JP2002267630A - Carbon dioxide sensor - Google Patents

Carbon dioxide sensor

Info

Publication number
JP2002267630A
JP2002267630A JP2001064176A JP2001064176A JP2002267630A JP 2002267630 A JP2002267630 A JP 2002267630A JP 2001064176 A JP2001064176 A JP 2001064176A JP 2001064176 A JP2001064176 A JP 2001064176A JP 2002267630 A JP2002267630 A JP 2002267630A
Authority
JP
Japan
Prior art keywords
solid electrolyte
carbon dioxide
sensor
ions
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001064176A
Other languages
Japanese (ja)
Other versions
JP4266531B2 (en
Inventor
Kinya Adachi
吟也 足立
Nobuhito Imanaka
信人 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2001064176A priority Critical patent/JP4266531B2/en
Publication of JP2002267630A publication Critical patent/JP2002267630A/en
Application granted granted Critical
Publication of JP4266531B2 publication Critical patent/JP4266531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide sensor not influenced by various gases inclusive of steam at all and having excellent initial stability. SOLUTION: The solid electrolyte type carbon dioxide sensor element consists of a solid electrolyte containing trivalent ions having a NASICON type or β-iron sulfate type structure suitable for the conduction of ions as a main conductive ion seed, a solid electrolyte containing oxide ions as a main ion seed, and a detection electrode containing a solid solution wherein an alkaline earth metal element is substituted for a part of a rear earth element in a rare earth carbonic acid oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質を用いた小
型炭酸ガスセンサの開発に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the development of a small carbon dioxide sensor using a solid electrolyte.

【0002】[0002]

【従来の技術】従来、アルカリ金属イオンを主たる導電
イオン種とする固体電解質を用いた炭酸ガスセンサが提
案されているが、これらはアルカリ金属イオンの種々の
ガスに対する反応性の高さから、特に水蒸気が共存する
被検ガス中における炭酸ガスに対する選択性に問題があ
った。
2. Description of the Related Art Conventionally, carbon dioxide gas sensors using a solid electrolyte containing an alkali metal ion as a main conductive ion species have been proposed. However, these have been proposed because of their high reactivity of alkali metal ions to various gases. There was a problem in the selectivity to carbon dioxide gas in the test gas in which was present.

【0003】かかる問題点を克服するために、固体電解
質に2価以上のイオンを主たる導電イオン種とする固体
電解質を、さらに、固体参照極として、耐水性に優れた
希土類の炭酸酸化物単独、あるいはそれを含む混合物や
固溶体を用いたセンサも提案されており、ガス選択性は
改善されているものの、センサ出力の初期安定性に問題
が残っていた。
In order to overcome such problems, a solid electrolyte having a divalent or higher valent ion as a main conductive ion species is used as a solid electrolyte, and a rare earth carbonate oxide having excellent water resistance is used alone as a solid reference electrode. Alternatively, a sensor using a mixture or a solid solution containing the same has been proposed, and although gas selectivity has been improved, a problem remains in the initial stability of the sensor output.

【0004】[0004]

【発明が解決しようという課題】本発明は、上記現状を
鑑みてなされたものであり、その目的は水蒸気をはじめ
とした雑ガスの影響を全く受けないだけでなく、センサ
出力の初期安定性に優れた炭酸ガスセンサを提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has as its object not only the influence of various gases such as water vapor but also the initial stability of the sensor output. It is to provide an excellent carbon dioxide sensor.

【0005】[0005]

【課題を解決するための手段】本発明者は前述の課題を
克服するセンサを開発すべく鋭意研究を重ねた結果、3
価イオンを主たる導電イオン種とする固体電解質を用い
たセンサにおいて、優れた初期安定性が得られること、
その中でも結晶構造にナシコン型若しくはβ−硫酸鉄型
構造のようなイオン伝導に適した結晶構造を持つ固体電
解質において特に優れた特性が得られることを見いだし
た。
The inventor of the present invention has made intensive studies to develop a sensor that can overcome the above-mentioned problems, and as a result,
Excellent initial stability is obtained in a sensor using a solid electrolyte whose main conductive ion species is a valence ion,
Among them, it has been found that particularly excellent characteristics can be obtained in a solid electrolyte having a crystal structure suitable for ionic conduction such as a NASICON or β-iron sulfate structure.

【0006】また、本発明者は、3価カチオンを主たる
導電イオン種とする固体電解質以外のセンサ素子に用い
る構成材料として、酸化物イオン伝導体を主たる導電イ
オン種とする固体電解質と、優れた耐水性を有する希土
類の炭酸酸化物中の希土類元素の一部をアルカリ土類金
属元素で置換した固溶体を含む検出極を用いることによ
り、優れたガス選択性が得られることを見いだしてい
る。
The present inventor has also proposed a solid electrolyte containing an oxide ion conductor as a main conductive ion species as a constituent material for a sensor element other than a solid electrolyte containing a trivalent cation as a main conductive ion species. It has been found that excellent gas selectivity can be obtained by using a detection electrode containing a solid solution in which part of a rare earth element in a water-resistant rare earth carbonate is replaced with an alkaline earth metal element.

【0007】上記本発明で提案するセンサは、結晶構造
にナシコン型若しくはβ−硫酸鉄型構造のようなイオン
伝導に適した結晶構造を持つ3価イオンを主たる導電イ
オン種とする固体電解質と酸化物イオンを主たる導電イ
オン種とする固体電解質と、さらに水に難溶な希土類の
炭酸酸化物の固溶体の検出極からなる固体電解質型炭酸
ガスセンサである。
The sensor proposed in the present invention is composed of a solid electrolyte containing a trivalent ion having a crystal structure suitable for ionic conduction such as a NASICON-type or β-iron sulfate-type structure as a main conductive ion species, and an oxidizer. This is a solid electrolyte type carbon dioxide gas sensor comprising a solid electrolyte mainly composed of metal ions as a conductive ion species and a detection electrode of a solid solution of a rare earth carbonate oxide hardly soluble in water.

【0008】[0008]

【発明の実施の形態】以下に本発明のセンサの構成を詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the sensor according to the present invention will be described below in detail.

【0009】本発明で用いる固体電解質としては、主た
る導電イオン種が3価イオンであり、その結晶構造がナ
シコン型若しくはβ−硫酸鉄型構造のようなイオン伝導
に適した結晶構造を持つ固体電解質であり、これに酸化
物イオンを主たる導電イオン種とする固体電解質を、さ
らに検出極に水に難溶な希土類の炭酸酸化物の固溶体を
併せ用いる。
As the solid electrolyte used in the present invention, the main conductive ion species is a trivalent ion, and its crystal structure has a crystal structure suitable for ionic conduction such as a NASICON type or β-iron sulfate type structure. In addition, a solid electrolyte containing oxide ions as a main conductive ion species is used, and a solid solution of a rare-earth carbonate insoluble in water is used as a detection electrode.

【0010】上記3価イオンを主たる導電イオン種とす
る固体電解質としては、上記イオン伝導に適した結晶構
造を保持できればよく、固体電解質中に含まれる3価イ
オンを始めとした構成元素としては、周知の元素を用い
ることができる。
The solid electrolyte containing the above-mentioned trivalent ions as a main conductive ion species only needs to be able to maintain a crystal structure suitable for the above-mentioned ionic conduction. The constituent elements including the trivalent ions contained in the solid electrolyte include: Known elements can be used.

【0011】酸化物イオンを主たる導電イオン種とする
固体電解質としては、酸化物イオン伝導性を示すもので
あれば、周知の固体電解質を用いることができるが、酸
化物イオン伝導性の高さから安定化ジルコニアやガリウ
ム酸ランタンを用いることが望ましい。
As the solid electrolyte containing oxide ions as the main conductive ion species, any known solid electrolyte can be used as long as it has oxide ion conductivity. It is desirable to use stabilized zirconia or lanthanum gallate.

【0012】本発明に用いるセンサの断面図の一例を図
1に示す。尚、センサの構成はこれに限定されるもので
はなく、いかなる形態のセンサセルを用いることができ
る。
FIG. 1 shows an example of a sectional view of a sensor used in the present invention. The configuration of the sensor is not limited to this, and any type of sensor cell can be used.

【0013】以下に実施例を用いて本発明をより詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0014】[0014]

【実施例1】3価イオンを主たる導電イオン種とする固
体電解質としてナシコン型構造を持ち、スカンジウムイ
オン(Sc3+)伝導性を示すSc1/3Zr2(PO4)3を、酸化物イ
オンを主たる導電イオン主とする固体電解質に安定化ジ
ルコニアを、さらに、検出極にネオジム(Nd)の炭酸酸
化物に炭酸リチウムを29mol%、炭酸バリウムを1
2mol%固溶させた化合物((Nd0.47Ba0.12Li0.29)2O
0.94CO3)を用いたセンサを作製した。尚、炭酸バリウ
ム、炭酸リチウムの固溶量は0〜50mol%の範囲で
任意に変化させることができ、この値に限定されるもの
ではない。
Example 1 Sc 1/3 Zr 2 (PO 4 ) 3 having a Nasicon type structure and exhibiting scandium ion (Sc 3+ ) conductivity was used as a solid electrolyte containing trivalent ions as a main conductive ion species. Stabilized zirconia is used for the solid electrolyte mainly composed of conductive ions, and 29 mol% of lithium carbonate is used for the neodymium (Nd) carbonate oxide and 1 barium carbonate is used for the detection electrode.
2 mol% solid solution compound ((Nd 0.47 Ba 0.12 Li 0.29 ) 2 O
A sensor using 0.94 CO 3 ) was fabricated. In addition, the solid solution amount of barium carbonate and lithium carbonate can be arbitrarily changed in a range of 0 to 50 mol%, and is not limited to this value.

【0015】Sc1/3Zr2(PO4)3は以下の通りである。尚、
合成法はこれに限定されるものではない。
Sc 1/3 Zr 2 (PO 4 ) 3 is as follows. still,
The synthesis method is not limited to this.

【0016】化学量論量のSc2O3とZrO(NO3)2・2H2Oを希
硝酸溶液に溶解させた後、(NH4)2HPO4水溶液を滴下する
ことで白色沈殿物を得た。得られた沈殿物を十分に乾燥
させることで白色粉末を得た。その後、粉末を所定の型
に成型後、800〜1000℃の温度範囲で焼結した。
After dissolving stoichiometric amounts of Sc 2 O 3 and ZrO (NO 3 ) 2 .2H 2 O in a dilute nitric acid solution, an aqueous solution of (NH 4 ) 2 HPO 4 is added dropwise to form a white precipitate. Obtained. The obtained precipitate was sufficiently dried to obtain a white powder. Then, after molding the powder into a predetermined mold, it was sintered at a temperature in the range of 800 to 1000 ° C.

【0017】安定化ジルコニアは酸化ジルコニウム(Zr
O2)と酸化イットリウム(Y2O3)を9:1の比で秤量
し、乳鉢で混合した後、電気炉中1600℃で12時間
焼成した。焼成した粉末を再度乳鉢で粉砕、混合した
後、円盤状に成型し、電気炉中1600℃で12時間焼
結を行った。
The stabilized zirconia is zirconium oxide (Zr
O 2 ) and yttrium oxide (Y 2 O 3 ) were weighed at a ratio of 9: 1, mixed in a mortar, and fired in an electric furnace at 1600 ° C. for 12 hours. The fired powder was again ground and mixed in a mortar, molded into a disk shape, and sintered at 1600 ° C. for 12 hours in an electric furnace.

【0018】ネオジムの炭酸酸化物と炭酸バリウムの固
溶体(Nd0.8Ba0.2)2O1.5CO3は酢酸ネオジム一水和物(Nd
(CH3COO)3・H2O)と酢酸バリウム一水和物(Ba(CH3COO)
2・H2O)を8:2の比で秤量し、乳鉢で混合した後、電
気炉中500℃で12時間焼成することにより合成し
た。
A solid solution of neodymium carbonate and barium carbonate (Nd 0.8 Ba 0.2 ) 2 O 1.5 CO 3 is neodymium acetate monohydrate (Nd
(CH 3 COO) 3 · H 2 O) and barium acetate monohydrate (Ba (CH 3 COO)
2 · H 2 O) was weighed at a ratio of 8: 2, mixed in a mortar, and then fired in an electric furnace at 500 ° C. for 12 hours to synthesize.

【0019】得られた(Nd0.8Ba0.2)2O1.5CO3と炭酸リチ
ウムを2:1の比で混合した後、電気炉中550℃で1
2時間焼成することで(Nd0.47Ba0.12Li0.29)2O0.94CO3
を得た。
After mixing the obtained (Nd 0.8 Ba 0.2 ) 2 O 1.5 CO 3 and lithium carbonate at a ratio of 2: 1, the mixture was heated in an electric furnace at 550 ° C. for 1 hour.
By firing for 2 hours, (Nd 0.47 Ba 0.12 Li 0.29 ) 2 O 0.94 CO 3
I got

【0020】図1に示すようにSc1/3Zr2(PO4)3と安定化
ジルコニアを重ね合せ、側面を無機接着剤で固定し、さ
らにSc1/3Zr2(PO4)3側に(Nd0.47Ba0.12Li0.29)2O0.94CO
3を、さらにその上から金網電極を圧着させた。また、
安定化ジルコニア側には白金網電極を圧着させた。
As shown in FIG. 1, Sc 1/3 Zr 2 (PO 4 ) 3 and stabilized zirconia are overlapped, the side is fixed with an inorganic adhesive, and the Sc 1/3 Zr 2 (PO 4 ) 3 side (Nd 0.47 Ba 0.12 Li 0.29 ) 2 O 0.94 CO
3 was further pressure-bonded with a wire mesh electrode thereon. Also,
A platinum mesh electrode was pressed on the stabilized zirconia side.

【0021】炭酸ガス濃度測定は、550℃で炭酸ガス
濃度を200ppm〜5%の範囲で変化させて行った。
The carbon dioxide concentration was measured at 550 ° C. while changing the carbon dioxide concentration within a range of 200 ppm to 5%.

【0022】図2に、炭酸ガス濃度の対数に対するセン
サ出力を示す。図中の直線は理論的な応答を示す際のセ
ンサ出力の変化の傾きを表しており、本発明のセンサは
理論どおりの応答を示すことが明らかとなった。また、
炭酸ガス濃度を変化させたときの応答時間は約2〜4分
と迅速であり、炭酸ガス濃度を元に戻すとセンサ出力も
回復したことから、可逆的な応答を示すことがわかっ
た。
FIG. 2 shows the sensor output with respect to the logarithm of the carbon dioxide gas concentration. The straight line in the figure indicates the slope of the change in the sensor output when the theoretical response is exhibited, and it has been clarified that the sensor of the present invention exhibits the theoretical response. Also,
The response time when the carbon dioxide concentration was changed was as quick as about 2 to 4 minutes, and the sensor output was recovered when the carbon dioxide concentration was restored, indicating a reversible response.

【0023】また、本発明のセンサは水蒸気を始めとし
た雑ガスだけでなく、センサ上に液体の水が結露した場
合でも、それらの影響を全く受けず、優れた炭酸ガス選
択性を有していることがわかった。
The sensor of the present invention has excellent carbon dioxide gas selectivity without being affected by not only miscellaneous gases such as water vapor but also liquid water dew condensation on the sensor. I understood that.

【0024】表1に、1%の炭酸ガス濃度中でのセンサ
出力の経日変化を初期値からの変化量として示す。本発
明のセンサでは、測定開始直後から安定なセンサ出力が
得られており、測定開始時のセンサ出力からの変化量は
4mV以下となることがわかった。このときのセンサ出
力を実際の炭酸ガス濃度に換算すると、0.9〜1.1
%となり、この変化量は実用上全く問題のない範囲であ
る。
Table 1 shows the daily change of the sensor output in the 1% carbon dioxide gas concentration as the amount of change from the initial value. In the sensor of the present invention, a stable sensor output was obtained immediately after the start of the measurement, and it was found that the amount of change from the sensor output at the start of the measurement was 4 mV or less. When the sensor output at this time is converted into an actual carbon dioxide gas concentration, 0.9 to 1.1
%, Which is within a range in which there is no practical problem.

【0025】[0025]

【表1】 [Table 1]

【0026】このように、他ガスの影響を全く受けず、
かつ、センサ出力の変動が小さな理由としては、3価イ
オンを主たる導電イオン種とする固体電解質と酸化物イ
オンを主たる導電イオン種とする固体電解質との界面に
生成する酸化物が安定な酸化スカンジウム(Sc2O3)で
あるため、測定開始直後から該酸化物の活量が変化しに
くく、これによりセンサ出力が安定するためである。
Thus, without being affected by other gases at all,
The reason for the small fluctuation of the sensor output is that the oxide formed at the interface between the solid electrolyte mainly containing trivalent ions and the solid electrolyte mainly containing oxide ions is stable scandium oxide. Because of (Sc 2 O 3 ), the activity of the oxide hardly changes immediately after the start of the measurement, and the sensor output is thereby stabilized.

【0027】[0027]

【実施例2】固体電解質にリチウムイオン(Li+)を主
たる導電イオン種とする固体電解質(LiTi2(PO4)3+0.2L
i3PO4)を用いた以外は実施例1と同じである。
Example 2 A solid electrolyte (LiTi 2 (PO 4 ) 3 +0.2 L) containing lithium ion (Li + ) as a main conductive ion species as the solid electrolyte
It is the same as Example 1 except that i 3 PO 4 ) was used.

【0028】LiTi2(PO4)3+0.2Li3PO4の合成は、Li2C
O3、TiO2、NH4H2PO4、Li3PO4をモル比0.5:2:3:
0.2の割合で混合し、900℃で2時間加熱し、得ら
れた粉末をボールミルを用いて粉砕、混合した後、ペレ
ット状に成型し、900℃で2時間焼結することで得
た。
The synthesis of LiTi 2 (PO 4 ) 3 + 0.2Li 3 PO 4 is based on Li 2 C
O 3 , TiO 2 , NH 4 H 2 PO 4 , Li 3 PO 4 are mixed at a molar ratio of 0.5: 2: 3:
The powder was mixed at a ratio of 0.2, heated at 900 ° C. for 2 hours, and the obtained powder was pulverized and mixed using a ball mill, molded into pellets, and sintered at 900 ° C. for 2 hours. .

【0029】リチウムイオンを主たる導電イオン種とす
る固体電解質を用いたセンサの1%の炭酸ガス濃度中で
のセンサ出力の経日変化を表1に示してある。このセン
サでは、測定開始直後からセンサ出力は大きく増大し、
10日後には変化量がおよそ100mVとなった。この
ときのセンサ出力を炭酸ガス濃度に換算すると約150
0ppm(0.15%)となることから、このセンサを
用いるためには頻繁にセンサ出力の校正が必要となる。
Table 1 shows the change over time of the sensor output in a sensor using a solid electrolyte containing lithium ion as a main conductive ion species at a carbon dioxide gas concentration of 1%. With this sensor, the sensor output greatly increases immediately after the start of measurement,
After 10 days, the change was about 100 mV. When the sensor output at this time is converted into a carbon dioxide concentration, it is about 150
Since the concentration is 0 ppm (0.15%), the use of this sensor requires frequent calibration of the sensor output.

【0030】[0030]

【実施例3】固体電解質にマグネシウムイオン(Mg2+
を主たる導電イオン種とする固体電解質(Mg0.7(Zr0.85
Nb0.15)4P6O24)を用いた以外は実施例1と同じであ
る。
Example 3 Magnesium ion (Mg 2+ ) in solid electrolyte
Solid electrolyte (Mg 0.7 (Zr 0.85
It is the same as Example 1 except that Nb 0.15 ) 4 P 6 O 24 ) was used.

【0031】Mg0.7(Zr0.85Nb0.15)4P6O24は、リン酸水
素マグネシウム3水和物(MgHPO4・3H2O)、硝酸ジルコ
ニウム二水和物(ZrO(NO3)2・2H2O)、酸化ニオブ(Nb2
O5)、リン酸二水素アンモニウム(NH4H2PO4)を0.
7:3.4:0.6:6の比で秤量し、乳鉢で混合した
後、電気炉中300℃で8時間仮焼した。仮焼した粉末
を、円盤状に成型し、電気炉中1200℃で12時間焼
成を行った。焼成した粉末を再度乳鉢で粉砕、混合した
後、円盤状に成型し電気炉中1200℃で12時間焼結
を行った。
[0031] Mg 0.7 (Zr 0.85 Nb 0.15) 4 P 6 O 24 are magnesium hydrogen phosphate trihydrate (MgHPO 4 · 3H 2 O) , zirconium nitrate dihydrate (ZrO (NO 3) 2 · 2H 2 O), niobium oxide (Nb 2
O 5 ) and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) to 0.1.
After weighing at a ratio of 7: 3.4: 0.6: 6 and mixing in a mortar, the mixture was calcined in an electric furnace at 300 ° C. for 8 hours. The calcined powder was shaped into a disk and fired in an electric furnace at 1200 ° C. for 12 hours. The fired powder was again ground and mixed in a mortar, molded into a disk shape, and sintered at 1200 ° C. for 12 hours in an electric furnace.

【0032】マグネシウムイオン(Mg2+)を主たる導電
イオン種とする固体電解質を用いたセンサの1%の炭酸
ガス濃度中でのセンサ出力の経日変化を表1に示してあ
る。このセンサでは、1価イオンでるリチウムイオンを
主たる導電イオン主とする固体電解質を用いたセンサよ
りもセンサ出力の変動は小さくなっているが、その変化
量は最大で34mVとなり、これは、3000ppm
(0.3%)となるため、センサ出力の校正が必要とな
る。
Table 1 shows the change over time of the sensor output in a sensor using a solid electrolyte containing magnesium ion (Mg 2+ ) as a main conductive ion species at a carbon dioxide gas concentration of 1%. In this sensor, the fluctuation of the sensor output is smaller than that of a sensor using a solid electrolyte mainly composed of lithium ions which are monovalent ions as the main conductive ions, but the change is 34 mV at maximum, which is 3000 ppm.
(0.3%), the sensor output needs to be calibrated.

【0033】[0033]

【発明の効果】本発明で提案する炭酸ガスセンサでは、
3価イオンを主たる導電イオン種とする固体電解質と、
酸化物イオンを主たる導電イオン種とする固体電解質
と、検出極として希土類の炭酸酸化物の固溶体を組み合
わせることにより、水蒸気などの雑ガスの影響を全く受
けず、精度良くかつ迅速に炭酸ガス濃度を計測できるだ
けでなく、センサ作動開始時からのセンサ出力に変動が
ほとんど見られず、優れた初期安定性を有するなど顕著
な効果を奏する。
According to the carbon dioxide sensor proposed in the present invention,
A solid electrolyte having a trivalent ion as a main conductive ion species;
By combining a solid electrolyte with oxide ions as the main conductive ion species and a solid solution of rare earth carbonate oxide as the detection electrode, the concentration of carbon dioxide gas can be accurately and quickly measured without any influence of miscellaneous gases such as water vapor. In addition to the measurement, the output of the sensor from the start of the sensor operation hardly fluctuates, and a remarkable effect such as excellent initial stability is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いた炭酸ガスセンサの一例の断面図
である。
FIG. 1 is a cross-sectional view of an example of a carbon dioxide sensor used in the present invention.

【図2】3価のスカンジウムイオン(Sc3+)を主たる導
電イオン種とする固体電解質を用いたセンサの550℃
における炭酸ガス濃度の対数に対するセンサ出力であ
る。
FIG. 2 shows a sensor at 550 ° C. using a solid electrolyte containing trivalent scandium ion (Sc 3+ ) as a main conductive ion species.
5 is a sensor output with respect to the logarithm of the concentration of carbon dioxide in FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ナシコン型若しくはβ−硫酸鉄型構造を
有し、3価以上のイオンを主たる導電イオン種とする固
体電解質を用いた耐水性と初期安定性に優れる炭酸ガス
センサ
1. A carbon dioxide gas sensor having a NASICON type or β-iron sulfate type structure and having excellent water resistance and initial stability using a solid electrolyte having a trivalent or higher ion as a main conductive ion species.
JP2001064176A 2001-03-08 2001-03-08 Carbon dioxide sensor Expired - Fee Related JP4266531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064176A JP4266531B2 (en) 2001-03-08 2001-03-08 Carbon dioxide sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064176A JP4266531B2 (en) 2001-03-08 2001-03-08 Carbon dioxide sensor

Publications (2)

Publication Number Publication Date
JP2002267630A true JP2002267630A (en) 2002-09-18
JP4266531B2 JP4266531B2 (en) 2009-05-20

Family

ID=18923036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064176A Expired - Fee Related JP4266531B2 (en) 2001-03-08 2001-03-08 Carbon dioxide sensor

Country Status (1)

Country Link
JP (1) JP4266531B2 (en)

Also Published As

Publication number Publication date
JP4266531B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
KR101526703B1 (en) A method for preparing Al substituted garnet
JP4608506B2 (en) Mixed ionic conductor and device using the same
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JP2991256B2 (en) Lithium ion conductive solid electrolyte material
JP4266531B2 (en) Carbon dioxide sensor
JP7022616B2 (en) Manufacturing method of positive electrode active material
JP2951887B2 (en) Mixed ionic conductor
JP2002245847A (en) Solid electrolyte
JP2003042999A (en) Nitrogen oxide sensor
US6325905B1 (en) Solid electrolyte type carbon dioxide gas sensor element
JPH08206476A (en) Ion selection ceramic film
JP2733516B2 (en) Gas sensor
JP4270737B2 (en) Solid electrolyte carbon dioxide sensor
JPH075300B2 (en) Method for producing lithium aluminate fiber
JP6478223B2 (en) Yttrium-containing oxyapatite-type lanthanum / germanate ceramics
JP2944142B2 (en) Lithium ion conductive composite sintered body
JP3202492B2 (en) Beta alumina electrolyte
JPS6042907B2 (en) Calcium ion selective electrode
JP2007212175A (en) Gas sensor
JP2002075405A (en) Gallate complex oxide solid electrolyte material and its manufacturing method
JPS61247621A (en) Oxygen sensor material for perovskite type oxide semiconductor
JP2002357586A (en) Solid electrolyte molded material
JPH02148573A (en) Solid electrolyte
JPH0757532A (en) Ion conductor and manufacture thereof
JP2000143330A (en) Beta aluminous solid electrolyte and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees