−K)を含む試料をマイクロ
波乾燥させる。乾燥させた試料は、再び工程(1)のC
VDから順に繰り返し処理することによって多層配線が
形成される。従来のマイクロ波乾燥のない製造工程で作
られた半導体装置の歩留まりは30%に満たなかったの
に対して、本発明の工程では、歩留まりが80%以上に
向上した。
The sample containing the low dielectric constant insulating film (porous Low-K) absorbed in the next wet step (22) is microwave-dried. The dried sample is again subjected to step (1) C
A multilayer wiring is formed by repeating the processing in order from VD. The yield of semiconductor devices manufactured by the conventional manufacturing process without microwave drying was less than 30%, whereas the yield of the semiconductor device according to the present invention was improved to 80% or more.

【0025】このように、低誘電率絶縁膜を用いた半導
体の製造工程では、ウエット処理後、CVDやスパッタ
などドライ工程を行う前に、マイクロ波乾燥の工程を入
れることによって、信頼性の高い半導体装置を作ること
ができる。
As described above, in the process of manufacturing a semiconductor using a low dielectric constant insulating film, a microwave drying process is performed after a wet process and before a dry process such as a CVD process or a sputter process. A semiconductor device can be manufactured.

【0026】(実施例3)図4に、本発明を適用した半
導体製造装置の一実施例を示す。
(Embodiment 3) FIG. 4 shows an embodiment of a semiconductor manufacturing apparatus to which the present invention is applied.

【0027】図4の装置では、真空室13内において、
スパッタ法によって金属膜を堆積することのできる第1
の減圧処理室7、実施例1に示すような第2の減圧処理
室(マイクロ波乾燥処理室)9、および2つの処理室間
を真空搬送することのできる搬送ロボット10を具備し
ている。試料は、搬入口11よりマイクロ波乾燥処理室
9に搬入され、マイクロ波乾燥後、搬送ロボット10に
よりスパッタ用の減圧処理室8へ真空搬送される。試料
は、減圧処理室8でスパッタ法により金属膜を堆積さ
れ、搬出口12より外にとり取り出される。
In the apparatus shown in FIG.
A first method capable of depositing a metal film by a sputtering method
, A second decompression processing chamber (microwave drying processing chamber) 9 as shown in Embodiment 1, and a transfer robot 10 capable of vacuum transfer between the two processing chambers. The sample is carried into the microwave drying processing chamber 9 from the loading port 11, and after being dried by the microwave, is transported by vacuum to the decompression processing chamber 8 for sputtering by the transport robot 10. The sample is deposited with a metal film by a sputtering method in the reduced pressure processing chamber 8, taken out of the carry-out port 12 and taken out.

【0028】図4の構成にすることにより、真空室13
内にあって、マイクロ波乾燥処理室9で乾燥させた低誘
電率絶縁膜付きウエハを、大気に曝すことなく、スパッ
タ用の減圧処理室8で処理できるため、大気中の水分に
よる低誘電率絶縁膜の吸湿を避けることができる。この
ため、より信頼性の高い半導体装置をつくることができ
る。
With the configuration shown in FIG.
And the wafer with the low dielectric constant insulating film dried in the microwave drying processing chamber 9 can be processed in the decompression processing chamber 8 for sputtering without being exposed to the atmosphere. It is possible to avoid moisture absorption of the insulating film. Therefore, a more reliable semiconductor device can be manufactured.

【0029】本実施例では、ドライ処理として金属膜の
スパッタ用の半導体製造装置を例として取り上げたが、
絶縁膜のCVD用の半導体製造装置など、他のドライ処
理法による工程における半導体製造装置でも同様の効果
がある。
In this embodiment, a semiconductor manufacturing apparatus for sputtering a metal film as a dry process is taken as an example.
A similar effect is obtained in a semiconductor manufacturing apparatus in a process using another dry processing method, such as a semiconductor manufacturing apparatus for CVD of an insulating film.

【0030】[0030]

【発明の効果】本発明によれば、低誘電率絶遠材料の吸
湿を防止し、信頼性の高い半導体装置を作製することが
できる。また、歩留まりも大幅に向上する。
According to the present invention, a highly reliable semiconductor device can be manufactured by preventing moisture absorption of a low dielectric constant material. Also, the yield is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各乾燥方式における乾燥時間と残留水分量の関
係を示す特性線図。
FIG. 1 is a characteristic diagram showing a relationship between a drying time and a residual moisture amount in each drying method.

【図2】本発明の一実施例によるマイクロ波乾燥処理室
を説明する図。
FIG. 2 is a diagram illustrating a microwave drying processing chamber according to one embodiment of the present invention.

【図3】本発明を適用した半導体装置の多層配線工程の
一例を説明する図。
FIG. 3 is a diagram illustrating an example of a multilayer wiring step of a semiconductor device to which the present invention is applied.

【図4】本発明を適用した半導体製造装置を説明する
図。
FIG. 4 is a diagram illustrating a semiconductor manufacturing apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…減圧処理室、2…試料、3…試料台、4…排気機
構、5…導波管、6…窓、7…マグネトロン、8…スパ
ッタ用の減圧処理室、9…マイクロ波乾燥処理室、10
…搬送ロボット、11…ウエハ搬入口、12…ウエハ搬
出口、13…真空室。
DESCRIPTION OF SYMBOLS 1 ... Decompression processing chamber, 2 ... Sample, 3 ... Sample stand, 4 ... Exhaust mechanism, 5 ... Waveguide, 6 ... Window, 7 ... Magnetron, 8 ... Decompression processing chamber for sputtering, 9 ... Microwave drying processing chamber , 10
... Transfer robot, 11 ... Wafer carry-in port, 12 ... Wafer carry-out port, 13 ... Vacuum chamber.

フロントページの続き Fターム(参考) 5F033 HH11 HH21 HH32 PP15 PP27 QQ00 QQ09 QQ25 QQ48 QQ91 RR29 XX24 5F058 AA10 AF04 AG10 BF46 BG10 BH20 Continued on the front page F term (reference) 5F033 HH11 HH21 HH32 PP15 PP27 QQ00 QQ09 QQ25 QQ48 QQ91 RR29 XX24 5F058 AA10 AF04 AG10 BF46 BG10 BH20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体装置の製造過程にあって、半導体基
板に液体を含む処理を施すウエット工程と、前記ウエッ
ト工程で吸湿した前記半導体基板を減圧処理室内に置
き、電磁波を導入する工程とを有してなることを特徴と
する半導体装置の製造方法。
In a manufacturing process of a semiconductor device, a wet process of performing a process including a liquid on a semiconductor substrate and a process of placing the semiconductor substrate, which has absorbed moisture in the wet process, in a reduced-pressure processing chamber and introducing an electromagnetic wave are performed. A method for manufacturing a semiconductor device, comprising:
【請求項2】前記電磁波が、マイクロ波であり、かつ、
前記減圧処理室内の圧力を減少させながら前記マイクロ
波を導入してなることを特徴とする請求項1記載の半導
体装置の製造方法。
2. The electromagnetic wave is a microwave, and
2. The method of manufacturing a semiconductor device according to claim 1, wherein the microwave is introduced while reducing the pressure in the decompression processing chamber.
【請求項3】誘電率2.5以下の絶縁材料を含む半導体
装置の製造過程にあって、半導体基板に液体を含む処理
を施すウエット工程と、前記ウエット工程で吸湿した前
記半導体基板を、排気設備を備えた減圧処理室内に配置
し、前記減圧処理室内に10 7以上1012Hz以下の電
磁波を導入する工程とを有してなることを特徴とする半
導体装置の製造方法。
3. A semiconductor containing an insulating material having a dielectric constant of 2.5 or less.
In the process of manufacturing a device, processing that contains liquid on the semiconductor substrate
A wet process of applying moisture and before the wet process
The semiconductor substrate is placed in a decompression processing chamber equipped with exhaust equipment.
Then, 10 7More than 1012Hz or less
And a step of introducing a magnetic wave.
A method for manufacturing a conductor device.
【請求項4】前記減圧処理室の圧力を、前記電磁波導入
中に減少させることを特徴する請求項3記載の半導体装
置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the pressure in the decompression processing chamber is reduced during the introduction of the electromagnetic wave.
【請求項5】ドライ処理法により半導体基板上に所定の
膜を堆積させるための第1の減圧処理室を有する半導体
製造装置において、前記第1の減圧処理室以外に第2の
減圧処理室を有し、かつ、前記第2の減圧処理室にマイ
クロ波を導入する機構を具備してなることを特徴とする
半導体製造装置。
5. A semiconductor manufacturing apparatus having a first reduced pressure processing chamber for depositing a predetermined film on a semiconductor substrate by a dry processing method, wherein a second reduced pressure processing chamber is provided in addition to the first reduced pressure processing chamber. And a mechanism for introducing a microwave into the second decompression processing chamber.
JP2001062817A 2001-03-07 2001-03-07 Semiconductor device and method of manufacturing the same Pending JP2002270570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062817A JP2002270570A (en) 2001-03-07 2001-03-07 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062817A JP2002270570A (en) 2001-03-07 2001-03-07 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002270570A true JP2002270570A (en) 2002-09-20

Family

ID=18921902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062817A Pending JP2002270570A (en) 2001-03-07 2001-03-07 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002270570A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072601A (en) * 2003-08-26 2005-03-17 Texas Instruments Inc Post-etching cleaning method for porous low dielectric constant material
JP2006203027A (en) * 2005-01-21 2006-08-03 National Institute Of Advanced Industrial & Technology Cmp method, cmp apparatus, and manufacturing method of semiconductor device
JP2009530810A (en) * 2006-03-13 2009-08-27 アール・イー・シー・スキャンウェハー・アー・エス Method for individually separating a plurality of wafers from a stack of wafers
CN106654066A (en) * 2017-01-06 2017-05-10 京东方科技集团股份有限公司 Manufacturing method of OLED device
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072601A (en) * 2003-08-26 2005-03-17 Texas Instruments Inc Post-etching cleaning method for porous low dielectric constant material
JP2006203027A (en) * 2005-01-21 2006-08-03 National Institute Of Advanced Industrial & Technology Cmp method, cmp apparatus, and manufacturing method of semiconductor device
JP2009530810A (en) * 2006-03-13 2009-08-27 アール・イー・シー・スキャンウェハー・アー・エス Method for individually separating a plurality of wafers from a stack of wafers
CN106654066A (en) * 2017-01-06 2017-05-10 京东方科技集团股份有限公司 Manufacturing method of OLED device
WO2019156167A1 (en) * 2018-02-09 2019-08-15 清水建設株式会社 Water production method and water production device

Similar Documents

Publication Publication Date Title
US7585777B1 (en) Photoresist strip method for low-k dielectrics
JP6321937B2 (en) Peeling and drying apparatus and method
US6254721B1 (en) Method and apparatus for processing samples
JP2528962B2 (en) Sample processing method and device
US7000621B1 (en) Methods and apparatuses for drying wafer
KR100904105B1 (en) Method of manufacturing semiconductor device
US8034638B1 (en) Treatment of low K films with a silylating agent for damage repair
JPH0547712A (en) Plasma processing method and apparatus therefor
US5200017A (en) Sample processing method and apparatus
JP3303041B2 (en) Prevention of via poisoning by glow discharge induced desorption
Chang et al. Eliminating dielectric degradation of low-k organosilicate glass by trimethylchlorosilane treatment
JP4358563B2 (en) Method for forming low dielectric constant insulating film of semiconductor device
JP2002270570A (en) Semiconductor device and method of manufacturing the same
JPH08186099A (en) Ashing of resist
JPH10163127A (en) Manufacture of semiconductor device
JP2003023072A (en) Manufacturing method for semiconductor device, and manufacturing apparatus for the semiconductor device
WO2004105114A1 (en) Method of forming fluorinated carbon film
JP2764027B2 (en) Sample processing method and apparatus
JP2004259819A (en) Device and method for treating surface of specimen
WO2013125647A1 (en) Semiconductor-device manufacturing method and semiconductor device
JP2003035962A (en) Substrate treatment method and system
JP2005340288A (en) Manufacturing method of semiconductor device
WO2022070835A1 (en) Substrate bonding method and substrate bonding system
JP4018323B2 (en) Ashing method
WO1998001898A1 (en) Rie apparatus