WO1998001898A1 - Rie apparatus - Google Patents

Rie apparatus Download PDF

Info

Publication number
WO1998001898A1
WO1998001898A1 PCT/JP1997/002326 JP9702326W WO9801898A1 WO 1998001898 A1 WO1998001898 A1 WO 1998001898A1 JP 9702326 W JP9702326 W JP 9702326W WO 9801898 A1 WO9801898 A1 WO 9801898A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing chamber
chamber
rie
processing
opening
Prior art date
Application number
PCT/JP1997/002326
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Takahisa Nitta
Original Assignee
Kabushiki Kaisha Ultraclean Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Ultraclean Technology Research Institute filed Critical Kabushiki Kaisha Ultraclean Technology Research Institute
Publication of WO1998001898A1 publication Critical patent/WO1998001898A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a RIE device. More specifically, the present invention relates to an RIE apparatus having a high etching selectivity of a target object with respect to a resist. Background art
  • the conventional method of finely processing an object to be processed on a semiconductor substrate is roughly as follows.
  • the treated body is heated.
  • development and heating and drying are performed.
  • the object to be processed is introduced into a reactive ion etching (RIE) apparatus, and a necessary region is etched.
  • RIE reactive ion etching
  • the resist force off To avoid being etched by plasma is no treatment chamber 0 9 or H 9 0 to etching processing, or, brought No, if oxygen atoms are not present in the processing chamber when plasma is generated.
  • Figure 5 shows a schematic diagram of the current RIE equipment.
  • reference numeral 501 denotes an object to be processed
  • 502 denotes a load chamber for introducing the object to be processed 501
  • 503 denotes a processing chamber for etching the object to be processed 501
  • 504 denotes a processing chamber.
  • First opening / closing means 505: means for preventing metal contamination
  • 506 means for preventing spatter
  • 507 lower electrode
  • 508 upper electrode
  • 509 matching device
  • 510 high frequency Power supply
  • 5 1 1 means for cooling the object 5 1 through the lower electrode 5 0 7
  • 5 1 2 is an insulator
  • 5 1 3 and 5 1 4 are exhaust means
  • 5 1 5 and 5 1 6 is a gas supply means.
  • the processing room 503 is made of aluminum base metal, and its inner wall surface is anodized. A1 is around the two electrodes 507 and 508, and the inner wall of the processing chamber 503 is A1. ⁇ 3 ceramic, and, with a shield made of quartz (S i 0 2)? One has been. A predetermined gas was supplied into the processing chamber 503 by the gas supply means 51 ⁇ , and high-frequency electric power of 13.56 ⁇ m was introduced to the lower electrode 507 to generate plasma. For example, high-frequency power of 200 W, pressure of 30 mTorr, and C as gas. Loading room 502 is S i ⁇
  • the object 501 before being introduced into the load chamber 502 was transported and stored in a clean room with its surface exposed.
  • the gate valve used as the first opening / closing means 504 was heated from outside by a heating means such as a heater.
  • Material to generate a device 0 7 and H 9 0 also inside is widely used.
  • H 9 0 and 0 2 in constructs a device within, for example, to protect the workpiece from metal contamination
  • quartz being used S i 0 9
  • ceramic A 1.0
  • quartz or ceramic When quartz or ceramic is sputtered by plasma, it emits oxygen atoms (0) as its constituent elements, which adversely affects the selectivity between the resist and the object (eg, SiO 2).
  • Registry itself contains an H 9 0 or an organic solvent.
  • the boiling point of the resist dissolved, for example, ethyl resulfate (ECA: Ethlcersolbacetate) is 15; however, the current bakebake after II light and development runs at a lower temperature of 130 ° C. Therefore, H9 ⁇ and organic solvents remain in the resist in large amounts. This residual H 9 % and organic matter have a significant effect on the etching process.
  • the resist becomes glass-shaped, and it is difficult to form an accurate pattern.
  • Material of the workpiece to be etched for example, when Etsu quenching the S i 0 9 film used as an interlayer insulating film, as is clear from the component, 0 2 is produced. Since this occurs during the plasma ⁇ 9 can not be effectively evacuated, it is a factor of selection ratio degradation.
  • An object of the present invention is to provide an RIE apparatus in which no oxygen atoms are present in a processing chamber when plasma is generated. Disclosure of the invention
  • the RIE apparatus of the present invention is an RIE apparatus in which a load chamber for introducing an object to be processed and a processing chamber for etching the object to be processed are connected via a first opening / closing means.
  • Metal contamination prevention means provided along an inner wall
  • spatter prevention means provided along an electrode in the processing chamber, and / or an inner wall of the processing chamber, at least the outermost surface of which does not contain oxygen atoms. It is characterized by.
  • metal contamination prevention means provided along an inner wall of the processing chamber, spatter prevention means provided along an electrode in the processing chamber, and / or an inner wall of the processing chamber have at least: Since the outermost surface is made of a material that does not contain oxygen atoms, metal contamination prevention means, spatter prevention means, and / or plasma generated from the inner wall of the processing chamber into the processing chamber to be etched. 0 to be mixed. However, the amount of 0 can be reduced. As a result, a RIE apparatus having a high selectivity can be obtained.
  • the pretreatment chamber that performs the UV curing process and the heating process on the resist provided on the object to be processed in a gas atmosphere that does not contain at least oxygen atoms includes the second opening and closing. Since it is in contact with the load chamber through the means, it is possible to reduce O 2 and H 20 generated from the resist provided on the object to be processed and the material of the object to be etched. . 25
  • the first or second and the second opening / closing means have a built-in heating mechanism, the amount of reaction by-products generated by the plasma adheres to the opening / closing means. To decrease. As a result, generation of particles can be suppressed, and failure of the opening / closing means can be avoided.
  • the processing chamber has means for exhausting a reaction by-product gas in a space between at least two electrodes or in the vicinity of the space, plasma generated between the electrodes is provided.
  • the anti-by-product gas can be uniformly removed within the electrode surface. As a result, etching with a small in-plane distribution becomes possible.
  • FIG. 1 is a schematic diagram showing an example of a RI device according to the present invention.
  • FIG. 2 is another example of the R I device related to the present invention, and is a schematic diagram when a pretreatment chamber is provided.
  • FIG. 3 is a schematic diagram illustrating a state in which the opening / closing means used in the RI device according to the present invention has a built-in heating mechanism.
  • FIG. 4 is a schematic diagram illustrating a processing chamber provided with a means for exhausting a reaction by-product gas in a space between at least two electrodes or in the vicinity of the space.
  • FIG. 5 is a schematic diagram showing an example of a conventional RI device.
  • Gas supply means that does not contain at least oxygen atoms
  • the RI device according to the present invention has a configuration as shown in FIGS. 1 and 2, for example.
  • Processing room 102 is a chamber made of AI alloy or SUS.
  • the metal contamination prevention means 105 provided along the inner wall of the processing chamber 102, the spatter prevention means 106 or Z provided along the electrodes in the processing chamber, and the inner wall of the processing chamber 102 are at least the outermost surface.
  • the metal contamination prevention means 105, the spatter prevention means 106, and / or the inner wall of the processing chamber 30102 may be made of carbide, nitride, or fluoride itself. Suitable charcoal Examples of the material and nitride include SiC, A1N, SiN, and the like.
  • the first method is to not expose the object to the clean room.
  • a gas that does not contain oxygen atoms gas with a residual moisture of 5 ppb or less
  • This method does not adsorb moisture.
  • a chan- nel having a transport mechanism for transporting a processing object filled with a gas containing at least elemental atoms between the RI III apparatus and the processing apparatus before bringing the processing object into the RI II apparatus. can be directly connected, or a closed box filled with a gas with low residual moisture can be used.
  • the second method is to expose the workpiece to the air in the clean room.
  • the workpiece When introducing the workpiece into the equipment, it has a heating mechanism and a loading chamber or heating that can introduce a gas with low residual moisture.
  • the object to be treated is introduced into the chamber, the temperature is raised to about 2 ⁇ 0 ° C in the chamber, and the water adsorbed on the front and back surfaces of the object is batch-purged using a gas with low residual moisture. This is the method of removing.
  • the metal contamination preventing means 105 provided along the inner wall of the processing chamber 103, the spatter preventing means 106 provided along the electrode in the processing chamber, and / or the inner wall of the processing chamber 103 are at least The surface was formed of a material that does not contain oxygen atoms, such as carbide, nitride, and fluoride. That is, the metal contamination preventing means 105, the spatter preventing means 106, or the inner wall of the processing chamber 103 may be itself a carbide, a nitride, or a fluoride. Moreover, metal contamination prevention means 1 0 5, sputtering evening prevention means 1 0 6, or and the inner wall of the processing chamber 1 0 3, and per se e.g.
  • a pretreatment chamber 201 for performing ⁇ -curing treatment and heat treatment on a resist provided on the object to be treated is provided with a second opening / closing means 20. 4 and connected to the load chamber 202.
  • the object to be treated with a registry in a gas atmosphere containing at least no oxygen atoms is subjected to UV curing. 5 0.
  • a high temperature bake of C was performed.
  • a pump with a large flow rate and a large displacement for example, a mechanical booster pump or a rotary pump with a capacity of 51 Zin to 101 Zm 1 n will be adopted. Further by ⁇ the raw material gas flow rate Te 5 to adjust the A r gas flow rate, a decrease in the relative amount of reaction products 0 0 like generated from the S i 0 o.
  • the reaction product can be quickly exhausted, and the reaction product does not adversely affect the etching.
  • the gate valve used as the opening / closing means 104, 204, 205 usually heats only from the outside of the valve 10. At the same time, the mixture is heated to 80 ° C. or higher, preferably 130 ° C. or higher, to prevent moisture adsorption and suppress reaction product adsorption. Therefore, by heating the inside of the gate valve and heating to the valve valve seat, not only the water adsorbed on the valve can be removed, but also the reaction product does not adhere, and the selectivity can be improved. Rather, it contributes to improving the operation rate of equipment.
  • THMR-iP330 manufactured by Tokyo Ohka Kogyo Co., Ltd. was used.
  • Etching gas 30 scan uses a CF 4 / H?, Such that the etch rate of the S I_ ⁇ 2 film is about 5 0 nm / min, moth Pressure, gas flow rate, and high frequency power applied to the electrodes were appropriately controlled.
  • metal contamination prevention means 105 As for the structure inside the processing room 103, metal contamination prevention means 105, spatter prevention means 106, and the inner wall of the processing room 103 were examined, and the four combinations shown in Table 1 were considered. The amount of H-W and 09 generated in was examined.
  • Processing chamber 1 0 3 Arumai bets treated consist A 1 alloy chamber having an inner wall, among which A 1 2 ⁇ third metal pollution hand stage 1 0 5 and sputter prevention means S i 0 106 was provided.
  • Condition B differs from condition A only in that the inner wall of the processing chamber 103 is SiC.
  • the condition C differs from the condition A only in that the anti-sparging means 106 is set to S i C.
  • Condition D is different from condition A in that the metal contamination prevention means 105, the spatter prevention means 106, and the inner wall of the processing chamber 103 are all SiC.
  • H 2 0 and 0. Is the result of the generation amount and the selection ratio.
  • the results of conditions B to D are normalized by the values obtained in condition A.
  • H 2 0 and 0 2 of the generation amount was determined from the respective molecular weight of 8 and 3 2 results.
  • H in condition A. 0 0 2 generation amount were respectively a 4 X 1 0- 10 A, 2 1 0- 10 A in ion current value. : Table 2)
  • the metal contamination prevention means provided along the inner wall of the processing chamber, the shatter prevention means provided for the electrode in the processing chamber, or the inner wall of the processing chamber are at least the outermost surface.
  • condition D alumite treatment
  • the metal contamination preventing means 105 and the spatter preventing means 106 were both SiC. Other points were the same as in Example 1.
  • a pretreatment chamber for performing a V cure treatment and a heat treatment on the resist provided on the treatment body is prepared.
  • the RIE device (Fig. 2) was used to connect the RIE device with the second opening / closing means.
  • reference numeral 201 denotes a pre-processing chamber
  • reference numeral 202 denotes a load chamber
  • reference numeral 203 denotes a processing chamber
  • reference numeral 205 denotes first opening / closing means
  • reference numeral 204 denotes second opening / closing means
  • reference numeral 206 denotes At least oxygen gas-free gas supply means
  • 207 and 208 are gas supply means
  • 209 to 211 are exhaust means
  • 221 is an object to be processed
  • 222 is a built-in heating system.
  • the stage, 2 2 3 is a window
  • 2 2 4 is a UV light source.
  • the metal contamination preventing means and the spatter preventing means of the processing chamber 203 were both SiC. Further, the processing chamber 2 0 3, the processing method of the load chamber 2 0 2 and pretreatment chamber 2 0 1 inner wall, fluoride passivated - was (A 1 F ./ g F 2 ) treatment. Gate valves were used as the first and second opening / closing means 205 and 204.
  • Condition F is a combination corresponding to the prior art. That is, after the resist was provided on the Si wafer, no heat treatment was performed. The object to be processed 221 was merely passed through the pretreatment chamber 201 under atmospheric pressure.
  • Condition G is as follows: In the pretreatment chamber 201 under atmospheric pressure, a resist was set up on Si ⁇ ⁇ ha. Was.
  • Condition H is different from condition G in that baking is performed at 230 ° C.
  • Condition I the same heat treatment as in Condition H was performed while flowing dry air as a gas containing at least no oxygen atom into a pretreatment chamber under atmospheric pressure.
  • V-curing means that UV light [wavelength 220 to 270 nm, 8 mW / c (250 nm)] is applied to the object 2 21 from the UV light source 2 24 Means irradiation for 15 minutes through 23.
  • baking means to apply heat to the processing body 21 for 15 minutes using a heater built in the stage 222.
  • condition F without ripening treatment
  • a gas containing at least no oxygen atom by introducing a gas containing at least no oxygen atom, the amount of generated 0 2 and ⁇ 20 is reduced compared to condition F, and the selectivity is improved. For the trend / two.
  • reference numeral 310 denotes an outer wall of a gate valve
  • reference numeral 302 denotes a gate valve
  • reference numeral 303 denotes a control rod of a gate valve 302
  • reference numeral 304 denotes a ring
  • reference numeral 304 denotes a gate valve.
  • Reference numeral 303 denotes an internal heater installed on the outer wall of the gate valve.
  • Both the metal contamination prevention means 105 and the spatter prevention means 106 of the processing room I 03 were S i.
  • the processing method of the inner wall of the processing chamber 1 0 3 and the load chamber 1 0 2 were fluoride passivated t A 1 F 9 g F 9 ) process.
  • Condition K is a combination corresponding to the conventional technology.
  • the internal heater 300 and the external heater 310 of the first opening / closing means are all at 0 f ⁇ , and no heating is performed at all.
  • the condition L differs from the condition ⁇ ⁇ only in that the external heater 303 of the first opening / closing means is baked or always ⁇ ⁇ .
  • the setting during baking was 130 ° C, and the setting during etching was 80 ° C.
  • the condition M is different from the condition K in that the internal heater 300 of the first opening / closing means is set to on only during baking.
  • the setting during baking was 130 ° C.
  • the condition N differs from the condition K in that the internal heater 300 of the first opening / closing means is always on.
  • the setting during baking was 130 ° C, and the setting during etching was 80 ° C. This was the same as in Example 1.
  • Table 5 shows the amounts of H 9 ⁇ and 09 generated and the selection ratio under each condition.
  • the results under the conditions L to N are normalized by the values obtained under the condition K.
  • the first switching means 1 0 4 the amount of 0 2 and Eta 2 0 be heated from the outside is not reduced. It was found that the generation of O 2 and ⁇ 20 was reduced and the selectivity was improved by applying heat from the inside. In addition, when the first opening / closing means 104 is heated from the inside, the effect is further enhanced by always on (that is, heating is continued not only during the baking but also during the etching process). Was also confirmed.
  • the reaction products generated by the etching process do not adsorb to the first opening / closing means ⁇ 04, so that the amount of particles generated in the processing chamber is reduced. There was also an action to do. As a result, the advantage that the frequency of occurrence of a failure in the first switching means 104 was reduced was also confirmed.
  • the heat treatment of the object to be processed in the load chamber 102 in the RIE apparatus of FIG. 1 was studied.
  • a lamp heater (not shown) was used as a means for heating the object in the load chamber.
  • no heat treatment was performed in the first opening / closing means 104 and the processing chamber 103.
  • the metal contamination prevention means 105 and the spatter prevention means 106 of the processing room I 03 were both SiC.
  • the processing method for the inner walls of the processing chamber 103 and the load chamber 102 was fluoridation passivation IA 1 F 3 / Mg F) processing.
  • Condition (2) is a combination corresponding to the prior art. That is, this is the case where the object to be processed is not heated at all in the load chamber 102. Specifically, an object to be processed is introduced into the load chamber 102, the pressure in the load chamber 102 is reduced to a level of 10 to 8 Torr, and then the object to be processed is placed in the depressurized 3 ⁇ 4 ⁇ processing room. Was moved.
  • the condition ⁇ is determined by using a lamp heater (not shown) provided in the code chamber 102.
  • Condition Q differs from condition ⁇ in that the treated body is heated for 250 minutes by a lamp heater (not shown) provided in the load chamber 102 for 15 minutes.
  • the processing chamber 103 of the RIE apparatus shown in Fig. 1 was constructed using the DRM (Dipole Ring Magnet) system shown in Fig. 4.
  • the processing chamber shown in FIG. 4 differs from Example 1 in that a means for exhausting a reaction by-product gas is provided in or near the space between at least two electrode poles.
  • reference numeral 401 denotes an upper electrode
  • reference numeral 402 denotes a lower electrode
  • reference numeral 403 denotes a processing body
  • reference numeral 404 denotes a gas-filled vent
  • reference numeral 405 denotes a gas exhaust port
  • reference numeral 406 denotes a die ball.
  • a ring magnet 407 is a gas supply means
  • 408 is an exhaust means
  • 409 is a matching device
  • 410 is a high frequency power supply.
  • the distance d between the upper electrode 401 and the lower electrode 402 was kept at 30 mm or less.
  • the upper electrode 410 was provided with gas exhausting mechanisms 404 and 405.
  • a dipole ring and magnet 406 were provided on the outer periphery of the processing chamber.
  • a pump capable of exhausting a large flow rate for example, 500 liters was used.
  • RIE apparatus in which ( ⁇ or H 20 does not exist or is not brought into a processing chamber for performing an etching process.
  • the selectivity is improved, and it is possible to provide an RIE apparatus that can sufficiently adapt to fine processing with a design rule of 0.2 to 0.3 m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A reactive ion etching (RIE) apparatus which has an etching chamber in which O2 and H2O do not exist or into which O2 and H2O are not brought and, further, in which oxygen ions do not exist when a plasma is generated. The etching selection ratio of an object to be treated against resist is determined. A loading chamber (102) into which an object (101) is introduced is connected to the treatment chamber (103) in which the object (102) is etched through a first opening/closing means (104). At least the outermost surfaces of metal contamination preventing means (105) which is provided along the inner walls of the treatment chamber (103), sputtering preventing means (106) which is provided along electrodes in the treatment chamber (103) or/and the inner wall of the treatment chamber (103) are made of material which does not contain oxygen atoms.

Description

明細書  Specification
R I E装置 技術分野 R IE equipment Technical field
本発明は、 R I E装置に係る。 より詳細には、 レジストに対する被処理体のエッチング 選択比が高い R I E装置に関する。 背景技術  The present invention relates to a RIE device. More specifically, the present invention relates to an RIE apparatus having a high etching selectivity of a target object with respect to a resist. Background art
半導体基板に ί弋表される被処理体を微細加工する従来の方法は、 おおよそ次の通りであ The conventional method of finely processing an object to be processed on a semiconductor substrate is roughly as follows.
■ 。 ■.
まず、 彼処理体にレジス卜を塗布後、 被処理体を加熱する。 次に、—ステツパなどを用い て被処理体の上にパターンを転写した後、 現像 ·加熱乾燥を行う。 さらに、 被処理体を R I E ( React ive Ion Etching) 装置に導入して、 必要な領域のエッチングを行う。 しかしながら、 半導体の集積度が向上し、 例えば K r Fエキシマレーザ露光装置を用い るようなレベル (デザインルール: 0 . 2〜0 . 3 m) 以下の微細加工が必要になるに つれ、 種々の問題点が生じてきている。  First, after applying a resist to the treated body, the treated body is heated. Next, after transferring the pattern onto the object using a stepper or the like, development and heating and drying are performed. Further, the object to be processed is introduced into a reactive ion etching (RIE) apparatus, and a necessary region is etched. However, as the degree of integration of semiconductors increases and, for example, fine processing at a level (design rule: 0.2 to 0.3 m) or less that uses a KrF excimer laser exposure apparatus becomes necessary, Problems are emerging.
R I Eでは、 レジストの載っている領域は全くエッチングせず、 レジストの無い領域の みを選択的にエッチングする必要がある。 ところが、 レジストと、 エッチングされるべき 彼処理体の材料、 例えば層間絶縁膜と して用いる S i 0 2や B P S G (Borophosphosi l icate Glass) との選択比が十分に取れないという問題がある。 In RIE, it is necessary to selectively etch only the area without resist at all, without etching the area with resist. However, the resist and the material of his processed to be etched, for example, selectivity to the S i 0 2 and BPSG used as an interlayer insulating film (Borophosphosi l icate Glass) there is a problem that not enough taken.
従来、 この対策としては、 レジス卜の膜厚を十分に確保する方法力挙げられる。 これに より、 レジス卜がエッチングされても、 レジス卜の下地材料すなわち被処理体の材料がブ ラズマに曝されてエツチングされることを回避することができる。  Conventionally, as a countermeasure for this, there is a method of ensuring a sufficient thickness of the resist. Thus, even if the resist is etched, it is possible to prevent the base material of the resist, that is, the material of the object to be processed from being exposed to plasma and etched.
しかしながら、 半導体の集積度をさらに向上するため、 エキシマレーザステツパを用い ることが必須となりつつある。 従来に比べて、 エキシマレーザステツバの焦点深度は非常 に浅く (0 . 5〜0 . 7 i m) なるため、 レジスト膜厚も同程度の厚さにまで薄膜化する 必要がでてきた。 ところ力 \ レジスト膜厚を薄く した場合、 前述の通り、 レジス卜と被処 理体の材料 (例えば S i 02) との選択比が十分確保できない。 したがって、 エキシマレー ザステツパを導入することが難しい状況にある。 すなわち、 さらなる微細加工ができない という問題が顕在化しつつある。 However, in order to further improve the degree of integration of semiconductors, it is becoming essential to use an excimer laser stepper. Since the depth of focus of the excimer laser stepper is very shallow (0.5-0.7 im), it is necessary to reduce the resist film thickness to about the same thickness. However, when the thickness of the resist is reduced, the selectivity between the resist and the material of the object to be processed (for example, SiO 2 ) cannot be sufficiently secured as described above. Therefore, it is difficult to introduce an excimer laser stepper. In other words, further fine processing is not possible The problem is becoming apparent.
ところで、 酸素プラズマを利用したアツシング技術から明らかなように、 レジスト力フ: ラズマでエツチングされないようにするためには、 エツチング処理する処理室内に 09や H 90が存在しない、 又は、 持ち込まれない、 さらにプラズマ生成時に酸素原子が処理室内 に存在しないようにすれば良 L、。 Incidentally, as it is clear from Atsushingu technique utilizing oxygen plasma, the resist force off: To avoid being etched by plasma is no treatment chamber 0 9 or H 9 0 to etching processing, or, brought No, if oxygen atoms are not present in the processing chamber when plasma is generated.
図 5に、 現状の R I E装置の概略図を示す。 図 5において、 5 0 1は被処理体、 5 0 2 は被処理体 5 0 1を導入するロード室、 5 0 3は被処理体 5 0 1をエッチング処理する処 理室、 5 0 4は第 1の開閉手段、 5 0 5はメタル汚染防止手段、 5 0 6はスパッタ防止手 段、 5 0 7は下部電極、 5 0 8は上部電極、 5 0 9は整合器、 5 1 0は高周波電源、 5 1 1は下部電極 5 0 7を介して被処理体 5 0 1を冷却する手段、 5 1 2は絶縁体、 .5 1 3、 5 1 4は排気手段、 5 1 5、 5 1 6はガス供給手段である。  Figure 5 shows a schematic diagram of the current RIE equipment. In FIG. 5, reference numeral 501 denotes an object to be processed, 502 denotes a load chamber for introducing the object to be processed 501, 503 denotes a processing chamber for etching the object to be processed 501, and 504 denotes a processing chamber. First opening / closing means, 505: means for preventing metal contamination, 506: means for preventing spatter, 507: lower electrode, 508: upper electrode, 509: matching device, 510: high frequency Power supply, 5 1 1 means for cooling the object 5 1 through the lower electrode 5 0 7, 5 1 2 is an insulator,. 5 1 3 and 5 1 4 are exhaust means, 5 1 5 and 5 1 6 is a gas supply means.
¾理室 5 0 3はアルミ二ゥム台金製で、 その内壁表面にはアルマイ ト処理をしている。 2つの電極 5 0 7 , 5 0 8のまわり、 及び、 処理室 5 0 3の内壁は、 それぞれ A 1。〇3セ ラミック、 及び、 石英 (S i 02) からなるシールドで? 1われている。 ガス供給手段 5 1 δ により所定のガスを処理室 5 0 3内に供給し、 下部電極 5 0 7に 1 3 . 5 6 ΜΗ ζの高周 波電力を導入して、 プラズマを生起させた。 例えば、'高周波電力 2 0 0 W、 圧力 3 0 m T o r r、 ガスとしては C た。 ロード室 5 0 2は、 S iゥ
Figure imgf000004_0001
The processing room 503 is made of aluminum base metal, and its inner wall surface is anodized. A1 is around the two electrodes 507 and 508, and the inner wall of the processing chamber 503 is A1. 〇 3 ceramic, and, with a shield made of quartz (S i 0 2)? One has been. A predetermined gas was supplied into the processing chamber 503 by the gas supply means 51δ, and high-frequency electric power of 13.56 μm was introduced to the lower electrode 507 to generate plasma. For example, high-frequency power of 200 W, pressure of 30 mTorr, and C as gas. Loading room 502 is S i ゥ
Figure imgf000004_0001
ェハからなる被処理体 5 0 1の出し入れにのみ使用し、 加熱処理などは行わなかった。 ロード室 5 0 2に導入する前の被処理体 5 0 1は、 その表面を露出したままクリーンルー ム内を搬送、 保管させていた。 第 1の開閉手段 5 0 4として用いたゲートバルブは、 その 外部からヒータなどの加熱手段により加熱していた。  It was used only for loading and unloading the object 501 to be processed, and was not subjected to any heat treatment. The object 501 before being introduced into the load chamber 502 was transported and stored in a clean room with its surface exposed. The gate valve used as the first opening / closing means 504 was heated from outside by a heating means such as a heater.
し力、し、 上述した現状の装置 (図 5 ) では、 以下に示すような問題があった。  However, the current equipment described above (Fig. 5) has the following problems.
( 1 ) エッチング処理する被処理体に吸着した水分の問題  (1) Problem of moisture adsorbed on the object to be etched
被処理体の洗浄を十分に行ったとしても、 クリーンルームの空気に被処理体を曝すだけ で、 3 x 1 0 16分子/ c m の水分が被処理体の表面に吸着してしまう。 被処理体が 2 0 O mm 0のゥヱハ基板の場合を考えると、 1 . 9 x 〖 0 19個もの水分が装置内に持ち 込まれることになる。 Even if the object to be processed is sufficiently cleaned, 3 × 10 16 molecules / cm of water will be adsorbed on the surface of the object only by exposing the object to air in a clean room. When the target object is considered the case of 2 0 Uweha substrate O mm 0, so that the 1. 9 x 〖0. nineteen moisture is incorporated have in the device.
( 2 ) 処理室の内部にある構成物から発生する 02や H 20の問題 (2) 0 generated from the composition in the interior of the processing chamber 2 and H 2 0 in question
装置内部にも 07や H 90を発生させる材料が多く使用されている。 装置内部にある構成 物で H 90や 02を含有しているものとしては、 例えば、 被処理体をメタル汚染から保護す るため、 被処理体を載置するステージのスパックを防止するため、 などの目的で使用され ている石英 (S i 09) やセラミック (A 1。0 ) が挙げられる。 石英やセラミックはブラ ズマでスパッタされると、 その構成元素である酸素原子 (0 ) を放出するため、 レジスト と被処理体 (例えば S i O ) の選択比に悪影響を及ぼす。 Material to generate a device 0 7 and H 9 0 also inside is widely used. As those containing H 9 0 and 0 2 in constructs a device within, for example, to protect the workpiece from metal contamination Because, in order to prevent the packs of a stage that mounts the object, quartz being used (S i 0 9) or ceramic (A 1.0) it is mentioned for the purpose of. When quartz or ceramic is sputtered by plasma, it emits oxygen atoms (0) as its constituent elements, which adversely affects the selectivity between the resist and the object (eg, SiO 2).
( 3 ) 処理室の内壁から発生する 02や H20の問題 (3) generated from the inner wall of the processing chamber 0 2 and H 2 0 in question
¾a理室の内壁を構成する材料にアルミニウム合金を使用した場合には、 処理室内の表面 にアルマイ ト処理を施している場合が多い。 アルマイ ト処理を施すと、 処理室内の表面の 成分は A 1 θ ο · n Hり〇となる。 この表面がプラズマでスパッ夕されることによって、 (^や H 0が処理室内に放出されてしまう。  ¾a When an aluminum alloy is used as the material for the inner wall of the treatment room, the surface inside the treatment room is often subjected to alumite treatment. After anodizing, the surface components in the processing chamber become A1θο · nH. When this surface is sputtered by the plasma, (^ and H 0 are released into the processing chamber.
( 4 ) 被処理体上に設けたレジストから発生する H90や有機物の問題 (4) H 9 0 and organic problems arising from the resist provided on the target object
レジス ト自体も H 90や有機溶剤を含有している。 レジストを溶かしている、 えばェチ レセルファセテ一ト ( E C A : Ethlcersolbacetate) の沸点は 1 5 であるが、 現状の II光 ·現像後のボス卜べークはそれより低い 1 3 0 °Cで行われており、 H 9〇や有機溶剤は 大量にレジスト内部に残留してしまう。 この残留 H9〇や有機物が、 エッチングプロセスに 大きな影響を及ぼしている。 Registry itself contains an H 9 0 or an organic solvent. The boiling point of the resist dissolved, for example, ethyl resulfate (ECA: Ethlcersolbacetate) is 15; however, the current bakebake after II light and development runs at a lower temperature of 130 ° C. Therefore, H9〇 and organic solvents remain in the resist in large amounts. This residual H 9 % and organic matter have a significant effect on the etching process.
しかしながら、 温度を 1 3 (TC以上に上げてポストべークを行うと、 レジストが蒲鋅形 状になってしまい、 正確なパターンの形成が困難となる。  However, if the temperature is raised to 13 (TC or more and post-baking is performed), the resist becomes glass-shaped, and it is difficult to form an accurate pattern.
( 5 ) エッチングされるべき被処理体の材料から発生する 02 H 90の問題 (5) The problem of O 2 H 90 generated from the material of the object to be etched
エッチングされるべき被処理体の材料、 例えば層間絶縁膜として用いる S i 09膜をエツ チングすると、 その成分からも明らかなように、 02が発生する。 このプラズマ中に発生し た〇9を効果的に排気できないため、 選択比劣化の要因となっている。 Material of the workpiece to be etched, for example, when Etsu quenching the S i 0 9 film used as an interlayer insulating film, as is clear from the component, 0 2 is produced. Since this occurs during the plasma 〇 9 can not be effectively evacuated, it is a factor of selection ratio degradation.
( 6 ) 処理室とロード室との間などに設けた開閉手段から発生する 02や H90の問題 処理室の内壁に吸着している水分を除去するために、 通常は R I E装置全体の加熱(6) in order to remove moisture adsorbed to the inner wall of the 0 2 and H 9 0 issue processing chamber for generating the closing means provided such between the processing chamber and the load chamber, usually the entire RIE apparatus heating
(ベーキング) を行っている。 しかしながら、 例えば、 処理室とロード室との間を区切つ ている開閉手段 (冽えばゲートバルブ) に対しては、 その構造上の理由からベーキングを ίτうことができず、 Η90の発生原因となっていた。 また、 プラズマによってチャンバ内壁 の温度は上昇しているにもかかわらず、 ゲートバルブ付近の温度は室温のままであるた め、 反応副生成物がゲートバルブに付着し、 パーティクルの発生原因、 あるいはゲートバ ルブの故障の原因となっていた。 (Baking). However, for example, for the processing chamber and separated one by which opening and closing means between the load chamber (Kiyoshie If gate valve) can not ίτ Ukoto baking reasons its structure, Eta 9 0 generation Was causing it. Also, despite the fact that the temperature of the inner wall of the chamber has risen due to the plasma, the temperature near the gate valve remains at room temperature, so that reaction by-products adhere to the gate valve and cause the generation of particles or the gate valve. Lube was causing a failure.
本発明は、 エッチング処理する処理室内に 02や Η20が存在しない、 又は、 持ち込まれ ない、 さらにプラズマ生成時に酸素原子が処理室内に存在しない、 R I E装置を提供する ことを目的とする。 発明の開示 In the present invention, 0 2 or Η 20 does not exist or is brought into a processing chamber for performing an etching process. An object of the present invention is to provide an RIE apparatus in which no oxygen atoms are present in a processing chamber when plasma is generated. Disclosure of the invention
5 本発明の R I E装置は、 被処理体を導入するロード室と前記被処理体をエッチング処理 する処理室とが、 第 1の開閉手段を介して接続されてなる R I E装置において、 前記処理 室の内壁に沿って設けたメタル汚染防止手段、 前記処理室内の電極に沿って設けたスパッ 夕防止手段、 又は/及び、 前記処理室の内壁は、 少なくとも最表面が酸素原子を含まない 材料であることを特徴とする。  5 The RIE apparatus of the present invention is an RIE apparatus in which a load chamber for introducing an object to be processed and a processing chamber for etching the object to be processed are connected via a first opening / closing means. Metal contamination prevention means provided along an inner wall, spatter prevention means provided along an electrode in the processing chamber, and / or an inner wall of the processing chamber, at least the outermost surface of which does not contain oxygen atoms. It is characterized by.
10  Ten
作用  Action
以下では、 本発明に ί系る各請求項の作用に関して説明する。 .  Hereinafter, the operation of each claim related to the present invention will be described. .
請求項 1に係る発明では、 前記処理室の内壁に沿って設けたメタル汚染防止手段、 前記 処理室内の電極に沿って設けたスパッタ防止手段、 又は/及び、 前記処理室の内壁は、 少 なくとも最表面が酸素原子を含まない材料としたことにより、 メタル汚染防止手段、 スパ ッタ防止手段、 又はノ及び、 前記処理室の内壁から、 エッチング処理する処理室内に生起 されたプラズマの中に混入する 0。や Ηり 0の量を低減することができる。 その結果、 傻れ た選択比を有する R I E装置が得られる。  In the invention according to claim 1, metal contamination prevention means provided along an inner wall of the processing chamber, spatter prevention means provided along an electrode in the processing chamber, and / or an inner wall of the processing chamber have at least: Since the outermost surface is made of a material that does not contain oxygen atoms, metal contamination prevention means, spatter prevention means, and / or plasma generated from the inner wall of the processing chamber into the processing chamber to be etched. 0 to be mixed. However, the amount of 0 can be reduced. As a result, a RIE apparatus having a high selectivity can be obtained.
請求項 2に係る発明では、 前記処理室の内壁表面にフッ化不動態処理をした材料を用い 20たため、 処理室の内壁から発生する 0。や H。0を低減できる。  In the invention according to claim 2, since the material subjected to the fluoridation passivation treatment is used for the inner wall surface of the processing chamber, it is generated from the inner wall of the processing chamber. And H. 0 can be reduced.
請求項 3に係る発明では、 少なくとも酸素原子を含まないガス雰囲気中で、 前記被処理 体上に設けたレジス トに対して U Vキュァ処理及び加熱処理を施す前処理室が、 第 2の開 閉手段を介して前記ロード室に接铳されているため、 被処理体上に設けたレジス ト、 及 び、 エッチングされるべき被処理体の材料、 から発生する 02や H20を低減できる。 25 請求項 4に ί系る発明では、 前記第 1又は Ζ及び前記第 2の開閉手段が加熱機構を内蔵し ているため、 プラズマで発生した反応副生成物が開閉手段に付着する量が大幅に減少す る。 その結果、 パーティクルの発生が抑制でき、 かつ、 開閉手段の故障が回避できる。 請求項 5に係る発明では、 前記ロード室又は 及び前記処理室が、 前記被処理体を加熱 処理する手段を有することにより、 被処理体をエッチングする前に、 彼処理体から ο 2や 30 Η90を除去でき、 また彼処理体に吸着した Η 20が処理室内に持ち込まれることがなく、 さらに安定なエツチング処理が可能となる。 In the invention according to claim 3, the pretreatment chamber that performs the UV curing process and the heating process on the resist provided on the object to be processed in a gas atmosphere that does not contain at least oxygen atoms includes the second opening and closing. Since it is in contact with the load chamber through the means, it is possible to reduce O 2 and H 20 generated from the resist provided on the object to be processed and the material of the object to be etched. . 25 In the invention according to claim 4, since the first or second and the second opening / closing means have a built-in heating mechanism, the amount of reaction by-products generated by the plasma adheres to the opening / closing means. To decrease. As a result, generation of particles can be suppressed, and failure of the opening / closing means can be avoided. In the invention according to claim 5, wherein the load chamber or and the processing chamber, wherein by having a means for heating the object to be processed, before etching the workpiece, from his processed o 2 and 30 Eta 90 can be removed, and Η 20 adsorbed on the processing body is not brought into the processing chamber. Further, stable etching processing can be performed.
請求項 6に ί系る発明では、 前記処理室は、 少なくとも 2つの電極の間の空間又は前記空 間の近傍に、 反応副生成物ガスを排気する手段を有するため、 電極間に生起したプラズマ の反 ^副生成物ガスを、 電極面内において均一に除去することができる。 その結果、 面 内分布の小さなエッチングが可能となる。 図面の簡単な説明  In the invention according to claim 6, since the processing chamber has means for exhausting a reaction by-product gas in a space between at least two electrodes or in the vicinity of the space, plasma generated between the electrodes is provided. The anti-by-product gas can be uniformly removed within the electrode surface. As a result, etching with a small in-plane distribution becomes possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る R I Ε装置の一例を示す概略図である。  FIG. 1 is a schematic diagram showing an example of a RI device according to the present invention.
図 2は、 本発明に ί系る R I Ε装置の他の一例であり、 前処理室を設けた場合の概略図で ある。  FIG. 2 is another example of the R I device related to the present invention, and is a schematic diagram when a pretreatment chamber is provided.
図 3は、 本発明に^る R I Ε装置で用いる開閉手段が、 加熱機構を内蔵した状態を説 明する概略図である。  FIG. 3 is a schematic diagram illustrating a state in which the opening / closing means used in the RI device according to the present invention has a built-in heating mechanism.
図 4は、 少なくとも 2つの電極の間の空間又は前記空間の近傍に、 反応副生成物ガスを 排気する手段を設けた処理室を説明する概略図である。  FIG. 4 is a schematic diagram illustrating a processing chamber provided with a means for exhausting a reaction by-product gas in a space between at least two electrodes or in the vicinity of the space.
図 5は、 ¾来の R I Ε装置の一例を示す概略図である。  FIG. 5 is a schematic diagram showing an example of a conventional RI device.
(苻号の説明)  (Explanation of Shingo)
1 0 1 彼処理体、  1 0 1 He processing body,
1 02 ロード室、  1 02 Road room,
1 03 ¾理室、  1 03 Processing room,
1 04 第 1の開閉手段、  1 04 First opening and closing means,
1 05 メ タル汚染防止手段、  1 05 Metal contamination prevention measures,
1 06 スパッタ防止手段、  1 06 Spatter prevention means,
1 07 下部電極、  1 07 Lower electrode,
1 08 上部電極、  1 08 Top electrode,
1 09 整合器、  1 09 Matching device,
1 1 0 高周波電源、  1 1 0 High frequency power supply,
1 1 1 冷却手段、  1 1 1 cooling means,
1 1 2 铯縁体、  1 1 2 体
1 1 3、 1 1 4 排気手段、  1 1 3, 1 1 4 exhaust means,
1 1 5, 1 1 6 ガス供給手段、 2 0 1 前処理室、 1 1 5, 1 1 6 Gas supply means, 2 0 1 Pretreatment chamber,
20 2 ロード室、  20 2 Load room,
2 03 ¾理室、  2 03 Processing room,
2 0 第 1の開閉手段、 20 first opening and closing means,
2 ϋ δ 第 2の開閉手段、 2 ϋ δ second opening / closing means,
2 06 少なくとも酸素原子を含まないガス供給手段、 2 06 Gas supply means that does not contain at least oxygen atoms,
2 07、 2 08はガス供給手段、 2 07 and 2 08 are gas supply means,
2 09、 2 1 0、 2 1 1 排気手段、  2 09, 2 1 0, 2 1 1 Exhaust means,
2 2 1 彼処理体、 2 2 1 He body,
2 22 加熱系を内蔵したステージ、 2 22 Stage with built-in heating system,
9一 o一、  9 one o one,
2 2 4 UV光源、  2 2 4 UV light source,
30 1 ゲートバルブ外壁、  30 1 Gate valve outer wall,
302 ί土切弁、 302 ί
3 03 制御棒、 3 03 control rod,
304 0リンク"、  304 0 link ",
305 内部ヒータ、 305 internal heater,
306 外部ヒータ、  306 external heater,
4 0 1 上部電極、  4 0 1 Upper electrode,
4 02 下部電極、 4 02 Lower electrode,
403 被処理体、  403 object,
4 04 ガス給気口、 4 04 Gas inlet,
4 05 ガス排気口、 4 05 Gas exhaust,
406 ダイポールリング ·マグネッ ト、  406 dipole ringmagnet,
40 7 ガス供給手段、 40 7 Gas supply means,
408 排気手段、  408 exhaust means,
4 09 整合器、  4 09 Matching device,
4 1 0 高周波電源、  4 1 0 High frequency power supply,
50 1 彼処理体、  50 1 He processing body,
502 ロード室、 503 処理室、 502 loading room, 503 processing room,
50 第 1の開閉手段、  50 first opening and closing means,
505 メタル汚染防止手段、  505 Metal pollution prevention measures,
506 スパッタ防止手段、  506 anti-spatter means,
δ 507 下部電極、  δ 507 lower electrode,
508 上部電極、  508 top electrode,
509 整合器、  509 matcher,
5 1 0 高周波電源、  5 1 0 High frequency power supply,
5 1 1 冷却手段、  5 1 1 cooling means,
10 5 1 2 絶縁体、 10 5 1 2 Insulator,
5 1 3、 5 1 4 排気手段、  5 1 3, 5 1 4 exhaust means,
5 1 5、 5 1 6 カス供給手段。 発明を実施するための最良の形態  5 15 and 5 16 Waste supply means. BEST MODE FOR CARRYING OUT THE INVENTION
15 以下、 図面を参照して本発明の実施態様例を説明する。 15 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明に ί系る R I Ε装置は、 例えば図 1及び図 2に示すような構成からなる。  The RI device according to the present invention has a configuration as shown in FIGS. 1 and 2, for example.
図 1において、 1 0 1は彼処理体、 1 02は被処理体 1 0 1を導入するロード室、 1 03は被処理体 1 0 1をエッチング処理する処理室、 1 04は第 1の開閉手段、 1 05 はメ タル汚染防止手段、 1 06はスパッタ防止手段、 1 07は下部電極、 1 08は上部電 20極、 1 09は整合器、 1 1 0は高周波電源、 1 1 1は下部電極 1 06を介して被処理体 1 0 1を冷却する手段、 1 1 2は絶縁体、 1 1 3、 1 1 4は排気手段、 1 1 5、 1 1 6は ガス 給手段である。  In FIG. 1, reference numeral 101 denotes a processing object, reference numeral 102 denotes a load chamber for introducing the processing object 101, reference numeral 103 denotes a processing chamber for etching the processing object 101, and reference numeral 104 denotes a first opening / closing unit. Means, 105 is metal contamination prevention means, 106 is spatter prevention means, 107 is lower electrode, 108 is upper electrode 20 poles, 109 is matching box, 110 is high frequency power supply, 1 1 1 is lower Means for cooling the object to be processed 101 through the electrode 106, 112 is an insulator, 113, 114 are exhaust means, and 115, 116 are gas supply means.
図 2の装置は、 前処理室 20 1を介して、 ロード室 202へ被処理体 22 1を導入する 点が図 1の装置と異なる。  The apparatus shown in FIG. 2 differs from the apparatus shown in FIG. 1 in that an object to be processed 221 is introduced into a load chamber 202 via a pretreatment chamber 201.
25 ½理室 1 02は、 A I合金製または S US製のチャンバである。 25 Processing room 102 is a chamber made of AI alloy or SUS.
½理室 1 02の内壁に沿って設けたメタル汚染防止手段 105、 処理室内の電極に沿つ て設けたスパッタ防止手段 1 06、 又は Z及び、 処理室 1 02の内壁は、 少なくとも最表 面が酸素原子を含まない材料、 例えば炭化物、 窒化物、 フッ化物で形成した。  The metal contamination prevention means 105 provided along the inner wall of the processing chamber 102, the spatter prevention means 106 or Z provided along the electrodes in the processing chamber, and the inner wall of the processing chamber 102 are at least the outermost surface. Was formed of a material not containing an oxygen atom, for example, carbide, nitride, or fluoride.
すなわち、 メタル汚染防止手段 1 05、 スパッタ防止手段 1 06、 又は 及び、 処理室 30 1 02の内壁は、 それ自体が炭化物、 窒化物、 フッ化物であっても構わない。 好適な炭ィヒ 物、 窒化物として 、 S i C、 A 1 N、 S i N等が挙げられる。 That is, the metal contamination prevention means 105, the spatter prevention means 106, and / or the inner wall of the processing chamber 30102 may be made of carbide, nitride, or fluoride itself. Suitable charcoal Examples of the material and nitride include SiC, A1N, SiN, and the like.
また、 被処理体 1 0 1の上に設けたレジスト (不図示) と、 エッチングされるべき被処 理体 1 0 1の材料 (^えば S i O ) の選択比を上げるため、 次のような対策を施してあ 。  In order to increase the selectivity between the resist (not shown) provided on the object 101 and the material of the object 101 to be etched (for example, SiO 2), We have taken various measures.
5 R I E装置の外部から、 処理室 1 0 2内に〇。や H 2 0が持ち込まれないようにするた め、 次の 2通りの手段を施した。 5 From the outside of the RIE equipment into the processing chamber 102. Because and H 2 0 is to prevent brought, subjected to means of the following two.
Γブロセスで使用する各種ガスに残留している H 20や 09を防ぐため、 使用する各種ガ スの高純度化 (不純物濃度 5 p p b以下) を図った。 また、 外部リークが無くかつ内部に 有機物を使用しておらず、 また接ガス部は C r。03不動態処理を行ったガス系を用いた。 0この対策により、 っス洪袷手段 I 1 5、 1 1 6からの Η 20や 0。の供給はなくなる。To prevent H 2 0 and 0 9 remaining in the various gases used in Γ process', aimed at purity of various gases to be used (impurity concentration 5 ppb or less). In addition, there is no external leakage, no organic matter is used inside, and the gas contact part is Cr. 0 3 using a gas system of performing a passivation process. 0 By this measure, we will be able to obtain 20 or 0 from the measures I 15 and 1 16. Supply will disappear.
:被処理体に吸着して持ち込まれるのを回避する方法として、 2通りの方法を実施し 第 1の方法は、 ^処理体をクリーンルームに曝さない方法である。 彼処理体を、 少なく とも酸素原子を含まないガス (残留水分が 5 p p b以下のガス) 、 例えば N 9、 A r、 乾燥 空気の中に保管し、 輸送することにより、 彼処理体の表面に水分を吸着させない方法であ る。 具体的には、 R I Ε装置と、 R I Ε装置に被処理体を持ってくる前のプロセス装置と 間を、 少なくとも 素原子を含まないガスで満たされた彼処理体の搬送機構を有するチヤ ンハで直結させる方法、 あるいは残留水分の少ない気体で中が満たされた密閉型の箱を使 用する方法が挙けられる。 : Two methods are implemented to avoid being adsorbed and brought into the object to be processed. The first method is to not expose the object to the clean room. By storing and transporting the treated material in a gas that does not contain oxygen atoms (gas with a residual moisture of 5 ppb or less), for example, N 9 , Ar, dry air, and transports the treated material, This method does not adsorb moisture. Specifically, a chan- nel having a transport mechanism for transporting a processing object filled with a gas containing at least elemental atoms between the RI III apparatus and the processing apparatus before bringing the processing object into the RI II apparatus. Can be directly connected, or a closed box filled with a gas with low residual moisture can be used.
20 第 2の方法は、 クリーンルームの空気に被処理体を曝す方法だが、 被処理体を装置内部 に導入する際、 加熱機構を備え、 かつ、 残留水分の少ない気体を導入できるローデイング チャンバもしくはヒーティ ングチャンバに被処理体を導入し、 そのチヤンバ内で温度を 2 δ 0 °C程度まで上昇させ、 彼処理体の表面 ·裏面に吸着した水分を、 残留水分の少ない 気体を用いて回分パージすることにより、 除去する方法である。  20 The second method is to expose the workpiece to the air in the clean room. When introducing the workpiece into the equipment, it has a heating mechanism and a loading chamber or heating that can introduce a gas with low residual moisture. The object to be treated is introduced into the chamber, the temperature is raised to about 2 δ0 ° C in the chamber, and the water adsorbed on the front and back surfaces of the object is batch-purged using a gas with low residual moisture. This is the method of removing.
25 したがって、 被処理体をクリーンルーム中に曝すことなく、 少なくとも酸素原子を含ま ないガス中で保管 ·輸送することにより、 被処理体の表面及び裏面に水分が吸着すること はなくなるため、 ¾処理体に吸着した水分が R I E装置内に持ち込まれることはなくな る。 また、 クリーンルーム中に被処理体を曝したとしても、 ローデイングチャンバやヒー ティングチャンパで、 被処理体に吸着した水分を除去できるので、 被処理体に吸着した水 30分が R I E装置に待ち込まれることがない。 R I E装置の内部、 すなわち処理室 1 0 3の内部に存在する H2〇や 02等が、 プラズマ 中に持ち込まれないようにするため、 装置の構成材料、 被処理体、 及び、 被処理体上のレ ジス卜に対して、 次の 3通りの手段を施した。 25 Therefore, by storing and transporting the object in a gas that does not contain oxygen atoms at least without exposing the object in a clean room, moisture will not be adsorbed on the front and back surfaces of the object. The water adsorbed on the RIE equipment will not be brought into the RIE equipment. Even if the object is exposed in the clean room, the water adsorbed on the object can be removed in the loading chamber and heating champer, so 30 minutes of water adsorbed on the object waits in the RIE equipment. Never be. In order to prevent H 2 〇 and O 2 inside the RIE equipment, that is, inside the processing chamber 103, from being brought into the plasma, the constituent materials of the equipment, the object to be processed, and the object to be processed The following three measures were applied to the above registry.
処理室 1 0 3の内壁に沿って設けたメタル汚染防止手段 1 0 5、 処理室内の電極に沿 つて設けたスパッタ防止手段 1 0 6、 又は 及び、 処理室 1 0 3の内壁は、 少なくとも最 表面が酸素原子を含まない材料、 例えば炭化物、 窒化物、 フッ化物で形成した。 すなわ ち、 メタル汚染防止手段 1 0 5、 スパッ夕防止手段 1 0 6、 又はノ及び、 処理室 1 0 3の 内壁は、 それ自体が炭化物、 窒化物、 フッ化物であっても構わない。 また、 メタル汚染防 止手段 1 0 5、 スパッ夕防止手段 1 0 6、 又は 及び、 処理室 1 0 3の内壁は、 それ自体 が例えば Aし 703や S i 0。であっても、 その最表面が酸素原子を含まない材料であれば良 い '干適な炭化物、 窒化物、 フッ化物としては、 S i C、 A 1 .\\ S i ·\、 A 1 F QZ .Vl g F X i F 2、 F e F 2等が挙げられる。 The metal contamination preventing means 105 provided along the inner wall of the processing chamber 103, the spatter preventing means 106 provided along the electrode in the processing chamber, and / or the inner wall of the processing chamber 103 are at least The surface was formed of a material that does not contain oxygen atoms, such as carbide, nitride, and fluoride. That is, the metal contamination preventing means 105, the spatter preventing means 106, or the inner wall of the processing chamber 103 may be itself a carbide, a nitride, or a fluoride. Moreover, metal contamination prevention means 1 0 5, sputtering evening prevention means 1 0 6, or and the inner wall of the processing chamber 1 0 3, and per se e.g. A 7 0 3 and S i 0. Even if the outermost surface is a material that does not contain oxygen atoms, it is good to use suitable carbides, nitrides, and fluorides as S i C, A 1. \\ S i · \, A 1 F Q Z .Vl g FX i F 2, F e F 2 and the like.
Ϊ処理室 1 0 3として用いるチャンバ自体の構成材料には、 アルマイ ト処理を施した A 1台金は使用せず、 フ 'ソ化不動態処理を施した材料を用いた。 チヤンバ自体の材質が A 1台金の場合には A 1 F3ZM g F2、 i F。等、 チャンバ自体の材質が Sじ Sの場合に は F e F 2等、 の酸素原子 (0 ) を含まない材料を使用した。 (4) As the constituent material of the chamber itself used as the processing chamber 103, alumite-treated A1 base metal was not used, and a material subjected to fluoridation passivation treatment was used. A 1 F 3 ZM g F 2 , i F when the chamber material itself is A 1 base metal. Etc., when the material of the chamber itself is S Ji S using materials that do not contain F e F 2, etc., an oxygen atom (0).
^少なくとも酸素原子を含まないガス雰囲気中で、 前記被処理体上に設けたレジス卜に 対してじ λ—キユア処理及び加熱処理を施す前処理室 2 0 1が、 第 2の開閉手段 2 0 4を介 してロード室 2 0 2に接続して設けた。 少なくとも酸素原子を含まないガス 囲気中で被 処理体に対して U Vキュアを行った後、 少なくとも酸素原子を含まないガス雰囲気中でレ ジス 卜のついた被処理体に対して 2 1 0 - 2 5 0。Cの高温べークを行った。 この一連の処 理を斤うことにより、 レジス卜が変形すること無くレジスト中の水分あるいは有機溶剤が 完全に除去されるので、 〇2や有機溶剤がチャンバ内に放出されることなく、 正確なエッチ ングが可食 になる。 ^ In a gas atmosphere containing at least no oxygen atoms, a pretreatment chamber 201 for performing λ-curing treatment and heat treatment on a resist provided on the object to be treated is provided with a second opening / closing means 20. 4 and connected to the load chamber 202. After subjecting the object to be treated to UV curing in an atmosphere containing at least oxygen atoms, the object to be treated with a registry in a gas atmosphere containing at least no oxygen atoms is subjected to UV curing. 5 0. A high temperature bake of C was performed. By intends catty this series of processing, since the water or organic solvent in without resist the register Bok is deformed is completely removed, without 〇 2 or an organic solvent is released into the chamber, the precise Etching becomes edible.
S i 09をエッチング処理することで、 処理室 1 0 3の内部に生じた 0。等の反応生成物 を効果的に素早く除去するために、 以下の手段を施した。 By etching the Si 09 , 0 was generated inside the processing chamber 103. The following measures were taken to effectively and quickly remove reaction products such as.
第 1には、 プロセス空間を出来るだけ狭くする必要があり、 そのために平行平板型ブラ ズマ装置で、 両電極間隔をできるだけ抉くし、 さらに基板に照射するイオンエネルギを小 さくするために電極間に水平磁場を導入した D RiM (Dipole Ring Magnet) 方式を採用し た。 第 2には、 上部電極に排気口を設けてそこからも排気することで、 より効果的に反応副 生成物を除去することができる。 First, it is necessary to make the process space as narrow as possible. For this reason, a parallel plate type plasma device is used to make the gap between both electrodes as small as possible, and to reduce the ion energy applied to the substrate. A D RiM (Dipole Ring Magnet) system with a horizontal magnetic field was adopted. Second, by providing an exhaust port in the upper electrode and exhausting air therefrom, reaction by-products can be more effectively removed.
第 3には、 大流量 ·大排気量のポンプ、 例えば 5万 1 Zm i n〜 1 0万 1 Zm 1 nのメ 力二カルブースタ一ポンプやロータリ一ポンプを採用する。 さらに A rガス流量を調節し 5て原料ガス流量を增加させることにより、 S i 0oから発生した 00等の反応生成物の相対 量を減少させる。 Thirdly, a pump with a large flow rate and a large displacement, for example, a mechanical booster pump or a rotary pump with a capacity of 51 Zin to 101 Zm 1 n will be adopted. Further by增加the raw material gas flow rate Te 5 to adjust the A r gas flow rate, a decrease in the relative amount of reaction products 0 0 like generated from the S i 0 o.
このような 3つの対策により、 反応生成物を素早く排気することが可能になり、 反応生 成物がェッチングに悪影響を及ぼすことがなくなる。  With these three measures, the reaction product can be quickly exhausted, and the reaction product does not adversely affect the etching.
開閉手段 1 0 4、 2 0 4、 2 0 5として用いたゲー卜バルブについては、 通常はバルブ 10外部からのみ加熱を ίϊつているのだが、 バルブ内部にもヒータを設け、 ' <ルブ弁座部まで 、めて 8 0 °C以上、 望ましくは 1 3 0 °C以上に加熱させて水分吸着を防ぐと同時に、 反応 生 ¾物の吸着を抑える。 したがって、 ゲートバルブ内部にヒータを けて、 バルブ弁座ま で加熱することにより、 バルブに吸着している水分を除去できるだけでなく、 反応生成物 が付着することがなくなるため、 選択比が向上できるだけではなく、 装置の稼働率向上に ほも寄与する。 実施例  The gate valve used as the opening / closing means 104, 204, 205 usually heats only from the outside of the valve 10. At the same time, the mixture is heated to 80 ° C. or higher, preferably 130 ° C. or higher, to prevent moisture adsorption and suppress reaction product adsorption. Therefore, by heating the inside of the gate valve and heating to the valve valve seat, not only the water adsorbed on the valve can be removed, but also the reaction product does not adhere, and the selectivity can be improved. Rather, it contributes to improving the operation rate of equipment. Example
以下、 図面を参照して本発明の R I E装置を説明するが、 本発明はこれらの実施例に限 定されるものではない。  Hereinafter, the RIE apparatus of the present invention will be described with reference to the drawings, but the present invention is not limited to these examples.
20 (実施例 1 ) 20 (Example 1)
本例では、 図 1に示した R I E装置を用い、 処理室 1 0 3内部の構造物の材料を変え て、 処理室 1 0 3内における H20と 02の発生量を観測した。 この観測は、 不図示の差動 排気系を有する 4重極質量分析計 (quadrupole mass spectrometer; QM S ) を、 処理室 1 0 3に接続して行った。 In this example, using the RIE apparatus shown in FIG. 1, by changing the material of the processing chamber 1 0 3 internal structure was observed the generation of H 2 0 and 0 2 in the processing chamber 1 0 3. This observation was performed by connecting a quadrupole mass spectrometer (QM S) having a differential exhaust system (not shown) to the processing chamber 103.
25 被処理体 1 0 1として、 S iウェハの上に S i〇2膜及びレジストを設けたものを用い、 所定のエッチング処理をすることで、 選択比 (S i 09膜のエッチング速度/レジス卜のェ ツチング速度) を求めた。 また、 図 1に示す第 1の開閉手段としては、 ゲ一トバルブを用 いた。 25 as an object to be processed 1 0 1, using those provided S I_〇 2 film and the resist on the S i wafer by a predetermined etching process, the selection ratio (S i 0 9 film etching rate / Registering speed). Further, a gate valve was used as the first opening / closing means shown in FIG.
レジストとしては、 東京応化工業製の T HM R— i P 3 3 0 0を用いた。 エッチングガ 30スは、 C F 4/ H?を用い、 S i〇2膜のエッチング速度が約 5 0 n m/分となるように、 ガ ス圧力、 ガス流量、 電極に印加する高周波電力などを適宜制御した。 As the resist, THMR-iP330, manufactured by Tokyo Ohka Kogyo Co., Ltd. was used. Etching gas 30 scan uses a CF 4 / H?, Such that the etch rate of the S I_〇 2 film is about 5 0 nm / min, moth Pressure, gas flow rate, and high frequency power applied to the electrodes were appropriately controlled.
¾理室 1 0 3内部の構造物としては、 メタル汚染防止手段 1 0 5、 スパッ夕防止手段 1 0 6、 及び、 処理室 1 0 3の内壁を検討し、 表 1に示した 4つの組み合わせにおける Hウ〇と 09の発生量を調べた。 As for the structure inside the processing room 103, metal contamination prevention means 105, spatter prevention means 106, and the inner wall of the processing room 103 were examined, and the four combinations shown in Table 1 were considered. The amount of H-W and 09 generated in was examined.
条件 Αは、 όΐ来技術に相当する組み合わせである。 処理室 1 0 3は、 アルマイ ト処理さ れた内壁を有する A 1合金製チャンバからなり、 その中には A 1 23のメタル汚染防止手 段 1 0 5と S i 0 のスパッタ防止手段 1 0 6を設けた。 Condition Α is a combination corresponding to the conventional technology. Processing chamber 1 0 3 Arumai bets treated consist A 1 alloy chamber having an inner wall, among which A 1 2third metal pollution hand stage 1 0 5 and sputter prevention means S i 0 106 was provided.
条件 Bは、 処理室 1 0 3の内壁を S i Cとした点のみ条件 Aと異なる。  Condition B differs from condition A only in that the inner wall of the processing chamber 103 is SiC.
条件 Cは、 スパッ夕防止手段 1 0 6を S i Cとした点のみ条件 Aと異なる。  The condition C differs from the condition A only in that the anti-sparging means 106 is set to S i C.
条件 Dは、 メタル汚染防止手段 1 0 5、 スパッタ防止手段 1 0 6、 及び、 処理室 1 0 3 の内壁を、 全て S i Cとした点が条件 Aと異なる。  Condition D is different from condition A in that the metal contamination prevention means 105, the spatter prevention means 106, and the inner wall of the processing chamber 103 are all SiC.
(表 } )  (table } )
Figure imgf000013_0001
Figure imgf000013_0001
表 2は、 各条件における、 H20と 0。の発生量および選択比の結果である。 条件 B〜D の結果は、 条件 Aで得られた数値で規格化して示した。 H20と 02の発生量は、 それぞれ 分子量 1 8と 3 2の結果から求めた。 条件 Aにおける H。0と 02の発生量は、 イオン電流 値でそれぞれ 4 X 1 0— 10 A、 2 1 0— 10Aであった。 :表 2 ) Table 2, in each condition, H 2 0 and 0. Is the result of the generation amount and the selection ratio. The results of conditions B to D are normalized by the values obtained in condition A. H 2 0 and 0 2 of the generation amount was determined from the respective molecular weight of 8 and 3 2 results. H in condition A. 0 0 2 generation amount were respectively a 4 X 1 0- 10 A, 2 1 0- 10 A in ion current value. : Table 2)
ιυ
Figure imgf000014_0001
ιυ
Figure imgf000014_0001
表 2から、 前記処理室の内壁に沿って設けたメタル汚染防止手段、 前記処理室内の電極 に ¾つて設けたスハッタ防止手段、 又はノ及び、 前記処理室の内壁は、 少なくとも最表面 From Table 2, the metal contamination prevention means provided along the inner wall of the processing chamber, the shatter prevention means provided for the electrode in the processing chamber, or the inner wall of the processing chamber are at least the outermost surface.
15 Fifteen
が酸素原子を含まない材料としたことにより、 メタル汚染防止手段、 スパッタ防止手段、 又はノ及び、 前記処理室の内壁から、 エッチング処理する処理室内に生起されたプラズマ の中に混入する 09や Η90の量を低減することができることが分かった。 その結果、 優れ た選択比を有する R I Ε装置が得られた。 By There was a material containing no oxygen atom, metal contamination prevention means, sputtering means for preventing, or Roh and, from the inner wall of the processing chamber, Ya 0 9 to be mixed into the plasma that is occurring in the processing chamber for etching process it was found that it is possible to reduce the amount of Eta 9 0. As a result, an RI III device having an excellent selectivity was obtained.
(実施例 2 )  (Example 2)
20  20
本例では、 処理室 1 0 3の内壁の処理方法依存性を調べた。 内壁の処理方法としては、 条件 D : アルマイ ト処理と条件 Ε : フッ化不動態 (A 1 F 3/M g F 2) の 2種類を調べ た。 In this example, the processing method dependence of the inner wall of the processing chamber 103 was examined. Two methods were used to treat the inner wall: condition D: alumite treatment and condition :: fluoridation passivation (A 1 F 3 / Mg F 2 ).
メタル汚染防止手段 1 0 5とスパッタ防止手段 1 0 6は、 共に S i Cとした。 他の点 は、 実施例 1と同様とした。  The metal contamination preventing means 105 and the spatter preventing means 106 were both SiC. Other points were the same as in Example 1.
25  twenty five
表 3は、 各条件における、 Hゥ 0と 02の発生量および選択比の結果である。 条件 Eの結 果は、 条件 Dで得られた数値で規格化して示した。 Table 3, in each condition, the results of H © 0 0 2 generation amount and selectivity. The results of Condition E are shown normalized by the values obtained under Condition D.
30 (表 3 30 (Table 3
Figure imgf000015_0001
Figure imgf000015_0001
表 3から、 ½理室の内壁表面にフ '; /化不動態処理をした材料を用いたため、 処理室の内 壁から発生する 09ゃ1 り 0を低減できることが分かった。 その結果、 選択比も向上するこ とが確認できた。 From Table 3, full 'to the inner wall surface of the ½ sense chamber; for a material in which the / passivated treatment was found to be reduced 0 0 9 Ya 1 Ri generated from the inner wall of the processing chamber. As a result, it was confirmed that the selectivity also improved.
(実施例 3 )  (Example 3)
本例では、 レジス卜の加熱処理方法を変えて、 処理室 1 0 3における H20と 09の発生 量および選択比を調べた。 In this example, by changing the heat treatment method of Regis Bok, was examined generation amount and selectivity of H 2 0 and 0 9 in the processing chamber 1 0 3.
その際、 少なくとも酸素原子を含まないガス雰囲気中で、 彼処理体上に設けたレジス卜 に対してじ Vキュア処理及び加熱処理を施す前処理室を用意し、 この前処理室とロード室 とを第 2の開閉手段で接铳した R I E装置 (図 2 ) を用いた。  At that time, in a gas atmosphere containing at least no oxygen atoms, a pretreatment chamber for performing a V cure treatment and a heat treatment on the resist provided on the treatment body is prepared. The RIE device (Fig. 2) was used to connect the RIE device with the second opening / closing means.
図 2において、 2 0 1は前処理室、 2 0 2はロード室、 2 0 3は処理室、 2 0 5は第 1 の開閉手段、 2 0 4は第 2の開閉手段、 2 0 6は少なくとも酸素原子を含まないガス供給 手段、 2 0 7、 2 0 8はガス供給手段、 2 0 9〜2 1 1は排気手段、 2 2 1は被処理体、 2 2 2は加熱系を内蔵したステージ、 2 2 3は窓、 2 2 4は U V光源である。  In FIG. 2, reference numeral 201 denotes a pre-processing chamber, reference numeral 202 denotes a load chamber, reference numeral 203 denotes a processing chamber, reference numeral 205 denotes first opening / closing means, reference numeral 204 denotes second opening / closing means, and reference numeral 206 denotes At least oxygen gas-free gas supply means, 207 and 208 are gas supply means, 209 to 211 are exhaust means, 221 is an object to be processed, and 222 is a built-in heating system. The stage, 2 2 3 is a window, and 2 2 4 is a UV light source.
処理室 2 0 3のメタル汚染防止手段とスパッタ防止手段は、 共に S i Cとした。 また、 処理室 2 0 3、 ロード室 2 0 2および前処理室 2 0 1の内壁の処理方法は、 フッ化不動態- ( A 1 F ./ g F 2) 処理とした。 第 1および第 2の開閉手段 2 0 5、 2 0 4としては、 ゲー卜バルブを用いた。 The metal contamination preventing means and the spatter preventing means of the processing chamber 203 were both SiC. Further, the processing chamber 2 0 3, the processing method of the load chamber 2 0 2 and pretreatment chamber 2 0 1 inner wall, fluoride passivated - was (A 1 F ./ g F 2 ) treatment. Gate valves were used as the first and second opening / closing means 205 and 204.
レジス卜の加熱処理方法としては、 次の 3つの組み合わせを検討した。  The following three combinations were examined for the heat treatment method for the resist.
条件 Fは、 従来技術に相当する組み合わせである。 すなわち、 S iウェハ上にレジス卜 を設けた後、 いっさい加熱処理はしなかった。 被処理体 2 2 1は、 大気圧下にある前処理0室 2 0 1の中を通過させただけである。 条件 Gは、 大気圧下にある前処理室 2 0 1において、 S iゥヱハ上にレジス卜を設けた 彼処理沐 2 2 1に対し、 加熱処理として U Vキュアと 1 3 0 °Cベーキングを行った。 条件 Hは、 ベーキングを 2 3 0 °Cとした点が条件 Gと異なる。 Condition F is a combination corresponding to the prior art. That is, after the resist was provided on the Si wafer, no heat treatment was performed. The object to be processed 221 was merely passed through the pretreatment chamber 201 under atmospheric pressure. Condition G is as follows: In the pretreatment chamber 201 under atmospheric pressure, a resist was set up on Si ゥ ヱ ha. Was. Condition H is different from condition G in that baking is performed at 230 ° C.
条件 Iは、 大気圧下にある前処理室の中に、 少なくとも酸素原子を含まないガスとし て、 乾燥空気を流しながら、 条件 Hと同じ加熱処理を行った。  In Condition I, the same heat treatment as in Condition H was performed while flowing dry air as a gas containing at least no oxygen atom into a pretreatment chamber under atmospheric pressure.
条件 Jは、 減圧 (ί列えば 1 0— 2Τοι 台) 下にある前処理室を用いた点が条件 Iと異な る。 Hと同じ加熱処理を行った。 Conditions J, the vacuum (if ί Retsue 1 0- 2 Τοι table) points with pre-treatment chamber under the Ru different from the conditions I. The same heat treatment as in H was performed.
じ Vキュアとは、 被処理体 2 2 1に対して、 U V光源 2 2 4から紫外光 [波長 2 2 0〜 2 7 0 n m、 8 mW/ c ( 2 5 0 n m ) ] を、 窓 2 2 3を通して 1 5分間照射する処理 を意呋する。 また、 ベーキングとは、 ステージ 2 2 2に内蔵したヒータを用い、 彼処理体 2 1に対して 1 5分間熱を加えることを指す。  V-curing means that UV light [wavelength 220 to 270 nm, 8 mW / c (250 nm)] is applied to the object 2 21 from the UV light source 2 24 Means irradiation for 15 minutes through 23. In addition, baking means to apply heat to the processing body 21 for 15 minutes using a heater built in the stage 222.
他の点は、 実施例 1 と同様とした。  The other points were the same as in Example 1.
表 4は、 各条件における、 H 20と 02の発生量および選択比の結果である。 条件 G〜J の結果は、 条件 Fで得られた数値で規格化して示した。 Table 4, in each condition, the result of H 2 0 and 0 2 generation amount and selectivity. The results for Conditions G to J are normalized by the values obtained under Condition F.
(表 4 )  (Table 4)
Figure imgf000016_0001
Figure imgf000016_0001
表 4から、 前処理室 2 0 1において加熱処理を施した方が、 02や H 20の発生量が減少 し、 選択比が向上することが分かった。 また、 加熱処理を施す雰囲気に、 少なくとも酸素 ■ 子を含まないガスを導入した場合、 その効果がさらに高まることも確認できた。 待に、 条件 Hおよび条件 Iのとき、 加熱処理後でもレジストの形状変化がほとんど無く、 また加 熱処理後のレジス卜からの脱ガスも少ないことが明らかとなった。 さらに条件 Jの結果か 、 (威圧下において一連の処理を行 όとその効果が最も高くなることが分かった。 From Table 4, it was subjected to heat treatment in the pretreatment chamber 2 0 1, 0 generation amount of 2 or H 2 0 is reduced, it was found that improved selectivity. In addition, at least oxygen ■ It was also confirmed that the introduction of a gas that does not contain offspring further enhances the effect. It turned out that, under the conditions H and I, there was almost no change in the resist shape even after the heat treatment, and there was little degassing from the resist after the heat treatment. Furthermore, as a result of the condition J, it was found that a series of processing was performed under intimidation and the effect was highest.
また、 第 2の開閉手段を用いず、 前処理室を独立したボックスとして利用した場合で も、 条件 Ηよりは選択比が改善することが見 、だされた。  Also, it was found that even when the pretreatment chamber was used as an independent box without using the second opening / closing means, the selectivity was improved as compared with the condition Η.
さらに、 条件 F (加熟処理なし) の場合でも、 少なくとも酸素原子を含まないガスを導 人することにより、 条件 Fよりは 02や Η20の発生量が減少し、 選択比が向上する傾向に めつ /二。 In addition, even in the case of condition F (without ripening treatment), by introducing a gas containing at least no oxygen atom, the amount of generated 0 2 and Η 20 is reduced compared to condition F, and the selectivity is improved. For the trend / two.
(実施例 4 )  (Example 4)
本例では、 図 1の R I Ε装置において、 第 1の開閉手段 1 0 4の加熱方法を検討した。 第 1の開閉手段 1 () 4としては、 図 3に示したゲートバルブを用いた。 図 3において、 3 0 1はゲー卜バルブ外壁、 3 0 2は仕切弁、 3 0 3は仕切弁 3 0 2の制御棒、 3 0 4は 0 リ ン グ、 3 0 5仕切弁 3 0 2に設置した内部ヒータ、 3 0 6はゲートバルブ外壁に設置 した外部ヒータである。  In this example, a method of heating the first opening / closing means 104 in the RI device of FIG. 1 was studied. As the first opening / closing means 1 () 4, the gate valve shown in FIG. 3 was used. In FIG. 3, reference numeral 310 denotes an outer wall of a gate valve, reference numeral 302 denotes a gate valve, reference numeral 303 denotes a control rod of a gate valve 302, reference numeral 304 denotes a ring, and reference numeral 304 denotes a gate valve. Reference numeral 303 denotes an internal heater installed on the outer wall of the gate valve.
ロード室 1 0 2および処理室 1 0 3では、 いっさい加熱処理は行わなかった。  In the load chamber 102 and the processing chamber 103, no heat treatment was performed.
½理室 I 0 3のメタル汚染防止手段 1 0 5とスパッタ防止手段 1 0 6は、 共に S i と した。 また、 処理室 1 0 3およびロード室 1 0 2の内壁の処理方法は、 フッ化不動態 t A 1 F 9 g F 9) 処理とした。 (4) Both the metal contamination prevention means 105 and the spatter prevention means 106 of the processing room I 03 were S i. The processing method of the inner wall of the processing chamber 1 0 3 and the load chamber 1 0 2 were fluoride passivated t A 1 F 9 g F 9 ) process.
以下に示す 3つの組み合わせを検討した。  The following three combinations were considered.
条件 Kは、 ½来技術に相当する組み合わせである。 すなわち、 第 1の開閉手段の内部 ヒータ 3 0 5および外部ヒー夕 3 0 6が全て 0 f ίであり、 いっさい加熱をしない場合で ある。  Condition K is a combination corresponding to the conventional technology. In other words, the internal heater 300 and the external heater 310 of the first opening / closing means are all at 0 fί, and no heating is performed at all.
条件 Lは、 第 1の開閉手段の外部ヒータ 3 0 6をべ一キング時又は 及び常時 ο ηとし た点のみ条件 Κと異なる。 ベ一キング時の設定は 1 3 0 °C、 エッチング処理時の設定は 8 0 °Cとした。  The condition L differs from the condition の み only in that the external heater 303 of the first opening / closing means is baked or always ο η. The setting during baking was 130 ° C, and the setting during etching was 80 ° C.
条件 Mは、 第 1の開閉手段の内部ヒータ 3 0 5をべ一キング時だけ o nとした点が条件 Kと異なる。 ベーキング時の設定は 1 3 0 °Cとした。  The condition M is different from the condition K in that the internal heater 300 of the first opening / closing means is set to on only during baking. The setting during baking was 130 ° C.
条件 Nは、 第 1の開閉手段の内部ヒータ 3 0 5を常時 o nとした点が条件 Kと異なる。 ベーキング時の設定は 1 3 0 °C、 エッチング処理時の設定は 8 0 °Cとした。 の点は、 実施例 1 と同様とした。 The condition N differs from the condition K in that the internal heater 300 of the first opening / closing means is always on. The setting during baking was 130 ° C, and the setting during etching was 80 ° C. This was the same as in Example 1.
表 5は、 各条件における、 H 9〇と 09の発生量および選択比の結果である。 条件 L〜N の結果は、 条件 Kで得られた数値で規格化して示した。 Table 5 shows the amounts of H 9 〇 and 09 generated and the selection ratio under each condition. The results under the conditions L to N are normalized by the values obtained under the condition K.
(表 5 )  (Table 5)
Figure imgf000018_0001
Figure imgf000018_0001
表 5から、 第 1の開閉手段 1 0 4は、 外部から加熱しても 02や Η 20の発生量は減少し ない。 し力、し、 内部から加熱することによって、 02や Η 20の発生量が減少し、 選択比が 向上することが分かった。 また、 第 1の開閉手段 1 0 4を内部から加熱する場合、 常時 o n (すなわちベー ング時のみならず、 エッチング処理中にも加熱を継続する) とする 二とで、 その効果がさらに高まることも確認できた。 Table 5, the first switching means 1 0 4, the amount of 0 2 and Eta 2 0 be heated from the outside is not reduced. It was found that the generation of O 2 and Η 20 was reduced and the selectivity was improved by applying heat from the inside. In addition, when the first opening / closing means 104 is heated from the inside, the effect is further enhanced by always on (that is, heating is continued not only during the baking but also during the etching process). Was also confirmed.
また、 第 1の開閉手段 1 0 4を常時加熱した場合には、 エッチング処理で生じた反応生 成物が第 1の開閉手段〗 0 4に吸着しないため、 処理室内においてパーティクルの発生量 が減少する作用もあった。 その結果、 第 1の開閉手段 1 0 4における故障発生の頻度が減 少するという利点も確認された。  In addition, when the first opening / closing means 104 is constantly heated, the reaction products generated by the etching process do not adsorb to the first opening / closing means〗 04, so that the amount of particles generated in the processing chamber is reduced. There was also an action to do. As a result, the advantage that the frequency of occurrence of a failure in the first switching means 104 was reduced was also confirmed.
上述した効果は、 ¾ 2の開閉手段においても、 少なからず得られることは言うまでもな Cヽ。  It goes without saying that the above-mentioned effects can be obtained to some extent even with the opening / closing means of (2).
(実施例 5 )  (Example 5)
本例では、 図 1の R I E装置において、 ロード室 1 0 2における被処理体の加熱処理を 検討した。 ロード室における被処理体を加熱処理する手段としては、 ランプヒータ (不図 示) を用いた。 第 1の開閉手段 1 0 4および処理室 1 0 3では、 いっさい加熱処理は斤わなかった。 ¾理室 I 0 3のメタル汚染防止手段 1 0 5とスパッタ防止手段 1 0 6は、 共に S i Cと した。 また、 処理室 1 0 3およびロード室 1 0 2の内壁の処理方法は、 フッ化不動態 I A 1 F 3/M g F ) 処理とした。 In this example, the heat treatment of the object to be processed in the load chamber 102 in the RIE apparatus of FIG. 1 was studied. A lamp heater (not shown) was used as a means for heating the object in the load chamber. In the first opening / closing means 104 and the processing chamber 103, no heat treatment was performed. ¾The metal contamination prevention means 105 and the spatter prevention means 106 of the processing room I 03 were both SiC. The processing method for the inner walls of the processing chamber 103 and the load chamber 102 was fluoridation passivation IA 1 F 3 / Mg F) processing.
以下に示す 3つの組み合わせを検討した。  The following three combinations were considered.
条件〇は、 従来技術に相当する組み合わせである。 すなわち、 ロード室 1 0 2におい て、 被処理体に対していっさい加熱をしない場合である。 具体的には、 ロード室 1 0 2内 に被処理体を導入し、 ロード室 1 0 2内を 1 0—8T o r r台まで減圧した後、 減圧下にあ る ¾α理室に被処理体を移動させた。 Condition (2) is a combination corresponding to the prior art. That is, this is the case where the object to be processed is not heated at all in the load chamber 102. Specifically, an object to be processed is introduced into the load chamber 102, the pressure in the load chamber 102 is reduced to a level of 10 to 8 Torr, and then the object to be processed is placed in the depressurized ¾α processing room. Was moved.
条件 ρは、 コード室 1 0 2内に設けたランプヒータ (不図示) により、 被処理体を The condition ρ is determined by using a lamp heater (not shown) provided in the code chamber 102.
1 5 0て、 1 5分間加熱した点が条件◦と異なる。 It differs from the condition ◦ in that it is heated for 150 minutes and 15 minutes.
条件 Qは、 ロード室 1 0 2内に設けたランプヒータ (不図示) により、 彼処理体を 2 5 0て、 1 5分間加熱した点が条件◦と異なる。  Condition Q differs from condition が in that the treated body is heated for 250 minutes by a lamp heater (not shown) provided in the load chamber 102 for 15 minutes.
他の点は、 実施例 1と同様とした。  The other points were the same as in Example 1.
表 6は、 各条件における、 Η0〇と 02の発生量および選択比の結果である。 条件 P、 Q の結果は、 条件 0で得られた数値で規格化して示した。 Table 6 under the conditions, the result of Eta 0 〇 0 2 generation amount and selectivity. The results under conditions P and Q are normalized by the values obtained under condition 0.
(表 6 )  (Table 6)
Figure imgf000019_0001
Figure imgf000019_0001
表 6から、 ロード室 1 0 2において被処理体を加熱することにより選択比が向上するこ とが分かった。 持に、 2 5 0 °C程度の高温で処理したとき、 著しい効果が確認された。 また、 図 2の R I E装置を用いる場台には、 上述した効果は前処理室 2 0 1において も、 少なからず得られることは言うまでもない。 (実施例 6 ) From Table 6, it was found that the selectivity was improved by heating the object in the load chamber 102. In addition, when treated at a high temperature of about 250 ° C, a remarkable effect was confirmed. Further, it goes without saying that the above-mentioned effects can be obtained to some extent even in the pretreatment chamber 201 in the case of using the RIE apparatus of FIG. (Example 6)
本冽では、 図 1に示した R I E装置の処理室 1 0 3を、 図 4に示す D RM (Dipole Ring Magnet) 方式の構造とした。 図 4に示した処理室では、 少なくとも 2つの亀極の間の空間 又は前記空間の近傍に、 反応副生成物ガスを排気する手段を設けた点が実施例 1 と異な る。  In this cooling, the processing chamber 103 of the RIE apparatus shown in Fig. 1 was constructed using the DRM (Dipole Ring Magnet) system shown in Fig. 4. The processing chamber shown in FIG. 4 differs from Example 1 in that a means for exhausting a reaction by-product gas is provided in or near the space between at least two electrode poles.
図 4において、 4 0 1は上部電極、 4 0 2は下部電極、 4 0 3は披処理体、 4 0 4はガ ス袷気口、 4 0 5はガス排気口、 4 0 6はダイボールリング'マグネッ ト、 4 0 7はガス 供給手段、 4 0 8は排気手段、 4 0 9は整合器、 4 1 0は高周波電源である。  In FIG. 4, reference numeral 401 denotes an upper electrode, reference numeral 402 denotes a lower electrode, reference numeral 403 denotes a processing body, reference numeral 404 denotes a gas-filled vent, reference numeral 405 denotes a gas exhaust port, and reference numeral 406 denotes a die ball. A ring magnet, 407 is a gas supply means, 408 is an exhaust means, 409 is a matching device, and 410 is a high frequency power supply.
' 応副生成物ガスを排気する手段としては、 以下の 4点を採用した。  '' The following four points were adopted as means for exhausting by-product gas.
I上部電極 4 0 1と下部電極 4 0 2との距離 dを 3 0 mm以下に保持した。  I The distance d between the upper electrode 401 and the lower electrode 402 was kept at 30 mm or less.
2:上部電極 4 0 1に、 ガスの袷排気機構 4 0 4 , 4 0 5を設けた。  2: The upper electrode 410 was provided with gas exhausting mechanisms 404 and 405.
処理室の外周に、 ダイポールリング .マグネッ ト 4 0 6を設けた。 A dipole ring and magnet 406 were provided on the outer periphery of the processing chamber.
)処理室におけるガス排気手段 4 0 8として、 大流量 (例えば 5 0 0 0リツ トル 分) の排気が可能なポンプを用いた。  ) As the gas exhaust means 408 in the processing chamber, a pump capable of exhausting a large flow rate (for example, 500 liters) was used.
他の点は、 実施例 1の条件 Dと同様とした。  Other points were the same as the condition D of the first embodiment.
その結果、 このような反応副生成物ガスを排気する手段を用いた場合、 エッチング処理 中の被処理体は反応副生成物ガスに曝される機会が大幅に减少するため、 選択比がさらに 改善することが分かった。 産業上の利用可能性  As a result, when such a means for exhausting the reaction by-product gas is used, the object to be processed during the etching process is less likely to be exposed to the reaction by-product gas, so that the selectivity is further improved. I found out. Industrial applicability
以上説明したように、 本発明によれば、 エッチング処理する処理室内に (^や H20が存 在しない、 又は、 持ち込まれない R I E装置がえられる。 その結果、 レジストに対する彼 処理体のエッチング選択比が向上し、 デザインルールが 0 . 2〜0 . 3 m以下の微細加 ェにも十分適応できる R I E装置の提供が可能となる。 As described above, according to the present invention, it is possible to obtain an RIE apparatus in which (^ or H 20 does not exist or is not brought into a processing chamber for performing an etching process. The selectivity is improved, and it is possible to provide an RIE apparatus that can sufficiently adapt to fine processing with a design rule of 0.2 to 0.3 m or less.

Claims

請求の範囲 に ΐ$処理体を導入するロード室と前記被処理体をエッチング処理する処理室とが、 第 1 の開閉手段を介して接続されてなる R I E (リアクティブ'イオン 'エッチンク ·') 装置 5にお(、て、  RIE (reactive 'ion' etching ') wherein a load chamber for introducing a $$ processing object and a processing chamber for etching the object to be processed are connected via first opening and closing means. Device 5
前記処理室の内壁に沿って設けたメタル汚染防止手段、 前記処理室内の電極に沿って設 けたス ック防止手段、 又は 及び、 前記処理室の内壁は、 少なくとも最表面が酸素原子 を含まない材料であることを特徴とする R I E装置。  Metal contamination prevention means provided along the inner wall of the processing chamber, sock prevention means provided along an electrode in the processing chamber, and / or the inner wall of the processing chamber, at least the outermost surface does not contain oxygen atoms. RIE equipment characterized by being a material.
2. 前記処理室の内壁表面は、 フッ化不動態処理をした材料からなることを持徴とする 請求項 1 に記載の R I E装置。  2. The RIE apparatus according to claim 1, wherein an inner wall surface of the processing chamber is made of a material subjected to a fluoridation passivation treatment.
3 . 少なくとも酸素原子を含まないガス雰囲気中で、 前記被処理体上に設けたレジスト に対してし Vキュア処理及び加熱処理を施す前処理室が、 第 2の開閉手段を介して前記 P - ド室に接繞されていることを特徴とする請求項 1又は 2に記載の R I E装置。  3. In a gas atmosphere containing at least no oxygen atoms, a pretreatment chamber for subjecting the resist provided on the object to be processed to a V cure treatment and a heat treatment is provided through a second opening / closing means. 3. The RIE device according to claim 1, wherein the RIE device is surrounded by a storage chamber.
4 . 前記第 1又は/及び前記第 2の開閉手段は、 加熱機構を内蔵していることを持徴と5する請求項 1乃至 3のいずれか 1項に記載の R I E装置。  4. The RIE apparatus according to claim 1, wherein the first and / or second opening / closing means has a built-in heating mechanism.
5. 前記ロード室又は Z及び前記処理室が、 前記被処理体を加熱処理する手段を有する 二とを特徴とする請求項 I乃至 4のいずれか 1項に記載の R I E装置。  5. The RIE apparatus according to claim 1, wherein the load chamber or Z and the processing chamber have means for heating the object to be processed.
6. 前記処理室は、 少なくとも 2つの電極の間の空間又は前記空間の近傍に、 反応副生 成物力スを排気する手段を有することを特徴とする請求項 1乃至 5のいずれか i項に記載ϋの R I Ε装置。  6. The processing chamber according to any one of claims 1 to 5, wherein the processing chamber has a means for exhausting reaction by-product power in a space between at least two electrodes or in the vicinity of the space. The RI II device described in ①.
0 0
PCT/JP1997/002326 1996-07-04 1997-07-04 Rie apparatus WO1998001898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17529696 1996-07-04
JP8/175296 1996-07-04

Publications (1)

Publication Number Publication Date
WO1998001898A1 true WO1998001898A1 (en) 1998-01-15

Family

ID=15993630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002326 WO1998001898A1 (en) 1996-07-04 1997-07-04 Rie apparatus

Country Status (1)

Country Link
WO (1) WO1998001898A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153068A (en) * 1997-03-07 2000-11-28 Tadahiro Ohmi Parallel plate sputtering device with RF powered auxiliary electrodes and applied external magnetic field
WO2008099768A1 (en) * 2007-02-05 2008-08-21 Tokyo Electron Limited Etching apparatus, etching method, and method for production of electronic device
US9592250B2 (en) 2002-02-01 2017-03-14 Life Technologies Corporation Double-stranded oligonucleotides
US9777275B2 (en) 2002-02-01 2017-10-03 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168920A (en) * 1985-01-23 1986-07-30 Hitachi Ltd Material treating apparatus
JPH01305835A (en) * 1988-05-31 1989-12-11 Nippon Tungsten Co Ltd Silicon nitride coated quartz glass vessel
JPH0379026A (en) * 1989-08-23 1991-04-04 Hitachi Ltd Dry etching apparatus
JPH04360527A (en) * 1991-06-07 1992-12-14 Tokyo Electron Ltd Etching method and etching equipment
JPH05275541A (en) * 1992-03-28 1993-10-22 Yamaha Corp Multilayer wiring forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168920A (en) * 1985-01-23 1986-07-30 Hitachi Ltd Material treating apparatus
JPH01305835A (en) * 1988-05-31 1989-12-11 Nippon Tungsten Co Ltd Silicon nitride coated quartz glass vessel
JPH0379026A (en) * 1989-08-23 1991-04-04 Hitachi Ltd Dry etching apparatus
JPH04360527A (en) * 1991-06-07 1992-12-14 Tokyo Electron Ltd Etching method and etching equipment
JPH05275541A (en) * 1992-03-28 1993-10-22 Yamaha Corp Multilayer wiring forming method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153068A (en) * 1997-03-07 2000-11-28 Tadahiro Ohmi Parallel plate sputtering device with RF powered auxiliary electrodes and applied external magnetic field
US9592250B2 (en) 2002-02-01 2017-03-14 Life Technologies Corporation Double-stranded oligonucleotides
US9777275B2 (en) 2002-02-01 2017-10-03 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US9796978B1 (en) 2002-02-01 2017-10-24 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US10036025B2 (en) 2002-02-01 2018-07-31 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US10106793B2 (en) 2002-02-01 2018-10-23 Life Technologies Corporation Double-stranded oligonucleotides
US10196640B1 (en) 2002-02-01 2019-02-05 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
US10626398B2 (en) 2002-02-01 2020-04-21 Life Technologies Corporation Oligonucleotide compositions with enhanced efficiency
WO2008099768A1 (en) * 2007-02-05 2008-08-21 Tokyo Electron Limited Etching apparatus, etching method, and method for production of electronic device

Similar Documents

Publication Publication Date Title
KR0158894B1 (en) Surface-treating method and apparatus
US6346489B1 (en) Precleaning process for metal plug that minimizes damage to low-κ dielectric
US5380397A (en) Method of treating samples
JP3391410B2 (en) How to remove resist mask
US6528427B2 (en) Methods for reducing contamination of semiconductor substrates
US20030213561A1 (en) Atmospheric pressure plasma processing reactor
WO2005109483A1 (en) Substrate for electronic device and method for processing same
JP2001168075A (en) Method of pre-cleaning dielectric layer of substrate
JP4099181B2 (en) Ion beam etching method and ion beam etching apparatus
KR20150141906A (en) Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films
WO1992011653A1 (en) Preventing of via poisoning by glow discharge induced desorption
JP2005142234A5 (en)
WO1998001898A1 (en) Rie apparatus
JP2007227691A (en) Method and apparatus for substrate processing
US7776736B2 (en) Substrate for electronic device capable of suppressing fluorine atoms exposed at the surface of insulating film from reacting with water and method for processing same
JP3592878B2 (en) Plasma cleaning method
WO1998037575A1 (en) Surface treatment method and apparatus therefor
JPH08139004A (en) Plasma treatment apparatus and plasma treatment method
JP2022101060A (en) Substrate processing method and substrate processing device
JPH08213322A (en) Ion shock intensified reflow
JPH04242933A (en) Formation of oxide film
JPH03131024A (en) Semiconductor etching
JP2544129B2 (en) Plasma processing device
US20240120193A1 (en) Carbon replenishment of silicon-containing material
JPH0814032B2 (en) Dry etching equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)